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TD 1: TOPOLOGY ISSUES IN PRODUCT SPACES AND BANACH SPACES

EXERCISE 1 (General topology).

1. Let f : E — F be a continuous map between topological spaces. Show that f is sequently
continuous. Namely, show that if the sequence (z,,), converges to x in E then the sequence
(f(xn))n converges to f(z) in F. Can we claim that if f is sequently continuous then f is
continuous 7

2. Let f: E — F be a map between topological spaces. The function f is said to be continuous
at ¢ € E if for all open set V containing f(x), there exists an open set U containing x and such
that f(U) C V. Check that, in this definition, “open set” can be replaced by “neighbourhood”.

3. Let X be a set, (F;)icsr be a family of topological spaces and f; : X — F; be some functions.

(a) Prove that the “coarsest topology that makes the functions f; continuous” exists.

(b) Let g : E — X be a function defined on a topological space E. Check that g is continuous
if and only if for all ¢ € I, f; o g is continuous.

(c) Let (x)n be a sequence in X. Prove that (x,), converges to z if and only if for all i € I,
(fi(zpn))n converges to fi(x).

4. Let (F})ier be a family of topological spaces. We define the product topology on [ ], ; F; as the
“coarsest topology” making the projections continuous. Show that this topology is generated
by the cylinder sets, i.e. the sets of the form C; = [[..; U;, where each U; is open in F; and
U; = F;, except for a finite number of indexes i € J.

i€l

EXERCISE 2 (A theorem of Hérmander). Let 1 < p,q < oo and
T (LPR), (| - llp) = (LAR), [ lq),

be a continuous linear operator which commutes with the translations, that is, which satisfies
T = Tty for all h € R™, where 7,f = f(- — h). The purpose of this exercice is to prove the
following property: if ¢ < p < oo, then the operator T is trivial.

1. Let u be a function in LP(R™). Prove that ||u + ull, — 2V/P|ul, as ||k]| — co.
Hint: you may decompose u as the sum of a compactly supported function and of a function
with arbitrarily small LP norm.

2. Check that if C' stands for the norm of operator 7', then we have that for all u € LP(R"),
ITull, < 24P~4C ull,

and conclude.
3. Can you give the example of a non-trivial such operator T" when p < ¢ 7

EXERCISE 3 (Fourier coefficients of L' functions). For any function f in L(T), we define the
function f:Z — C by

f(n) = ;ﬁ/ﬂ fe ™ dt, neZ.

We denote by ¢y the space of complex valued functions on Z tending to 0 at d-oco.



1. Check that (co, || - ||s) is a Banach space.

2. Prove that, for all f € L*(T), f € .
Hint: Recall that the trigonometric polynomials Y ,__ are™® are dense in L'(T).

Now we study the converse question: is every element of ¢y the sequence of Fourier coefficients of a
function in L(T)?

3. Prove that A : f — f defines a bounded linear map from L'(T) to co.

4. Prove that the function A is injective.

5. Show that the function A is not onto.
Hint: You may use the Dirichlet kernel Dy, (t) = Y 7__, e*, whose L*(T) norm goes to +oo
as n — +0o0.

EXERCISE 4 (Equivalence of norms).

1. Let E be a vector space endowed with two norms || - ||; and || - [|2 such that both (E,|| - |1)
and (E,| - ||2) are Banach spaces. Assume the existence of a finite constant C' > 0 such that

Ve e E, |z|i < C|z||2-

Prove that the norms || - |1 and || - |2 are equivalent.

2. Let K be a compact subset of R”. We consider a norm N on the space C°(K,R) such
that (C°(K,R), N) is a Banach space, and satisfying that any sequence of functions (f,), in
C°(K,R) that converges for the norm N also converges pointwise to the same limit. Prove
that the norm N is then equivalent to the norm || - ||oo-

EXERCISE 5 (A Rellich-like theorem). Let us consider E the following subspace of L?(R)

E={ueC(R):|lullp < +oc}, where |ullz=|(V1+a2)ullp2m) + [[v'[|2w)-
The aim of this exercice is to prove that the unit ball By of E is relatively compact in L?(R), with
Bp = {U € Cl(R) : ||u||E < 1}.

In the following, we denote by ¢ a non-negative C> function such that ¢~1({0}) = R\ [-2,2] and
¢~ H({1}) = [-L,1].
1. Considering the cut-off ¢r(z) = ¢(x/R), show that sup,cp, [[(1 — ¢r)ullL2(r) converges to 0

as R — +o0.
2. We define 9. (x) = éqb(%) and 75, the translation operator (see Exercice 2). Show that for all

R >1 and € > 0, there exists C; g > 0 such that for all h € R and u € E,
[7h((pRU) * Pe) — (PrU) * Vel Lo (m) < Cer|hl|[ullz  and  [[(dru) * Ve Lo r) < Ce rllullE-

3. Show that for any sequence (uy), in Bg, there exists a subsequence (u, ), such that for any
R,e7! € N*, the sequence ((¢run’) * 1), converges in L2(R) as n’ — oo.
Hint: Use Cantor’s diagonal argument.

