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TD 1: TOPOLOGY ISSUES IN PRODUCT SPACES AND BANACH SPACES

EXERCISE 1 (General topology).

1. Let f : E — F be a continuous map between topological spaces. Show that f is sequently
continuous. Namely, show that if the sequence (z,,), converges to x in E then the sequence
(f(xn))n converges to f(z) in F. Can we claim that if f is sequently continuous then f is
continuous 7

2. Let f: E — F be a map between topological spaces. The function f is said to be continuous
at ¢ € E if for all open set V containing f(x), there exists an open set U containing x and such
that f(U) C V. Check that, in this definition, “open set” can be replaced by “neighbourhood”.

3. Let X be a set, (F;)icsr be a family of topological spaces and f; : X — F; be some functions.

(a) Prove that the “coarsest topology that makes the functions f; continuous” exists.

(b) Let g : E — X be a function defined on a topological space E. Check that g is continuous
if and only if for all ¢ € I, f; o g is continuous.

(c) Let (x)n be a sequence in X. Prove that (x,), converges to z if and only if for all i € I,
(fi(zpn))n converges to fi(x).

4. Let (F})ier be a family of topological spaces. We define the product topology on [ ], ; F; as the
“coarsest topology” making the projections continuous. Show that this topology is generated
by the cylinder sets, i.e. the sets of the form C; = [[..; U;, where each U; is open in F; and
U; = F;, except for a finite number of indexes i € J.

i€l

EXERCISE 2 (A theorem of Hérmander). Let 1 < p,q < oo and
T (LPR), (| - llp) = (LAR), [ lq),

be a continuous linear operator which commutes with the translations, that is, which satisfies
T = Tty for all h € R™, where 7,f = f(- — h). The purpose of this exercice is to prove the
following property: if ¢ < p < oo, then the operator T is trivial.

1. Let u be a function in LP(R™). Prove that ||u + ull, — 2V/P|ul, as ||k]| — co.
Hint: you may decompose u as the sum of a compactly supported function and of a function
with arbitrarily small LP norm.

2. Check that if C' stands for the norm of operator 7', then we have that for all u € LP(R"),
ITull, < 24P~4C ull,

and conclude.
3. Can you give the example of a non-trivial such operator T" when p < ¢ 7

EXERCISE 3 (Fourier coefficients of L' functions). For any function f in L(T), we define the
function f:Z — C by

f(n) = ;ﬁ/ﬂ fe ™ dt, neZ.

We denote by ¢y the space of complex valued functions on Z tending to 0 at d-oco.



1. Check that (co, || - ||s) is a Banach space.

2. Prove that, for all f € L*(T), f € .
Hint: Recall that the trigonometric polynomials Y ,__ are™® are dense in L'(T).

Now we study the converse question: is every element of ¢y the sequence of Fourier coefficients of a
function in L(T)?

3. Prove that A : f — f defines a bounded linear map from L'(T) to co.

4. Prove that the function A is injective.

5. Show that the function A is not onto.
Hint: You may use the Dirichlet kernel Dy, (t) = Y 7__, e*, whose L*(T) norm goes to +oo
as n — +0o0.

EXERCISE 4 (Equivalence of norms).

1. Let E be a vector space endowed with two norms || - ||; and || - [|2 such that both (E,|| - |1)
and (E,| - ||2) are Banach spaces. Assume the existence of a finite constant C' > 0 such that

Ve e E, |z|i < C|z||2-

Prove that the norms || - |1 and || - |2 are equivalent.

2. Let K be a compact subset of R”. We consider a norm N on the space C°(K,R) such
that (C°(K,R), N) is a Banach space, and satisfying that any sequence of functions (f,), in
C°(K,R) that converges for the norm N also converges pointwise to the same limit. Prove
that the norm N is then equivalent to the norm || - ||oo-

EXERCISE 5 (A Rellich-like theorem). Let us consider E the following subspace of L?(R)

E={ueC(R):|lullp < +oc}, where |ullz=|(V1+a2)ullp2m) + [[v'[|2w)-
The aim of this exercice is to prove that the unit ball By of E is relatively compact in L?(R), with
Bp = {U € Cl(R) : ||u||E < 1}.

In the following, we denote by ¢ a non-negative C> function such that ¢~1({0}) = R\ [-2,2] and
¢~ H({1}) = [-L,1].
1. Considering the cut-off ¢r(z) = ¢(x/R), show that sup,cp, [[(1 — ¢r)ullL2(r) converges to 0

as R — +o0.
2. We define 9. (x) = éqb(%) and 75, the translation operator (see Exercice 2). Show that for all

R >1 and € > 0, there exists C; g > 0 such that for all h € R and u € E,
[7h((pRU) * Pe) — (PrU) * Vel Lo (m) < Cer|hl|[ullz  and  [[(dru) * Ve Lo r) < Ce rllullE-

3. Show that for any sequence (uy), in Bg, there exists a subsequence (u, ), such that for any
R,e7! € N*, the sequence ((¢run’) * 1), converges in L2(R) as n’ — oo.
Hint: Use Cantor’s diagonal argument.

4. Conclude.

5. Let us now consider the set By C L?(R) defined by

By = {u € C'(R) : |lull 2y + |/l 2y <1}

Is By relatively compact in L?(R) ?
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TD 2: LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES AND FRECHET SPACES

In the following, “locally convex topological vector space” will be abbreviated as l.c.t.v.s.

