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Département de Mathématiques M1 - Analyse avancée

TD 1: TOPOLOGY ISSUES IN PRODUCT SPACES AND BANACH SPACES

EXERCISE 1 (General topology).

1. Let f : E — F be an application between topological spaces. The function f is said to
be continuous at x € FE if for all open set V containing f(z), there exists an open set U
containing x and such that f(U) C V. Check that, in this definition, “open set” can be
replaced by “neighbourhood”.

2. Let X be a set, (F;)icsr be a family of topological spaces and f; : X — F; be some functions.

(a) Prove that the “coarsest topology that makes the functions f; continuous” exists.

(b) Let g : E — X be a function defined on a topological space E. Check that g is continuous
if and only if for all 4 € I, f; o g is continuous.
(c¢) Let (x)n be a sequence in X. Prove that (x,), converges to z if and only if for all i € I,
(fi(xn))n converges to f;(z).
3. Let (F});er be a family of topological spaces. We define the product topology on [[,.; F; as the

“coarsest topology” making the projections continuous. Show that this topology is generated
by the cylinder sets, i.e. the sets of the form

cy=1]u
iel

where each U; is open in F; and U; = F}, except for a finite number of indexes ¢ € J.

EXERCISE 2 (A theorem of Hormander). Let 1 < p,q < oo and
T (LPRY), |- llp) = (LAR), [| - [lq),

be a continuous linear operator which commutes with the translations, that is, which satisfies
T = Tty for all h € R", where 7,f = f(- — h). The purpose of this exercice is to prove the
following property: if ¢ < p < oo, then the operator T' is trivial.
1. Let u be a function in LP(R™). Prove that |lu + pull, — 2Y/P||u|, as ||h]| — oco.
Hint: you may decompose u as the sum of a compactly supported function and of a function
with arbitrarily small LP norm.

2. Check that if C' stands for the norm of operator 7', then we have that for all u € LP(R"),
| Tully < 227190 ull,,

and conclude.

3. Can you give the example of a non-trivial such operator T" when p < ¢ 7

EXERCISE 3 (Fourier coefficients of L' functions). For any function f in L!(T), we define the

function f :Z — C by

)= = [ et a,, nez

:277

We denote by ¢y the space of complex valued functions on Z tending to 0 at d-oco.

—T



1. Check that (co, || - ||s) is a Banach space.

2. Prove that, for all f € L*(T), f € .
Hint: Recall that the trigonometric polynomials Y ,__ are™® are dense in L'(T).

Now we study the converse question: is every element of ¢y the sequence of Fourier coefficients of a
function in L(T)?

2. Prove that A : f — f defines a bounded linear map from L'(T) to co.

3. Prove that the function A is injective.

4. Show that the function A is not onto.
Hint: You may use the Dirichlet kernel Dy, (t) = Y 7__, e*, whose L*(T) norm goes to +oo
as n — +0o0.

EXERCISE 4 (Equivalence of norms).

1. Let E be a vector space endowed with two norms || - ||; and || - [|2 such that both (E,|| - |1)
and (E,| - ||2) are Banach spaces. Assume the existence of a finite constant C' > 0 such that

Ve e E, |z|i < C|z||2-

Prove that the norms || - |1 and || - |2 are equivalent.

2. Let K be a compact subset of R”. We consider a norm N on the space C°(K,R) such
that (C°(K,R), N) is a Banach space, and satisfying that any sequence of functions (f,), in
C°(K,R) that converges for the norm N also converges pointwise to the same limit. Prove
that the norm N is then equivalent to the norm || - ||oo-

EXERCISE 5 (A Rellich-like theorem). Let us consider E the following subspace of L?(R)

E={ueC(R):|lullp < +oc}, where |ullz=|(V1+a2)ullp2m) + [[v'[|2w)-
The aim of this exercice is to prove that the unit ball By of E is relatively compact in L?(R), with
Bp = {U € Cl(R) : ||u||E < 1}.

In the following, we denote by ¢ a non-negative C> function such that ¢~1({0}) = R\ [-2,2] and
¢~ H({1}) = [-L,1].
1. Considering the cut-off ¢r(z) = ¢(x/R), show that sup,cp, [[(1 — ¢r)ullL2(r) converges to 0

as R — +o0.
2. We define 9. (x) = éqb(%) and 75, the translation operator (see Exercice 2). Show that for all

R >1 and € > 0, there exists C; g > 0 such that for all h € R and u € E,
[7h((pRU) * Pe) — (PrU) * Vel Lo (m) < Cer|hl|[ullz  and  [[(dru) * Ve Lo r) < Ce rllullE-

3. Show that for any sequence (uy), in Bg, there exists a subsequence (u, ), such that for any
R,e7! € N*, the sequence ((¢run’) * 1), converges in L2(R) as n’ — oo.
Hint: Use Cantor’s diagonal argument.

4. Conclude.

5. Let us now consider the set By C L?(R) defined by

By = {u € C'(R) : |lull 2y + |/l 2y <1}

Is By relatively compact in L?(R) ?



Ecole Normale Supérieure de Lyon Année 2021 - 2022

Département de Mathématiques M1 - Analyse avancée

TD 2: LP COMPACTNESS AND BANACH SPACES

EXERCISE 1 (F. Riesz’s theorem). Let E be a normed vector space.

1. Prove that if M is a closed subspace of E, with M # FE, then for all € > 0, there exists u € E
of norm ||ul| = 1 such that d(u, M) > 1 —¢.

2. Deduce that if E is infinite-dimensional, then its unit ball B is not compact, with

B={zecE:|z| <1}.

