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INTRODUCTION

In the early 1970’s, useful connections between 3-manifolds and Kleinian groups
began to emerge and set the scene for Thurston’s hyperbolization theorem.

— On the one hand, techniques from 3-dimensional topology improved the un-
derstanding of Kleinian groups, i.e. discrete torsion-free subgroups of PSLy(C), the
group of orientation preserving isometries of the hyperbolic space H3. A. Marden
recognized in [Mard] some important consequences of a theory of Waldhausen for the
study of geometrically finite groups (cf. §1). A fundamental result of Waldhausen
gives a necessary and sufficient condition under which a homotopy equivalence be-
tween Haken manifolds (see below) can be deformed to a diffeomorphism [Wa2]. Using
this theorem, Marden obtained a necessary and sufficient condition under which an
abstract isomorphism between two geometrically finite groups is induced by a quasi-
conformal homeomorphism of §?, the formal boundary of H®. This condition was a
step to fit the geometrically finite groups into Ahlfors-Bers theory of quasi-conformal
deformations. It is also probably Marden who first posed in print the problem of
giving conditions on a compact 3-manifold to be hyperbolic [Mard, p. 461]. We say
that a compact orientable 3-manifold M is hyperbolic if its interior is diffeomorphic
to the quotient of H® by a geometrically finite group. Another equivalent definition
is the following. Let M be a compact orientable 3-manifold and let P be the union
of the tori contained in OM . We say that M is hyperbolic if M — P carries a hyper-
bolic metric i.e. a complete metric of constant curvature —1 such that M is locally
outwardly convex along &M — P (cf. §1). Marden observed that the irreducibility of
M (see below) and the triviality of the center of (M) are necessary conditions.

B. Maskit developed a construction for Kleinian groups from simpler ones. In
particular, his Combination theorems provide sufficient conditions under which two
Kleinian groups can be amalgamated in order to produce a new Kleinian group
[Mas1]. The topological description of this amalgamation at the level of the quotient
3-manifolds is the gluing of the two corresponding 3-manifolds along a subsurface
contained in their boundaries. This is parallel to the key construction used in
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the study of Haken manifolds, namely as the gluing of two simpler ones along
incompressible parts of their boundaries.

R. Riley, exploiting different ideas, wrote a computer program to find discrete and
faithful representations into PSL,(C) of certain knot groups. Using this program,
he gave explicitly the representation of the fundamental group of the figure 8 knot
[Ri]. A fibering theorem of Stallings [Stal] then implied that the quotient of H® by
this Kleinian group was diffeomorphic to the complement of the figure 8 knot in S3.

Since the quotient of H® by a Kleinian group is a complete hyperbolic 3-manifold
which conversely determines the Kleinian group up to conjugacy, 3-manifolds were
inevitable side products of Kleinian group theory; however, topologically interesting
examples were slow to be discovered. F. Lobell provided in 1931 what was perhaps
the first example of a closed hyperbolic manifold [La]. In 1970, E. Andreev succeeded
in giving a complete combinatorial classification of 3-dimensional hyperbolic Coxeter
groups with compact fundamental domains [An]: this result provided a huge family of
closed hyperbolic 3-manifolds for it was known by a theorem of Selberg [Sel] that each
such Coxeter group contains a finite index subgroup which is torsion-free (cf. [Bo] for
examples of closed quotients of an arbitrary simply connected symmetric space). But
the foremost example of a hyperbolic manifold to have been appraised as a topological
manifold is probably the hyperbolic dodecahedral space, which appeared in 1933 [WS].
In this paper, H. Seifert and C. Weber describe this manifold as a 5-fold cover of $3
ramified over a link with two components and they compute its first homology group
showing that it is a torsion group [WS, p. 252]. Furthermore, they observe that this
manifold is not a Seifert fibered space [Seil, as a direct consequence of the triviality
of the center of a cocompact Kleinian group (WS, p. 249)].