EXERCISE 1. Let E be a locally convex topological vector space whose topology is induced by a
(separating) countable family of semi-norms (p,,)n,en. We define

—+00

L pulz—y)
d = —— E.
(2, y) nE:O T tpa—y) "Y€

Let us prove that the topology induced by d and the topology induced by the family of seminorms
(Pn)nen coincide.
1. Show that g : [0,00) — R defined by g(t) = %th is an increasing sub-additive function and
give its image. Deduce that d is a translation invariant distance on FE.

2. Give a basis of neighbourhoods of O for the topology induced by the family of semi-norms,
and show that every neighbourhood of O contains an open ball for the distance d.

3. Show that every open ball for the distance d centered on O contains a neighbourhood of Og
for the topology induced by the family of semi-norms.

4. Conclude.

More generally, let us consider a continuous bounded function g : [0, +00) — Ry and

+00
dg(,y) = Y 5r0(pn(z —y)), zy€E

n=0

5. Under what condition on g does d, defines a distance on E whose topology coincide with the
one induced by the family of seminorms (py)nen ?

EXERCISE 2. Let X and Y be l.c.t.v.s. We consider (pq)aca (resp. (¢3)sep) a countable family
of continuous semi-norms which is separating and generates the topology of X (resp. of Y). Let
T :X — Y be a linear map. Prove that T is continuous if and only if for all g € B, there exists a
finite set I C A and a positive constant ¢ > 0 such that for all u € X,

qs(Tu) < c Zpa(u).

acl

EXERCISE 3 (Space of continuous functions). Let U be an open subset of R and (K,), be an
exhaustive sequence of compacts of U.

1. Prove that C°(U) is a Fréchet space for the distance

+oo

A(f,9) = 3 5 win(L,palf — 9)),

n=0

defined by the semi norms p,(f) = sup,cg, |f(2)|.



2. Recall that a subset B C C°(U) is said to be bounded if for any neighborhood V of 0, there
exists A > 0 such that AB C V. Prove that if B is a subset of equibounded functions of
CO(U), that is sup e || flloo < 00, then B is bounded.

3. Let us consider (fy)n a sequence of continuous function on U such that f, : U — [0, n] with
fn=00n K, and f, =n on U\ K,41. Show that U,{f,} is a bounded subset of C°(U).

4. Prove that the space C°(R) is not locally bounded, that is, the origin does not have a bounded
neighborhood.

EXERCISE 4 (Space of C* functions). We consider the vector space E = C*°([0, 1], R) equipped
with the following metric

r .
A(f,9) = 3 g min (1,179 = g¥.c).
k>0
1. Check that E is a Fréchet space.
2. Prove that any closed and bounded (¢f the previous exercise) subset of E is compact.
3. Can the topology of E be defined by a norm 7

EXERCISE 5 (LP spaces with 0 < p < 1). Let p € (0,1) and L? be the set of real-valued measurable
functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following

quantity is finite:
1 :
ful = ([ P az)”

1. Show that LP is a vector space and that d(u,v) = ||u — v||} is a distance. Prove that (L?,d)
is complete.

2. Let f € LP and n > 1 be a positive integer. Prove that there exist some points 0 = xg < z1 <
... <z, =1such that forall¢=0,...,n—1,

Ti41 1 1
/ fPde=1 / PP da.
x; n Jo

3. Prove that the only convex open domain in LP containing u = 0 is L? itself. Deduce that the
space LP is not locally convex.
Hint: Introduce the functions g;' =nfly, 4z, -

4. Bonus: Show that the (topological) dual space of LP reduces to {0}.
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TD 3: HAHN-BANACH THEOREMS

EXERCISE 1 (Hahn-Banach Theorem without the axiom of choice).

1. Let (E,dg) and (F,dp) be metric spaces, (F,dr) being complete, D C E be a dense subset
and f : (D,dg) — (F,dp) be a uniformly continuous function. Then, there exists a unique
continuous function F' : (E,dg) — (F,dr) such that F|p = f. Moreover, prove that the
function F' is uniformly continuous.

2. Let E be a real separable Banach space and p be a continuous seminorm on F. Let M be a
linear subspace of E and ¢ : M — R be a linear functional which is dominated by p. Without
using the axiom of choice, prove that ¢ can be extended to a linear functional £ — R which
remains dominated by p.

EXERCISE 2 (Separation in Hilbert spaces without the Hahn-Banach theorem). In this exercise,
the use of the axiom of choice is prohibited. Let H be an Hilbert space.

1. Let C C H be a convex, closed and non-empty set. Prove that any v ¢ C' can be strictly
separated by C' by a closed hyperplane, i.e. there exists vg € H such that

Vue C, (vg,u) < (vg,v).

2. Let C'1,Cy C H be convex, closed and non-empty disjoint sets, C; being moreover compact.
Prove that Cy and Cs can be strictly separated by a closed hyperplane, i.e. there exists ug € H
such that

sup (ug,u) < inf (ug,u).
ue

f
ueCq &
EXERCISE 3 (First uses of the Hahn-Banach theorem). Let E be a normed vector space.