EXERCISE 2 (Norm on the quotient space). Let E be a Banach space and M be a closed vector
subspace of E. Let us consider N : E/M — R defined by

N(§) = jnt [lal.

Prove that N defines a norm on E/M, and that E/M is a Banach space.
Hint: Prove that if (un)n is a Cauchy sequence, then one can extract a subsequence (ng) such that

1
W20, gy = tn, | < 5

EXERCISE 3 (Characterization of equi-integrability). Let (X, u) be a measured space and F C
L' (X, 1) being bounded. Prove that the following assertions are equivalent:

1. F is equi-integrable,

2. For all € > 0, there exists some n > 0 such that for any measurable set A,

wu(A) <nésup/]u\du<€
ueF

3. There exists an increasing function ® : Ry — R, such that lim, o ®(x)/z = co and

sup/ O(|ul) dp < oo.

ueF JX

Hint: to show 2. = 3., consider the sequence (My,), such that

sup [ fultpoar, de <27

EXERCISE 4 (Vitali’s convergence theorem). We consider (X, A, 1) a o-finite measured space. Let
1 <p < 400 and (uy), be a sequence in LP(X). Assume that

1. (up)n is a Cauchy sequence in measure, meaning that for all € > 0, there exists ng > 0 such
that
VYm,n > ng, p(jug —um| >¢) <e.



2. (up)n is equi-integrable in LP(X),
3. for all € > 0, there exists a measurable set I' of finite measure such that

Vn >0, |lunlx\rlzecx) <e.
Prove that (uy), is a Cauchy sequence in LP(X) (and therefore converges in this space).

EXERCISE 5 (Obstructions to strong convergence). The purpose of this exercise is to present three
obstructions to strong convergence in L?(R%) and L?(T¢). In the following, ¢ € C°(R?) denotes a
compactly supported smooth function being not identically equal to zero.

1. (Loss of mass) Let v be a vector of norm 1. Prove that the sequence (¢(- — nv)),, does not
converge in L?(R?).
2. (Concentration) Prove that the sequence (n%/2p(n-)), does not converge in L?(R%).

3. (Oscillations) We now consider w € L?(T¢) a non-constant function. Prove that the sequence
(w(n ), does not converge in L?(T9).

EXERCISE 6 (Averaging lemma). Let u € #(RZ x R%) be a Schwartz function. For any function
¢ € CX(R?), we consider the moment

pol@) = [ plv)u(z,v)dv.
Rd

1. Let us define u(&,v) as the Fourier transform of the function u with respect to the space
variable x € R?. Considering the function w := (14 v - V;)u, show that for all ¢ € R,

pter? < ([ larenan) ([ 2109,

2. Deduce that
o6l sesy = [ (1160 21566) 46 < Colullagan + o~ Vi),

where the constant Cy > 0 only depends on the function ¢.
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TD 3: HAHN-BANACH THEOREM AND LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES

EXERCISE 1 (Towards duality). Let E be a normed vector space.

1. Let G be a vector subspace of E and g : G — R be a continuous linear form. Show that there
exists a continuous linear form f over E that extends g, and such that

£z = llgllc--

When FE is an Hilbert space, prove that this extension is unique.

2. Assume that E = ¢1(N). Give the example of a continuous linear form of norm 1, defined on
a strict vector subspace of E, which admits an infinite number of linear continuous extensions
of norm 1 over F.

3. Assume that E is a Banach space. Let B be a subset of E such that

VfeE*, supf(z)<-+oo.
zeB

Prove that B is bounded.

EXERCISE 2 (Hahn-Banach theorems for complex spaces). Let E be a vector space over C. Let M
be a vector subspace of E and let f : M — C be a C-linear form. Suppose that there is a semi-norm
p: E — [0,00) such that

Vee M, |f(z)| <p(z).

Prove that there there exists a linear form F : E — C extending f, and such that |F| < p.

EXERCISE 3 (Hahn-Banach Theorem without the axiom of choice.). Let E be a real separable
Banach space and p be a norm on E. Let M be a linear subspace of £ and ¢ : M — R be a linear
functional which is dominated by p. Prove that ¢ can be extended to a linear functional £ — R
which remains dominated by p.

EXERCISE 4 (Separation of convex sets in Hilbert spaces). Let H be an Hilbert space.

1. Let C C H be a convex, closed and non-empty set. Prove that any v ¢ C can be strictly
separated by C by a closed hyperplane, i.e. there exists ug € H such that

Vue C, (ug,u) < (ug,v).

2. Let C'1,Cy C H be convex, closed and non-empty disjoint sets, C; being moreover compact.
Prove that C7 and Cs can be strictly separated by a closed hyperplane, i.e. there exists ug € H
such that

sup (ug,u) < inf (ug,u).
weC, ueCs



EXERCISE 5 (Convex sets that cannot be separated). Let H be the Hilbert space L?([—1,1]). For
every a € R, let C, C H be the subset of continuous functions u : [—1, 1] — R such that u(0) = a.
Prove that C, is a convex dense subset of H. Deduce that, if a # 3, then C, and U3 are convex
disjoint subsets that cannot be separated by a continuous linear form.

EXERCISE 6 (Banach limit).