— On the other hand, the progress made in understanding 3-manifolds, especially
Haken manifolds, very gradually led to hyperbolic geometry. An irreducible manifold
is a 3-manifold in which any embedded 2-sphere bounds a 3-ball. By a theorem of
H. Kneser, any compact 3-manifold M without 2-spheres in the boundary, can be
written as the connected sum of irreducible manifolds and copies of §? x S! [Kn]. J.
Milnor [Mi1] proved that this decomposition is unique up to diffeomorphisms when M
is closed and orientable; see [Hel] for the generalization to the case with non-empty
boundary. This justifies restricting the study of compact orientable 3-manifolds to
irreducible orientable manifolds.

The Sphere theorem was proven by C. Papakyriakopoulos in the mid 1970’s [Pa]:
it says that if M is a 3-manifold with 75(M) # 0, then M contains an embedded 2-
sphere which represents a non-zero element of m,(M). Therefore, if M is irreducible,
then my(M) = 0. It follows that the universal cover M of an irreducible manifold M
with infinite fundamental group is contractible. It was then natural to ask what the
topological type of M was. For instance, when M is a closed irreducible manifold
with infinite (or torsion-free) fundamental group, is M homeomorphic to R3? And
if the answer is yes, how does w,(M) act? When M is a Seifert fibered space,
the answer to the first question is positive. Any Seifert fibered space with infinite
fundamental group has a finite cover which is diffeomorphic to the product of a
closed surface by the circle [Sei]. Therefore, the universal cover of an irreducible
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Seifert fibered space M with infinite fundamental group is homeomorphic to R%.
Before Thurston intervened, it seems not to have been realized that the corresponding
action of (M) is always geometric. Excepting the Seifert fibered spaces which were
thoroughly studied in the 1930’s [Sei], nothing was known about the topological type
of a contractible cover of an irreducible manifold. For example, it was plausible that
the Whitehead manifold (a contractible open 3-manifold which is not homeomorphic
to R3 [Wh]) should cover a compact 3-manifold (as a matter of fact, this was shown
only in the late 1980s: the Whitehead manifold covers no manifolds but itself [My]).
Great progress on this question was made in the late 1960’s by F. Waldhausen [Wa2].
His methods provided a deep understanding of the vast class of Haken manifolds.
A Hoken manifold is an irreducible manifold M which contains an incompressible
surface, i.e. a properly embedded connected surface S such that

(i) the fundamental group 7(S) injects into 7;(M) and the relative fundamental
group m,(S,0S) injects into m(M,3M), and

(ii) S cannot be isotoped into a component of OM (cf. §7).

Among other results, Waldhausen proved that the universal cover of a Haken
manifold M is homeomorphic to B® — F', where F' is a closed subset of S* = 8B°
[Wa2, p. 86]. In reality, he offered a picture of M which is reminiscent of the
complement of the limit set of a Kleinian group in the compactified hyperbolic space.

A new light on 3-manifolds came through the Torus decomposition. Any compact
irreducible orientable 3-manifold M contains a (possibly empty) finite collection T
of disjoint incompressible tori such that any component V' of the manifold obtained
by splitting M along T either is a Seifert fibered space or does not contain any
incompressible torus. This collection T is well defined up to isotopy, once we require
that it satisfy a minimality condition and the pieces obtained by splitting M along
T form the Torus decomposition of M. The existence of the Torus decomposition
appears in a cryptical announcement of Waldhausen [Wa3] which to some extent
guided the development. The complete proof along with important applications
was established by W. Jaco and P. Shalen ([JS1], [JS2]), and independently by K.
Johannson ([Johl], [Joh2]). Although the Seifert fibered spaces were well understood
topologically [Sei], there were no general methods to describe the pieces of other type
in the Torus decomposition.

