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Département de Mathématiques M1 - Analyse avancée

TD 1: Topology issues in product spaces and Banach spaces

Exercise 1 (General topology).
1. Let f : E → F be a continuous map between topological spaces. Show that f is sequently

continuous. Namely, show that if the sequence (xn)n converges to x in E then the sequence
(f(xn))n converges to f(x) in F . Can we claim that if f is sequently continuous then f is
continuous ?

2. Let f : E → F be a map between topological spaces. The function f is said to be continuous
at x ∈ E if for all open set V containing f(x), there exists an open set U containing x and such
that f(U) ⊂ V. Check that, in this definition, “open set” can be replaced by “neighbourhood”.

3. Let X be a set, (Fi)i∈I be a family of topological spaces and fi : X → Fi be some functions.

(a) Prove that the “coarsest topology that makes the functions fi continuous” exists.
(b) Let g : E → X be a function defined on a topological space E. Check that g is continuous

if and only if for all i ∈ I, fi ◦ g is continuous.
(c) Let (xn)n be a sequence in X. Prove that (xn)n converges to x if and only if for all i ∈ I,

(fi(xn))n converges to fi(x).

4. Let (Fi)i∈I be a family of topological spaces. We define the product topology on
∏
i∈I Fi as the

“coarsest topology” making the projections continuous. Show that this topology is generated
by the cylinder sets, i.e. the sets of the form CJ =

∏
i∈I Ui, where each Ui is open in Fi and

Ui = Fi, except for a finite number of indexes i ∈ J .

Exercise 2 (A theorem of Hörmander). Let 1 ≤ p, q <∞ and

T : (Lp(Rn), ‖ · ‖p)→ (Lq(Rn), ‖ · ‖q),

be a continuous linear operator which commutes with the translations, that is, which satisfies
τhT = Tτh for all h ∈ Rn, where τhf = f(· − h). The purpose of this exercice is to prove the
following property: if q < p <∞, then the operator T is trivial.

1. Let u be a function in Lp(Rn). Prove that ‖u+ τhu‖p → 21/p‖u‖p as ‖h‖ → ∞.
Hint: you may decompose u as the sum of a compactly supported function and of a function
with arbitrarily small Lp norm.

2. Check that if C stands for the norm of operator T , then we have that for all u ∈ Lp(Rn),

‖Tu‖q ≤ 21/p−1/qC‖u‖p,

and conclude.
3. Can you give the example of a non-trivial such operator T when p ≤ q ?

Exercise 3 (Fourier coefficients of L1 functions). For any function f in L1(T), we define the
function f̂ : Z→ C by

f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt, n ∈ Z.

We denote by c0 the space of complex valued functions on Z tending to 0 at ±∞.
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1. Check that (c0, ‖ · ‖∞) is a Banach space.
2. Prove that, for all f ∈ L1(T), f̂ ∈ c0.

Hint: Recall that the trigonometric polynomials
∑n

k=−n ake
ikt are dense in L1(T).

Now we study the converse question: is every element of c0 the sequence of Fourier coefficients of a
function in L1(T)?

3. Prove that Λ : f → f̂ defines a bounded linear map from L1(T) to c0.
4. Prove that the function Λ is injective.
5. Show that the function Λ is not onto.

Hint: You may use the Dirichlet kernel Dn(t) =
∑n

k=−n e
ikt, whose L1(T) norm goes to +∞

as n→ +∞.

Exercise 4 (Equivalence of norms).
1. Let E be a vector space endowed with two norms ‖ · ‖1 and ‖ · ‖2 such that both (E, ‖ · ‖1)

and (E, ‖ · ‖2) are Banach spaces. Assume the existence of a finite constant C > 0 such that

∀x ∈ E, ‖x‖1 6 C‖x‖2.

Prove that the norms ‖ · ‖1 and ‖ · ‖2 are equivalent.
2. Let K be a compact subset of Rn. We consider a norm N on the space C0(K,R) such

that (C0(K,R), N) is a Banach space, and satisfying that any sequence of functions (fn)n in
C0(K,R) that converges for the norm N also converges pointwise to the same limit. Prove
that the norm N is then equivalent to the norm ‖ · ‖∞.

Exercise 5 (A Rellich-like theorem). Let us consider E the following subspace of L2(R)

E =
{
u ∈ C1(R) : ‖u‖E < +∞

}
, where ‖u‖E = ‖(

√
1 + x2)u‖L2(R) + ‖u′‖L2(R).

The aim of this exercice is to prove that the unit ball BE of E is relatively compact in L2(R), with

BE =
{
u ∈ C1(R) : ‖u‖E ≤ 1

}
.

In the following, we denote by φ a non-negative C∞ function such that φ−1({0}) = R \ [−2, 2] and
φ−1({1}) = [−1, 1].

1. Considering the cut-off φR(x) = φ(x/R), show that supu∈BE
‖(1− φR)u‖L2(R) converges to 0

as R→ +∞.
2. We define ψε(x) = 1

εφ(xε ) and τh the translation operator (see Exercice 2). Show that for all
R ≥ 1 and ε > 0, there exists Cε,R > 0 such that for all h ∈ R and u ∈ E,

‖τh((φRu) ∗ ψε)− (φRu) ∗ ψε‖L∞(R) ≤ Cε,R|h|‖u‖E and ‖(φRu) ∗ ψε‖L∞(R) ≤ Cε,R‖u‖E .

3. Show that for any sequence (un)n in BE , there exists a subsequence (un′)n′ such that for any
R, ε−1 ∈ N∗, the sequence ((φRun′) ∗ ψε)n′ converges in L2(R) as n′ →∞.
Hint: Use Cantor’s diagonal argument.