1. Let G be a vector subspace of E and g : G — R be a continuous linear form. Recall why there
exists a continuous linear form f over E that extends g, and such that

£z = llgllc--

When F is an Hilbert space, prove that this extension is unique.

2. Assume that E = ¢}(N). Give the example of a continuous linear form of norm 1, defined on
a strict vector subspace of E, which admits an infinite number of linear continuous extensions
of norm 1 over F.

3. Assume that F is a Banach space.
(a) Prove that for all z € F,
=] = max [f(z)]

feE | fllp=<1

(b) Let B be a subset of E such that

VfeE*, supf(x)<-+oo.
T€B

Prove that B is bounded.



EXERCISE 4 (Convex sets that cannot be separated). Let H be the Hilbert space L?([—1,1]). For
every a € R, let C, C H be the subset of continuous functions u : [—1, 1] — R such that u(0) = a.
Prove that C, is a convex dense subset of H. Deduce that, if a # 3, then C, and U3 are convex
disjoint subsets that cannot be separated by a continuous linear form.

EXERCISE 5 (Banach limit).

1. Let s : £>°(N) — ¢>°(N) be the shift operator, defined by s(x); = x;4; for all ¢ € N and
xz € (°(N). Prove the existence of a continuous linear function A € (¢*°(N))’ satisfying
Aos=A and

Vu € £°(N), liminfu, < A(u) < limsup u,.

n—+00 n——4o0o
Such a linear form A is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesaro.
2. Deduce that there exists a function p : P(N) — Ry which satisfies
(1) p(N) =1,
(1) p is finitely additive: VA, B C N with AN B =0, u(AU B) = u(A) + u(B),
(7i7) p is left-invariant: Vk € Nand A C N, u(k + A) = pu(A).

EXERCISE 6 (Finite-dimensional case).

1. Let C C R? be a convex set such that C' # R?, and xg ¢ C. Prove that there exists an affine
hyperplane that separates C' and {z¢}.

2. Does this result hold in an infinite dimensional space ?

EXERCISE 7 (Convex hull). Let E be a locally convex topological vector space (abbreviated l.c.t.v.s.
in the following). One says that H is a closed half-space if there exists a ¢ € E* and a € R such
that H ={u € E | p(u) < a}.

1. If C is a convex subset of E, show that its closure C is also convex.

2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces
containing A.

3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A
of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that

contains A.

EXERCISE 8 (Density criterion).

1. Let E be a real normed vector space and F' C E be a vector subspace such that F' # E. Prove
that there exists ¢ € E'\ {0} such that p(u) =0 for all u € F.

2. Application: Let (a,), be a sequence in |1, +oo[ that diverges to +o00. Prove that the set

W:span{:ce[(),l]r—) :nZO},

T — an
is dense in the space C°([0, 1]) equipped with the norm || - ||sc-

Hint: While considering a continuous linear form that vanishes on W, introduce a generating
function.
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TD 4: WEAK TOPOLOGIES

EXERCISE 1.

1. Let E be a l.c.t.v.s whose topology is generated by a separating family of seminorms (py)acr-
Prove that a sequence (x,), of elements in E converges to some z € F if and only if for all
a € I, the sequence (po(z — zp,))yn converges to 0.

2. Let F be a Banach space. By using the previous question, give a characterization of weakly
converging sequences in terms of continuous linear forms.

EXERCISE 2. Let X be a normed vector space.
1. Let (up)n be a weakly convergent sequence in X. Justify that (u,) is bounded and that the
weak limit u of (uy), satisfies |Ju|| < liminf, 4 [Jun]|-

2. Suppose that the sequence (@), in X* is converging strongly to some ¢ € X*. Show that
for any sequence (uy), in X that converges weakly to u € X, then the sequence (@, (up))n
converges to p(u).

3. Assume that X is a Hilbert space. Let (u,), be a sequence in X that converges weakly to
u € X and such that (||u,]||)n converges to ||u||. Prove that (u,), converges strongly to w.

EXERCISE 3. The purpose of this exercise is to present three obstructions to strong convergence in
L?(R%) and L%(T9). In the following, ¢ € C°(R%) denotes a compactly supported smooth function
being not identically equal to zero.

1. (Loss of mass) Let v be a vector of norm 1. Prove that the sequence (¢(- — nv)),, converges
weakly to zero in L?(R%), but not strongly.

2. (Concentration) Prove that the sequence (n%2p(n-)), converges weakly to zero in L?(R%),
but not strongly.

3. (Oscillations) We now consider w € L?(T¢) a non-constant function. Prove that the sequence
(w(n-))n converges weakly but not strongly to 5= fozﬂ w in L?(T9).

EXERCISE 4. Let E be a Banach space.

1. Show that if F is finite-dimensional, then the weak topology o(E, E*) and the strong topology
coincide.

2. We assume that F is infinite-dimensional.

(a) Show that every weak open subset of F contains a straight line.
(b) Deduce that B = {z € E : ||z|| < 1} has an empty interieur for the weak topology.
(c) Let S ={x € E : ||z|]| = 1} be the unit sphere of E. What is the weak closure of S 7

EXERCISE 5. Let E be an infinite-dimensional Banach space. Prove that the weak topology on F
is not metrizable.
Hint: Recall that any open weak set contains a line.



EXERCISE 6.

1. (Mazur’s lemma) Let E be a Banach space and (u,), be a sequence in E weakly converging
to Uuso € E. Show that us is a strong limit of finite convex combinations of the w,,.