Towards the mid 1970’s, a number of algebraic properties of Haken manifold fun-
damental groups were established which may well have helped to convince Thurston
that the non-Seifert pieces in the Torus decomposition of a Haken manifold are in fact
hyperbolic. The most important is probably the Torus theorem ([Wa3], [Fe]). This
theorem asserts that, if M is Haken, any non-Seifert piece V' in the Torus decompo-
sition of M is atoroidal, i.e. any Z + Z-subgroup of (V) can be conjugated into
the fundamental group of a component of V. Any Z + Z-subgroup of a Kleinian
group is parabolic (cf. §1); it follows that any hyperbolic manifold is atoroidal. The
fundamental group of a Haken manifold M shares other common properties with
Kleinian groups.
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(i) Eachnon-zero element of 71(M) is uniquely divisible, i.e. it has a unique positive
root of maximal order [Sh], and

(ii) if M is atoroidal and acylindrical (see below), then the group of outer automor-
phisms of m,(M) is finite [Joh2].

Property (i) is easily seen to be satisfied when M is a hyperbolic manifold. When
M is a closed hyperbolic manifold, (ii) follows from the Mostow rigidity theorem
[Mos].

In the spring of 1977, in his lectures on hyperbolic 3-manifolds, Thurston an-
nounced his Hyperbolization theorem for Haken manifolds. The printed announce-
ment came several years later, along with generalizations that won’t be treated in
the present article [Thu3]. This theorem gives a necessary and sufficient condition
for a Haken manifold to be hyperbolic.

Thurston’s hyperbolization theorem [Thu3]. — Let M be an irreducible and
atoroidal manifold. If M 1is Haken, then M 1is hyperbolic.

Furthermore, at about the same time, Thurston formulated his Geometrization
conjecture. This conjecture says that each piece of the Torus decomposition of an
irreducible manifold is modeled locally on one of the following eight geometries: the
three constant curvature ones: H®, R®, S§3, and the five fibered ones: H? x R,
S? xR, PSLy(R), Nil and Sol (cf. {Sco] for a detailed survey on these geometries).
This conjecture is satisfied by Haken manifolds: in view of the Hyperbolization
theorem above, the proof amounts to merely observing geometric structures on Seifert
fibered spaces. Thus, Thurston’s hyperbolization theorem, as a particular case of
the Geometrization conjecture was in harmony with the recent Torus decomposition
theorem.

Thus, for Haken manifolds, Thurston completely settled the Geometrization con-
jecture. Recall that every compact irreducible manifold whose boundary is non-empty
is necessarily Haken; again, every compact irreducible manifold with infinite first ho-
mology group is Haken (cf. [Hel), [Ja]). However, some of the closed hyperbolic
manifolds that had been considered before Thurston were already known to be non-
Haken: for instance, Haken himself [He2], and also Waldhausen knew this for the
hyperbolic dodecahedral space. Thurston went on to prove that in some sense, most
3-manifolds with finite first homology group are non-Haken. His Hyperbolic Dehn’s
surgery theorem implies that, with only a finite number of exceptions, the manifolds
obtained by Dehn surgery on a knot in S* whose complement is hyperbolic and does
not contain any closed incompressible surface are hyperbolic. At the same time, only
finitely many of them are Haken ([Thul], [Hat]). (For the test case of 2-bridge knots
which are not torus knots, see [HT].)

According to the Geometrization conjecture, one should be able to replace, in
the above Hyperbolization theorem, the phrase “is Haken” by “has torsion-free
fundamental group”. The later is clearly a necessary hypothesis.