4. Conclude.
5. Let us now consider the set BH1 ⊂ L2(R) defined by

BH1 =
{
u ∈ C1(R) : ‖u‖L2(R) + ‖u′‖L2(R) ≤ 1

}
.

Is BH1 relatively compact in L2(R) ?
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Département de Mathématiques M1 - Analyse avancée

TD 2: Locally convex topological vector spaces and Fréchet spaces

In the following, “locally convex topological vector space” will be abbreviated as l.c.t.v.s.

Exercise 1. Let E be a locally convex topological vector space whose topology is induced by a
(separating) countable family of semi-norms (pn)n∈N. We define

d(x, y) =
+∞∑
n=0

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ E.

Let us prove that the topology induced by d and the topology induced by the family of seminorms
(pn)n∈N coincide.

1. Show that g : [0,∞) → R defined by g(t) = t
1+t is an increasing sub-additive function and

give its image. Deduce that d is a translation invariant distance on E.
2. Give a basis of neighbourhoods of 0E for the topology induced by the family of semi-norms,

and show that every neighbourhood of 0E contains an open ball for the distance d.
3. Show that every open ball for the distance d centered on 0E contains a neighbourhood of 0E

for the topology induced by the family of semi-norms.
4. Conclude.

More generally, let us consider a continuous bounded function g : [0,+∞)→ R+ and

dg(x, y) =

+∞∑
n=0

1

2n
g(pn(x− y)), x, y ∈ E.

5. Under what condition on g does dg defines a distance on E whose topology coincide with the
one induced by the family of seminorms (pn)n∈N ?

Exercise 2. Let X and Y be l.c.t.v.s. We consider (pα)α∈A (resp. (qβ)β∈B) a countable family
of continuous semi-norms which is separating and generates the topology of X (resp. of Y ). Let
T : X → Y be a linear map. Prove that T is continuous if and only if for all β ∈ B, there exists a
finite set I ⊂ A and a positive constant c > 0 such that for all u ∈ X,

qβ(Tu) ≤ c
∑
α∈I

pα(u).

Exercise 3 (Space of continuous functions). Let U be an open subset of Rd and (Kn)n be an
exhaustive sequence of compacts of U .

1. Prove that C0(U) is a Fréchet space for the distance

d(f, g) =

+∞∑
n=0

1

2n
min(1, pn(f − g)),

defined by the semi norms pn(f) = supx∈Kn
|f(x)|.
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2. Recall that a subset B ⊂ C0(U) is said to be bounded if for any neighborhood V of 0, there
exists λ > 0 such that λB ⊂ V . Prove that if B is a subset of equibounded functions of
C0(U), that is supf∈B ‖f‖∞ <∞, then B is bounded.

3. Let us consider (fn)n a sequence of continuous function on U such that fn : U → [0, n] with
fn = 0 on Kn and fn = n on U \Kn+1. Show that ∪n{fn} is a bounded subset of C0(U).

4. Prove that the space C0(R) is not locally bounded, that is, the origin does not have a bounded
neighborhood.

Exercise 4 (Space of C∞ functions). We consider the vector space E = C∞([0, 1],R) equipped
with the following metric

d(f, g) =
∑
k≥0

1

2k
min

(
1, ‖f (k) − g(k)‖∞

)
.

1. Check that E is a Fréchet space.
2. Prove that any closed and bounded (cf the previous exercise) subset of E is compact.
3. Can the topology of E be defined by a norm ?

Exercise 5 (Lp spaces with 0 < p < 1). Let p ∈ (0, 1) and Lp be the set of real-valued measurable
functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following
quantity is finite:

‖u‖p =
(∫ 1

0
|u(x)|p dx

) 1
p

.

1. Show that Lp is a vector space and that d(u, v) = ‖u − v‖pp is a distance. Prove that (Lp, d)
is complete.

2. Let f ∈ Lp and n ≥ 1 be a positive integer. Prove that there exist some points 0 = x0 < x1 <
. . . < xn = 1 such that for all i = 0, . . . , n− 1,∫ xi+1

xi

|f |p dx =
1

n

∫ 1

0
|f |p dx.

3. Prove that the only convex open domain in Lp containing u ≡ 0 is Lp itself. Deduce that the
space Lp is not locally convex.
Hint: Introduce the functions gni = nf1[xi,xi+1].

4. Bonus: Show that the (topological) dual space of Lp reduces to {0}.
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TD 3: Hahn-Banach theorems

Exercise 1 (Hahn-Banach Theorem without the axiom of choice).
1. Let (E, dE) and (F, dF ) be metric spaces, (F, dF ) being complete, D ⊂ E be a dense subset

and f : (D, dE) → (F, dF ) be a uniformly continuous function. Then, there exists a unique
continuous function F : (E, dE) → (F, dF ) such that F|D = f . Moreover, prove that the
function F is uniformly continuous.

2. Let E be a real separable Banach space and p be a continuous seminorm on E. Let M be a
linear subspace of E and ϕ : M → R be a linear functional which is dominated by p. Without
using the axiom of choice, prove that ϕ can be extended to a linear functional E → R which
remains dominated by p.

Exercise 2 (Separation in Hilbert spaces without the Hahn-Banach theorem). In this exercise,
the use of the axiom of choice is prohibited. Let H be an Hilbert space.

1. Let C ⊂ H be a convex, closed and non-empty set. Prove that any v /∈ C can be strictly
separated by C by a closed hyperplane, i.e. there exists v0 ∈ H such that

∀u ∈ C, 〈v0, u〉 < 〈v0, v〉.

2. Let C1, C2 ⊂ H be convex, closed and non-empty disjoint sets, C1 being moreover compact.
Prove that C1 and C2 can be strictly separated by a closed hyperplane, i.e. there exists u0 ∈ H
such that

sup
u∈C1

〈u0, u〉 < inf
u∈C2

〈u0, u〉.

