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Département de Mathématiques M1 - Analyse avancée

TD 1: Topology issues in product spaces and Banach spaces

Exercise 1 (General topology).
1. Let f : E → F be an application between topological spaces. The function f is said to

be continuous at x ∈ E if for all open set V containing f(x), there exists an open set U
containing x and such that f(U) ⊂ V. Check that, in this definition, “open set” can be
replaced by “neighbourhood”.

2. Let X be a set, (Fi)i∈I be a family of topological spaces and fi : X → Fi be some functions.

(a) Prove that the “coarsest topology that makes the functions fi continuous” exists.
(b) Let g : E → X be a function defined on a topological space E. Check that g is continuous

if and only if for all i ∈ I, fi ◦ g is continuous.
(c) Let (xn)n be a sequence in X. Prove that (xn)n converges to x if and only if for all i ∈ I,

(fi(xn))n converges to fi(x).

3. Let (Fi)i∈I be a family of topological spaces. We define the product topology on
∏
i∈I Fi as the

“coarsest topology” making the projections continuous. Show that this topology is generated
by the cylinder sets, i.e. the sets of the form

CJ =
∏
i∈I

Ui,

where each Ui is open in Fi and Ui = Fi, except for a finite number of indexes i ∈ J .

Exercise 2 (A theorem of Hörmander). Let 1 ≤ p, q <∞ and

T : (Lp(Rn), ‖ · ‖p)→ (Lq(Rn), ‖ · ‖q),

be a continuous linear operator which commutes with the translations, that is, which satisfies
τhT = Tτh for all h ∈ Rn, where τhf = f(· − h). The purpose of this exercice is to prove the
following property: if q < p <∞, then the operator T is trivial.

1. Let u be a function in Lp(Rn). Prove that ‖u+ τhu‖p → 21/p‖u‖p as ‖h‖ → ∞.
Hint: you may decompose u as the sum of a compactly supported function and of a function
with arbitrarily small Lp norm.

2. Check that if C stands for the norm of operator T , then we have that for all u ∈ Lp(Rn),

‖Tu‖q ≤ 21/p−1/qC‖u‖p,

and conclude.
3. Can you give the example of a non-trivial such operator T when p ≤ q ?

Exercise 3 (Fourier coefficients of L1 functions). For any function f in L1(T), we define the
function f̂ : Z→ C by

f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt, n ∈ Z.

We denote by c0 the space of complex valued functions on Z tending to 0 at ±∞.
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1. Check that (c0, ‖ · ‖∞) is a Banach space.
2. Prove that, for all f ∈ L1(T), f̂ ∈ c0.

Hint: Recall that the trigonometric polynomials
∑n

k=−n ake
ikt are dense in L1(T).

Now we study the converse question: is every element of c0 the sequence of Fourier coefficients of a
function in L1(T)?

2. Prove that Λ : f → f̂ defines a bounded linear map from L1(T) to c0.
3. Prove that the function Λ is injective.
4. Show that the function Λ is not onto.

Hint: You may use the Dirichlet kernel Dn(t) =
∑n

k=−n e
ikt, whose L1(T) norm goes to +∞

as n→ +∞.

Exercise 4 (Equivalence of norms).
1. Let E be a vector space endowed with two norms ‖ · ‖1 and ‖ · ‖2 such that both (E, ‖ · ‖1)

and (E, ‖ · ‖2) are Banach spaces. Assume the existence of a finite constant C > 0 such that

∀x ∈ E, ‖x‖1 6 C‖x‖2.

Prove that the norms ‖ · ‖1 and ‖ · ‖2 are equivalent.
2. Let K be a compact subset of Rn. We consider a norm N on the space C0(K,R) such

that (C0(K,R), N) is a Banach space, and satisfying that any sequence of functions (fn)n in
C0(K,R) that converges for the norm N also converges pointwise to the same limit. Prove
that the norm N is then equivalent to the norm ‖ · ‖∞.

Exercise 5 (A Rellich-like theorem). Let us consider E the following subspace of L2(R)

E =
{
u ∈ C1(R) : ‖u‖E < +∞

}
, where ‖u‖E = ‖(

√
1 + x2)u‖L2(R) + ‖u′‖L2(R).

The aim of this exercice is to prove that the unit ball BE of E is relatively compact in L2(R), with

BE =
{
u ∈ C1(R) : ‖u‖E ≤ 1

}
.

In the following, we denote by φ a non-negative C∞ function such that φ−1({0}) = R \ [−2, 2] and
φ−1({1}) = [−1, 1].

1. Considering the cut-off φR(x) = φ(x/R), show that supu∈BE
‖(1− φR)u‖L2(R) converges to 0

as R→ +∞.
2. We define ψε(x) = 1

εφ(xε ) and τh the translation operator (see Exercice 2). Show that for all
R ≥ 1 and ε > 0, there exists Cε,R > 0 such that for all h ∈ R and u ∈ E,

‖τh((φRu) ∗ ψε)− (φRu) ∗ ψε‖L∞(R) ≤ Cε,R|h|‖u‖E and ‖(φRu) ∗ ψε‖L∞(R) ≤ Cε,R‖u‖E .

3. Show that for any sequence (un)n in BE , there exists a subsequence (un′)n′ such that for any
R, ε−1 ∈ N∗, the sequence ((φRun′) ∗ ψε)n′ converges in L2(R) as n′ →∞.
Hint: Use Cantor’s diagonal argument.

4. Conclude.
5. Let us now consider the set BH1 ⊂ L2(R) defined by

BH1 =
{
u ∈ C1(R) : ‖u‖L2(R) + ‖u′‖L2(R) ≤ 1

}
.

Is BH1 relatively compact in L2(R) ?
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Département de Mathématiques M1 - Analyse avancée

TD 2: Lp compactness and Banach spaces

Exercise 1 (F. Riesz’s theorem). Let E be a normed vector space.
1. Prove that if M is a closed subspace of E, with M 6= E, then for all ε > 0, there exists u ∈ E

of norm ‖u‖ = 1 such that d(u,M) ≥ 1− ε.
2. Deduce that if E is infinite-dimensional, then its unit ball B is not compact, with

B =
{
x ∈ E : ‖x‖ ≤ 1

}
.

Exercise 2 (Norm on the quotient space). Let E be a Banach space and M be a closed vector
subspace of E. Let us consider N : E/M → R defined by

N(ξ) = inf
ξ=x
‖x‖.