The proof of Thurston’s hyperbolization theorem distinguishes two cases accord-
ing as M is fibered over the circle or not. The difference arises from the fact that, in
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the fibered case, the quasi-Fuchsian groups appearing in the construction degenerate,
while in the non-fibered case, they remain quasi-Fuchsian. The fibered case can be
formulated as the beautiful theorem below. Recall that a 3-manifold which fibers over
the circle with fiber a surface S, is determined up to diffeomorphism by the isotopy
class of its monodromy, which is an element of the mapping class group Mod(S) (cf.
§1). To any diffeomorphism ¢ € Mod(S), one can associate a 3-manifold My, called
its mapping torus which is defined as the quotient space of S x [0,1] by the relation
which identifies (z,1) with (¢(z),0). We say that ¢ € Mod(S) is pseudo-Anosov
when its action on the set of conjugacy classes of m;(S) does not act periodically on
any non-trivial element [Thu2).

Hyperbolization theorem for manifolds which fiber over the circle ([Thu5),
[Su]).— Let S be a closed surface of genus greater than 2 and let ¢ € Mod(S).
Then My is hyperbolic if and only if ¢ is pseudo-Anosov.

The proof of this particular case of Thurston’s hyperbolization theorem is com-
pletely different from the proof in the non-fibered case and it has been already quite
well explored (cf. [McM3], [0]). For this reason, we will restrict our attention in this
article to the manifolds which are not fibered.

The proofs of the two halves of the Hyperbolization theorem may nevertheless
overlap, as Thurston himself observed. For example, there is the following still
unsettled question: does every compact 3-manifold fibered over the circle have a
finite cover that contains an incompressible surface which is not a fiber of a fibration
over the circle? If this were true, the results of the present article alone would suffice
to completely prove the Hyperbolization theorem.

In the proceedings of the Smith Conjecture Symposium [BM], J. Morgan gave a
survey of a part of Thurston’s original proof and the book of M. Kapovitch [Ka] is
also devoted to the original approach. However, in this article, we will detail the
proof from another viewpoint. The crucial part relies more on Teichmiiller theory
than Thurston’s proof. It is due to C. McMullen [McM2].

We will here prove the Hyperbolization theorem only under an assumption which
is stronger than the assumption “atoroidal”. Namely, we will assume that m;(M)
does not contain any Z + Z -subgroups. The main consequence is that we can
completely avoid the study of Kleinian groups containing parabolic elements. (The
general case is more complex, partly due to heavier notations, but it is not much
more difficult.) It is in a similar spirit that this article excludes all mentions of
non-orientable manifolds (see [To]).

A crucial property of a Haken manifold is the existence of hierarchies, discovered
by Haken. By definition, a Haken manifold M contains an incompressible surface 5,
and by splitting M along S, we obtain a new manifold Mg . The incompressibility
of S implies that Mg is irreducible. Moreover, if Mg is not a disjoint union of
3-balls, it is Haken (cf. §7). Therefore, the splitting process can be iterated. It is a
fundamental observation of W. Haken that this process ends up, after a finite number
of steps, with a disjoint union of 3-balls (cf. [Ha]). This sequence of manifolds is
called a hierarchy for M and the number of terms in this sequence is called the length
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of the hierarchy. For technical reasons, we prefer to use hierarchies of another type,
called special hierarchies (cf. [Ja]): this will allow us to prove the Hyperbolization
theorem by induction on an integer, which is defined as the greatest length of a special
hierarchy, and denoted by £(M) (cf. §7).

Like other theorems on Haken manifolds, such as Waldhausen’s well-known theo-
rem that homotopy equivalences between Haken manifolds respecting boundary can
be deformed respecting boundary to diffeomorphisms, the proof of Thurston’s hyper-
bolization theorem in the non-fibered case involves a finite induction using a hierarchy
for M. There is a further parallel between the hyperbolization procedure of Thurston
and the proof of this theorem of Waldhausen. Both proofs consist of two distincts
parts, one combinatorial and 3-dimensional, and the other 2-dimensional and more
geometrical. In each case, the 3-dimensional part is a hierarchical induction. In
Waldhausen’s theorem, the 2-dimensional part is a known theorem of Nielsen [Nie].
The 2-dimensional part of Thurston’s theorem however, was an entirely new Fixed
point theorem, involving the Teichmiiller spaces of the gluing surfaces.