Exercise 3 (First uses of the Hahn-Banach theorem). Let E be a normed vector space.
1. Let G be a vector subspace of E and g : G→ R be a continuous linear form. Recall why there

exists a continuous linear form f over E that extends g, and such that

‖f‖E∗ = ‖g‖G∗ .

When E is an Hilbert space, prove that this extension is unique.
2. Assume that E = `1(N). Give the example of a continuous linear form of norm 1, defined on

a strict vector subspace of E, which admits an infinite number of linear continuous extensions
of norm 1 over E.

3. Assume that E is a Banach space.

(a) Prove that for all x ∈ E,
‖x‖ = max

f∈E∗:‖f‖E∗≤1
|f(x)|.

(b) Let B be a subset of E such that

∀f ∈ E∗, sup
x∈B

f(x) < +∞.

Prove that B is bounded.
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Exercise 4 (Convex sets that cannot be separated). Let H be the Hilbert space L2([−1, 1]). For
every α ∈ R, let Cα ⊂ H be the subset of continuous functions u : [−1, 1]→ R such that u(0) = α.
Prove that Cα is a convex dense subset of H. Deduce that, if α 6= β, then Cα and Cβ are convex
disjoint subsets that cannot be separated by a continuous linear form.

Exercise 5 (Banach limit).
1. Let s : `∞(N) → `∞(N) be the shift operator, defined by s(x)i = xi+1 for all i ∈ N and
x ∈ `∞(N). Prove the existence of a continuous linear function Λ ∈ (`∞(N))′ satisfying
Λ ◦ s = Λ and

∀u ∈ `∞(N), lim inf
n→+∞

un ≤ Λ(u) ≤ lim sup
n→+∞

un.

Such a linear form Λ is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesàro.

2. Deduce that there exists a function µ : P(N)→ R+ which satisfies

(i) µ(N) = 1,
(ii) µ is finitely additive: ∀A,B ⊂ N with A ∩B = ∅, µ(A ∪B) = µ(A) + µ(B),

(iii) µ is left-invariant: ∀k ∈ N and A ⊂ N, µ(k +A) = µ(A).

Exercise 6 (Finite-dimensional case).
1. Let C ⊂ Rd be a convex set such that C 6= Rd, and x0 /∈ C. Prove that there exists an affine

hyperplane that separates C and {x0}.
2. Does this result hold in an infinite dimensional space ?

Exercise 7 (Convex hull). Let E be a locally convex topological vector space (abbreviated l.c.t.v.s.
in the following). One says that H is a closed half-space if there exists a ϕ ∈ E∗ and a ∈ R such
that H = {u ∈ E | ϕ(u) ≤ a}.

1. If C is a convex subset of E, show that its closure C is also convex.
2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces

containing A.
3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A

of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that
contains A.

Exercise 8 (Density criterion).
1. Let E be a real normed vector space and F ⊂ E be a vector subspace such that F 6= E. Prove

that there exists ϕ ∈ E′ \ {0} such that ϕ(u) = 0 for all u ∈ F .
2. Application: Let (an)n be a sequence in ]1,+∞[ that diverges to +∞. Prove that the set

W = span
{
x ∈ [0, 1] 7→ 1

x− an
: n ≥ 0

}
,

is dense in the space C0([0, 1]) equipped with the norm ‖ · ‖∞.
Hint: While considering a continuous linear form that vanishes on W , introduce a generating
function.
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TD 4: Weak topologies

Exercise 1.
1. Let E be a l.c.t.v.s whose topology is generated by a separating family of seminorms (pα)α∈I .

Prove that a sequence (xn)n of elements in E converges to some x ∈ E if and only if for all
α ∈ I, the sequence (pα(x− xn))n converges to 0.

2. Let E be a Banach space. By using the previous question, give a characterization of weakly
converging sequences in terms of continuous linear forms.

Exercise 2. Let X be a normed vector space.
1. Let (un)n be a weakly convergent sequence in X. Justify that (un)n is bounded and that the

weak limit u of (un)n satisfies ‖u‖ ≤ lim infn→+∞ ‖un‖.
2. Suppose that the sequence (ϕn)n in X∗ is converging strongly to some ϕ ∈ X∗. Show that

for any sequence (un)n in X that converges weakly to u ∈ X, then the sequence (ϕn(un))n
converges to ϕ(u).

3. Assume that X is a Hilbert space. Let (un)n be a sequence in X that converges weakly to
u ∈ X and such that (‖un‖)n converges to ‖u‖. Prove that (un)n converges strongly to u.

Exercise 3. The purpose of this exercise is to present three obstructions to strong convergence in
L2(Rd) and L2(Td). In the following, ϕ ∈ C∞c (Rd) denotes a compactly supported smooth function
being not identically equal to zero.

1. (Loss of mass) Let ν be a vector of norm 1. Prove that the sequence (ϕ(· − nν))n converges
weakly to zero in L2(Rd), but not strongly.

2. (Concentration) Prove that the sequence (nd/2ϕ(n ·))n converges weakly to zero in L2(Rd),
but not strongly.

3. (Oscillations) We now consider w ∈ L2(Td) a non-constant function. Prove that the sequence
(w(n ·))n converges weakly but not strongly to

∫
Td w in L2(Td).

Exercise 4. Let E be a Banach space.
1. Show that if E is finite-dimensional, then the weak topology σ(E,E∗) and the strong topology

coincide.
2. We assume that E is infinite-dimensional.

(a) Show that every weak open subset of E contains a straight line.
(b) Deduce that B = {x ∈ E : ‖x‖ < 1} has an empty interieur for the weak topology.
(c) Let S = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. What is the weak closure of S ?