Prove that N defines a norm on E/M , and that E/M is a Banach space.
Hint: Prove that if (un)n is a Cauchy sequence, then one can extract a subsequence (nk)k such that

∀k ≥ 0, ‖unk+1
− unk

‖ ≤ 1

2k
.

Exercise 3 (Characterization of equi-integrability). Let (X,µ) be a measured space and F ⊂
L1(X,µ) being bounded. Prove that the following assertions are equivalent:

1. F is equi-integrable,
2. For all ε > 0, there exists some η > 0 such that for any measurable set A,

µ(A) < η ⇒ sup
u∈F

∫
A
|u| dµ < ε.

3. There exists an increasing function Φ : R+ → R+ such that limx→∞Φ(x)/x =∞ and

sup
u∈F

∫
X

Φ(|u|) dµ <∞.

Hint: to show 2. ⇒ 3., consider the sequence (Mn)n such that

sup
u∈F

∫
X
|u|1|u|>Mn

dµ < 2−n.

Exercise 4 (Vitali’s convergence theorem). We consider (X,A, µ) a σ-finite measured space. Let
1 ≤ p < +∞ and (un)n be a sequence in Lp(X). Assume that

1. (un)n is a Cauchy sequence in measure, meaning that for all ε > 0, there exists n0 ≥ 0 such
that

∀m,n ≥ n0, µ
(
|un − um| ≥ ε

)
< ε.
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2. (un)n is equi-integrable in Lp(X),
3. for all ε > 0, there exists a measurable set Γ of finite measure such that

∀n ≥ 0, ‖un1X\Γ‖Lp(X) ≤ ε.

Prove that (un)n is a Cauchy sequence in Lp(X) (and therefore converges in this space).

Exercise 5 (Obstructions to strong convergence). The purpose of this exercise is to present three
obstructions to strong convergence in L2(Rd) and L2(Td). In the following, ϕ ∈ C∞c (Rd) denotes a
compactly supported smooth function being not identically equal to zero.

1. (Loss of mass) Let ν be a vector of norm 1. Prove that the sequence (ϕ(· − nν))n does not
converge in L2(Rd).

2. (Concentration) Prove that the sequence (nd/2ϕ(n ·))n does not converge in L2(Rd).
3. (Oscillations) We now consider w ∈ L2(Td) a non-constant function. Prove that the sequence

(w(n ·))n does not converge in L2(Td).

Exercise 6 (Averaging lemma). Let u ∈ S(Rdx × Rdv) be a Schwartz function. For any function
φ ∈ C∞c (Rd), we consider the moment

ρφ(x) :=

∫
Rd

φ(v)u(x, v) dv.

1. Let us define û(ξ, v) as the Fourier transform of the function u with respect to the space
variable x ∈ Rd. Considering the function w := (1 + v · ∇x)u, show that for all ξ ∈ Rd,

|ρ̂φ(ξ)|2 ≤
(∫

Rd

|ŵ|2(ξ, v) dv

)(∫
Rd

φ2(v) dv

1 + |v · ξ|2

)
.

2. Deduce that

‖ρφ‖2H1/2(Rd)
:=

∫
Rd

(1 + |ξ|2)1/2|ρ̂φ|2(ξ) dξ ≤ Cφ
(
‖u‖2L2(R2d) + ‖v · ∇xu‖2L2(R2d)

)
,

where the constant Cφ > 0 only depends on the function φ.
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TD 3: Hahn-Banach theorem and locally convex topological vector spaces

Exercise 1 (Towards duality). Let E be a normed vector space.
1. Let G be a vector subspace of E and g : G→ R be a continuous linear form. Show that there

exists a continuous linear form f over E that extends g, and such that

‖f‖E∗ = ‖g‖G∗ .

When E is an Hilbert space, prove that this extension is unique.
2. Assume that E = `1(N). Give the example of a continuous linear form of norm 1, defined on

a strict vector subspace of E, which admits an infinite number of linear continuous extensions
of norm 1 over E.

3. Assume that E is a Banach space. Let B be a subset of E such that

∀f ∈ E∗, sup
x∈B

f(x) < +∞.

Prove that B is bounded.

Exercise 2 (Hahn-Banach theorems for complex spaces). Let E be a vector space over C. Let M
be a vector subspace of E and let f : M → C be a C-linear form. Suppose that there is a semi-norm
p : E → [0,∞) such that

∀x ∈M, |f(x)| ≤ p(x).

Prove that there there exists a linear form F : E → C extending f , and such that |F | ≤ p.

Exercise 3 (Hahn-Banach Theorem without the axiom of choice.). Let E be a real separable
Banach space and p be a norm on E. Let M be a linear subspace of E and ϕ : M → R be a linear
functional which is dominated by p. Prove that ϕ can be extended to a linear functional E → R
which remains dominated by p.

Exercise 4 (Separation of convex sets in Hilbert spaces). Let H be an Hilbert space.
1. Let C ⊂ H be a convex, closed and non-empty set. Prove that any v /∈ C can be strictly

separated by C by a closed hyperplane, i.e. there exists u0 ∈ H such that

∀u ∈ C, 〈u0, u〉 < 〈u0, v〉.

2. Let C1, C2 ⊂ H be convex, closed and non-empty disjoint sets, C1 being moreover compact.
Prove that C1 and C2 can be strictly separated by a closed hyperplane, i.e. there exists u0 ∈ H
such that

sup
u∈C1

〈u0, u〉 < inf
u∈C2

〈u0, u〉.
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Exercise 5 (Convex sets that cannot be separated). Let H be the Hilbert space L2([−1, 1]). For
every α ∈ R, let Cα ⊂ H be the subset of continuous functions u : [−1, 1]→ R such that u(0) = α.
Prove that Cα is a convex dense subset of H. Deduce that, if α 6= β, then Cα and Cβ are convex
disjoint subsets that cannot be separated by a continuous linear form.

Exercise 6 (Banach limit).
1. Let s : `∞(N) → `∞(N) be the shift operator, defined by s(x)i = xi+1 for all i ∈ N and
x ∈ `∞(N). Prove the existence of a continuous linear function Λ ∈ (`∞(N))′ satisfying
Λ ◦ s = Λ and

∀u ∈ `∞(N), lim inf
n→+∞

un ≤ Λ(u) ≤ lim sup
n→+∞

un.

Such a linear form Λ is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesàro.

