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Homework problem: Duality of Lp spaces

The following problem is devoted to the study of the duality of the Lebesgue spaces. Precisely,
the main theorem we aim at proving is the following:

Theorem 1. Let (X,F , µ) be a measure space and p, q ∈ (1,+∞) satisfying 1/p+ 1/q = 1. Then,
for all L ∈ Lp(X)′, there exists a unique f ∈ Lq(X) such that

∀g ∈ Lp(X), L(g) =

∫
X
fg dµ.

We will check moreover that this result also holds in the case p = 1 when the measure µ is
σ-finite, but fails when p = +∞ even under this assumption.

In the above statement, Lp(X) denotes the standard Lebesgue space associated with (X,F , µ)
(the dependence with respect to the σ-algebra F and the measure µ will always be omitted) and
Lp(X)′ stands for the associated topological dual, Lp(X) being endowed with the usual norm ‖·‖Lp .

1 Duality of the spaces lp(N)

First of all, we study the duality of the lp(N) spaces, which corresponds to the case where
X = N, F = P(N) and µ is the counting measure (which is σ-finite). Let p ∈ [1,+∞]. For all
y ∈ lq(N), we set

Fy(x) =
+∞∑
n=0

xnyn, x ∈ lp(N).

1. Check that the linear map F : y ∈ lq(N) 7→ Fy ∈ (lp(N))′ is well-defined and is an isometry.

2. In the case where p ∈ [1,+∞), prove that F is onto.

3. By considering the space of converging sequences and the Hahn-Banach theorem, prove that
F is not onto when p = +∞.
Remark: This proves that Theorem 1 fails in the case p = +∞ even under the assumption
that the measure µ is σ-finite.

Let us consider c0(N) the subspace of l∞(N) composed of sequences which converge to 0, endowed
with the norm ‖ · ‖∞.

4. Give an onto isometry between l1(N) and c0(N)′.

2 Uniformly convex spaces

This section is devoted to study the notion of uniform convexity, defined as follows

Definition 2. A normed vector space (E,N) is said to be uniformly convex if for all ε > 0, there
exists δ > 0 such that for all x, y ∈ E,

(N(x) ≤ 1, N(y) ≤ 1, N(x− y) > ε) ⇒ N

(
x+ y

2

)
< 1− δ.

5. Check that a Hilbert space is uniformly convex.

6. Prove that L1(R) and L∞(R) are not uniformly convex.
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2.1 Projection theorem

As for the Hilbert spaces, there is a projection theorem for the uniformly convex Banach spaces:

Theorem 3. Let (E,N) be a uniformly convex Banach space and C ⊂ E be a non-empty closed
convex set. For all x ∈ E, there exists a unique pC(x) ∈ C such that

(1) N(x− pC(x)) = d(x,C) := inf
y∈C

N(x− y).

The map x ∈ E 7→ pC(x) ∈ C defined this way is continuous.

7. Check that for all x ∈ E, d(x,C) = 0 if and only if x ∈ C.

8. What is pC(x) when x ∈ C ?

9. Uniqueness. Prove that the infimum in (1) can not be reached at two different points.

10. Existence. Let x ∈ E \C. Prove that the infimum in (1) is reached at some point pC(x) ∈ C.

2.2 James’ theorem

The topological dual of the uniformly convex Banach spaces can be nicely described, under a
“reasonable” assumption of differentiability for the associated norm. This is James’ theorem which
we prove in this subsection.

Definition 4. Let E,F be normed vector spaces and let x ∈ E. A function f : E → F is said to
be Gâteaux-differentiable at x when there exists a continuous linear operator Ax ∈ Lc(E,F ) such
that for all y ∈ E

f(x+ ty) = f(x) + tAx(y) + o(t) as t→ 0.

We denote Ax = Df(x).

11. Explain the difference between the notions of Gâteaux differentiability and Fréchet differen-
tiability (studied last year).

Let us now consider (E,N) a uniformly convex Banach space.

12. Explain why N is never Gâteaux-differentiable at 0 and prove that when N is Gâteaux-
differentiable at x ∈ E \ {0}, then ‖DN(x)‖ = 1.

13. Assume that N is Gâteaux-differentiable on E \ {0}. Consider C a non-empty closed convex
in E and pC the associated projection. Prove that for all x ∈ E \ C, the point pC(x) ∈ C is
characterized by

∀z ∈ C, DN(x− pC(x)) · (z − pC(x)) ≤ 0.

We can now prove the following result

Theorem 5 (James). Let (E,N) be a uniformly convex Banach space whose norm N is Gâteaux-
differentiable on E \ {0}. Then, for all continuous linear form L ∈ E′, there exists x ∈ E and
λ ∈ R such that L = λDN(x).

14. An auxilliary result: Let E be a vector space and L,L1, . . . , Lp be linear forms on E such
that

⋂
1≤j≤p kerLj ⊂ kerL. Prove that L ∈ span(L1, . . . , Lp).

15. By considering the projection onto kerL, with L ∈ E′, conclude to Theorem 5.
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3 Duality of Lp spaces

In all this section, we consider (X,F , µ) a measure space.

3.1 Proof of Theorem 1

Considering p ∈ (1,+∞), our aim is first to derive Theorem 1 from Theorem 5. On the one
hand, we need to prove that the space Lp(X) is uniformly convex. We will only focus on the case
p ≥ 2 in the following two questions (the case 1 < p < 2 is treated with other arguments).

16. Prove that for all real numbers a, b ∈ R,∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p ≤ |a|p2
+
|b|p

2
.

17. Conclude to the uniform convexity of the space Lp(X).

It now only remains to differentiate the norm ‖ · ‖Lp .

18. Check that for all f ∈ Lp(X) \ {0} the norm ‖ · ‖Lp is Gâteaux differentiable on f , with

D‖ · ‖Lp(f) · g =
1

‖f‖p−1Lp

∫
X

sgn(f)|f |p−1g dµ, g ∈ Lp(X).

19. Conclude to Theorem 1.

3.2 Case p = 1

In this subsection, we check that Theorem 1 does not hold in the case where p = 1 when the
measure µ is not σ-finite, and holds under this extra assumption.

20. Assume that X = {a, b}, with a 6= b ∈ R, F = P(X) and that the measure µ is given by

µ({a}) = +∞ and µ({b}) = 0.

Notice that the measure space (X,F , µ) is not σ-finite. Check that there is no onto isometry
between L1(X)′ and L∞(X).

21. Assume that the measure µ is finite. By using Theorem 1 for p = 2, give an onto isometry
between L1(X)′ and L∞(X).

22. Bonus: Same question when the measure µ is only assumed to be σ-finite.

3.3 Duality in norm

23. Prove that for all p ∈ [1,+∞) and g ∈ Lp(X),

(2) ‖g‖Lp = sup
‖f‖Lq=1

∣∣∣∣ ∫
X
fg dµ

∣∣∣∣,
and that the above supremum is reached when p ∈ [1,+∞). Prove that (2) also holds when
p = +∞, provided that the mesure µ is σ-finite. Discuss this result in view of Theorem 1.
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