Exercise 5. Let E be an infinite-dimensional Banach space. Prove that the weak topology on E
is not metrizable.
Hint: Recall that any open weak set contains a line.
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Exercise 6.
1. (Mazur’s lemma) Let E be a Banach space and (un)n be a sequence in E weakly converging

to u∞ ∈ E. Show that u∞ is a strong limit of finite convex combinations of the un.
2. (Banach-Sacks’ property) Show that if E is in addition a Hilbert space, we can extract a

subsequence converging to u∞ strongly in the sens of Cesàro.

Exercise 7 (Schur’s property for `1(N)).
1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector

space.
The aim is to prove that a sequence of `1(N) converges weakly if and only if it converges strongly.
Take (un)n a sequence in `1(N) weakly converging to 0.

2. Show that for all k, limn→∞ u
n
k → 0.

3. Show that if un 9 0 in `1(N), one can additionally assume that ‖un‖`1 = 1.
4. Define via a recursive argument two increasing sequences of N, (ak)k and (nk)k, such that

∀k ≥ 0,

ak+1−1∑
j=ak

|unk
j | ≥

3

4
.

5. Show that there exists v ∈ `∞(N) such that (v, unk)`2 ≥ 1
2 for all k. Conclude.
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TD 5: Weak topologies (II)

Exercise 1. Let E and F be two Banach spaces, and T : E → F be a linear map. Show that
T is strongly continuous (i.e. continuous from (E, ‖ · ‖E) to (F, ‖ · ‖F )) if and only if T is weakly
continuous (i.e. continuous from (E, σ(E,E∗)) to (F, σ(F, F ∗)).

Exercise 2. Let E be a separable real normed vector space. Let (un)n be a dense sequence in
BE(0, 1). By considering the following metric d on the unit ball of E∗,

d(f, g) =

+∞∑
n=0

1

2n
|(f − g)(un)|, f, g ∈ BE∗(0, 1),

prove that the weak-∗ topology on BE∗(0, 1) is metrizable.

Exercise 3 (Goldstine lemma). Let X be a Banach space. For any x ∈ X, let us define the
evaluation evx : ϕ ∈ X∗ 7→ ϕ(x) ∈ R. We can therefore consider the following application

J :

{
X → X∗∗

x 7→ evx

For any normed vector space E, we denote by BE its closed unit ball.
1. Check that J is an isometry and that J(X) is strongly closed in X∗∗.
2. Let E be a normed vector space. Determine all the linear forms on E∗ which are continuous

for the weak-∗ topology σ(E∗, E).
3. By using the Hahn-Banach theorem, prove that J(BX) is dense in BX∗∗ for the weak-∗ topol-

ogy σ(X∗∗, X∗).

Exercise 4.
1. In `∞(N) we consider

C =
{
x ∈ `∞(N) : lim inf

n
xn ≥ 0

}
.

Show that C is strongly closed but not weakly-∗ closed.
2. Let E be a normed vector space. Show that an hyperplane H ⊂ E∗ which is closed for the

weak-∗ topology σ(E∗, E) is the kernel of evx : ϕ 7→ ϕ(x) for some x ∈ E.

Exercise 5. Let (E, ‖ · ‖) be a reflexive space and BE be its unit ball. Show that for all ϕ ∈ E∗,
there exists xϕ ∈ BE , such that ‖ϕ‖E∗ = |ϕ(xϕ)|, i.e. the supremum in the definition of the norm
operator is in fact a maximum.
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Exercise 6. The aim of this exercise is to prove by two different methods that the space
(C0([0, 1]), ‖ · ‖∞) of continuous real-valued functions on [0, 1] is not reflexive.

1. Method by compactness.

(a) Define ϕ ∈ C0([0, 1])∗ by

ϕ(f) =

∫ 1/2

0
f(t) dt−

∫ 1

1/2
f(t) dt, f ∈ C0([0, 1]),

and show that ‖ϕ‖ = 1.
(b) Prove that |ϕ(f)| < 1 for all f ∈ C0([0, 1]) such that ‖f‖∞ ≤ 1.
(c) Conclude that the space C0([0, 1]) is not reflexive.

2. Method by separability.

(a) Prove that if E is a Banach space and its dual E∗ is separable, then E is separable.
(b) Show that C0([0, 1]) is separable.
(c) Prove that C0([0, 1])∗ is not separable.

Hint: Consider the functions δt : C0([0, 1])→ R defined by δt(f) = f(t) for any t ∈ [0, 1].
(d) Conclude that C0([0, 1]) is not isomorphic to C0([0, 1])∗∗ as Banach spaces.

Remark: This is stronger than not being reflexive.

Exercise 7.
1. Let E be a reflexive, separable Banach space. Let (un)n be a bounded sequence in E. Show

that one can extract a subsequence (un′)n′ which converges weakly in E.
2. Does this result hold when E is not reflexive ?

Exercise 8. Let E be a reflexive Banach space and I : E → R be a continuous, convex and
coercive functional, in the sense that there exist α > 0 and M ≥ 0 such that for all x ∈ E,

I(x) ≥ α‖x‖E −M.

We also consider A ⊂ E a non-empty, closed and convex set. Prove that the functional I admits a
minimum on A.

Exercise 9. Let B denote the closed unit ball of L1([0, 1]). Recall that a function f ∈ B is called
an extreme point if, whenever f = θf1 + (1− θ)f2 with θ ∈ (0, 1) and f1, f2 ∈ B, one has f1 = f2.
Prove that B does not admit extremal points. Deduce that there is no isometry between L1([0, 1])
and the topological dual of a normed vector space.
Hint: We admit Krein-Milman’s theorem, stating that any non-empty convex compact subset of any
l.c.t.v.s coincides with the closed convex envelop of its extremal points.
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TD 6: Introduction to defect measures

Exercise 1. Let K = [−π, π].
1. Let ρ : R→ R be a continuous function supported in the interval [−1, 1] such that∫

R
ρ2(x) dx = 1.