1. Let s : £>°(N) — ¢>°(N) be the shift operator, defined by s(x); = x;4; for all ¢ € N and
xz € (°(N). Prove the existence of a continuous linear function A € (¢*°(N))’ satisfying
Aos=A and

Vu € £°(N), liminfu, < A(u) < limsup u,.

n—+00 n——4o0o
Such a linear form A is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesaro.
2. Deduce that there exists a function p : P(N) — Ry which satisfies
(1) p(N) =1,
(1) p is finitely additive: VA, B C N with AN B =0, u(AU B) = u(A) + u(B),
(7i7) p is left-invariant: Vk € Nand A C N, u(k + A) = pu(A).

EXERCISE 7 (LP spaces with 0 < p < 1). Let p € (0,1) and L? be the set of real-valued measurable
functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following

1 l

p

lellp = </ |u|de> :
0

1. Show that L? is a vector space and that d(u,v) = ||u — v||} is a distance. Prove that (L?,d)
is complete.

quantity is finite:

2. Let f € LP and n > 1 be a positive integer. Prove that there exist some points 0 = zg < z1 <
... <xp,=1such that forallt=0,...,n—1,

Ti41 1 1
/ fPde=1 / fPP da.
T nJo

K3

3. Prove that the only convex open domain in IP containing u = 0 is L? itself. Deduce that the
space LP is not locally convex.
Hint: Introduce the functions g;' =nfly, 4z -

4. Show that the (topological) dual space of LP reduces to {0}.
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EXERCISE 1 (Finite-dimensional case). Let C' C R? be a convex set such that C' # R? and zq ¢ C.
Prove that there exists an affine hyperplane that separates C' and {x¢}.

EXERCISE 2 (Convex hull). Let E be a locally convex topological vector space (abbreviated 1.c.t.v.s.
in the following). One says that H is a closed half-space if there exists a ¢ € E* and a € R such
that H ={u € E | p(u) < a}.
1. If C is a convex subset of E, show that its closure C is also convex.
2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces
containing A.

3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A
of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that
contains A.

EXERCISE 3 (Density criterion).

1. Let E be a real normed vector space and F' C E be a vector subset such that F' # E. Prove
that there exists ¢ € E’\ {0} such that ¢(u) =0 for all u € F.

2. Application: Let (ay), be a sequence in |1, +o00[ that diverges to +oo. Prove that the set

W:vect{me[o,l]H :nEO},

T — ap
is dense in the space C°([0, 1]) equipped with the norm || - ||sc-

Hint: While considering a continuous linear form that vanishes on W, introduce a generating
function.

EXERCISE 4 (Extreme points). Let K be a subset of a vector space E. A point a € K is called an
extremal point of K if, whenever a = 6b + (1 — 6)c with 6 € (0,1) and b,c € K, one has b =c. A
subset! S of K is called an extremal subset of K if, for all a in S such that a = 6b + (1 — 0)c with
6 € (0,1) and b,c € K, one hasb € S and c € S.
1. In a Hilbert space, what are the extremal points of the unit closed ball 7 What about the
open ball 7
2. Let ¢y denote the space of real sequences (ay)nen converging to zero. We endow ¢g with the
norm || - [|so. Show that the closed unit ball of ¢y does not admit extremal points.
3. Let I C R be an interval. Show that the closed unit ball of L!(I) does not admit extremal
points.

EXERCISE 5 (Krein-Milman theorem). The aim of this exercise is to prove the following statement.

Theorem 1 (Krein-Milman). Let E be a l.c.t.v.s. and K be a non-empty convex compact subset of
E. Then K coincides with the closed convex envelop of its extremal points.

!This notion is only used in Exercice 5



1. The first step is to show the existence of an extremal point in K. Let P be the set of non-
empty closed extremal subsets of K, endowed with the order “A < B if and only if B C A”.
Show that P admits a maximal element which is reduced to a point.

Hint: If a mazimal element S is composed of more than one point, choose a continuous linear
form separating points of S and consider the set of points reaching the maximum of this form
on S.

2. Define K = co(ext(IK)) the closed convex hull of the extremal points of K, and show that K
and K coincide.

3. Application: An n X n matrix with real entries is bi-stochastic if its entries are non-negative,
and the sum of the entries of either rows or columns equals 1. One denotes SM,(R) the set
of bistochastic matrices. Show that every matrix in SM,(R) is actually a convex combination
of permutation matrices.

EXERCISE 6. Let X and Y be l.c.t.v.s. We consider (pq)aca (resp. (¢s)sen) a countable family
of continuous semi-norms which is separating and generates the topology of X (resp. of Y). Let
T : X — Y be a linear map. Prove that T is continuous if and only if for all g € B, there exists a
finite set I C A and a positive constant ¢ > 0 such that for all u € X,

q3(Tu) < c Zpa(u).

ael

EXERCISE 7 (Space of continuous functions). Let U be an open subset of R? and (K,,), be an
exhaustive sequence of compacts of U.

1. Prove that C°(U) is a Fréchet space for the distance

“+o00

A(f.9) = 3 5 min(Lpa(f — 9)),

n=0

defined by the semi norms p,(f) = sup,cg, |f(2)|.

2. A subset B ¢ C°(U) is said to be bounded if for any neighborhood V' of 0, there exists A > 0
such that AB C V. Prove that if B is a subset of equibounded functions of C°(U), that is
supfep || flloo < 00, then B is bounded.

3. Let us consider (fy)n a sequence of continuous function on U such that f, : U — [0, n] with
fn=0o0n K, and f, =n on U\ K,,1. Show that U,{f,} is a bounded subset of C°(U).

4. Prove that the space C°(R) is not locally bounded, that is, the origin does not have a bounded
neighborhood.

EXERCISE 8 (Space of C*° functions). We consider the E = C°°([0,1],R) equipped with the
following metric

.
A(f,9) = 3 g min (1175 = g l).
k>0
1. Check that E is a Fréchet space.
2. Prove that any closed and bounded (¢f the previous exercise) subset of E is compact.