To carry out the proof of Thurston’s theorem by induction on the length of M,
we will enunciate before long a more general theorem, which applies to manifolds-
with-corners. First, we explain the basic gluing procedure to which the inductive
step will reduce.

Final gluing theorem.— Let N be a hyperbolic manifold with incompressible
boundary. Let T be an orientation reversing involution of ON which exchanges
the boundary components by pairs. Suppose that N is not an interval bundle. Then
if N/7 is atoroidal, it is hyperbolic.

This theorem still holds if N is an interval bundle but the proof is entirely
different. It corresponds to the case when N/ is fibered and the hyperbolic structure
is obtained as a degeneration of a certain sequence of quasi-Fuchsian structures on
N.

Note that the Final gluing theorem never directly provides a hyperbolic structure
on a compact manifold with non-empty boundary. However it does so indirectly
by a trick of Thurston. This trick makes the boundary of a 3-manifold invisible
by covering it with mirrors: in some sense, it converts boundary points to interior
points. We present an explication of this trick which is due to F. Bonahon who
was first to observe that right-angled corners are sufficient. The following notion of
manifold-with-corners is essentially equivalent to the notion of “manifold with (useful)
boundary pattern”, introduced by Johannson in his work on homotopy equivalences
([Jo1], [Jo2]). A manifold-with-corners is a triple (M,G,0°M), where M is a 3-
manifold, and G C M is a smooth trivalent graph such that

(i) each component of M — G equals the interior of its closure, and
(ii) each component of 8°M is the closure of a component of M — §.

The closure of a component of M — G which is not in 8°M is called a mirror
of (M,5,8°M), and 8°M is called the boundary of (M,$,60°M). One should
think of (M,5,0°M) as a differentiable structure with corners on M , i.e. an atlas
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of class C!' on M with charts modeled on open subsets of (R)3. Then, the
graph § corresponds to points which have a neighborhood diffeomorphic to the
neighborhood of a point of (R*)® with 2 or 3 coordinates equal to 0, and the
boundary of (M,S,8°M) corresponds to distinguishing a set of disjoint mirrors.
Such a differentiable structure depends only on the pair (M,§): this follows from
[Ce] and [Do].

The notions of irreducibility and atoroidality can be extended to manifolds-with-
corners; one can also define the notion of a manifold-with-corners with incompressible
boundary (cf §7). Rather than directly prove the Hyperbolization theorem for mani-
folds possibly with boundary, we will proceed by proving a Hyperbolization theorem
for manifolds-with-corners that have empty boundary —which will turn out to be
just as strong.

A manifold-with-corners (M, §,8°M) is hyperbolic when there is a hyperbolic
metric on M such that

(i) the mirrors are totally geodesic,
(i) M is locally outwardly convex along 8°M , and
(iii) the components of OM — § meet at right-angles along the edges of G.

Let (M,SG) be a hyperbolic manifold-with-corners having empty boundary and
let 8’ C OM be a surface which is a disjoint union of mirrors. Let §' be the graph
obtained from § by erasing the edges whose interior is contained in the interior of
S’ . Then, after rounding the corners along the erased edges, (M,§’,S’) becomes a
manifold-with-corners and it follows almost directly by taking ¢ -neighborhoods in the
ambient complete hyperbolic manifold that (M,5’,S") is hyperbolic. In particular,
if (M,9) is a hyperbolic manifold-with-corners having empty boundary, then M is
hyperbolic.

Hyperbolization theorem for manifolds-with-corners.— Let (M,5) be
a compact irreducible oriented and atoroidal manifold-with-corners having empty
boundary. If M is Haken, then (M,S) is hyperbolic.