Consider the sequence (wn)n, defined by

wn(x) =
√
nρ(nx), x ∈ K, n ≥ 1.

Prove that (wn)n converges weakly to zero in L2(K) and that for all f ∈ C0(K),

lim
n→∞

∫
K
f(x)|wn(x)|2 dx = f(0).

Is the sequence (wn)n converging strongly ?
2. Let (un)n be a sequence in L2(K) which converges weakly to zero. Prove that there exists

a sub-sequence (uϕ(n))n of (un)n and a continuous linear form l ∈ C0(K)∗ such that for all
f ∈ C0(K),

lim
n→∞

∫
K
f(x)|uϕ(n)(x)|2 dx = l(f).

Deduce that (uϕ(n))n converges strongly if and only if l = 0.
3. Consider the sequence (vn)n, defined by

vn(x) = sin(nx), x ∈ K, n ≥ 1.

Check that (vn)n converges weakly to zero in L2(K). Prove then that there exists a continuous
linear form l ∈ C0(K)∗ such that for all f ∈ C0(K),

lim
n→∞

∫
K
f(x)|vn(x)|2 dx = l(f).

Compute the numbers l(1) and l(cos(5x)).
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TD 7: Compactness in Lp spaces

Exercise 1 (Equi-integrability). Let (X,A, µ) be a measured space and F ⊂ L1(X) being
bounded. Prove that the following assertions are equivalent:

1. For all ε > 0, there exists some M > 0 such that

sup
f∈F

∫
{|f |>M}

|f |dµ < ε.

2. For all ε > 0, there exists some η > 0 such that for any measurable set A,

µ(A) < η ⇒ sup
f∈F

∫
A
|f | dµ < ε.

3. There exists an increasing function Φ : R+ → R+ such that limx→∞Φ(x)/x =∞ and

sup
f∈F

∫
X

Φ(|f |) dµ <∞.

When one of the above conditions is satisfied, the set F is said to be equi-integrable.
Hint: to show 2. ⇒ 3., consider the sequence (Mn)n such that

sup
f∈F

∫
X
|f |1|f |>Mn

dµ < 2−n.

In the following two exercices, the notion of equi-integrability introduced in the previous exercice
will be considered. When p ∈ [1,+∞), a set F ⊂ Lp(X) will be said to be equi-integrable when the
set {|f |p : f ∈ F} is equi-integrable in L1(X).

Exercise 2 (Vitali’s convergence theorem). We consider (X,A, µ) a σ-finite measure space. Let
p ∈ [1,+∞) and (fn)n be a sequence in Lp(X). Assume that

1. The sequence (fn)n is a Cauchy sequence in measure, meaning that for all ε > 0, there exists
n0 ≥ 0 such that

∀m,n ≥ n0, µ
(
|fn − fm| ≥ ε

)
< ε.

2. The sequence (fn)n is equi-integrable in Lp(X),
3. For all ε > 0, there exists a measurable set Γ ⊂ X of finite measure such that

∀n ≥ 0, ‖fn1X\Γ‖Lp(X) ≤ ε.

Prove that (un)n is a Cauchy sequence in Lp(X) (and therefore converges in this space).

1



Exercise 3 (Dunford-Pettis’ Theorem). The objective of the exercise is to prove Dunford-Pettis’
theorem:

Let Ω ⊂ Rd be a bounded set and (fn)n be a bounded sequence in L1(Ω). Then, the set
{fn} is sequentially compact for the weak topology σ(L1, L∞) if and only if the sequence
(fn)n is equi-integrable.

First we prove the reciprocal: let (fn)n be a bounded and equi-integrable sequence in L1(Ω).
1. Show that we can reduce to the case where the fn are non-negative.
2. Let fkn = 1fn≤kfn. Show that supn ‖fn − fkn‖L1 → 0.
3. Show that there exists an extraction (n′) such that for all k ∈ N, fkn′ ⇀ fk in L1(Ω).
4. Prove that (fk)k is an increasing sequence and deduce that there exists some f ∈ L1(Ω) such

that fk → f in L1(Ω).
5. Conclude that fn′ ⇀ f in L1(Ω).

Now we want to prove the direct implication. Let (fn)n be a bounded sequence in L1(Ω) satisfying
fn ⇀ f ∈ L1(Ω). We consider X the set of indicator functions and, for a fixed ε > 0, we also
consider the sets Xn defined for all n ≥ 0 by:

Xn :=

{
1A ∈ X : ∀k ≥ n,

∣∣∣∣ ∫
A

(fk − f) dx

∣∣∣∣ ≤ ε}.
6. Show that X and Xn are closed in L1(Ω).
7. Using a Baire’s argument, show that the sequence (fn)n is equi-integrable.
8. Conclude.
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Exercise 1.
1. Let H be the Heaviside function. Show that H ′ = δ0 in D′(R).
2. Give an example of distribution of order n for all n ∈ N.
3. Let Ω ⊂ Rd be an open set and T ∈ D′(Ω). We consider f ∈ C∞(Ω) which vanishes on the

support of T . Do we have fT = 0 in D′(Ω) ?

Exercise 2 (An example of distribution). Show that the formula

〈T, ϕ〉 =
∑
n≥0

ϕ(n)(n), ϕ ∈ D(R),

defines a distribution T ∈ D′(R). What about its order ?

Exercise 3 (Convergence of distributions). Do the following series∑
n≥0

δ(n)n and
∑
n≥0

δ
(n)
0 ,

converge in D′(R) ?

Exercise 4 (Principal value of 1/x). We define p. v.(1/x) as follows

〈p. v.(1/x), ϕ〉 = lim
ε→0

(∫
|x|>ε

ϕ(x)

x
dx

)
, ϕ ∈ D(R).