4. Conclude.

5. Let us now consider the set By C L?(R) defined by

By = {u € C'(R) : |lull 2y + |/l 2y <1}

Is By relatively compact in L?(R) ?
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TD 2: LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES AND FRECHET SPACES

In the following, “locally convex topological vector space” will be abbreviated as l.c.t.v.s.

EXERCISE 1. Let E be a locally convex topological vector space whose topology is induced by a
(separating) countable family of semi-norms (p,,)n,en. We define

—+00

L pulz—y)
d = —— E.
(2, y) nE:O T tpa—y) "Y€

Let us prove that the topology induced by d and the topology induced by the family of seminorms
(Pn)nen coincide.
1. Show that g : [0,00) — R defined by g(t) = %th is an increasing sub-additive function and
give its image. Deduce that d is a translation invariant distance on FE.

2. Give a basis of neighbourhoods of O for the topology induced by the family of semi-norms,
and show that every neighbourhood of O contains an open ball for the distance d.

3. Show that every open ball for the distance d centered on O contains a neighbourhood of Og
for the topology induced by the family of semi-norms.

4. Conclude.

More generally, let us consider a continuous bounded function g : [0, +00) — Ry and

+o0o
dg(,y) = Z 279(}711(56‘ —y)), xz,y€E.

n=0

5. Under what condition on g does d, defines a distance on E whose topology coincide with the
one induced by the family of seminorms (py)nen ?

EXERCISE 2. Let X and Y be l.c.t.v.s. We consider (pq)aca (resp. (¢3)sep) a countable family
of continuous semi-norms which is separating and generates the topology of X (resp. of Y). Let
T :X — Y be a linear map. Prove that T is continuous if and only if for all g € B, there exists a
finite set I C A and a positive constant ¢ > 0 such that for all u € X,

qs(Tu) < c Zpa(u).

acl

EXERCISE 3 (Space of continuous functions). Let U be an open subset of R and (K,), be an
exhaustive sequence of compacts of U.

1. Prove that C°(U) is a Fréchet space for the distance

+oo

A(f,9) = 3 5 win(L,palf — 9)),

n=0

defined by the semi norms p,(f) = sup,cg, |f(2)|.



2. Recall that a subset B C C°(U) is said to be bounded if for any neighborhood V of 0, there
exists A > 0 such that AB C V. Prove that if B is a subset of equibounded functions of
CO(U), that is sup e || flloo < 00, then B is bounded.

3. Let us consider (fy)n a sequence of continuous function on U such that f, : U — [0, n] with
fn=00n K, and f, =n on U\ K,41. Show that U,{f,} is a bounded subset of C°(U).

4. Prove that the space C°(R) is not locally bounded, that is, the origin does not have a bounded
neighborhood.

EXERCISE 4 (Space of C* functions). We consider the vector space E = C*°([0, 1], R) equipped
with the following metric

r .
A(f,9) = 3 g min (1,179 = g¥.c).
k>0
1. Check that E is a Fréchet space.
2. Prove that any closed and bounded (¢f the previous exercise) subset of E is compact.
3. Can the topology of E be defined by a norm 7

EXERCISE 5 (LP spaces with 0 < p < 1). Let p € (0,1) and L? be the set of real-valued measurable
functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following

quantity is finite:
1 :
ful = ([ P az)”

1. Show that LP is a vector space and that d(u,v) = ||u — v||} is a distance. Prove that (L?,d)
is complete.

2. Let f € LP and n > 1 be a positive integer. Prove that there exist some points 0 = xg < z1 <
... <z, =1such that forall¢=0,...,n—1,

Ti41 1 1
/ fPde=1 / PP da.
x; n Jo

3. Prove that the only convex open domain in LP containing u = 0 is L? itself. Deduce that the
space LP is not locally convex.
Hint: Introduce the functions g;' =nfly, 4z, -

4. Bonus: Show that the (topological) dual space of LP reduces to {0}.
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TD 3: HAHN-BANACH THEOREMS

EXERCISE 1 (Hahn-Banach Theorem without the axiom of choice).

1. Let (E,dg) and (F,dp) be metric spaces, (F,dr) being complete, D C E be a dense subset
and f : (D,dg) — (F,dp) be a uniformly continuous function. Then, there exists a unique
continuous function F' : (E,dg) — (F,dr) such that F|p = f. Moreover, prove that the
function F' is uniformly continuous.

2. Let E be a real separable Banach space and p be a continuous seminorm on F. Let M be a
linear subspace of E and ¢ : M — R be a linear functional which is dominated by p. Without
using the axiom of choice, prove that ¢ can be extended to a linear functional £ — R which
remains dominated by p.

EXERCISE 2 (Separation in Hilbert spaces without the Hahn-Banach theorem). In this exercise,
the use of the axiom of choice is prohibited. Let H be an Hilbert space.

1. Let C C H be a convex, closed and non-empty set. Prove that any v ¢ C' can be strictly
separated by C' by a closed hyperplane, i.e. there exists vg € H such that

Vue C, (vg,u) < (vg,v).