2. Deduce that there exists a function µ : P(N)→ R+ which satisfies

(i) µ(N) = 1,
(ii) µ is finitely additive: ∀A,B ⊂ N with A ∩B = ∅, µ(A ∪B) = µ(A) + µ(B),

(iii) µ is left-invariant: ∀k ∈ N and A ⊂ N, µ(k +A) = µ(A).

Exercise 7 (Lp spaces with 0 < p < 1). Let p ∈ (0, 1) and Lp be the set of real-valued measurable
functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following
quantity is finite:

‖u‖p =

(∫ 1

0
|u|p dx

) 1
p

.

1. Show that Lp is a vector space and that d(u, v) = ‖u − v‖pp is a distance. Prove that (Lp, d)
is complete.

2. Let f ∈ Lp and n ≥ 1 be a positive integer. Prove that there exist some points 0 = x0 < x1 <
. . . < xn = 1 such that for all i = 0, . . . , n− 1,∫ xi+1

xi

|f |p dx =
1

n

∫ 1

0
|f |p dx.

3. Prove that the only convex open domain in Lp containing u ≡ 0 is Lp itself. Deduce that the
space Lp is not locally convex.
Hint: Introduce the functions gni = nf1[xi,xi+1].

4. Show that the (topological) dual space of Lp reduces to {0}.
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TD 4: Geometric Hahn-Banach theorem and Fréchet spaces

Exercise 1 (Finite-dimensional case). Let C ⊂ Rd be a convex set such that C 6= Rd, and x0 /∈ C.
Prove that there exists an affine hyperplane that separates C and {x0}.

Exercise 2 (Convex hull). Let E be a locally convex topological vector space (abbreviated l.c.t.v.s.
in the following). One says that H is a closed half-space if there exists a ϕ ∈ E∗ and a ∈ R such
that H = {u ∈ E | ϕ(u) ≤ a}.

1. If C is a convex subset of E, show that its closure C is also convex.
2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces

containing A.
3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A

of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that
contains A.

Exercise 3 (Density criterion).
1. Let E be a real normed vector space and F ⊂ E be a vector subset such that F 6= E. Prove

that there exists ϕ ∈ E′ \ {0} such that ϕ(u) = 0 for all u ∈ F .
2. Application: Let (an)n be a sequence in ]1,+∞[ that diverges to +∞. Prove that the set

W = vect
{
x ∈ [0, 1] 7→ 1

x− an
: n ≥ 0

}
,

is dense in the space C0([0, 1]) equipped with the norm ‖ · ‖∞.
Hint: While considering a continuous linear form that vanishes on W , introduce a generating
function.

Exercise 4 (Extreme points). Let K be a subset of a vector space E. A point a ∈ K is called an
extremal point of K if, whenever a = θb + (1 − θ)c with θ ∈ (0, 1) and b, c ∈ K, one has b = c. A
subset1 S of K is called an extremal subset of K if, for all a in S such that a = θb+ (1− θ)c with
θ ∈ (0, 1) and b, c ∈ K, one has b ∈ S and c ∈ S.

1. In a Hilbert space, what are the extremal points of the unit closed ball ? What about the
open ball ?

2. Let c0 denote the space of real sequences (an)n∈N converging to zero. We endow c0 with the
norm ‖ · ‖∞. Show that the closed unit ball of c0 does not admit extremal points.

3. Let I ⊂ R be an interval. Show that the closed unit ball of L1(I) does not admit extremal
points.

Exercise 5 (Krein-Milman theorem). The aim of this exercise is to prove the following statement.

Theorem 1 (Krein-Milman). Let E be a l.c.t.v.s. and K be a non-empty convex compact subset of
E. Then K coincides with the closed convex envelop of its extremal points.

1This notion is only used in Exercice 5
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1. The first step is to show the existence of an extremal point in K. Let P be the set of non-
empty closed extremal subsets of K, endowed with the order “A ≺ B if and only if B ⊂ A”.
Show that P admits a maximal element which is reduced to a point.
Hint: If a maximal element S is composed of more than one point, choose a continuous linear
form separating points of S and consider the set of points reaching the maximum of this form
on S.

2. Define K̃ = co(ext(K)) the closed convex hull of the extremal points of K, and show that K̃
and K coincide.

3. Application: An n× n matrix with real entries is bi-stochastic if its entries are non-negative,
and the sum of the entries of either rows or columns equals 1. One denotes SMn(R) the set
of bistochastic matrices. Show that every matrix in SMn(R) is actually a convex combination
of permutation matrices.

Exercise 6. Let X and Y be l.c.t.v.s. We consider (pα)α∈A (resp. (qβ)β∈B) a countable family
of continuous semi-norms which is separating and generates the topology of X (resp. of Y ). Let
T : X → Y be a linear map. Prove that T is continuous if and only if for all β ∈ B, there exists a
finite set I ⊂ A and a positive constant c > 0 such that for all u ∈ X,

qβ(Tu) ≤ c
∑
α∈I

pα(u).

Exercise 7 (Space of continuous functions). Let U be an open subset of Rd and (Kn)n be an
exhaustive sequence of compacts of U .

1. Prove that C0(U) is a Fréchet space for the distance

d(f, g) =
+∞∑
n=0

1

2n
min(1, pn(f − g)),

defined by the semi norms pn(f) = supx∈Kn
|f(x)|.

2. A subset B ⊂ C0(U) is said to be bounded if for any neighborhood V of 0, there exists λ > 0
such that λB ⊂ V . Prove that if B is a subset of equibounded functions of C0(U), that is
supf∈B ‖f‖∞ <∞, then B is bounded.

3. Let us consider (fn)n a sequence of continuous function on U such that fn : U → [0, n] with
fn = 0 on Kn and fn = n on U \Kn+1. Show that ∪n{fn} is a bounded subset of C0(U).

4. Prove that the space C0(R) is not locally bounded, that is, the origin does not have a bounded
neighborhood.

Exercise 8 (Space of C∞ functions). We consider the E = C∞([0, 1],R) equipped with the
following metric

d(f, g) =
∑
k≥0

1

2k
min

(
1, ‖f (k) − g(k)‖∞

)
.