3. Can the topology of E be defined by a norm 7
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TD 5: WEAK TOPOLOGY

EXERCISE 1 (Properties of weakly convergent sequences). Let X be a normed vector space.
1. Let (up)n be a weakly convergent sequence in X. Justify that (u,) is bounded and that the
weak limit u of (up), satisfies |Ju|| < liminf, 4 [Jun]|-

2. Suppose that the sequence (¢, ), in X* is converging strongly to some ¢ € X*. Show that
for any sequence (up), in X that converges weakly to u € X, then the sequence (¢ (un))n
converges strongly to ¢(u).

3. Assume that X is a Hilbert space. Let (u,), be a sequence in X that converges weakly to
u € X and such that (||u,]||)n converges to ||u||. Prove that (u,), converges strongly to w.

EXERCISE 2 (Examples of weakly convergent sequences).

1. Let H be a separable Hilbert space and (ey), be a Hilbert basis of H. Prove that (e,)n
converges weakly to 0 but not strongly.

2. Let K C R? be a compact set. Show that weak convergence in C(K) is equivalent to bounded
pointwise convergence.

3. Let © € R% and (upn)n, (vn)n be two sequences in L?(£2) such that (u,), converges weakly and
(vn)n strongly. Show that the sequence (u,vy), converges weakly in L'(Q). What happens if
the two sequences converge weakly ?

EXERCISE 3 (Weak topology). Let X be a topological vector space. Show that X, endowed with
the weak topology, is a locally convex topological vector space.

EXERCISE 4. Let E be a Banach space.

1. Show that if F is finite-dimensional, then the weak topology o(E, E*) and the strong topology
coincide.

2. We assume that E is infinite-dimensional.
(a) Show that every weak open subset of E contains a straight line.
(b) Deduce that B = {z € E : ||z|| < 1} is not open for the weak topology.
(c) Let S ={x € E: ||z|| = 1} be the unit sphere of E. What is the weak closure of S 7

EXERCISE 5. Let p,q € [1,+00] be such that ;17 + % = 1. We introduce the canonical family of

sequences e in (P (N), for which every term is zero, except the k™ which is 1. We also consider the
map

Jp: H(N) — (P(N))*

(an)n + ((xn)nHianxn)

1. When p € [1,00), show that J, is a surjective isometry.

2. Show that J, is a non-surjective isometry.



3. When p € (1,00), prove that the sequence (e¥); converges weakly but not strongly in ¢/(N)
towards the null sequence.

4. Still assuming that p € (1,00), we consider the following subset of ¢P(N):
E= {e”+nem:n,m€N, m>n}.

(a) Show that FE is closed for the strong topology in ¢P(N).

(b) Show that 0 is in the weak closure of E.

(c) Show that a sequence of E' cannot converge weakly towards 0.
(d) Deduce that the weak topology on ¢ is not metrizable.

EXERCISE 6.

1. (Mazur’s lemma) Let E be a Banach space and (uy,), be a sequence in E weakly converging
to Ueo € E. Show that us is a strong limit of finite convex combinations of the w,,.

2. (Banach-Sacks’ property) Show that if F is in addition a Hilbert space, we can extract a
subsequence converging to ue, strongly in the sens of Cesaro.

EXERCISE 7 (Schur’s property for ¢}(N)).

1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector
space.

The aim is to prove that a sequence of £}(N) converges weakly if and only if it converges strongly.
Take (u™),, a sequence in ¢1(N) weakly converging to 0.

2. Show that for all &, lim,, o uy — 0.
3. Show that if u, - 0 in £}(N), one can additionally assume that ||u”| s = 1.
4. Define via a recursive argument two increasing sequences of N, (a)r and (ng)g, such that

ak+1—1 3
n
VE>0, > i >

Jj=ak

5. Show that there exists v € £°°(N) such that (v, u"™),2 > 3 for all k. Conclude.
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EXERCISE 1. (Warm-up exercise) Let E and F' be two Banach spaces, and T': E — F be a linear
map. Show that 7" is strongly continuous (i.e. continuous from (E, || -||g) to (F, |- ||r)) if and only
if T is weakly continuous (i.e. continuous from (F,o(E, E*)) to (F,o(F,F*))).

EXERCISE 2 (Weak-* topology and metrics). Let E be a separable real normed vector space. Let
(un)n be a dense sequence in Bg(0,1). By considering the following metric d on the unit ball of E*,

“+o00

A9 =Y il = )l frg € Bp-(0,),

n=0

prove that the weak-* topology on Bg~(0,1) is metrizable.

EXERCISE 3 (Weak-x closed hyperplanes).

1. In ¢£*°(N) we consider
C = {u € (*(N) : liminf u, > 0}.

Show that C' is strongly closed but not weakly-* closed.
Let us now consider E a normed vector space.
2. Let ¢ : E* — R a linear form continuous for the o(E*, E') topology. Show that:

Jue EVLe E*, o) =L(u).

3. Show that an hyperplane H C E* which is closed for the weak-* topology is the kernel of
evy 1 ¢ — p(u) for some u € E.

EXERCISE 4 (Eberlein—émulian’s theorem). The aim of the exercice is to prove the following result:

Let A a subset of a Banach space E. If A is relatively compact for the weak topology,
then A is sequentially relatively compact (still for the weak topology of E).