2. (Banach-Sacks’ property) Show that if F is in addition a Hilbert space, we can extract a
subsequence converging to ue, strongly in the sens of Cesaro.

EXERCISE 7 (Schur’s property for /!(N)).

1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector
space.

The aim is to prove that a sequence of £}(N) converges weakly if and only if it converges strongly.
Take (u™), a sequence in ¢!(N) weakly converging to 0.

2. Show that for all &, lim,, o uj} — 0.

3. Show that if u,, - 0 in £}(N), one can additionally assume that ||u"||s = 1.

4. Define via a recursive argument two increasing sequences of N, (a)r and (ng)g, such that

ak+1—1 3
n
VE>0, ) [l = 5

Jj=ak

5. Show that there exists v € £°°(N) such that (v, u"™),2 > 3 for all k. Conclude.
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TD 5: WEAK TOPOLOGIES (II)

EXERCISE 1. Let £ and F be two Banach spaces, and T : E — F be a linear map. Show that
T is strongly continuous (i.e. continuous from (E,|| - ||g) to (F,| - ||r)) if and only if T" is weakly
continuous (i.e. continuous from (E,o(E, E*)) to (F,o(F, F*))).

EXERCISE 2. Let E be a separable real normed vector space. Let (un), be a dense sequence in
Bg(0,1). By considering the following metric d on the unit ball of E*,

“+o00

A9 =Y el = )l fog € Bp-(0.),

n=0

prove that the weak-* topology on Bg-(0,1) is metrizable.

EXERCISE 3 (Goldstine lemma). Let X be a Banach space. For any x € X, let us define the
evaluation ev, : ¢ € X* — p(x) € R. We can therefore consider the following application

J:{X - X

T = evy

For any normed vector space E, we denote by Bpg its closed unit ball.
1. Check that J is an isometry and that J(X) is strongly closed in X**.
2. Let E be a normed vector space. Determine all the linear forms on E* which are continuous
for the weak- topology o(E*, E).

3. By using the Hahn-Banach theorem, prove that J(Bx) is dense in Bx++ for the weak-* topol-
ogy o(X** X*).

EXERCISE 4.

1. In ¢*°(N) we consider

C = {z € (*(N) : liminfz, > 0}.

Show that C' is strongly closed but not weakly-* closed.

2. Let E be a normed vector space. Show that an hyperplane H C E* which is closed for the
weak-* topology o(E*, F) is the kernel of ev, : ¢ — ¢(x) for some = € E.

EXERCISE 5. Let (E, || - ||) be a reflexive space and Bg be its unit ball. Show that for all ¢ € E*,
there exists x, € Bg, such that ||¢|g = |p(x,)|, i.e. the supremum in the definition of the norm
operator is in fact a maximum.




EXERCISE 6. The aim of this exercise is to prove by two different methods that the space
(C°([0,1]), ]| - |lso) of continuous real-valued functions on [0, 1] is not reflexive.
1. Method by compactness.

(a) Define ¢ € C°(]0,1])* by

1/2 1
o(f) = fydt— [ feydt, fec®(o,1]),
0 1/2
and show that ||¢|| = 1.
(b) Prove that |¢(f)| < 1 for all f € C°([0,1]) such that || f|le < 1.
(c) Conclude that the space CY(]0,1]) is not reflexive.

2. Method by separability.

(a) Prove that if E is a Banach space and its dual E* is separable, then FE is separable.
(b) Show that C(]0, 1]) is separable.
(c) Prove that C(]0,1])* is not separable.
Hint: Consider the functions & : C°([0,1]) — R defined by 6,(f) = f(t) for any t € [0,1].
(d) Conclude that C°([0,1]) is not isomorphic to CY([0,1])** as Banach spaces.
Remark: This is stronger than not being reflezive.

EXERCISE 7.
1. Let E be a reflexive, separable Banach space. Let (u,), be a bounded sequence in E. Show
that one can extract a subsequence (), which converges weakly in E.
2. Does this result hold when F is not reflexive ?

EXERCISE 8. Let F be a reflexive Banach space and I : £ — R be a continuous, convex and
coercive functional, in the sense that there exist a > 0 and M > 0 such that for all x € F,

I(z) > o||z||g — M.

We also consider A C F a non-empty, closed and convex set. Prove that the functional I admits a
minimum on A.

EXERCISE 9. Let B denote the closed unit ball of L!([0,1]). Recall that a function f € B is called
an extreme point if, whenever f = 60f; 4+ (1 — 0) fo with 6 € (0,1) and fi, fo € B, one has f; = fa.
Prove that B does not admit extremal points. Deduce that there is no isometry between L'(]0,1])
and the topological dual of a normed vector space.