1. Show that the above limit exists and defines a distribution. Compute its order.
2. Show that p. v.(1/x) is the derivative of log |x| in the sense of distributions.
3. Compute x p. v.(1/x).
4. Let T ∈ D′(R) which satisfies xT = 1. Show that there exists a constant c ∈ R such that
T = p. v.(1/x) + c δ0.

5. Show that |x|α−2x→ p. v.(1/x) in D′(R) as α→ 0+.

Exercise 5. Solve the equation T ′ = 0 in D′(R).

Exercise 6 (Jump formula). Let f : R→ R be a function of class C1 on R∗. We say that f has a
jump at 0 if the limits f(0±) = limx→0± f(x) exist, and we denote by [[f(0)]] = f(0+)− f(0−) the
height of the jump. We denote by {f ′} the derivative of the regular part of f , i.e.

{f ′}(x) =

{
f ′(x) if f is differentiable at x,
0 otherwise.

1



1. Show that in the sense of distributions:

f ′ = {f ′}+ [[f(0)]]δ0.

2. Let (xn)n∈Z be an increasing sequence such that limn→−∞ xn = −∞ and limn→+∞ xn = +∞.
Let f : R → R be a piecewise C1 function presenting jumps at every xn. Show that in the
sense of distributions,

f ′ = {f ′}+
∑
n∈Z

[[f(xn)]]δxn .

Exercise 7 (Punctual support). Let T ∈ D′(Rd) such that suppT = {0}. We consider ψ ∈ D(Rd)
such that ψ = 1 in a neighborhood of B(0, 1) and suppψ ⊂ B(0, 2). We set ψr(x) = ψ(x/r) for all
r > 0 and x ∈ Rn.

1. Recall why T has a finite order, which will be denoted m ≥ 0 in the following.
2. Show that for all r > 0, ψrT = T .
3. Let ϕ ∈ D(Rd) satisfying that for all p ∈ Nn with |p| ≤ m, ∂pϕ(0) = 0. Check that 〈T, ϕ〉 = 0.

4. Prove that there exist some real numbers ap ∈ R such that T =
∑
|p|≤m apδ

(p)
0 .

Exercise 8 (Support and order). Let T be the linear map defined for all ϕ ∈ D(R) by

〈T, ϕ〉 = lim
n→+∞

( n∑
j=1

ϕ

(
1

j

)
− nϕ(0)− (log n)ϕ′(0)

)
.

1. Check that 〈T, ϕ〉 is well defined for all ϕ ∈ D(R), and that T is a distribution of order less
than or equal to 2.

2. What is the support S of T ?
3. What is the order of T ?

Hint: Use test functions of the form

ϕk(x) = ψ(x)

∫ x

0

∫ y

0
ϕ(kt) dtdy,

where ϕ ∈ D(0, 1) has integral 1 and ψ ∈ D(−1, 2) satisfies 0 ≤ ψ ≤ 1 and ψ = 1 on [0, 1].
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Exercise 1. Let ρ ∈ C∞0 (Rn) be such that 0 ≤ ρ ≤ 1, suppϕ = {x ∈ Rn : |x| ≤ 1} and
∫
Rn ρ = 1.

For all ε > 0, we set ρε(x) = ε−nρ(x/ε).
1. Prove that for all ϕ ∈ C∞0 (Rn),

sup
x∈Rn

|(ρε ∗ ϕ)(x)− ϕ(x)| →
ε→0+

0.

2. Check that for all f ∈ Lp(Rn), limε→0+ ‖ρε ∗ f − f‖Lp(Rn) = 0.

Exercise 2. Let Ω be an open subset of Rn.
1. Let ϕ ∈ C∞(Ω×Rn) and T ∈ D′(Rn). Assume that there exists a compact K ⊂ Ω such that

∀y ∈ Rn, supp(ϕ(·, y)) ⊂ K.

Prove then that the function y ∈ Rn 7→ T (ϕ(·, y)) is in C∞(Rn), with moreover

∀α ∈ Nn, ∂αy (T (ϕ(·, y)) = T (∂αy ϕ(·, y)).

2. Let ϕ ∈ C∞0 (Ω× Rn) and T ∈ D′(Ω). Prove that∫
Rn

T (ϕ(·, y)) dy = T

(∫
Rn

ϕ(·, y) dy

)
.

Exercise 3.
1. Let θ ∈ C∞0 (R) such that θ(0) = 1. For all ϕ ∈ C∞0 (R), prove that there exists ψ ∈ C∞0 (R)

such that
∀x ∈ R, ϕ(x)− ϕ(0)θ(x) = xψ(x).

2. Solve xT = 0 in D′(R).
3. Solve xT = 1 in D′(R).
4. Solve (x− 1)T = δ0 and (x− a)(x− b)T = 1 with a 6= b in D′(R).

Exercise 4. For all x ∈ R and ε > 0, we set

fε(x) = log(x+ iε) = log |x+ iε|+ iArg(x+ iε),

the argument being taken in (−π, π).
1. Prove that as ε goes to zero, the sequence (fε) converges in D′(R) to the locally integrable

function f0 ∈ L1
loc(R) defined by

f0(x) =

{
log(x) when x > 0,

log |x|+ iπ when x < 0.

1



2. Compute f ′0 in D′(R).
3. Deduce that the following equality holds in D′(R)

1

x+ i0
:= lim

ε→0+

1

x+ iε
= −iπδ0 + p. v.(1/x).

4. Show similarly that
1

x− i0
:= lim

ε→0+

1

x− iε
= iπδ0 + p. v.(1/x).