1. Recall why the result is direct if E* is separable.

2. Let (an)n be a sequence in A. We denote F' := vect{a, : n € N}. Show that there exists a
sequence of linear continuous form (¢, ), such that for any u € F,

] = sup |@n (w)]

Show that (F,o(F, F*)) is metrisable on any weak compact of F'.
3. Conclude.
4. Show that the result is wrong for the weak-* topology.

Hint: Work in the space £>°(N)*.

Remark: the converse implication is also true.



EXERCISE 5 (Dunford-Pettis’” Theorem). The objective of the exercise is to prove Dunford-Pettis’
theorem:

Let © C R? be a bounded set and (f,), be a bounded sequence in L' (). Then, the set
{fa} is sequentially compact for the weak topology o (L', L°°) if and only if the sequence
(fn)n is equi-integrable.

1. Recall the definition of equi-integrability.

First we prove the reciprocal: let (f,), be a bounded and equi-integrable sequence in L'.
2. Show that we can reduce to the case where the f, are non-negative.
3. Let f¥ =1y, <jfn. Show that sup, || fn — fX||p1 — 0.
4. Show that there exists an extraction (n’) such that for all k € N, f% — f*in L.
5. Prove that (f¥); is an increasing sequence and deduce that there exists some f € L' such
that f* — fin L.
6. Conclude that f,, — fin L'.

Now we want to prove the direct implication. Let (f,), be a bounded sequence in L'(Q) satisfying
fn — f € LY(Q). We consider X the set of indicator functions and, for a fixed € > 0, we also
consider the sets X, defined for all n > 0 by:

< 5}.

Xn::{lAEX:Van,

[ (5= pas
A
7. Show that X and X, are closed in L!(2).

8. Using a Baire’s argument, show that (f,,), is equi-integrable.

9. Conclude.

EXERCISE 6 (Egorov’s theorem).

1. Let (2, F, ) be a probability space, and (g, ), be a sequence of measurable functions such
that (gn)n converge a.e. to some measurable function g. Show that for all £ > 0, there exists
a measurable set £, C Q such that p(ES) < € and (g, ), converges uniformly in E..

2. Let (fn)n be a sequence in L'(Q) with f, — f € LY(), and (g,)» be a bounded sequence in
L>(Q) satisfying g, — g a.e. Show that f,g, — fg in L*(Q).
Hint: Use Dunford-Pettis’ theorem.

EXERCISE 7 (L' is not a dual space). Show that the closed unit ball of L!([0,1]) does not admit
extremal points. Deduce that L(]0,1]) is not the dual space of a normed vector space.
Hint: Use Krein-Milman’s theorem.
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EXERCISE 1. Let (E, || -||) be a reflexive space and Bg be its unit ball. Show that for all f € E*,
there exists x5 € Bg, such that || f||g= = |f(zy)|, i.e. the supremum in the definition of the norm
operator is in fact a maximum.

EXERCISE 2. The aim of this exercise is to prove by two different methods that the space
(C°([0,1]),]| - |lsc) of continuous real-valued functions on [0, 1] is not reflexive.

1. Method by compactness.
(a) Define ¢ € C([0,1])* by

1 1
o(f) = / F(tydt — / fhdt, fec(o,1)),

and show that ||¢|| = 1.
(b) Prove that |¢(f)| < 1 for all f € C°([0,1]) such that || f|le < 1.
(c) Conclude that the space C°([0,1]) is not reflexive.
2. Method by separability.
(a) Prove that if F' is a Banach space and its dual E* is separable, then F is separable.
(b) Show that C([0,1]) is separable.
(c) Prove that C(]0,1])* is not separable.
Hint: Consider the functions 6; : C(]0,1]) — R defined by 6,(f) = f(t) for any t € [0,1].
(d) Conclude that C(]0,1]) is not isomorphic to C([0,1])** as Banach spaces.
Remark: This is stronger than not being reflezive.

EXERCISE 3.

1. Let E be a reflexive, separable Banach space. Let (u,), be a bounded sequence in E. Show
that one can extract a subsequence (), which converges weakly in E.
Remark: the condition “separable” is not necessary thanks to exercise 5.

2. Does this result hold when FE is not reflexive ?

EXERCISE 4. Let E be a normed vector space. Show that any weakly compact set of E is bounded
for the norm.

EXERCISE 5 (Eberlein—gmulian’s theorem). The aim of the exercise is to prove the following result:

Let A be a subset of a normed vector space E. If A is weakly compact, then A is weakly
sequentially compact.

1. Assume that E* is separable. Recall the key argument that gives the result.
Let (an)n be a sequence in A. We set F' := vect{a, : n € N} and set A:= ANF.




2.
3.

Show that A is weakly compact in F.
Show that the unit ball of F* admits a countable subset {¢y : k € N} such that

Ve € F, |lz|| = Sup |[Pk(@)].

In the following, we denote by o the weak topology on A and by 7 the topology generated by the
semi-norms |¢g|, k € N.

4.

d.

Show that that (A,7) is Hausdorff and that the identity map Id,, : (A,0) — (A,7) is
continuous.

Deduce that (/Nl, 7) is compact and that Id,  is an homeomorphism.

Hint: show that the image of a closed set by Ids , is closed.

Show that (A, (F, F*)) is metrizable.

Show that one can extract a subsequence (a, ), converging weakly in F' (to some limit a),
and that (ap,)r converges also weakly to a in E.

. Show that the result is wrong for the weak-* topology.

Hint: consider the dual of (°°(N).
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EXERCISE 1 (Warming).
1. Let H be the Heaviside function. Show that H = ¢y in D’'(R).
2. Give an example of distribution of order n for all n € N.