Hint: We admit Krein-Milman’s theorem, stating that any non-empty conver compact subset of any
l.c.t.v.s coincides with the closed convex envelop of its extremal points.
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TD 6: COMPACTNESS IN LP SPACES

EXERCISE 1 (Equi-integrability). Let (X,.A,u) be a measured space and F C L!'(X) being
bounded. Prove that the following assertions are equivalent:

1. For all € > 0, there exists some M > 0 such that

sup/ |fldp < e.
fer JRIfI>M}

2. For all € > 0, there exists some 1 > 0 such that for any measurable set A,
nw(A) <n = sup/ |f] dp < e
feFJA
3. There exists an increasing function ® : Ry — R, such that lim,_,. ®(x)/z = 0o and

sup /X B(11]) dps < oo.

feFr

When one of the above conditions is satisfied, the set F is said to be equi-integrable.
Hint: to show 2. = 3., consider the sequence (My,), such that

Sup/ |f L ar, dp < 277
fertx

In the following two exercices, the notion of equi-integrability introduced in the previous exercice
will be considered. When p € [1,400), a set F C LP(X) will be said to be equi-integrable when the
set {|f|P : f € F} is equi-integrable in L(X).

EXERCISE 2 (Vitali’s convergence theorem). We consider (X, A, 1) a o-finite measure space. Let
p € [1,400) and (f,)n be a sequence in LP(X). Assume that

1. The sequence (fy)n is a Cauchy sequence in measure, meaning that for all £ > 0, there exists
ng > 0 such that

Ym,n > ng, M(|fn*fm‘ 25) <E.

2. The sequence (fy), is equi-integrable in LP(X),
3. For all € > 0, there exists a measurable set I' C X of finite measure such that

v >0, |[falxrllrx) <e.

Prove that (uy), is a Cauchy sequence in LP(X) (and therefore converges in this space).



EXERCISE 3 (Dunford-Pettis’ Theorem). The objective of the exercise is to prove Dunford-Pettis’
theorem:

Let © C R? be a bounded set and (f,), be a bounded sequence in L' (). Then, the set
{fa} is sequentially compact for the weak topology o (L', L°°) if and only if the sequence
(fn)n is equi-integrable.

First we prove the reciprocal: let (f,), be a bounded and equi-integrable sequence in L!((2).
1. Show that we can reduce to the case where the f,, are non-negative.
2. Let f% =14, < fn. Show that sup,, || fn — f¥||z1 — 0.
3. Show that there exists an extraction (n’) such that for all k € N, fk, — f* in L1(Q).
4. Prove that (f*); is an increasing sequence and deduce that there exists some f € L'(Q) such
that f* — fin L'(2).
5. Conclude that f,; — f in L'(9).

Now we want to prove the direct implication. Let (f,), be a bounded sequence in L!(Q) satisfying
fn — f € LY(2). We consider X the set of indicator functions and, for a fixed e > 0, we also

consider the sets X, defined for all n > 0 by:
< 5}.
6. Show that X and X,, are closed in L1(£2).
7. Using a Baire’s argument, show that the sequence (f,,), is equi-integrable.
8. Conclude.

Xn::{]lAEX:Van, /A(fk—f)dx
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TD 7: COMPACT OPERATORS

EXERCISE 1. Let H be a Hilbert space.
1. Prove that K(H) is closed in £(H).
2. Let T € K(H) and S € L(H). Prove that the operators T'S and ST are also compact.

EXERCISE 2. Let H be a Hilbert space and T : H — H be linear and continuous.
1. Prove that the following assertions are equivalent
(i) T is compact.
(7i) For any sequence (x,), that weakly converges in H, the sequence (T'z,,), strongly con-
verges in H.

(#47) T is the limit in £(H) of finite rank operators.

2. We now assume that H is infinite-dimensional and that T is compact. Is the operator 7' right
or left invertible 7

Application: Study the compactness of the shift operator 7' : [?(N) — [2(N) defined for all
= (zp)n € ’(N) by (Tz)p = 0 and (T'z),, = 2,1 for all n > 1.

3. When T is compact, prove that T™ is also a compact operator.

EXERCISE 3. Let (\,), a sequence of complex numbers, and T : [?(N) — [2(N) be the operator
defined by
T((zn)n) = (Anzn)n, (Tn)n € lz(N)-
1. Check that the operator T is well-defined and bounded on [?(N) if and only if the sequence
(An)n is bounded.
2. Prove that the operator T' is compact if and only if the sequence (), converges to 0.

EXERCISE 4. Let T : L?(0,1) — L?(0,1) be the Volterra operator defined by
TH)@) = [ f@)dy f 0.0, 2 e .1

Check that Tf € CY[0,1] for all f € L?(0,1).
Prove that the operator T' is compact.
Compute the adjoint of the operator 7.
Deduce that the operator TT* is the following

Ll e

1
@Tﬂ@=énmmwﬂw®,f€ﬁ@DJGMH

5. Justify that the operator TT™* is compact, selfadjoint and non-negative.
6. Prove that the set of eigenvalues of the operator T*T is given by

{W:”ZO}'

7. Deduce the value of the norm of the operator T'.
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EXERCISE 1. Let f : R — R, be a non-negative C* function. Assume that the function f” is
bounded.

1. Prove that the following pointwize estimation holds
Ve eR, |f'(@))* < 2f (@) f |l o)
2. Can we have an estimate of the following form
Vz eR, |f'(2)] < cpfla),
where the positive constant ¢y > 0 depends on the function f ?

EXERCISE 2.
1. Let H be the Heaviside function. Show that H = ¢y in D'(R).
2. Give an example of distribution of order n for all n € N.

3. Let Q € R? be an open set and T' € D'(2). We consider f € C*°(Q) which vanishes on the
support of T. Do we have fT'=0in D'(Q2) ?