2. Let C'1,Cy C H be convex, closed and non-empty disjoint sets, C; being moreover compact.
Prove that Cy and Cs can be strictly separated by a closed hyperplane, i.e. there exists ug € H
such that

sup (ug,u) < inf (ug,u).
ue

f
ueCq &
EXERCISE 3 (First uses of the Hahn-Banach theorem). Let E be a normed vector space.

1. Let G be a vector subspace of E and g : G — R be a continuous linear form. Recall why there
exists a continuous linear form f over E that extends g, and such that

£z = llgllc--

When F is an Hilbert space, prove that this extension is unique.

2. Assume that E = ¢}(N). Give the example of a continuous linear form of norm 1, defined on
a strict vector subspace of E, which admits an infinite number of linear continuous extensions
of norm 1 over F.

3. Assume that F is a Banach space.

(a) Prove that for all z € F,
el = max _|f(z)].

feE | fllp=<1

(b) Let B be a subset of E such that

VfeE*, supf(x)<-+oo.
T€B

Prove that B is bounded.



EXERCISE 4 (Convex sets that cannot be separated). Let H be the Hilbert space L?([—1,1]). For
every a € R, let C, C H be the subset of continuous functions u : [—1, 1] — R such that u(0) = a.
Prove that C, is a convex dense subset of H. Deduce that, if a # 3, then C, and U3 are convex
disjoint subsets that cannot be separated by a continuous linear form.

EXERCISE 5 (Banach limit).

1. Let s : £>°(N) — ¢>°(N) be the shift operator, defined by s(x); = x;4; for all ¢ € N and
xz € (°(N). Prove the existence of a continuous linear function A € (¢*°(N))’ satisfying
Aos=A and

Vu € £°(N), liminfu, < A(u) < limsup u,.

n—+00 n——4o0o
Such a linear form A is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesaro.
2. Deduce that there exists a function p : P(N) — Ry which satisfies
(1) p(N) =1,
(1) p is finitely additive: VA, B C N with AN B =0, u(AU B) = u(A) + u(B),
(7i7) p is left-invariant: Vk € Nand A C N, u(k + A) = pu(A).

EXERCISE 6 (Finite-dimensional case).

1. Let C C R? be a convex set such that C' # R?, and xg ¢ C. Prove that there exists an affine
hyperplane that separates C' and {z¢}.

2. Does this result hold in an infinite dimensional space ?

EXERCISE 7 (Convex hull). Let E be a locally convex topological vector space (abbreviated l.c.t.v.s.
in the following). One says that H is a closed half-space if there exists a ¢ € E* and a € R such
that H ={u € E | p(u) < a}.

1. If C is a convex subset of E, show that its closure C is also convex.

2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces
containing A.

3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A
of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that

contains A.

EXERCISE 8 (Density criterion).

1. Let E be a real normed vector space and F' C E be a vector subspace such that F' # E. Prove
that there exists ¢ € E'\ {0} such that p(u) =0 for all u € F.

2. Application: Let (a,), be a sequence in |1, +oo[ that diverges to +o00. Prove that the set

W:span{:ce[(),l]r—) :nZO},

T — an
is dense in the space C°([0, 1]) equipped with the norm || - ||sc-

Hint: While considering a continuous linear form that vanishes on W, introduce a generating
function.
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TD 4: WEAK TOPOLOGIES

EXERCISE 1.

1. Let E be a l.c.t.v.s whose topology is generated by a separating family of seminorms (py)acr-
Prove that a sequence (x,), of elements in E converges to some z € F if and only if for all
a € I, the sequence (po(z — zp,))yn converges to 0.

2. Let F be a Banach space. By using the previous question, give a characterization of weakly
converging sequences in terms of continuous linear forms.

EXERCISE 2. Let X be a normed vector space.
1. Let (uy), be a weakly convergent sequence in X. Justify that (uy), is bounded and that the
weak limit u of (uy), satisfies |Ju|| < liminf, 4 [Jun]|-

2. Suppose that the sequence (@), in X* is converging strongly to some ¢ € X*. Show that
for any sequence (uy), in X that converges weakly to u € X, then the sequence (@, (up))n
converges to p(u).

3. Assume that X is a Hilbert space. Let (u,), be a sequence in X that converges weakly to
u € X and such that (||u,]||)n converges to ||u||. Prove that (u,), converges strongly to w.

EXERCISE 3. The purpose of this exercise is to present three obstructions to strong convergence in
L?(R%) and L%(T9). In the following, ¢ € C°(R%) denotes a compactly supported smooth function
being not identically equal to zero.

1. (Loss of mass) Let v be a vector of norm 1. Prove that the sequence (¢(- — nv)),, converges
weakly to zero in L?(R%), but not strongly.

2. (Concentration) Prove that the sequence (n%2p(n-)), converges weakly to zero in L?(R%),
but not strongly.

3. (Oscillations) We now consider w € L?(T¢) a non-constant function. Prove that the sequence
(w(n-)), converges weakly but not strongly to [, w in L*(T?).