Exercise 5.
1. What can be said about a distribution T ∈ D′(R) which satisfies T ′ ∈ C0(R) ?
2. Same question with a distribution T ∈ D′(R) such that T (n) = 0 for some integer n ∈ N.
3. Let Ω be a measurable subset of Rn, p ∈ [1,+∞) and Bp be the unit ball of Lp(Ω). Prove that

if a distribution T ∈ D′(Rn) is bounded on Bp ∩ D(Ω), then T ∈ Lq(Ω), where q ∈ (1,+∞]
satisfies 1/p+ 1/q = 1.

Exercise 6.
1. Let T ∈ D′(R) and f ∈ L1

loc(R). For all c ∈ R, we set

Fc(x) = c+

∫ x

0
f(t) dt, x ∈ R.

Prove that T ′ = f if and only if there exists c ∈ R such that T = Fc.
2. Check that for all T ∈ D′(R), the following convergence holds in D′(R)

τ−hT − T
h

→
h→0

T ′,

where τ−h denotes the translation operator.
3. Prove that a distribution T ∈ D′(R) is a Lipschitz function if and only if T ′ ∈ L∞(R).

Hint: Use the question 3 of the previous exercice.

Exercise 7. Let En ∈ L1
loc(Rn) be the function defined by

En(x) =

{
log(|x|) when n = 2,

|x|2−n when n ≥ 3.

1. Let u ∈ C2(Rn \ {0}) be a radial function, i.e. u(x) = U(|x|) where U ∈ C2(R∗). Prove that

∀x ∈ Rn \ {0}, (∆u)(x) = U ′′(|x|) +
n− 1

|x|
U ′(|x|).

2. Let ϕ ∈ C∞0 (Rn). Justify that

(∆En)(ϕ) = lim
ε→0+

∫
Ωε

En(x)(∆ϕ)(x) dx,

where Ωε = {x ∈ Rn : |x| > ε}. By using Green’s formula, conclude then that there exists a
constant cn ∈ R such that ∆En = cnδ0 in D′(Rn)
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Exercise 1. Let A ∈ S++
n (R) be a definite positive real matrix. Prove that the function u defined

on Rn by u(x) = e−〈Ax,x〉 belongs to the Schwartz space S(Rn) and that its Fourier transform is
given by

∀ξ ∈ Rn, û(ξ) =

√
πn

detA
e−

1
4
〈A−1ξ,ξ〉.

Hint: Begin by considering the case n = 1, and diagonalize the matrix A to treat the general case.

Exercise 2.
1. Let A ⊂ Rn be a measurable subset with finite measure. Prove that 1̂A belongs to L2(Rn)

but not to L1(Rn).
2. Are there two functions f, g ∈ S(Rn) not being identically equal to zero and satisfying the

relation f ∗ g = 0 ? Same question for some functions f et g with compact supports.
3. Prove that the equation f ∗ f = f has no non trivial solution in L1(Rn), but has an infinite

number of solutions in L2(Rn).

Exercise 3. By computing the Fourier transform of the functions f = 1[−1/2,1/2] and f ∗ f , show
that ∫

R

(
sin t

t

)2

dt = π.

Exercise 4 (Heisenberg’s uncertainty principle). Prove that for all f ∈ S(Rn) and j ∈ {1, . . . , n},

inf
a∈R

∥∥(xj − a)f
∥∥2
L2(Rn) inf

b∈R

∥∥(ξj − b)f̂
∥∥2
L2(Rn) ≥

(2π)n

4
‖f‖4L2(Rn),

When is this inequality an equality ?

Exercise 5. Let us consider the interval I = [−1, 1] and the following subspace of L2(I)

BL2(I) =
{
u ∈ L2(R) : û = 0 almost everywhere on R \ I

}
.

1. Prove that BL2(I) is a Hilbert space.
2. Check that BL2(I) ⊂ C0

→0(R) and that the corresponding embedding is continuous.
3. Let us consider the continuous extension of x 7→ sinx/x, denoted sinc.

(a) Prove that the family (π−1/2τ2πk sinc)k∈Z is a Hilbert basis of BL2(I).
(b) Prove (sampling theorem) that any element u ∈ BL2(I) can be decomposed as follows

u(x) =
∑
k∈Z

u(2πk) sinc(x− 2πk),

the convergence being uniform in R, and also holds in L2(R).

1



Exercise 6. Give the example of a function f ∈ C∞(R) such that
(i) There is no polynomial P such that |f | ≤ |P |.

(ii) The linear form

ϕ ∈ S(R) 7→
∫
R
f(x)ϕ(x) dx,

defines a tempered distribution.

Exercise 7. Prove that the following distributions are tempered and compute their Fourier trans-
form:

1. δ0
2. 1,

3. H (Heaviside),
4. p. v.(1/x),

5. |x| in R.

Indication : p. v.(1/x) is an odd distribution, so its Fourier transform is also odd.

Exercise 8. The aim of this exercice is to compute the Fourier transform of the following tempered
distribution on R2

〈T, ϕ〉S′,S =

∫
R
ϕ(x, x) dx, ϕ ∈ S(R2).

1. Let ψ ∈ S(R2). Prove that

〈T̂ , ψ〉S′,S = lim
ε→0+

Iε où Iε =

∫
R
e−εx

2
ψ̂(x, x) dx.

2. By using the expression of ψ̂(x, x), show that

Iε = 2
√
π

∫
R2

e−ζ
2
ψ(ξ, 2

√
εζ − ξ) dξ dζ.

3. Deduce the expression of T̂ .

Exercise 9. We consider the Schrödinger equation

(1)

{
i∂tu+ ∆u = 0, (t, x) ∈ R∗ × Rn

ut=0 = u0.