1. Check that E is a Fréchet space.
2. Prove that any closed and bounded (cf the previous exercise) subset of E is compact.
3. Can the topology of E be defined by a norm ?
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TD 5: Weak topology

Exercise 1 (Properties of weakly convergent sequences). Let X be a normed vector space.
1. Let (un)n be a weakly convergent sequence in X. Justify that (un) is bounded and that the

weak limit u of (un)n satisfies ‖u‖ ≤ lim infn→+∞ ‖un‖.
2. Suppose that the sequence (ϕn)n in X∗ is converging strongly to some ϕ ∈ X∗. Show that

for any sequence (un)n in X that converges weakly to u ∈ X, then the sequence (ϕn(un))n
converges strongly to ϕ(u).

3. Assume that X is a Hilbert space. Let (un)n be a sequence in X that converges weakly to
u ∈ X and such that (‖un‖)n converges to ‖u‖. Prove that (un)n converges strongly to u.

Exercise 2 (Examples of weakly convergent sequences).
1. Let H be a separable Hilbert space and (en)n be a Hilbert basis of H. Prove that (en)n

converges weakly to 0 but not strongly.
2. Let K ⊂ Rd be a compact set. Show that weak convergence in C(K) is equivalent to bounded

pointwise convergence.
3. Let Ω ⊂ Rd and (un)n, (vn)n be two sequences in L2(Ω) such that (un)n converges weakly and

(vn)n strongly. Show that the sequence (unvn)n converges weakly in L1(Ω). What happens if
the two sequences converge weakly ?

Exercise 3 (Weak topology). Let X be a topological vector space. Show that X, endowed with
the weak topology, is a locally convex topological vector space.

Exercise 4. Let E be a Banach space.
1. Show that if E is finite-dimensional, then the weak topology σ(E,E∗) and the strong topology

coincide.
2. We assume that E is infinite-dimensional.

(a) Show that every weak open subset of E contains a straight line.
(b) Deduce that B = {x ∈ E : ‖x‖ < 1} is not open for the weak topology.
(c) Let S = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. What is the weak closure of S ?

Exercise 5. Let p, q ∈ [1,+∞] be such that 1
p + 1

q = 1. We introduce the canonical family of
sequences ek in `p(N), for which every term is zero, except the kth which is 1. We also consider the
map

Jp : `q(N) → (`p(N))∗

(an)n 7→
(

(xn)n 7→
+∞∑
n=0

anxn

)
1. When p ∈ [1,∞), show that Jp is a surjective isometry.
2. Show that J∞ is a non-surjective isometry.
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3. When p ∈ (1,∞), prove that the sequence (ek)k converges weakly but not strongly in `p(N)
towards the null sequence.

4. Still assuming that p ∈ (1,∞), we consider the following subset of `p(N):

E =
{
en + nem : n,m ∈ N, m > n

}
.

(a) Show that E is closed for the strong topology in `p(N).
(b) Show that 0 is in the weak closure of E.
(c) Show that a sequence of E cannot converge weakly towards 0.
(d) Deduce that the weak topology on `p is not metrizable.

Exercise 6.
1. (Mazur’s lemma) Let E be a Banach space and (un)n be a sequence in E weakly converging

to u∞ ∈ E. Show that u∞ is a strong limit of finite convex combinations of the un.
2. (Banach-Sacks’ property) Show that if E is in addition a Hilbert space, we can extract a

subsequence converging to u∞ strongly in the sens of Cesàro.

Exercise 7 (Schur’s property for `1(N)).
1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector

space.
The aim is to prove that a sequence of `1(N) converges weakly if and only if it converges strongly.
Take (un)n a sequence in `1(N) weakly converging to 0.

2. Show that for all k, limn→∞ u
n
k → 0.

3. Show that if un 9 0 in `1(N), one can additionally assume that ‖un‖`1 = 1.
4. Define via a recursive argument two increasing sequences of N, (ak)k and (nk)k, such that

∀k ≥ 0,

ak+1−1∑
j=ak

|unk
j | ≥

3

4
.

5. Show that there exists v ∈ `∞(N) such that (v, unk)`2 ≥ 1
2 for all k. Conclude.
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TD 6: Weak-∗ topology

Exercise 1. (Warm-up exercise) Let E and F be two Banach spaces, and T : E → F be a linear
map. Show that T is strongly continuous (i.e. continuous from (E, ‖ · ‖E) to (F, ‖ · ‖F )) if and only
if T is weakly continuous (i.e. continuous from (E, σ(E,E∗)) to (F, σ(F, F ∗))).

Exercise 2 (Weak-∗ topology and metrics). Let E be a separable real normed vector space. Let
(un)n be a dense sequence in BE(0, 1). By considering the following metric d on the unit ball of E∗,

d(f, g) =

+∞∑
n=0

1

2n
|(f − g)(un)|, f, g ∈ BE∗(0, 1),

prove that the weak-∗ topology on BE∗(0, 1) is metrizable.

Exercise 3 (Weak-∗ closed hyperplanes).
1. In `∞(N) we consider

C =
{
u ∈ `∞(N) : lim inf

n
un ≥ 0

}
.

Show that C is strongly closed but not weakly-∗ closed.
Let us now consider E a normed vector space.

2. Let ϕ : E∗ → R a linear form continuous for the σ(E∗, E) topology. Show that:

∃u ∈ E,∀` ∈ E∗, ϕ(`) = `(u).

3. Show that an hyperplane H ⊂ E∗ which is closed for the weak-∗ topology is the kernel of
evu : ϕ 7→ ϕ(u) for some u ∈ E.

Exercise 4 (Eberlein-Šmulian’s theorem). The aim of the exercice is to prove the following result:

Let A a subset of a Banach space E. If A is relatively compact for the weak topology,
then A is sequentially relatively compact (still for the weak topology of E).

1. Recall why the result is direct if E∗ is separable.
2. Let (an)n be a sequence in A. We denote F := vect{an : n ∈ N}. Show that there exists a

sequence of linear continuous form (φn)n such that for any u ∈ F ,

‖u‖ = sup
n
|φn(u)|.

Show that (F, σ(F, F ∗)) is metrisable on any weak compact of F .
3. Conclude.
4. Show that the result is wrong for the weak-∗ topology.

Hint: Work in the space `∞(N)∗.

Remark: the converse implication is also true.
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Exercise 5 (Dunford-Pettis’ Theorem). The objective of the exercise is to prove Dunford-Pettis’
theorem:

Let Ω ⊂ Rd be a bounded set and (fn)n be a bounded sequence in L1(Ω). Then, the set
{fn} is sequentially compact for the weak topology σ(L1, L∞) if and only if the sequence
(fn)n is equi-integrable.