EXERCISE 4. Let E be a Banach space.

1. Show that if F is finite-dimensional, then the weak topology o(E, E*) and the strong topology
coincide.

2. We assume that F is infinite-dimensional.

(a) Show that every weak open subset of F contains a straight line.
(b) Deduce that B = {z € E : ||z|| < 1} has an empty interieur for the weak topology.
(c) Let S ={x € E: ||z|| = 1} be the unit sphere of E. What is the weak closure of S 7

EXERCISE 5. Let E be an infinite-dimensional Banach space. Prove that the weak topology on F
is not metrizable.
Hint: Recall that any open weak set contains a line.



EXERCISE 6.

1. (Mazur’s lemma) Let E be a Banach space and (u,), be a sequence in E weakly converging
to Uuso € E. Show that us is a strong limit of finite convex combinations of the w,,.

2. (Banach-Sacks’ property) Show that if F is in addition a Hilbert space, we can extract a
subsequence converging to ue, strongly in the sens of Cesaro.

EXERCISE 7 (Schur’s property for /!(N)).

1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector
space.

The aim is to prove that a sequence of £}(N) converges weakly if and only if it converges strongly.
Take (u™), a sequence in ¢!(N) weakly converging to 0.

2. Show that for all &, lim,, o uj} — 0.

3. Show that if u,, - 0 in £}(N), one can additionally assume that ||u"||s = 1.

4. Define via a recursive argument two increasing sequences of N, (a)r and (ng)g, such that

ak+1—1 3
n
VE>0, ) [l = 5

Jj=ak

5. Show that there exists v € £°°(N) such that (v, u"™),2 > 3 for all k. Conclude.
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TD 5: WEAK TOPOLOGIES (II)

EXERCISE 1. Let £ and F be two Banach spaces, and T : E — F be a linear map. Show that
T is strongly continuous (i.e. continuous from (E,|| - ||g) to (F,| - ||r)) if and only if T" is weakly
continuous (i.e. continuous from (E,o(E, E*)) to (F,o(F, F*)).

EXERCISE 2. Let E be a separable real normed vector space. Let (un), be a dense sequence in
Bg(0,1). By considering the following metric d on the unit ball of E*,

“+o00

A9 =Y el = )l fog € Bp-(0.),

n=0

prove that the weak-* topology on Bg-(0,1) is metrizable.

EXERCISE 3 (Goldstine lemma). Let X be a Banach space. For any x € X, let us define the
evaluation ev, : ¢ € X* — p(x) € R. We can therefore consider the following application

J:{X - X

T = evy

For any normed vector space E, we denote by Bpg its closed unit ball.
1. Check that J is an isometry and that J(X) is strongly closed in X**.
2. Let E be a normed vector space. Determine all the linear forms on E* which are continuous
for the weak- topology o(E*, E).

3. By using the Hahn-Banach theorem, prove that J(Bx) is dense in Bx++ for the weak-* topol-
ogy o(X** X*).

EXERCISE 4.

1. In ¢*°(N) we consider

C = {z € (*(N) : liminfz, > 0}.

Show that C' is strongly closed but not weakly-* closed.

2. Let E be a normed vector space. Show that an hyperplane H C E* which is closed for the
weak-* topology o(E*, F) is the kernel of ev, : ¢ — ¢(x) for some = € E.

EXERCISE 5. Let (E, || - ||) be a reflexive space and Bg be its unit ball. Show that for all ¢ € E*,
there exists x, € Bg, such that ||¢|g = |p(x,)|, i.e. the supremum in the definition of the norm
operator is in fact a maximum.




EXERCISE 6. The aim of this exercise is to prove by two different methods that the space
(C°([0,1]), ]| - |lso) of continuous real-valued functions on [0, 1] is not reflexive.
1. Method by compactness.

(a) Define ¢ € C°(]0,1])* by

1/2 1
o(f) = fydt— [ feydt, fec®(o,1]),
0 1/2
and show that ||¢|| = 1.
(b) Prove that |¢(f)| < 1 for all f € C°([0,1]) such that || f|le < 1.
(c) Conclude that the space CY(]0,1]) is not reflexive.

2. Method by separability.

(a) Prove that if E is a Banach space and its dual E* is separable, then FE is separable.
(b) Show that C°([0,1]) is separable.
(c) Prove that C°([0,1])* is not separable.
Hint: Consider the functions & : C°([0,1]) — R defined by 6,(f) = f(t) for any t € [0,1].
(d) Conclude that C°([0,1]) is not isomorphic to CY([0,1])** as Banach spaces.
Remark: This is stronger than not being reflezive.

EXERCISE 7.
1. Let E be a reflexive, separable Banach space. Let (u,), be a bounded sequence in E. Show
that one can extract a subsequence (), which converges weakly in E.
2. Does this result hold when F is not reflexive ?

EXERCISE 8. Let F be a reflexive Banach space and I : £ — R be a continuous, convex and
coercive functional, in the sense that there exist a > 0 and M > 0 such that for all x € F,

I(z) > o||z||g — M.