3. Let U C R? be an open set and T € D'(U). We consider f € C°°(U) which vanishes on the
support of T'. Do we have fT'=0in D'(U) ?

EXERCISE 2. Let U C R? be an open set. Prove that we have an injection of L} (U) in D'(U).

EXERCISE 3 (An example of distribution). Show that the formula

(o, u) =Y u™(n), ueDR),

n>0

defines a distribution o € D'(R). What about its order ?

EXERCISE 4 (Convergence of distributions). Do the following series

S0 and Y6,

n>0 n>0
converge in D'(R) ?

EXERCISE 5 (Non-negative distributions).
1. Check that distributions of order 0 are locally signed measures.

2. Let U € R? be an open set and o € D'(U). We say that « is non-negative if and only if for all
non-negative test function u € D(U), we have («,u) > 0. Deduce from the previous question
that any non-negative distribution is a locally signed measure.

EXERCISE 6 (Principal value of 1/x). We define p.v.(1/z) as follows

e—0 T

Vu € D(R), (p.v.(1/z),u) = lim </x|>s ulw) dm).

Show that the above limit exists and defines a distribution. Compute its order.

Show that p.v.(1/z) is the derivative of log |z| in the sense of distributions.

Compute zp.v.(1/x).

Let o € D'(R) which satisfies za = 1. Show that there exists a constant ¢ € R such that
a=p.v.(1/z) + cdo.

5. Show that |2|*~2z — p.v.(1/z) in D'(R) as a — 0.

Ll e

EXERCISE 7. Solve the equation o/ = 0 in D’'(R).



EXERCISE 8 (Jump formula). Let f: R — R be a function of class C' on R*. We say that f has a
jump at 0 if the limits f(0%) = lim,_,g+ f(x) exist, and we denote by [[f(0)]] = f(0F) — f(07) the
height of the jump. We denote by {f’} the derivative of the regular part of f, i.e.

f'(z) if f is differentiable at z

0 otherwise

{f'}(zx) = {
1. Show that in the sense of distributions:

f=A1} + £ (0)]]do-

2. Let (xy,)nez be an increasing sequence such that lim,_,_~ z, = —oo and limy,_, o x,, = +00.
Let f : R — R be a piecewise C'! function presenting jumps at every x,. Show that in the
sense of distributions,

f={+ Z[[f@n)“‘swn

nel

EXERCISE 9 (Punctual support). Let a € D'(R?) such that supp a = {0}. We consider ¢ € D(R?)
such that ¢ = 1 in a neighborhood of B(0,1) and supp ¢ C B(0,2). We set ¢, (z) = ¥ (z/r) for all
r >0 and x € R".

1. Recall why « has a finite order, which will be denoted m > 0 in the following.

2. Show that for all r > 0, V.o = a.

3. Let u € D(R?) satisfying that for all p € N with [p| < m, 9Pu(0) = 0. Check that (o, u) = 0.
4

. Prove that there exist some real numbers a, € R such that a =3, apé(()p ),

EXERCISE 10 (Support and order). Let a be the linear map defined for all u € D(R) by

(o) = Tim_ (Zn: u<1> — nu(0) — (log n)u’(0)> |

=1 N

1. Check that («,u) is well defined for all u € D(R), and that « is a distribution of order less
than or equal to 2.

2. What is the support S of o ?

3. What is the order of a 7
Hint: Use test functions of the form

wne) = (o) [ [ ot audy,

where ¢ € D(0,1) has integral 1 and 1p € D(—1,2) satisfies 0 < <1 and p =1 on [0,1].
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EXERCISE 1 (Examples of convolutions). Compute the following convolutions:

1. 8, * & in R?, 3. (mpé(()q)) * (a:méén)), 9. Lpgp) * L,y
2. T x84, with T € D'(R?), 4 5(<]k) « (z™H), 6. 1poq) * (xH).

EXERCISE 2 (Associativity and convolution). Show that the convolution product is not associative
without assumptions on the supports by considering the distributions 1, §( and H in D'(R), where
H is the Heaviside function.

EXERCISE 3. We will study the behavior of the convergence of distributions with respect to the
convolution product.
1. Let T € D'(R?) be compactly supported, V € D'(R?) and (V,,),, be a sequence of distributions
in D'(RY). Prove that if Vj, — V in D'(R%), then Vj,, * T — V T in D'(R%).
2. Show that there exist two sequences of distributions 7}, and V,, tending to 0 in D’'(R) and such
that T, * V,, — dg.

EXERCISE 4 (Regularization by polynomials). For n € N*, we define the polynomial P, on R? by

n¢ |z|? n?

1. What is the limit in D’(R?) of the sequence (P,), ?
2. Deduce that any compactly supported distribution is the limit in D’ (Rd) of a sequence of
polynomials.

EXERCISE 5 (Convolution and translations). Let F' : D(R?Y) — C*°(R?) be a continuous linear
map. We say that F' commutes with translations when 7, o F' = F o7, for all x € R,
1. Check that if there exists T' € D'(RY) such that, for all ¢ € D(RY), F(¢) = T * ¢, then F
commutes with translations.
2. Show that for all T € D'(R?), and all ¢ € D(R?), we have (T, @) = T * $(0), where ¢(x) =
p(—).
3. Prove that if F commutes with translations, then there exists 7 € D'(R?) such that, for all
0 € D(RY), F(p) =T * .

EXERCISE 6 (The extension of the convolution).