1. Recall the definition of equi-integrability.

First we prove the reciprocal: let (fn)n be a bounded and equi-integrable sequence in L1.
2. Show that we can reduce to the case where the fn are non-negative.
3. Let fkn = 1fn≤kfn. Show that supn ‖fn − fkn‖L1 → 0.
4. Show that there exists an extraction (n′) such that for all k ∈ N, fkn′ ⇀ fk in L1.
5. Prove that (fk)k is an increasing sequence and deduce that there exists some f ∈ L1 such

that fk → f in L1.
6. Conclude that fn′ ⇀ f in L1.

Now we want to prove the direct implication. Let (fn)n be a bounded sequence in L1(Ω) satisfying
fn ⇀ f ∈ L1(Ω). We consider X the set of indicator functions and, for a fixed ε > 0, we also
consider the sets Xn defined for all n ≥ 0 by:

Xn :=

{
1A ∈ X : ∀k ≥ n,

∣∣∣∣ ∫
A

(fk − f) dx

∣∣∣∣ ≤ ε}.
7. Show that X and Xn are closed in L1(Ω).
8. Using a Baire’s argument, show that (fn)n is equi-integrable.
9. Conclude.

Exercise 6 (Egorov’s theorem).
1. Let (Ω,F , µ) be a probability space, and (gn)n be a sequence of measurable functions such

that (gn)n converge a.e. to some measurable function g. Show that for all ε > 0, there exists
a measurable set Eε ⊂ Ω such that µ(Ec

ε) < ε and (gn)n converges uniformly in Eε.
2. Let (fn)n be a sequence in L1(Ω) with fn ⇀ f ∈ L1(Ω), and (gn)n be a bounded sequence in
L∞(Ω) satisfying gn → g a.e. Show that fngn ⇀ fg in L1(Ω).
Hint: Use Dunford-Pettis’ theorem.

Exercise 7 (L1 is not a dual space). Show that the closed unit ball of L1([0, 1]) does not admit
extremal points. Deduce that L1([0, 1]) is not the dual space of a normed vector space.
Hint: Use Krein-Milman’s theorem.
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Exercise 1. Let (E, ‖ · ‖) be a reflexive space and BE be its unit ball. Show that for all f ∈ E∗,
there exists xf ∈ BE , such that ‖f‖E∗ = |f(xf )|, i.e. the supremum in the definition of the norm
operator is in fact a maximum.

Exercise 2. The aim of this exercise is to prove by two different methods that the space
(C0([0, 1]), ‖ · ‖∞) of continuous real-valued functions on [0, 1] is not reflexive.

1. Method by compactness.

(a) Define ϕ ∈ C([0, 1])∗ by

ϕ(f) =

∫ 1
2

0
f(t) dt−

∫ 1

1
2

f(t) dt, f ∈ C0([0, 1]),

and show that ‖ϕ‖ = 1.
(b) Prove that |ϕ(f)| < 1 for all f ∈ C0([0, 1]) such that ‖f‖∞ ≤ 1.
(c) Conclude that the space C0([0, 1]) is not reflexive.

2. Method by separability.

(a) Prove that if E is a Banach space and its dual E∗ is separable, then E is separable.
(b) Show that C([0, 1]) is separable.
(c) Prove that C([0, 1])∗ is not separable.

Hint: Consider the functions δt : C([0, 1])→ R defined by δt(f) = f(t) for any t ∈ [0, 1].
(d) Conclude that C([0, 1]) is not isomorphic to C([0, 1])∗∗ as Banach spaces.

Remark: This is stronger than not being reflexive.

Exercise 3.
1. Let E be a reflexive, separable Banach space. Let (un)n be a bounded sequence in E. Show

that one can extract a subsequence (un′)n′ which converges weakly in E.
Remark: the condition “separable” is not necessary thanks to exercise 5.

2. Does this result hold when E is not reflexive ?

Exercise 4. Let E be a normed vector space. Show that any weakly compact set of E is bounded
for the norm.

Exercise 5 (Eberlein-Šmulian’s theorem). The aim of the exercise is to prove the following result:

Let A be a subset of a normed vector space E. If A is weakly compact, then A is weakly
sequentially compact.

1. Assume that E∗ is separable. Recall the key argument that gives the result.

Let (an)n be a sequence in A. We set F := vect{an : n ∈ N} and set Ã := A ∩ F .

1



2. Show that Ã is weakly compact in F .
3. Show that the unit ball of F ∗ admits a countable subset {φk : k ∈ N} such that

∀x ∈ F, ‖x‖ = sup
k
|φk(x)|.

In the following, we denote by σ the weak topology on Ã and by τ the topology generated by the
semi-norms |φk|, k ∈ N.

4. Show that that (Ã, τ) is Hausdorff and that the identity map Idσ,τ : (Ã, σ) → (Ã, τ) is
continuous.

5. Deduce that (Ã, τ) is compact and that Idσ,τ is an homeomorphism.
Hint: show that the image of a closed set by Idσ,τ is closed.

6. Show that (Ã, σ(F, F ∗)) is metrizable.
7. Show that one can extract a subsequence (ank

)k converging weakly in F (to some limit a),
and that (ank

)k converges also weakly to a in E.
8. Show that the result is wrong for the weak-∗ topology.

Hint: consider the dual of `∞(N).
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Exercise 1 (Warming).
1. Let H be the Heaviside function. Show that H ′ = δ0 in D′(R).
2. Give an example of distribution of order n for all n ∈ N.
3. Let U ⊂ Rd be an open set and T ∈ D′(U). We consider f ∈ C∞(U) which vanishes on the

support of T . Do we have fT = 0 in D′(U) ?

Exercise 2. Let U ⊂ Rd be an open set. Prove that we have an injection of L1
loc(U) in D′(U).

Exercise 3 (An example of distribution). Show that the formula

〈α, u〉 =
∑
n≥0

u(n)(n), u ∈ D(R),

defines a distribution α ∈ D′(R). What about its order ?

Exercise 4 (Convergence of distributions). Do the following series∑
n≥0

δ(n)n and
∑
n≥0

δ
(n)
0 ,

converge in D′(R) ?

Exercise 5 (Non-negative distributions).
1. Check that distributions of order 0 are locally signed measures.
2. Let U ⊂ Rd be an open set and α ∈ D′(U). We say that α is non-negative if and only if for all

non-negative test function u ∈ D(U), we have 〈α, u〉 ≥ 0. Deduce from the previous question
that any non-negative distribution is a locally signed measure.