We also consider A C F a non-empty, closed and convex set. Prove that the functional I admits a
minimum on A.

EXERCISE 9. Let B denote the closed unit ball of L!([0,1]). Recall that a function f € B is called
an extreme point if, whenever f = 60f; 4+ (1 — 0) fo with 6 € (0,1) and fi, fo € B, one has f; = fa.
Prove that B does not admit extremal points. Deduce that there is no isometry between L'(]0,1])
and the topological dual of a normed vector space.

Hint: We admit Krein-Milman’s theorem, stating that any non-empty conver compact subset of any
l.c.t.v.s coincides with the closed convex envelop of its extremal points.
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TD 6: INTRODUCTION TO DEFECT MEASURES

EXERCISE 1. Let K = [—m,7].
1. Let p: R — R be a continuous function supported in the interval [—1, 1] such that

/Rp2(x) dz =1.

Consider the sequence (wy,),, defined by
wy(z) = Vnp(nz), xe€ K, n>1.

Prove that (w,,), converges weakly to zero in L?(K) and that for all f € C(K),

n—oo

lim [ f(@)hwa(2)]* dz = f(0).
K

Is the sequence (wy,), converging strongly ?

2. Let (un)n be a sequence in L?(K) which converges weakly to zero. Prove that there exists
a sub-sequence (U () )n Of (un)n and a continuous linear form I € CY(K)* such that for all

f € CUK),

n—oo

Deduce that (u,())n converges strongly if and only if [ = 0.
3. Consider the sequence (vy,)n, defined by

vp(x) =sin(nz), =z € K,n>1.

Check that (v,,), converges weakly to zero in L?(K). Prove then that there exists a continuous
linear form [ € CO(K)* such that for all f € C°(K),

lim | f(2)lon(2) do = U().

n—oo

Compute the numbers [(1) and [(cos(5x)).
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TD 7: COMPACTNESS IN LP SPACES

EXERCISE 1 (Equi-integrability). Let (X,.A,u) be a measured space and F C L!'(X) being
bounded. Prove that the following assertions are equivalent:

1. For all € > 0, there exists some M > 0 such that

sup/ |fldp < e.
fer JRIfI>M}

2. For all € > 0, there exists some 1 > 0 such that for any measurable set A,
nw(A) <n = sup/ |f] dp < e
feFJA
3. There exists an increasing function ® : Ry — R, such that lim,_,. ®(x)/z = 0o and

sup /X B(11]) dps < oo.

feFr

When one of the above conditions is satisfied, the set F is said to be equi-integrable.
Hint: to show 2. = 3., consider the sequence (My,), such that

sup/ |fITp1> 0, dpp < 277
feFJXx

In the following two exercices, the notion of equi-integrability introduced in the previous exercice
will be considered. When p € [1,400), a set F C LP(X) will be said to be equi-integrable when the
set {|f|P : f € F} is equi-integrable in L(X).

EXERCISE 2 (Vitali’s convergence theorem). We consider (X, A, 1) a o-finite measure space. Let
p € [1,400) and (f,)n be a sequence in LP(X). Assume that

1. The sequence (fy)n is a Cauchy sequence in measure, meaning that for all £ > 0, there exists
ng > 0 such that

Ym,n > ng, M(|fn*fm‘ 25) <E.

2. The sequence (fy), is equi-integrable in LP(X),
3. For all € > 0, there exists a measurable set I' C X of finite measure such that

v >0, |[falxrllrx) <e.

Prove that (uy), is a Cauchy sequence in LP(X) (and therefore converges in this space).



EXERCISE 3 (Dunford-Pettis’ Theorem). The objective of the exercise is to prove Dunford-Pettis’
theorem:

Let © C R? be a bounded set and (f,), be a bounded sequence in L' (). Then, the set
{fa} is sequentially compact for the weak topology o (L', L°°) if and only if the sequence
(fn)n is equi-integrable.

First we prove the reciprocal: let (f,), be a bounded and equi-integrable sequence in L!((2).
1. Show that we can reduce to the case where the f,, are non-negative.
2. Let f% =14, < fn. Show that sup,, || fn — f¥||z1 — 0.
3. Show that there exists an extraction (n’) such that for all k € N, fk, — f* in L1(Q).
4. Prove that (f*); is an increasing sequence and deduce that there exists some f € L'(Q) such
that f* — fin L'(2).
5. Conclude that f,; — f in L'(9).

Now we want to prove the direct implication. Let (f,), be a bounded sequence in L!(Q) satisfying
fn — f € LY(2). We consider X the set of indicator functions and, for a fixed e > 0, we also

consider the sets X, defined for all n > 0 by:
< 5}.
6. Show that X and X,, are closed in L1(£2).
7. Using a Baire’s argument, show that the sequence (f,,), is equi-integrable.
8. Conclude.

Xn::{]lAEX:Van, /A(fk—f)dx
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TD 8: DISTRIBUTIONS

EXERCISE 1.
1. Let H be the Heaviside function. Show that H = ¢y in D'(R).
2. Give an example of distribution of order n for all n € N.