1. For u0 ∈ S(Rn), solve the equation (1) in C0(R,S(Rn)) ∩ C1(R∗,S(Rn)).
2. Justify that the Fourier transform of the function eit|ξ|2 is well defined.
3. Show that for α ∈ C with negative real part,

F−1(eα|ξ|
2
) =

1

(−4απ)d/2
e
|x|2
4α .

4. Check that this formula also holds in S ′(Rn) when α ∈ iR.
5. Deduce that there exists a constant C > 0 such that for all t > 0,

‖u(t, ·)‖L∞(Rn) ≤
C

td/2
‖u0‖L1(Rn).
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Exercise 1.

1. Let K : R2n → C be a continuous function. Assume that there exists A > 0 such that

sup
x∈Rn

∫
Rn
|K(x, y)| dy ≤ A and sup

y∈Rn

∫
Rn
|K(x, y)|dx ≤ A.

For all u ∈ C∞0 (Rn), we set

(Pu)(x) =

∫
Rn
K(x, y)u(y) dy, x ∈ Rn.

Schur’s lemma: prove that P can be extended as a bounded operator Lp(Rn) → Lp(Rn) for
any p ∈ [1,+∞], with an operator norm smaller than A.

2. Application: Let ϕ ∈ C∞0 (Rn) and N ≥ 1 be a positive integer. We define the Fourier
multiplier ϕ(N−1Dx) by

ϕ(N−1Dx)u := F−1(ϕ(N−1·)) ∗ u, u ∈ C∞0 (Rn).

Prove that the operator ϕ(N−1Dx) can be extended as a bounded operator Lp(Rn)→ Lp(Rn)
for any p ∈ [1,+∞], and that there exists a positive constant A > 0 not depending on the
integer N such that for all u ∈ Lp(Rn),

‖ϕ(N−1Dx)u‖Lp(Rn) ≤ A‖u‖Lp(Rn).

Exercise 2.
1. Show that Hs1(Rn) embeds continuously into Hs2(Rn) for s1 ≥ s2.
2. Check that δ0 ∈ Hs(Rn) for s < −n/2.
3. When s ∈ N∗ is a nonnegative integer, the Sobolev space is also given by

Hs(Rn) =
{
u ∈ L2(Rn) : ∀|α| ≤ s, ∂αu ∈ L2(Rn)

}
.

Exercise 3.
1. Prove that if s > n/2, the space Hs(Rn) embeds continuously to C0

→0(Rn), the space of
continuous functions u on Rn satisfying u(x)→ 0 as |x| → +∞.

2. State an analogous result in the case where s > n/2 + k for some k ∈ N. Deduce that⋂
s∈RH

s(Rn) ⊂ C∞(Rn).
3. Let us now consider s ∈ (n/2, n/2 + 1).

(a) Show that for all α ∈ [0, 1] and all x, y, ξ ∈ Rn:∣∣eix·ξ − eiy·ξ∣∣ ≤ 21−α|x− y|α|ξ|α.

1



(b) Deduce that for all α ∈ (0, s − n/2), there exists a constant C(α) > 0 such that for all
u ∈ S(Rn) and x, y ∈ Rn,

|u(x)− u(y)|
|x− y|α

≤ C(α)‖u‖Hs(Rn).

(c) Conclude that Hs(Rn) embeds continuously to Cα(Rn), the space of α-Hölder functions.

Exercise 4. Assuming that s belongs to [0, n/2), the purpose of this exercice is to prove that
Hs(Rn) ↪→ Lp(Rn), where p = 2n/(n− 2s). To that end, let us recall that for all u ∈ Lp(Rn),

‖u‖pLp(Rn) =
∫ ∞
0

pλp−1
∣∣{|u| > λ}

∣∣dλ.
Considering u ∈ S(Rn) and Aλ > 0, we set u1,λ = F−1(1|ξ|<Aλ û) and u2,λ = F−1(1|ξ|≥Aλ û).

1. Prove that
∀x ∈ Rn, |u1,λ(x)| ≤ CA

(n−2s)/2
λ ‖u‖Hs(Rn).

Deduce that there exists some Aλ such that |{|u1,λ| > λ/2}| = 0.
2. Show that for this choice of Aλ,

‖u‖pLp(Rn) ≤ 4p

∫ ∞
0

λp−3‖u2,λ‖2L2(Rn) dλ.

3. Conclude.

Exercise 5. Prove that there exists a positive constant c > 0 such that for all u ∈ S(R3),

‖u‖L∞(R3) ≤ c ‖u‖
1/2
H1(R3)

‖u‖1/2
H2(R3)

.

Hint: Considering R > 0, use the following decomposition

‖û‖L1(R3) =

∫
|ξ|≤R

〈ξ〉|û(ξ)| dξ
〈ξ〉

+

∫
|ξ|>R

〈ξ〉2|û(ξ)| dξ
〈ξ〉2

.

Exercise 6 (Trace on an hyperplane). Let us consider the function

γ0 : ϕ(x
′, xn) ∈ C∞0 (Rn) 7→ ϕ(x′, xn = 0) ∈ C∞0 (Rn−1).

Prove that for all s > 1/2, the function γ0 can be uniquely extended as an application mapping
Hs(Rn) to Hs−1/2(Rn−1).
Hint: For all ϕ ∈ C∞0 (Rn), begin by computing the Fourier transform of the function γ0φ.

Exercise 7 (An estimate). Let 0 < α < 1 and p > 1 be positive real numbers. Show that there
exists a positive constant Cα,p > 0 such that for all u ∈ C∞0 (Rn),(∫∫

Rn×Rn

(
|u(x)− u(y)|
|x− y|α

)p dxdy

|x− y|d

)1/p

≤ Cα,p‖u‖1−αLp(Rn)‖∇u‖
α
Lp(Rn).

Hint : Consider the two regions {|x− y| > R} and {|x− y| ≤ R}, where R > 0 is to be chosen.
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