1. Let ¢ € C®°(R%) and T € D'(R?) such that supp(T) Nsupp(yp) is compact. Show that (T, ¢)
can be defined in a meaningful way.



2.

3.

Let T, S € D'(R?) satisfying the following property: for every compact K in R?,
Dk = {(a:,y) eRIxRY: z esuppT, y € suppS, z+y € K}

is compact. Show that in this case, T xS and S x T" are well-defined and are equal.
Compute the distribution (zPH) * (x?H) for all p,q € N, where H is the Heaviside function.

EXERCISE 7 (Linear differential equations). Define D/, (R) = {T' € D'(R) : suppT C R, }.

1.

By using Exercice 6, show that the convolution of two elements of D/, (R) is well-defined and
gives an element of D (R). In the following, we admit that D'(R4.) is a commutative algebra
for the convolution. What is the identity element for the convolution in D’ (R) ?

. Show that for all a € R and T, S € D’ (R), we have (e*T) % (e**S) = e (T  S).
. For any T € D/, (R), let T~! denote the inverse of T in D', (R) for the convolution whenever

it exists. Check that 77! is unique when it exists.
Compute H~! and (§) — A§p) ™! for all A € R whenever they exist.

. Let P be a polynomial that splits in R, compute [P(D)d] .
. Solve the following system in 7', (R) x D', (R)

5 * X + 0 Y = do,
Shx X + 00 Y =0.
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EXERCISE 1.
1. Let A C R? be a Borel of finite measure. Show that F(14) belongs to L?(R%) but not to
LY(R%).
2. Does it exist two functions f,g € S(R) such that f * g = 07 What happens if in addition f
and g have compact supports ?

EXERCISE 2. Prove that the following distributions are tempered and compute their Fourier trans-
form:

1. &y in R?, 3.1, 5. p.v.(1/x),
2 . s .
2 e~ in R with o > 0, 4. H (Heaviside), 6. |z| in R.

EXERCISE 3.
1. If d > 3, show that ug(z) = (—d(d — 2)Vol(B(0, 1))H:t7Hd*2)_1 is a fundamental solution for
the Laplacian, i.e. Aug = g in the sense of distributions.
2. Give a solution of Au = f in the sense of distributions for f in D’ (]Rd) with compact support.
3. What can you say about the regularity of w if f is a function in S (Rd)?

4. Consider the linear PDE u — Au = f for f € S(R?). Express a solution in S(R?) in terms of
the Bessel kernel B = F~1((1 + [£]?)71).

EXERCISE 4. Let k > 0 and T € S'(R) such that T + kT € L*(R). Show that for every
jed{o,---,4}, TV € L2(R).

EXERCISE 5. We investigate the solutions T € &'(R*) with support in Ry xR? of the wave equation
O — AT = (S(t,x):(O,O)v (t, .’B) €R x Rg.

1. Let F be the partial Fourier transform with respect to z and T = FT. Find an ODE of which
T is solution. We denote in the following (F) this equation.

2. Solve this equation with the ansatz
T(t.€) = HU(L.8),

where U is solution of the homogenous equation associated with (E).
3. We denote by dog the measure on the sphere of radius R and center 0:

(o) = /S o P 4R(E)

Show that:

d dog B sin(RJ¢])
eewt (o )o =



4. Deduce that for ¢ € S(R%),

1
T,g0:/ / p(t, x) doy(x) dt.
Tor= [ g [ £

5. What is the support of T'?

EXERCISE 6. We consider the Schrodinger equation on R; x R¢

10su + Au =0,
(1) {

Ut=0 = UQ-

1. For up € S(RY), solve the equation (1) in C°(R,S(RY)).
2. Justify that the Fourier transform of the function eitl€l” is well defined.
3. Show that for a € C with positive real part,

1 ||

=1 alél?y — «
F (6 ) - (_4om.)d/26 ‘

4. Check that also holds in &'(R?) when a € iR.
5. Deduce that there exists a constant C' > 0 such that for all ¢ > 0,

C
[ty M L1 ray < ) [[uoll oo (mey-
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EXERCISE 1 (Warming).
1. Show that u(x) = |z| belongs to W12(—1,1) but not to W2(—1,1).

2. Check that v(z) = f}?(j% belongs to L?(R) but not to WH2(R).

3. Show that H'(IR?) is not included in L>°(R?).
Hint: Consider a function of the form x — x(|z|) |log |z||

1/3

EXERCISE 2 (Optimality in the Sobolev embeddings). Let 1 < p < d and « € [1,00]|. By using a

homogeneity argument, show that if there exists a continuous injection W1 (R?) < L%(R%), then
dp

necessarily p < a < T

EXERCISE 3 (Some properties of H*(R?)).
1. Show that H*'(R%) embeds continuously into H%2(R%) for s; > ss.
2. Check that 6y € H*(R?) for s < —d/2.

3. (a) Prove that if s > d/2, the space H*(RY) embeds continuously to C%,(R%), the space of
continuous functions u on R? satisfying u(z) — 0 as |z| — +oo.