3. Let Q C R? be an open set and 7' € D'(Q2). We consider f € C*°() which vanishes on the
support of T. Do we have fT' =0 in D'(Q2) ?

EXERCISE 2 (An example of distribution). Show that the formula

<Ta 4,0) = Z ()O(n) (n)7 wE D(R)a

n>0
defines a distribution T' € D'(R). What about its order ?

EXERCISE 3 (Convergence of distributions). Do the following series

76 and Y6,

n>0 n>0
converge in D'(R) ?

EXERCISE 4 (Principal value of 1/x). We define p.v.(1/z) as follows

e—0 T

(p.v.(1/), ) = lim </xl>€ #(z) dx), ¢ € D(R).

Show that the above limit exists and defines a distribution. Compute its order.

Show that p.v.(1/z) is the derivative of log |z| in the sense of distributions.

Compute zp.v.(1/x).

Let T' € D/(R) which satisfies 27" = 1. Show that there exists a constant ¢ € R such that
T =p.v.(1/x) + cdp.

5. Show that |z|* 22 — p.v.(1/z) in D'(R) as a — 07.

Ll s

EXERCISE 5. Solve the equation 77 = 0 in D'(R).

EXERCISE 6 (Jump formula). Let f: R — R be a function of class C' on R*. We say that f has a
jump at 0 if the limits f(0%) = lim,_,g+ f(x) exist, and we denote by [[f(0)]] = f(0F) — £(07) the
height of the jump. We denote by {f’} the derivative of the regular part of f, i.e.

f'(x) if f is differentiable at x,

0 otherwise.

{f}z) = {



1. Show that in the sense of distributions:
= A{f"} + [[£(0)]]do.

2. Let (xy)nez be an increasing sequence such that lim,_, o z, = —oo and lim,_, o x, = +00.
Let f: R — R be a piecewise C'! function presenting jumps at every x,. Show that in the
sense of distributions,

Fr={Y+ ) ([ (@))os,.

neL

EXERCISE 7 (Punctual support). Let T' € D’(R%) such that supp T = {0}. We consider ¢ € D(R?)
such that ¢ = 1 in a neighborhood of B(0,1) and supp ¢ C B(0,2). We set ¢,(z) = ¢ (z/r) for all
r>0and z € R".

1. Recall why T has a finite order, which will be denoted m > 0 in the following.

2. Show that for all » > 0, ¥, T =1T.

3. Let ¢ € D(RY) satisfying that for all p € N with |p| < m, 9Pp(0) = 0. Check that (T, @) = 0.

4

)

. Prove that there exist some real numbers a, € R such that T' = Z\pl <m apé(()p .

EXERCISE 8 (Support and order). Let T be the linear map defined for all ¢ € D(R) by

ro) = im_(Soe(3) el - togm@).

j=1

1. Check that (T, ¢) is well defined for all ¢ € D(R), and that T is a distribution of order less
than or equal to 2.
2. What is the support S of T' 7

3. What is the order of T' 7
Hint: Use test functions of the form

or(x) = () /0 ' /0 " o(kt) dtdy,

where ¢ € D(0,1) has integral 1 and ¢ € D(—1,2) satisfies 0 <1 <1 and =1 on [0, 1].



Ecole Normale Supérieure de Lyon Année 2023 - 2024

Département de Mathématiques M1 - Analyse avancée

TD 9: DisTRIBUTIONS (II)

EXERCISE 1. Let p € Cg°(R™) be such that 0 < p < 1, suppy = {z € R" : || < 1} and [z, p = 1.
For all € > 0, we set p.(z) = "p(x/e).
1. Prove that for all ¢ € C§°(R"),

sup [(pe * p)(x) — p(z)] — 0.

zER" =07
2. Check that for all f € LP(R"), lim._,o+ ||pe * f — fllzrmn) = 0.

EXERCISE 2. Let 2 be an open subset of R™.
1. Let ¢ € C®(Q x R") and T € @'(R"™). Assume that there exists a compact K C € such that

Yy € R", supp(p(-,y)) C K.
Prove then that the function y € R" — T'(¢(+,y)) is in C*°(R™), with moreover
Va e N, 9/(T(¢(y)) = T ¢())-

2. Let o € C(Q2 x R™) and T € 9'(Q2). Prove that

[ retanar=1( [ etaa)
EXERCISE 3.

1. Let 6 € C§°(R) such that §(0) = 1. For all ¢ € C§°(R), prove that there exists ¢ € C§°(R)
such that

Vo e R, p(x) — p(0)0(x) = zi(a).

2. Solve 2T =0 in 9'(R).
3. Solve 2T =1 in 9'(R).
4. Solve (x — 1)T = &g and (x — a)(z — b)T = 1 with a # b in 9’ (R).

EXERCISE 4. For all z € R and € > 0, we set
fe(z) = log(z + ic) = log |x + ic| + i Arg(x + i),

the argument being taken in (—m, 7).
1. Prove that as € goes to zero, the sequence (f.) converges in %’(R) to the locally integrable
function fy € L} (R) defined by

loc

log(z) when = > 0,
folz) = .
log |x| +im when z < 0.