Exercise 6 (Principal value of 1/x). We define p. v.(1/x) as follows

∀u ∈ D(R), 〈p. v.(1/x), u〉 = lim
ε→0

(∫
|x|>ε

u(x)

x
dx

)
.

1. Show that the above limit exists and defines a distribution. Compute its order.
2. Show that p. v.(1/x) is the derivative of log |x| in the sense of distributions.
3. Compute x p. v.(1/x).
4. Let α ∈ D′(R) which satisfies xα = 1. Show that there exists a constant c ∈ R such that
α = p. v.(1/x) + c δ0.

5. Show that |x|α−2x→ p. v.(1/x) in D′(R) as α→ 0+.

Exercise 7. Solve the equation α′ = 0 in D′(R).
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Exercise 8 (Jump formula). Let f : R→ R be a function of class C1 on R∗. We say that f has a
jump at 0 if the limits f(0±) = limx→0± f(x) exist, and we denote by [[f(0)]] = f(0+)− f(0−) the
height of the jump. We denote by {f ′} the derivative of the regular part of f , i.e.

{f ′}(x) =

{
f ′(x) if f is differentiable at x
0 otherwise

1. Show that in the sense of distributions:

f ′ = {f ′}+ [[f(0)]]δ0.

2. Let (xn)n∈Z be an increasing sequence such that limn→−∞ xn = −∞ and limn→+∞ xn = +∞.
Let f : R → R be a piecewise C1 function presenting jumps at every xn. Show that in the
sense of distributions,

f ′ = {f ′}+
∑
n∈Z

[[f(xn)]]δxn .

Exercise 9 (Punctual support). Let α ∈ D′(Rd) such that suppα = {0}. We consider ψ ∈ D(Rd)
such that ψ = 1 in a neighborhood of B(0, 1) and suppψ ⊂ B(0, 2). We set ψr(x) = ψ(x/r) for all
r > 0 and x ∈ Rn.

1. Recall why α has a finite order, which will be denoted m ≥ 0 in the following.
2. Show that for all r > 0, ψrα = α.
3. Let u ∈ D(Rd) satisfying that for all p ∈ Nn with |p| ≤ m, ∂pu(0) = 0. Check that 〈α, u〉 = 0.

4. Prove that there exist some real numbers ap ∈ R such that α =
∑
|p|≤m apδ

(p)
0 .

Exercise 10 (Support and order). Let α be the linear map defined for all u ∈ D(R) by

〈α, u〉 = lim
n→+∞

( n∑
j=1

u

(
1

j

)
− nu(0)− (log n)u′(0)

)
.

1. Check that 〈α, u〉 is well defined for all u ∈ D(R), and that α is a distribution of order less
than or equal to 2.

2. What is the support S of α ?
3. What is the order of α ?

Hint: Use test functions of the form

uk(x) = ψ(x)

∫ x

0

∫ y

0
ϕ(kt) dtdy,

where ϕ ∈ D(0, 1) has integral 1 and ψ ∈ D(−1, 2) satisfies 0 ≤ ψ ≤ 1 and ψ = 1 on [0, 1].
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Exercise 1 (Examples of convolutions). Compute the following convolutions:

1. δa ∗ δb in Rd,
2. T ∗ δa, with T ∈ D′(Rd),

3. (xpδ
(q)
0 ) ∗ (xmδ

(n)
0 ),

4. δ(k)0 ∗ (xmH),

5. 1[a,b] ∗ 1[c,d],
6. 1[0,1] ∗ (xH).

Exercise 2 (Associativity and convolution). Show that the convolution product is not associative
without assumptions on the supports by considering the distributions 1, δ′0 and H in D′(R), where
H is the Heaviside function.

Exercise 3. We will study the behavior of the convergence of distributions with respect to the
convolution product.

1. Let T ∈ D′(Rd) be compactly supported, V ∈ D′(Rd) and (Vn)n be a sequence of distributions
in D′(Rd). Prove that if Vn → V in D′(Rd), then Vn ∗ T → V ∗ T in D′(Rd).

2. Show that there exist two sequences of distributions Tn and Vn tending to 0 in D′(R) and such
that Tn ∗ Vn → δ0.

Exercise 4 (Regularization by polynomials). For n ∈ N∗, we define the polynomial Pn on Rd by

Pn(x) =
nd

πd/2

(
1− |x|

2

n

)n3

.

1. What is the limit in D′(Rd) of the sequence (Pn)n ?
2. Deduce that any compactly supported distribution is the limit in D′(Rd) of a sequence of

polynomials.

Exercise 5 (Convolution and translations). Let F : D(Rd) → C∞(Rd) be a continuous linear
map. We say that F commutes with translations when τx ◦ F = F ◦ τx for all x ∈ Rd.

1. Check that if there exists T ∈ D′(Rd) such that, for all ϕ ∈ D(Rd), F (ϕ) = T ∗ ϕ, then F
commutes with translations.

2. Show that for all T ∈ D′(Rd), and all ϕ ∈ D(Rd), we have 〈T, ϕ〉 = T ∗ ϕ̌(0), where ϕ̌(x) =
ϕ(−x).

3. Prove that if F commutes with translations, then there exists T ∈ D′(Rd) such that, for all
ϕ ∈ D(Rd), F (ϕ) = T ∗ ϕ.

Exercise 6 (The extension of the convolution).
1. Let ϕ ∈ C∞(Rd) and T ∈ D′(Rd) such that supp(T ) ∩ supp(ϕ) is compact. Show that 〈T, ϕ〉

can be defined in a meaningful way.

1



2. Let T, S ∈ D′(Rd) satisfying the following property: for every compact K in Rd,

DK =
{

(x, y) ∈ Rd×Rd : x ∈ suppT, y ∈ suppS, x+ y ∈ K
}

is compact. Show that in this case, T ∗ S and S ∗ T are well-defined and are equal.
3. Compute the distribution (xpH) ∗ (xqH) for all p, q ∈ N, where H is the Heaviside function.

Exercise 7 (Linear differential equations). Define D′+(R) = {T ∈ D′(R) : suppT ⊂ R+}.
1. By using Exercice 6, show that the convolution of two elements of D′+(R) is well-defined and

gives an element of D′+(R). In the following, we admit that D′(R+) is a commutative algebra
for the convolution. What is the identity element for the convolution in D′+(R) ?