EXERCISE 3. Let  C R? be an open set. Prove that we have an injection of L} (2) in D'().

EXERCISE 4 (An example of distribution). Show that the formula

(T,0) =Y _¢™(n), ¢eDR),
n>0

defines a distribution 7" € D'(R). What about its order ?

EXERCISE 5 (Convergence of distributions). Do the following series

S0 and Y6,

n>0 n>0
converge in D'(R) ?

EXERCISE 6 (Principal value of 1/x). We define p.v.(1/z) as follows

(p.v.(1/z), ) = lim </ de>, ¢ € D(R).
e=0 lz|>e T

1. Show that the above limit exists and defines a distribution. Compute its order.

2. Show that p.v.(1/x) is the derivative of log|z| in the sense of distributions.

3. Compute zp.v.(1/x).



4. Let T € D'(R) which satisfies 7" = 1. Show that there exists a constant ¢ € R such that
T =p.v.(l/x) + cdo.
5. Show that |z|* 2z — p.v.(1/z) in D'(R) as a — 0.

EXERCISE 7. Solve the equation 77 = 0 in D'(R).

EXERCISE 8 (Jump formula). Let f: R — R be a function of class C' on R*. We say that f has a
jump at 0 if the limits f(0%) = lim,_,o+ f(x) exist, and we denote by [[f(0)]] = f(07) — £(07) the
height of the jump. We denote by {f’} the derivative of the regular part of f, i.e.

f(x) if f is differentiable at x

0 otherwise

{f'Hz) = {

1. Show that in the sense of distributions:
= A{f"} + [[£(0)]]do.

2. Let (xy,)nez be an increasing sequence such that lim,_,_ z, = —oc and lim,,_, o x,, = +00.
Let f : R — R be a piecewise C'! function presenting jumps at every z,. Show that in the
sense of distributions,

Fr=AY 4 M ()]s, -

neL

EXERCISE 9 (Punctual support). Let 7' € D'(R?) such that supp T = {0}. We consider ¢ € D(R?)
such that ¢ = 1 in a neighborhood of B(0,1) and supp ¢ C B(0,2). We set ¢, (z) = ¢ (z/r) for all
r>0and x € R".

. Recall why T has a finite order, which will be denoted m > 0 in the following.

. Show that for all » > 0, ¥, T =T.

. Let ¢ € D(RY) satisfying that for all p € N" with |p| < m, 9P(0) = 0. Check that (T, ) = 0.
)

. Prove that there exist some real numbers a, € R such that T' = Z\pl <m apé(()p .

N R

EXERCISE 10 (Support and order). Let 7" be the linear map defined for all ¢ € D(R) by

(T, ¢) = lim (Zn: <p<;> —np(0) — (log n)@'(0)> :

j=1

1. Check that (T, ¢) is well defined for all ¢ € D(R), and that 7" is a distribution of order less
than or equal to 2.

2. What is the support S of T ?

3. What is the order of T' 7
Hint: Use test functions of the form

on(x) = () /0 ' /0 " o(kt) dtdy,

where ¢ € D(0,1) has integral 1 and 1 € D(—1,2) satisfies 0 < <1 and ) =1 on [0,1].
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EXERCISE 1. Let p € Cg°(R™) be such that 0 < p < 1, suppy = {z € R" : || < 1} and [z, p = 1.
For all € > 0, we set p.(z) = "p(x/e).
1. Prove that for all ¢ € C§°(R"),

sup [(pe * p)(x) — p(z)] — 0.

zER" =07
2. Check that for all f € LP(R"), lim._,o+ ||pe * f — fllzrmn) = 0.

EXERCISE 2. Let 2 be an open subset of R™.
1. Let ¢ € C®(Q x R") and T € @'(R"™). Assume that there exists a compact K C € such that

Yy € R", supp(p(-,y)) C K.
Prove then that the function y € R" — T'(¢(+,y)) is in C*°(R™), with moreover
Va e N, 9/(T(¢(y)) = T ¢())-

2. Let o € C(Q2 x R™) and T € 9'(Q2). Prove that

[ retanar=1( [ etaa)
EXERCISE 3.

1. Let 6 € C§°(R) such that §(0) = 1. For all ¢ € C§°(R), prove that there exists ¢ € C§°(R)
such that

Vo e R, p(x) — p(0)0(x) = zi(a).

2. Solve 2T =0 in 9'(R).
3. Solve 2T =1 in 9'(R).
4. Solve (x — 1)T = &g and (x — a)(z — b)T = 1 with a # b in 9’ (R).

EXERCISE 4. For all z € R and € > 0, we set
fe(z) = log(z + ic) = log |x + ic| + i Arg(x + i),

the argument being taken in (—m, 7).
1. Prove that as € goes to zero, the sequence (f.) converges in %’(R) to the locally integrable
function fy € L} (R) defined by

loc

log(z) when = > 0,
folz) = .
log |x| +im when z < 0.

1



2. Compute f} in 9'(R).
3. Deduce that the following equality holds in 9'(R)

1 .
x40

i = —imd v.(1/x).
J, oo = i+ p v (1)

4. Show similarly that

1 1
= 1' == ) . . 1 .
x—10 e—l>r(]gl+a:—z'€ indo +p.v-(1/z)
EXERCISE 5.
1. What can be said about a distribution 7" € %’(R) which satisfies T € C(R) ?
2. Same question with a distribution 7' € 9’(R) such that T = 0 for some integer n € N.

