Ecole Normale Supérieure de Lyon Année 2023 - 2024

Département de Mathématiques M1 - Analyse avancée

HOMEWORK PROBLEM: DUALITY OF LP SPACES

The following problem is devoted to the study of the duality of the Lebesgue spaces. Precisely,
the main theorem we aim at proving is the following:

Theorem 1. Let (X, F,pu) be a measure space and p,q € (1,400) satisfying 1/p+1/q =1. Then,
for all L € LP(X)', there exists a unique f € LI(X) such that

Vg € LP(X), L(g)Z/ngdu-

We will check moreover that this result also holds in the case p = 1 when the measure y is
o-finite, but fails when p = +00 even under this assumption.

In the above statement, LP(X) denotes the standard Lebesgue space associated with (X, F, u)
(the dependence with respect to the o-algebra F and the measure p will always be omitted) and
LP(X)' stands for the associated topological dual, LP(X) being endowed with the usual norm ||-||z».

1 Duality of the spaces [’(N)

First of all, we study the duality of the [P(N) spaces, which corresponds to the case where
X =N, F = P(N) and p is the counting measure (which is o-finite). Let p € [1,+o0]. For all
y € [9(N), we set

+o00
Fy(z) = Zmnyn, z € IP(N).
n=0

1. Check that the linear map F': y € l9(N) — F, € (IP(N)) is well-defined and is an isometry.
2. In the case where p € [1,+00), prove that F is onto.

3. By considering the space of converging sequences and the Hahn-Banach theorem, prove that
F' is not onto when p = +o0.
Remark: This proves that Theorem 1 fails in the case p = +o0o even under the assumption
that the measure 1 is o-finite.

Let us consider ¢y(N) the subspace of [*°(N) composed of sequences which converge to 0, endowed
with the norm || - ||co-

4. Give an onto isometry between [*(N) and cy(N)".

2 Uniformly convex spaces

This section is devoted to study the notion of uniform convexity, defined as follows

Definition 2. A normed vector space (E, N) is said to be uniformly conver if for all € > 0, there
exists § > 0 such that for all z,y € E,

(N(@z) <1, N(y) <1, N(z —y) > ¢) = N(f”;y) <1-4.

5. Check that a Hilbert space is uniformly convex.
6. Prove that L'(R) and L*>(R) are not uniformly convex.



2.1 Projection theorem

As for the Hilbert spaces, there is a projection theorem for the uniformly convex Banach spaces:

Theorem 3. Let (E,N) be a uniformly convex Banach space and C C E be a non-empty closed
convez set. For all x € E, there exists a unique pc(z) € C such that

(1) N = pe(@)) = d(z,C) = inf N(z—y)

The map x € E +— po(x) € C defined this way is continuous.

7. Check that for all x € E, d(z,C) = 0 if and only if x € C.
8. What is po(x) when z € C' ?
9. Uniqueness. Prove that the infimum in (1) can not be reached at two different points.

10. Ewzistence. Let z € E\ C. Prove that the infimum in (1) is reached at some point pc(z) € C.

2.2 James’ theorem

The topological dual of the uniformly convex Banach spaces can be nicely described, under a
“reasonable” assumption of differentiability for the associated norm. This is James’ theorem which
we prove in this subsection.

Definition 4. Let E, F' be normed vector spaces and let x € E. A function f : F — F is said to
be Gateaux-differentiable at x when there exists a continuous linear operator A, € L.(F, F') such
that for all y € F

flz+ty) = f(x) +tA(y) + o(t) ast— 0.

We denote A, = Df(z).

11. Explain the difference between the notions of Gateaux differentiability and Fréchet differen-
tiability (studied last year).

Let us now consider (E, N) a uniformly convex Banach space.

12. Explain why N is never Gateaux-differentiable at 0 and prove that when N is Gateaux-
differentiable at x € E \ {0}, then ||[DN(z)|| = 1.

13. Assume that N is Gateaux-differentiable on £\ {0}. Consider C' a non-empty closed convex
in £ and pc the associated projection. Prove that for all x € E'\ C, the point pc(z) € C is
characterized by

VzeC, DN(@—po(@) - (z - po(@) < 0.

We can now prove the following result

Theorem 5 (James). Let (E,N) be a uniformly convex Banach space whose norm N is Gateaux-
differentiable on E \ {0}. Then, for all continuous linear form L € E’, there exists x € E and
A € R such that L = ADN (z).

14. An auxilliary result: Let E be a vector space and L, Lq,..., L, be linear forms on E such
that ()< ;<, ker L; C ker L. Prove that L € span(Ly, ..., Lp).

15. By considering the projection onto ker L, with L € E’, conclude to Theorem 5.



3 Duality of L? spaces

In all this section, we consider (X, F, i) a measure space.

3.1 Proof of Theorem 1

Considering p € (1,+400), our aim is first to derive Theorem 1 from Theorem 5. On the one
hand, we need to prove that the space LP(X) is uniformly convex. We will only focus on the case
p > 2 in the following two questions (the case 1 < p < 2 is treated with other arguments).

16. Prove that for all real numbers a,b € R,

p a—2>b

2

a+b
2

P L
< .
=2 T2

17. Conclude to the uniform convexity of the space LP(X).
It now only remains to differentiate the norm || - || z».
18. Check that for all f € LP(X) \ {0} the norm | - |[z» is Gateaux differentiable on f, with

1 _
DI ()9 = oy [ senlfP g dn, g€ D)
1fII7 Jx
19. Conclude to Theorem 1.

3.2 Casep=1

In this subsection, we check that Theorem 1 does not hold in the case where p = 1 when the
measure p is not o-finite, and holds under this extra assumption.

20. Assume that X = {a,b}, with a # b € R, F = P(X) and that the measure u is given by

u({a}) = +00 and p({b}) = 0.

Notice that the measure space (X, F, ) is not o-finite. Check that there is no onto isometry
between L'(X) and L>(X).

21. Assume that the measure u is finite. By using Theorem 1 for p = 2, give an onto isometry
between L'(X) and L>(X).

22. Bonus: Same question when the measure y is only assumed to be o-finite.

3.3 Duality in norm

23. Prove that for all p € [1,+00) and g € LP(X),

(2) lgllze = sup
1 za=1

)

/ngdu

and that the above supremum is reached when p € [1,400). Prove that (2) also holds when
p = 400, provided that the mesure y is o-finite. Discuss this result in view of Theorem 1.
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