2. Show that for all a ∈ R and T, S ∈ D′+(R), we have (eaxT ) ∗ (eaxS) = eax(T ∗ S).
3. For any T ∈ D′+(R), let T−1 denote the inverse of T in D′+(R) for the convolution whenever

it exists. Check that T−1 is unique when it exists.
4. Compute H−1 and (δ′0 − λδ0)−1 for all λ ∈ R whenever they exist.
5. Let P be a polynomial that splits in R, compute [P (D)δ0]

−1.
6. Solve the following system in D′+(R)×D′+(R){

δ′′0 ∗X + δ′0 ∗ Y = δ0,

δ′0 ∗X + δ′′0 ∗ Y = 0.
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Exercise 1.
1. Let A ⊂ Rd be a Borel of finite measure. Show that F(1A) belongs to L2(Rd) but not to
L1(Rd).

2. Does it exist two functions f, g ∈ S(R) such that f ∗ g = 0? What happens if in addition f
and g have compact supports ?

Exercise 2. Prove that the following distributions are tempered and compute their Fourier trans-
form:

1. δ0 in Rd,

2. e−
|x|2
2σ in R with σ > 0,

3. 1,
4. H (Heaviside),

5. p. v.(1/x),
6. |x| in R.

Exercise 3.
1. If d ≥ 3, show that u0(x) =

(
−d(d− 2)Vol(B(0, 1))‖x‖d−2

)−1 is a fundamental solution for
the Laplacian, i.e. ∆u0 = δ0 in the sense of distributions.

2. Give a solution of ∆u = f in the sense of distributions for f in D′(Rd) with compact support.
3. What can you say about the regularity of u if f is a function in S(Rd)?
4. Consider the linear PDE u−∆u = f for f ∈ S(Rd). Express a solution in S(Rd) in terms of

the Bessel kernel B = F−1((1 + |ξ|2)−1).

Exercise 4. Let k > 0 and T ∈ S ′(R) such that T [4] + kT ∈ L2(R). Show that for every
j ∈ {0, · · · , 4}, T [j] ∈ L2(R).

Exercise 5. We investigate the solutions T ∈ S ′(R4) with support in R+×R3 of the wave equation

∂ttT −∆T = δ(t,x)=(0,0), (t, x) ∈ R× R3.

1. Let F be the partial Fourier transform with respect to x and T̃ = FT . Find an ODE of which
T̃ is solution. We denote in the following (E) this equation.

2. Solve this equation with the ansatz

T̃ (t, ξ) = H(t)U(t, ξ),

where U is solution of the homogenous equation associated with (E).
3. We denote by dσR the measure on the sphere of radius R and center 0:

〈dσR, ϕ〉 =

∫
S(0,R)

ϕ(x) dσR(x)

Show that:
∀ξ ∈ Rd, F

(
dσR
4πR2

)
(ξ) =

sin(R|ξ|)
R|ξ|

.

1



4. Deduce that for ϕ ∈ S(R4),

〈T, ϕ〉 =

∫ ∞
0

1

4πt

∫
S(0,|t|)

ϕ(t, x) dσt(x) dt.

5. What is the support of T?

Exercise 6. We consider the Schrödinger equation on Rt × Rd

(1)

{
i∂tu+ ∆u = 0,

ut=0 = u0.

1. For u0 ∈ S(Rd), solve the equation (1) in C0(R,S(Rd)).
2. Justify that the Fourier transform of the function eit|ξ|2 is well defined.
3. Show that for α ∈ C with positive real part,

F−1(eα|ξ|2) =
1

(−4απ)d/2
e

|x|2
4α .

4. Check that also holds in S ′(Rd) when α ∈ iR.
5. Deduce that there exists a constant C > 0 such that for all t > 0,

‖u(t, ·)‖L1(Rd) ≤
C

td/2
‖u0‖L∞(Rd).
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Exercise 1 (Warming).
1. Show that u(x) = |x| belongs to W 1,2(−1, 1) but not to W 2,2(−1, 1).

2. Check that v(x) = sin(x2)√
1+x2

belongs to L2(R) but not to W 1,2(R).

3. Show that H1(R2) is not included in L∞(R2).
Hint: Consider a function of the form x 7→ χ(|x|) |log |x||1/3.

Exercise 2 (Optimality in the Sobolev embeddings). Let 1 ≤ p < d and α ∈ [1,∞]. By using a
homogeneity argument, show that if there exists a continuous injection W 1,p(Rd) ↪→ Lα(Rd), then
necessarily p ≤ α ≤ dp

d−p .

Exercise 3 (Some properties of Hs(Rd)).
1. Show that Hs1(Rd) embeds continuously into Hs2(Rd) for s1 ≥ s2.
2. Check that δ0 ∈ Hs(Rd) for s < −d/2.
3. (a) Prove that if s > d/2, the space Hs(Rd) embeds continuously to C0

→0(Rd), the space of
continuous functions u on Rd satisfying u(x)→ 0 as |x| → +∞.

(b) State an analogous result in the case where s > d/2 + k for some k ∈ N. Deduce that⋂
s∈RH

s(Rd) ⊂ C∞(Rd).
(c) Let U ⊂ Rd be open. Deduce from the above question that

⋂
s∈RH

s
loc(U) = C∞(U),

where we set
Hs
loc(U) =

{
u ∈ L2(U) : ∀ϕ ∈ D(U), ϕu ∈ Hs(Rd)

}
.

4. Let us now consider s ∈ (d/2, d/2 + 1).

(a) Show that for all α ∈ [0, 1] and all x, y, ξ ∈ Rd:∣∣eix·ξ − eiy·ξ∣∣ ≤ 21−α|x− y|α|ξ|α.

(b) Deduce that for all α ∈ (0, s − d/2), there exists a constant C(α) > 0 such that for all
u ∈ S(Rd) and x, y ∈ Rd,

|u(x)− u(y)|
|x− y|α

≤ C(α)‖u‖Hs .

(c) Conclude that Hs(Rd) embeds continuously to Cα(Rd).
5. Assuming that s belongs to [0, d/2], the purpose is now to prove that Hs(Rd) ↪→ Lp(Rd),

where p = 2d/(d− 2s). To that end, let us recall that for all u ∈ Lp(Rn),

‖u‖pLp =

∫ ∞
0

pλp−1
∣∣{|u| > λ}

∣∣ dλ.
Considering u ∈ S(Rd) and Aλ > 0, we set u1,λ = F−1(1|ξ|<Aλ û) and u2,λ = F−1(1|ξ|≥Aλ û).