3. Let 2 be a measurable subset of R”, p € [1,4+00) and B), be the unit ball of LP(2). Prove that
if a distribution 7' € %’(R") is bounded on B, N D(Q), then T € LI(Q), where g € (1, 4]
satisfies 1/p+1/q = 1.

EXERCISE 6.
1. Let T € 9'(R) and f € Li (R). For all ¢ € R, we set

loc

x
F.(z) = c—l—/ f(t)dt, z=eR.
0
Prove that T" = f if and only if there exists ¢ € R such that T' = F,.
2. Check that for all T € 9’(R), the following convergence holds in 9’(RR)

7'_hT—T_> ,
h h—0

where 7_j, denotes the translation operator.

3. Prove that a distribution 7' € %’(R) is a Lipschitz function if and only if 7" € L*(R).
Hint: Use the question 8 of the previous exercice.

EXERCISE 7. Let E, € L}, .(R") be the function defined by

log(|z|) when n = 2,
Bl :{ g(|zl)

|z|>~™  when n > 3.

1. Let u € C?(R™\ {0}) be a radial function, i.e. u(x) = U(|x|) where U € C?(R*). Prove that

n

— L0 (a)).

]

Vo e R"\ {0}, (Au)(z) =U"(lz]) +
2. Let o € C3°(R™). Justify that

(AEL)(p) = lim [ En(z)(Ap)(x)dz,

e—=0T Jq,

where Q. = {z € R" : |x| > ¢}. By using Green’s formula, conclude then that there exists a
constant ¢, € R such that AE,, = ¢,dp in 9'(R")
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EXERCISE 1. Let A € S;FT(R) be a definite positive real matrix. Prove that the function u defined
on R™ by u(z) = e~ 4%% belongs to the Schwartz space & (R™) and that its Fourier transform is

given by
T 1 -1
Rn -~ — _7<A £7§>
VEERY, &) =y qeac

Application: Compute the Fourier transform of the following Gaussian function
fe(lz) = e’ £>0, 2 eRY
Hint: Begin by considering the case n = 1, and diagonalize the matriz A to treat the general case.

EXERCISE 2.

1. Let A C R"™ be a measurable subset with finite measure. Prove that 14 belongs to L?(R™)
but not to L!(R™).

2. Are there two functions f,g € ¥ (R"™) not being identically equal to zero and satisfying the
relation fx g =0 7 Same question for some functions f et g with compact supports.

3. Prove that the equation f * f = f has no non trivial solution in L'(R™), but has an infinite
number of solutions in L?(R™).

EXERCISE 3. By computing the Fourier transform of the functions f = 1[_y/31/9] and f* f, show

that
sint 2
/(> dt = .
R t

EXERCISE 4. Let I C R be an interval and p be a weight function, meaning that p is measurable,
positive, and satisfies

Vn € N, /\x|np(:):) dz < 4-o00.
I

Assume that there exists a > 0 such that

/[eakc'p(m) dr < +oo.

Let us denote by L?(I, p) the space of square integrable functions with respect to the measure pdz.

1. Prove that there exists an orthonormal family of polynomials (P,),>0 such that deg P, = n
for all n > 0.

The aim is now to prove that (P,),>0 is a Hilbert basis of L?(I, p).



2. Let f € L?(I,p). Check that the function ¢ defined by

(&) = f@)p(z) ifzel,
LA I ifx ¢l

belongs to L'(R). Prove that its Fourier transform @ can be extended to an holomorphic
function F' on the strip
B,={z€C:|Imz| < a/2}.

3. Assume that the function f € L2(I,p) is orthogonal to any monomial. By computing the
derivatives of the function F' at 0, prove that f is identically equal to zero and conclude.

EXERCISE 5 (Heisenberg’s uncertainty principle). Prove that for all f € #(R™) and j € {1,...,n},

it 05 = @ 3oy 08 1665 = 07 = Z 01112
ack 'Y L2(R") peg 117 L2®R") = 4 L2(Rn)
When is this inequality an equality ?
EXERCISE 6. Let us consider the interval I = [—1,1] and the following subspace of L?(I)

BL*(I) = {u € L*(R) : 4 = 0 almost everywhere on R\ I}.

1. Prove that BL?(I) is a Hilbert space.
2. Check that BL?(I) C C%,(R) and that the corresponding embedding is continuous.
3. Let us consider the continuous extension of x +— sinz/z, denoted sinc.

(a) Prove that the family (m~/27y, sinc)rez is a Hilbert basis of BL2(I).

(b) Prove (sampling theorem) that any element v € BL?(I) can be decomposed as follows

u(z) = Z u(27k) sinc(z — 27k),
keZ

the convergence being uniform in R, and also holds in L?(R).

EXERCISE 7. Prove that the following distributions are tempered and compute their Fourier trans-
form:

1. dg 3. H (Heaviside), 5. |z| in R.
2. 1, 4. p.v.(1/x),

Indication : p.v.(1/x) is an odd distribution, so its Fourier transform is also odd.

EXERCISE 8. The aim of this exercice is to compute the Fourier transform of the following tempered
distribution on R?

(T, 0)g1.9 = /Rw(x,x) dz, ¢ € S (R?).