1



2. Compute f} in 9'(R).
3. Deduce that the following equality holds in 9'(R)

1 .
x40

i = —imd v.(1/x).
J, oo = i+ p v (1)

4. Show similarly that

1 1
= 1' == ) . . 1 .
x—10 e—l>r(]gl+a:—z'€ indo +p.v-(1/z)
EXERCISE 5.
1. What can be said about a distribution 7" € %’(R) which satisfies T € C(R) ?
2. Same question with a distribution 7' € 9’(R) such that T = 0 for some integer n € N.

3. Let 2 be a measurable subset of R”, p € [1,4+00) and B), be the unit ball of LP(2). Prove that
if a distribution 7' € %’(R") is bounded on B, N D(Q), then T € LI(Q), where g € (1, 4]
satisfies 1/p+1/q = 1.

EXERCISE 6.
1. Let T € 9'(R) and f € Li (R). For all ¢ € R, we set

loc

x
F.(z) = c—l—/ f(t)dt, z=eR.
0
Prove that T" = f if and only if there exists ¢ € R such that T' = F,.
2. Check that for all T € 9’(R), the following convergence holds in 9’(RR)

7'_hT—T_> ,
h h—0

where 7_j, denotes the translation operator.

3. Prove that a distribution 7' € %’(R) is a Lipschitz function if and only if 7" € L*(R).
Hint: Use the question 8 of the previous exercice.

EXERCISE 7. Let E, € L}, .(R") be the function defined by

log(|z|) when n = 2,
Bl :{ g(|zl)

|z|>~™  when n > 3.

1. Let u € C?(R™\ {0}) be a radial function, i.e. u(x) = U(|x|) where U € C?(R*). Prove that

n

— L0 (a)).

]

Vo e R"\ {0}, (Au)(z) =U"(lz]) +
2. Let o € C3°(R™). Justify that

(AEL)(p) = lim [ En(z)(Ap)(x)dz,

e—=0T Jq,

where Q. = {z € R" : |x| > ¢}. By using Green’s formula, conclude then that there exists a
constant ¢, € R such that AE,, = ¢,dp in 9'(R")
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EXERCISE 1. Let A € S;F(R) be a definite positive real matrix. Prove that the function u defined
on R” by u(z) = e~ 4%} belongs to the Schwartz space & (R™) and that its Fourier transform is

given by
nG(E) =4/ ™ —l(a7leg)
Ve e R",  u(§) Jot A © 1 .

Hint: Begin by considering the case n = 1, and diagonalize the matrixz A to treat the general case.

EXERCISE 2.

1. Let A C R"™ be a measurable subset with finite measure. Prove that 14 belongs to L2(R™)
but not to L'(R").

2. Are there two functions f,g € & (R"™) not being identically equal to zero and satisfying the
relation fx g =0 7 Same question for some functions f et g with compact supports.

3. Prove that the equation f * f = f has no non trivial solution in L!(R"), but has an infinite
number of solutions in L?(R™).

EXERCISE 3. By computing the Fourier transform of the functions f = 1|_; /3 1/9] and f* f, show

that
sint\ 2
/() dt = .
R t

EXERCISE 4 (Heisenberg’s uncertainty principle). Prove that for all f € #(R™) and j € {1,...,n},

ot 12y = ) ey o 1665 =07 ey = 2711
acR 17 L2(R™) peg 1117 L2Rm) = 4 L2(Rm)
When is this inequality an equality ?
EXERCISE 5. Let us consider the interval I = [~1,1] and the following subspace of L?([)

BL%(I) = {ue L*(R) : 4 = 0 almost everywhere on R\ I}.

1. Prove that BL?(I) is a Hilbert space.
2. Check that BL?(I) C C%,(R) and that the corresponding embedding is continuous.
3. Let us consider the continuous extension of x +— sinz/z, denoted sinc.
(a) Prove that the family (7~ '/27y,, sinc)rez is a Hilbert basis of BL2(I).
(b) Prove (sampling theorem) that any element u € BL?(I) can be decomposed as follows

u(z) = Z u(27k) sinc(z — 27k),
keZ

the convergence being uniform in R, and also holds in L?(R).



EXERCISE 6. Give the example of a function f € C*°(R) such that
(¢) There is no polynomial P such that |f| < |P|.

(73) The linear form
eI @) [ fla)olz)da,
R

defines a tempered distribution.

EXERCISE 7. Prove that the following distributions are tempered and compute their Fourier trans-
form:

1. do 3. H (Heaviside), 5. |z| in R.
2. 1, 4. p.v.(1/x),

Indication : p.v.(1/x) is an odd distribution, so its Fourier transform is also odd.

EXERCISE 8. The aim of this exercice is to compute the Fourier transform of the following tempered
distribution on R?

(T, = /R o(e,z)dr, o€ S (R).