(b) State an analogous result in the case where s > d/2 + k for some k € N. Deduce that
Neer H*(RY) € CF(RY).
(c) Let U C R? be open. Deduce from the above question that (g Hi (U) = C=(U),
where we set
H; (U) = {ue L*(U) : Vo € D(U), pu € H*(RY)}.
4. Let us now consider s € (d/2,d/2+ 1).
(a) Show that for all a € [0, 1] and all z,y,¢ € R%:

‘eiz-é . eiy-é‘ < 217a|x . y‘a’ﬂa.
(b) Deduce that for all a € (0, s — d/2), there exists a constant C'(«) > 0 such that for all

u € S(RY) and z,y € RY,

ule) —u@)| _

(c) Conclude that H*(R?) embeds continuously to C®(R%).
5. Assuming that s belongs to [0,d/2], the purpose is now to prove that H*(R?) — LP(R?),

where p = 2d/(d — 2s). To that end, let us recall that for all u € LP(R"™),
iz, = [ o 4l > A} ax

Considering u € S(RY) and Ay > 0, we set uj ) = FH1Lgj<a, @) and ugy = F (L a, ).



(a) Prove that
Vo € RY  Jupa(z)] < CACT 2| go.

Deduce that there exists some Ay such that |{|u; x| > A/2}| = 0.
(b) Show that for this choice of Aj,

o0
lulls, < 4p / X7 [ug 0|2, A

(c¢) Conclude.

EXERCISE 4 (Trace on an hyperplane). Let us consider the function
Yo : (@, zq) € CPRY) = (!, 24 = 0) € CF°(RITY).
Prove that for all s > 1/2; the function 7y can be uniquely extended as an application mapping
HS(]Rd) to Hs—l/Q(Rd—l)'
Hint: For all ¢ € C§°(RY), begin by computing the Fourier transform of the function Yo¢.

EXERCISE 5 (An estimate). Let 0 < o < 1 and p > 1 be positive real numbers. Show that there
exists a positive constant Cy , > 0 such that for all u € C§°(R),

lu(z) —u(y)|\? dedy \'? .
(//I%ded < |l‘ — y‘a |SC _ y|d < Ca,pHuHLp(Rd)||VU||LP(R¢1).

Hint: Consider the two regions {|z —y| > R} and {|z — y| < R}, where R > 0 is to be chosen.

EXERCISE 6 (Composition). Let U and U’ be two open subset of R?.

1. Let H : U' — U be a C'-diffeomorphism such that the Jacobian Jac(H) and Jac(H ') belong
to L>. Prove that for all u € W'P(Q), we have uo H € WP (€)') and that for all 1 <1i < d,

ayi(u o H) = Z(axgu © H)ayiHj'

J=1

2. Let us now consider a function G € C} (R) satisfying G(0) = 0. Show that for all u € WP(U),
we have G ou € W1P(U) and that for all 1 < j < n,

0z, (G ou) = (G ou)dy,u.

3. Do we need to assume that G’ is bounded when d = 1?7
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EXERCISE 1 (Agmon’s and Brezis-Gallouét’s type inequalities).
1. Prove that there exists a positive constant ¢ > 0 such that for all u € S(R3?),

1/2 1/2
lull oo sy < € llull 7 g el e

Hint: Setting (€) = (1 + |£]2)Y/? and considering R > 0, use the following decomposition

~ . a g 2ﬂ g
@21 sy = /E el + /|£ gy

2. Show similarly that there exists a positive constant ¢ > 0 such that for all u € S(R?),

ol ey < (1 [l 12y o (1 + Nl arey))-

EXERCISE 2. Let U = (0,1).
1. Prove that the following continuous embeddings hold

W (U) — C%U) and WYWP(U) — CO'""V?(T) when p € (1, ],

with the convention 1/00 = 0.
2. Prove that for all 1 < p < 0o, the space Wol’p(U) is given by

Wy P(U) = {u € WYP(U) : u(0) = u(1) = 0}.

EXERCISE 3 (Poincaré’s inequality). Let p € [1,+00) and let U be an open subset of R%.

1. Assume that U is bounded in one direction, meaning that U is contained in the region between

two parallel hyperplanes. Prove Poincaré’s inequality: there exists ¢ > 0 such that for every
1)
f S WO p(U)7
I f ey < eV ey

As a consequence, ||V - ||1p() defines a norm on Wol’p(U) which is equivalent to || - [lyy1.0().-
Hint: Consider first the case U C RY™1 x[—M, M].

2. Assume that U is bounded. Prove Poincaré-Wirtinger’s inequality: there exists a constant
¢ > 0 such that for any f € WHP(U) satisfying [, f =0,

I f ey < ellVFllr@y-



EXERCISE 4 (Duality). Let U be an open subset of R and let p € (1, +00).
1. Prove that for all F' € Wol’p(U)’, there exist fo, f1,..., fa € LY(U) (with %—i— % = 1) such that

for all g € Wol’p(U),
d
(ESg)wiewy wiewy = /Ufogd$+2/(]fi3i9dx-

2. Prove that we also have . )
q
HFHWOLP(U)/ < (Z%HfiH%q(U)) .

1=

3. Assuming that U is bounded, prove that we may take fo = 0.

EXERCISE 5 (A minimization problem). Let U C R? be open, bounded with smooth boundary.
The purpose is to prove that the following elliptic problem has a non-trivial weak solution

—Au =4 inU,
v =0 ondU.

1. Prove that there exists a solution to the following minimization problem
(1) inf {||Voll 2y : v € Hy(U), [[vllpa@y =1}

Hint: Since d = 3 here, the continuous embedding H}(U) < LA(U) holds for all 1 < q < 6,
and is moreover compact when 1 < q < 6. Moreover, |V - || 12y defines a norm on Hy(U)
which is equivalent to || - |[y1(1r) as a consequence of Poincaré’s inequality, which is proven in
Ezercise 5.

2. Check that if the function v € H}(U) solves (1), there exists a positive constant A > 0 such
that —Av = Av3 in D'(U).

3. Conclude.