1. Let v € #(R?). Prove that

~

<T, ’(/}>3;,’3; = lim IE ou IE :/6_8x2'l;(3?7$) dz.
R

e—0t

2



2. By using the expression of @(w, x), show that
A:zw%A;a@wamﬁc—ad&w

3. Deduce the expression of T.

EXERCISE 9. Given some real number s € R, we define the Sobolev space H*(R%) by
HSRY = {ue PR : (&)%u € L*(RY)},

equipped with the following scalar product
(ol = [ (OFUOTE U, woe HR.

1. Show that H*'(R%) embeds continuously into H*2(R%) for s; > so.
2. Check that 6y € H*(RY) for s < —d/2.

3. When s € N* is a nonnegative integer, the Sobolev space is also given by
HYRY) = {u e L*(RY) : V|a| < 5, 9%u € L*(RY) ).

4. Prove that there exists a positive constant ¢ > 0 such that for all u € S(R?),

1/2 1/2

HUHLOO(R?’) <c Hu”Hl(R:s)Hu”Hz(R:s)-

Hint: Considering R > 0, use the following decomposition

ll 1 ey = ae)| % 2l ()] 2%
a2 e AQ@HO@+Aﬁ@@@y

5. (a) Prove that if s > d/2, the space H*(R?) embeds continuously to C?,(R?), the space of
continuous functions u on RY satisfying u(z) — 0 as |z| — +oo0.

(b) State an analogous result in the case where s > d/2 + k for some k € N. Deduce that
Neer H*(RT) € C=(RY).

EXERCISE 10. Let us consider the function
Yo : (2, xq) € CRY) = (2!, 24 = 0) € CF(RY).
Prove that for all s > 1/2, the function vy can be uniquely extended as an application mapping

HS(Rd) to Hsfl/2(]Rd71).
Hint: For all ¢ € Cgo(Rd), begin by computing the Fourier transform of the function vo¢.
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EXERCISE 1. We consider the vector space E' = C*([0,1],R) equipped with the following metric

1.
d(f,9) =Y _ o min (1, 11 = " ).
k>0
1. Check that E is a Fréchet space.
2. Prove that any closed and bounded subset of E is compact.
3. Can the topology of E be defined by a norm 7

EXERCISE 2. For all n > 0, we set €” the sequence which every term is zero, except the n** which
is 1. Recall that ¢o(N) denotes the subspace of [*°(N) of sequences that converge to zero. Let

s={v e amy :iwe") ~ol.

1. Justify that S is well-defined and show that S is strongly closed in ¢o(N)*.
2. Show that S is weakly closed in ¢o(N)*, i.e. closed for the o(co(N)*, co(N)**)-topology.
3. Show that S is not weakly-* closed in ¢o(N)*, i.e. not closed for the o(co(N)*, ¢o(N))-topology.

EXERCISE 3 (Banach limit).
1. Let s : £>°(N) — ¢>°(N) be the shift operator, defined by s(x); = x;41 for all ¢ € N and
x € (*°(N). Prove the existence of a continuous linear function A € (¢*°(N))’ satisfying
Aos=A and

Vu € £>°(N), liminfwu, < A(u) < limsup u,.
n—+00 n——+00

Such a linear form A is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesaro.

2. Deduce that there exists a function p : P(N) — R, which satisfies

(1) p(N) =1,
(i7) p is finitely additive: VA, B C N with AN B =0, u(AU B) = u(A) + u(B),
(t3i) p is left-invariant: Vk € Nand A C N, pu(k+ A) = p(A).

EXERCISE 4. Let H be a real Hilbert space and J : H — R be a continuous convex functional.
We assume that J is coercive, that is, J(x) — +o00 when ||z|| = +o00. Prove then that there exists
Zx in H such that J(z,) = infrepy J(x).

EXERCISE 5. Let T : L?[0,1] — L?[0,1] be the operator defined by
1
T = [ .

1



1. Prove that T is well-defined, selfadjoint, compact and that ||| < 1.
2. Let g = Tf, where f € C°[0,1]. Check that g is in C?[0, 1] and satisfies
9" —g=-2f, 9(0)=4(0), g(1)=—g'(1).

3. Reciprocally, let g € C2[0,1] satisfying g(0) = ¢'(0) and g(1) = ¢’(1). We set f = (g — g")/2.
Check that g =T'f.

4. Prove that Im T is dense in L?[0,1]. Is 0 an eigenvalue of T ?
5. Let f € CY[0,1] and g = T'f. Check that

1 1
2@Lﬁm=@@W+@®F+AImwﬁu+é\ﬂﬂﬁw-

Deduce that 2(T'f, f)r2 > || T f|3..
6. Prove that o(T') C [0, 1].

7. For all X € (0,1], we set ay = /(2 — A)/A. Check that
A€ o(T)N(0,1] <= (1 — a3)sinay + 2ay cosay = 0.
8. Deduce that o(T") = {0} U {\, : n > 0}, with

2 < 2
14 (/2 + nm)? '

EXERCISE 6. Prove that there is no distribution 7' € 9’(R) such that
22

7(e) = [[exp (3 )eladn, ¢ € CFR\ (0,

Hint: Construct a sequence (pn)n converging to zero in CG°(R) such that each py, is supported in
{1/n < |z| <2/n} and (T(pn))n converges to +00.