1. Let ¢ € #(R?). Prove that

~

<T7 ¢>3)’9 = lim I ou I.= / 675:]62{/;(33,2@ dx.
’ e—0t R

2. By using the expression of 12;(3:, x), show that

=27 /R (e, 2VEC — € ded.

3. Deduce the expression of T.

EXERCISE 9. We consider the Schrédinger equation

(1)

iOu+Au=0, (t,x)eR*xR"
Ut=0 = UQ.

1. For up € S(R™), solve the equation (1) in C°(R, S(R™)) N CH(R*, & (R™)).
2. Justify that the Fourier transform of the function etl€l” is well defined.
3. Show that for a € C with negative real part,

g_l(eamz) - e%f
(—4amr)d/2 ‘

4. Check that this formula also holds in §’'(R™) when « € iR.
5. Deduce that there exists a constant C' > 0 such that for all ¢ > 0,

c
[[w(t, )l oo mny < a2 [uoll £ (ny-
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EXERCISE 1.
1. Let K : R?2® — C be a continuous function. Assume that there exists A > 0 such that

sup/ |K(z,y)|dy <A and sup/ |K(z,y)|dz < A.
zeR" JRn yeRn JRn

For all u € C§°(R"), we set

(Pu)(z) = RHK(:c,y)u(y) dy, = €R"™

Schur’s lemma: prove that P can be extended as a bounded operator LP(R™) — LP(R™) for
any p € [1,4+o0], with an operator norm smaller than A.

2. Application: Let ¢ € C§°(R™) and N > 1 be a positive integer. We define the Fourier
multiplier o(N~'D,) by

O(N'Du:=F Y o(N"1)) xu, ue CRM).

Prove that the operator ¢(N~'D,) can be extended as a bounded operator LP(R™) — LP(R™)
for any p € [1,4+00], and that there exists a positive constant A > 0 not depending on the
integer N such that for all u € LP(R"),

lo(N ™' Dy )ul| porny < Allull 1o @n)-

EXERCISE 2.
1. Show that H*(R") embeds continuously into H*2(R") for s; > sa.
2. Check that §g € H*(R") for s < —n/2.
3. When s € N* is a nonnegative integer, the Sobolev space is also given by

H¥(R") = {u € L*(R") : V|a| < s, 0%u € L*(R")}.

EXERCISE 3.

1. Prove that if s > n/2, the space H*(R") embeds continuously to C%,(R"), the space of
continuous functions u on R" satisfying u(xz) — 0 as || — +o0.

2. State an analogous result in the case where s > n/2 + k for some k € N. Deduce that
Nser H°(R™) € C(R™).
3. Let us now consider s € (n/2,n/2+1).
(a) Show that for all & € [0,1] and all z,y,{ € R™:

‘eim-é . eiy-é‘ < 21704|‘r . y‘a’ﬂa.

1



(b) Deduce that for all a € (0,s — n/2), there exists a constant C'(«) > 0 such that for all
ue P (R") and z,y € R,

[uz) = uly)|

< Cla)l|lu s(R™) -
|J,‘—y|a = ( )” HH (R™)

(c¢) Conclude that H*(R™) embeds continuously to C“(R"), the space of a-Holder functions.

EXERCISE 4. Assuming that s belongs to [0,n/2), the purpose of this exercice is to prove that
H*(R"™) < LP(R™), where p = 2n/(n — 2s). To that end, let us recall that for all u € LP(R"),

o0
lull gy = /0 A {lul > A} .

Considering u € #(R") and Ay > 0, we set u; ) = 9*1(]1|€|<Akﬂ) and ug ) = 9*1(]1‘52&@).
1. Prove that
—25)/2
Vo € R, Jua(x)] < CAL 2l oy

Deduce that there exists some Ay such that [{|u; x| > A/2}| = 0.
2. Show that for this choice of Ay,

[l gy < 40 [ Nl O

3. Conclude.

EXERCISE 5. Prove that there exists a positive constant ¢ > 0 such that for all u € & (R3),

1/2 H H1/2

HUHLOO(]R?’ < CHUHHl (R3) H2(R3)"

Hint: Considering R > 0, use the following decomposition
~ v dE 21~
e = [ ©R@IE+ [ (@R
®) €|<R & Jiesr (€)?
EXERCISE 6 (Trace on an hyperplane). Let us consider the function
0 : (@, x0) € CE°(R™) = (2, 2, = 0) € CEO(R™).
Prove that for all s > 1/2, the function vy can be uniquely extended as an application mapping
H*(R™) to HS~1/2(Rn1).
Hint: For all o € C§°(R™), begin by computing the Fourier transform of the function yo¢.

EXERCISE 7 (An estimate). Let 0 < a < 1 and p > 1 be positive real numbers. Show that there
exists a positive constant Cy , > 0 such that for all u € C§°(R"),

p 1/p
u(x Y dzdy o
(// R <‘ |z — y\c(v )‘> |z — y!d> =G ’pHu”L” r) IVl 2o ey -
nx n

Hint: Consider the two regions {|z — y| > R} and {|z — y| < R}, where R > 0 is to be chosen.