1



(a) Prove that
∀x ∈ Rd, |u1,λ(x)| ≤ CA(2d−s)/2

λ ‖u‖Hs .

Deduce that there exists some Aλ such that |{|u1,λ| > λ/2}| = 0.
(b) Show that for this choice of Aλ,

‖u‖pLp ≤ 4p

∫ ∞
0

λp−3
∥∥u2,λ∥∥2L2 dλ.

(c) Conclude.

Exercise 4 (Trace on an hyperplane). Let us consider the function

γ0 : ϕ(x′, xd) ∈ C∞0 (Rd) 7→ ϕ(x′, xd = 0) ∈ C∞0 (Rd−1).

Prove that for all s > 1/2, the function γ0 can be uniquely extended as an application mapping
Hs(Rd) to Hs−1/2(Rd−1).
Hint: For all ϕ ∈ C∞0 (Rd), begin by computing the Fourier transform of the function γ0φ.

Exercise 5 (An estimate). Let 0 < α < 1 and p > 1 be positive real numbers. Show that there
exists a positive constant Cα,p > 0 such that for all u ∈ C∞0 (R),(∫∫

Rd×Rd

(
|u(x)− u(y)|
|x− y|α

)p dxdy

|x− y|d

)1/p

≤ Cα,p‖u‖1−αLp(Rd)‖∇u‖
α
Lp(Rd).

Hint : Consider the two regions {|x− y| > R} and {|x− y| ≤ R}, where R > 0 is to be chosen.

Exercise 6 (Composition). Let U and U ′ be two open subset of Rd.
1. Let H : U ′ → U be a C1-diffeomorphism such that the Jacobian Jac(H) and Jac(H−1) belong

to L∞. Prove that for all u ∈W 1,p(Ω), we have u ◦H ∈W 1,p(Ω′) and that for all 1 ≤ i ≤ d,

∂yi(u ◦H) =
n∑
j=1

(∂xju ◦H)∂yiHj .

2. Let us now consider a function G ∈ C1
b (R) satisfying G(0) = 0. Show that for all u ∈W 1,p(U),

we have G ◦ u ∈W 1,p(U) and that for all 1 ≤ j ≤ n,

∂xj (G ◦ u) = (G′ ◦ u)∂xju.

3. Do we need to assume that G′ is bounded when d = 1?
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Exercise 1 (Agmon’s and Brezis-Gallouët’s type inequalities).
1. Prove that there exists a positive constant c > 0 such that for all u ∈ S(R3),

‖u‖L∞(R3) ≤ c ‖u‖
1/2
H1(R3)

‖u‖1/2
H2(R3)

.

Hint: Setting 〈ξ〉 = (1 + |ξ|2)1/2 and considering R > 0, use the following decomposition

‖û‖L1(R3) =

∫
|ξ|≤R

〈ξ〉|û(ξ)| dξ
〈ξ〉

+

∫
|ξ|>R

〈ξ〉2|û(ξ)| dξ

〈ξ〉2
.

2. Show similarly that there exists a positive constant c > 0 such that for all u ∈ S(R2),

‖u‖L∞(R2) ≤ c
(

1 + ‖u‖H1(R2)

√
log(1 + ‖u‖H2(R2))

)
.

Exercise 2. Let U = (0, 1).
1. Prove that the following continuous embeddings hold

W 1,1(U) ↪→ C0(Ū) and W 1,p(U) ↪→ C0,1−1/p(Ū) when p ∈ (1,∞],

with the convention 1/∞ = 0.
2. Prove that for all 1 ≤ p <∞, the space W 1,p

0 (U) is given by

W 1,p
0 (U) =

{
u ∈W 1,p(U) : u(0) = u(1) = 0

}
.

Exercise 3 (Poincaré’s inequality). Let p ∈ [1,+∞) and let U be an open subset of Rd.
1. Assume that U is bounded in one direction, meaning that U is contained in the region between

two parallel hyperplanes. Prove Poincaré’s inequality: there exists c > 0 such that for every
f ∈W 1,p

0 (U),
‖f‖Lp(U) ≤ c‖∇f‖Lp(U).

As a consequence, ‖∇ · ‖Lp(U) defines a norm on W 1,p
0 (U) which is equivalent to ‖ · ‖W 1,p(U).

Hint: Consider first the case U ⊂ Rd−1×[−M,M ].
2. Assume that U is bounded. Prove Poincaré-Wirtinger’s inequality: there exists a constant
c > 0 such that for any f ∈W 1,p(U) satisfying

∫
U f = 0,

‖f‖Lp(U) ≤ c‖∇f‖Lp(U).
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Exercise 4 (Duality). Let U be an open subset of Rd and let p ∈ (1,+∞).
1. Prove that for all F ∈W 1,p

0 (U)′, there exist f0, f1, . . . , fd ∈ Lq(U) (with 1
p + 1

q = 1) such that
for all g ∈W 1,p

0 (U),

〈F, g〉
W 1,p

0 (U)′,W 1,p
0 (U)

=

∫
U
f0g dx+

d∑
i=1

∫
U
fi∂ig dx.

2. Prove that we also have

‖F‖
W 1,p

0 (U)′ ≤
( d∑
i=0

‖fi‖qLq(U)

) 1
q

.

3. Assuming that U is bounded, prove that we may take f0 = 0.

Exercise 5 (A minimization problem). Let U ⊂ R3 be open, bounded with smooth boundary.
The purpose is to prove that the following elliptic problem has a non-trivial weak solution{

−∆u = u3 in U ,
u = 0 on ∂U .

1. Prove that there exists a solution to the following minimization problem

(1) inf
{
‖∇v‖L2(U) : v ∈ H1

0 (U), ‖v‖L4(U) = 1
}
.

Hint: Since d = 3 here, the continuous embedding H1
0 (U) ↪→ Lq(U) holds for all 1 ≤ q ≤ 6,

and is moreover compact when 1 ≤ q < 6. Moreover, ‖∇ · ‖L2(U) defines a norm on H1
0 (U)

which is equivalent to ‖ · ‖W 1(U) as a consequence of Poincaré’s inequality, which is proven in
Exercise 3.

2. Check that if the function v ∈ H1
0 (U) solves (1), there exists a positive constant λ > 0 such

that −∆v = λv3 in D′(U).
3. Conclude.
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