Any irreducible and atoroidal manifold M having non-empty boundary can be
easily promoted to a manifold-with-corners (M, ) that has empty boundary and is
irreducible and atoroidal: this is the mirror trick (absolute version) see §7. Therefore,
Thurston’s hyperbolization theorem is a consequence of the theorem above. This
theorem is proven by induction on the special length of M, viewed as a manifold
without corners. The most important advantage of the introduction of manifolds-
with-corners is above all that the proof of the inductive step will be in strict parallel
with that of the Final gluing theorem and is in the final analysis a consequence of it.

Suppose that (M, ) is an irreducible and atoroidal manifold-with-corners with
empty boundary. When M is Haken, we show in §7 the existence of an incom-
pressible surface S which is a good splitting surface. This means that the manifold-
with-corners (Mg, Gg,S’) obtained by splitting (M,S) along S has incompress-
ible boundary. We show also that Gg can be extended to a graph G5 by adding
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edges contained in S’ so that (Mg, Gs) is an irreducible and atoroidal manifold-
with-corners with empty boundary. Suppose that (Mg, G5) is hyperbolic. Then, as
observed above, (Mg, 5g,S’) is also hyperbolic, and further the hypotheses of the
next theorem are satisfied.

Gluing theorem for manifolds-with-corners. — Let (M, ) be an irreducible
and atoroidal manifold-with-corners having empty boundary. Let S be a good splitting
surface for (M,§) and let (Mg,Ss,S’) be the manifold-with-corners obtained from
(M, G) by splitting along S. Suppose that (Mg,SGs,S') is hyperbolic. Then (M,5)
is hyperbolic.

This gluing theorem can be deduced from the statement of the Final gluing
theorem (cf. §8). We now apply the Gluing theorem for manifolds-with-corners
to prove the Hyperbolization theorem for manifolds-with-corners. The proof is by
induction on the special length £(M) of M.

The induction starts at 4(M) = 0. Then M is an handlebody and Mg is
diffeomorphic to B (cf. §7). Thus (Mg, Gs) can be interpreted as a polyhedron.
Saying that (Mg, G5) is hyperbolic means that this polyhedron can be realized
in H® with all dihedral angles equal to 7/2. A characterization of the compact
polyhedra which can be embedded in H® with prescribed acute dihedral angles is
provided by the theorem of Andreev already mentioned [An]. In the case of a right-
angled polyhedron, the hypothesis of this theorem turn out to be equivalent to the
irreducibility and atoroidality of (Mg, G%s). Therefore the Andreev theorem asserts
that (Mg, 5%) is hyperbolic. (Incidently, note that the problem of realizability of a
polyhedron in H® with various sorts of prescribed data is currently a field of intensive
study [HR].) Thus, by the Gluing theorem for manifolds-with-corners, (M,§) is
hyperbolic when #(M) = 0. The inductive step reduces similarly to the Gluing
theorem. This proves the Hyperbolization theorem for manifolds-with-corners.

Now we sketch the logic of the proof of the Final gluing theorem. Let N be
a hyperbolic manifold. Let G be a geometrically finite group such that N is
diffeomorphic to the Kleinian manifold M(G) associated to G (cf. §1). The space
SF(G) of the geometrically finite groups isomorphic to G can be parametrized by the
Teichmiiller space T(ON): this is one important application of Ahlfors-Bers theorem
on the existence and uniqueness of solutions to the Beltrami equation. Using this
parametrization and the Maskit combination theorem (cf. §2), Thurston showed
how to reduce the Final gluing theorem to the problem of finding a fixed point for
a certain map on Teichmiiller space. This map is the composition 7* o ¢ of two
maps: 7* : T(ON) — T(ON) is the action induced by the (orientation reversing)
diffeomorphism 7 and ¢ : T(ON) — T(BN) is the skinning map (see below). This
translates the final gluing theorem into the following:

Thurston’s fixed point theorem.— Let N be a hyperbolic manifold with in-
compressible boundary which is not an interval bundle. Let T be an orientation
reversing involution of ON which permutes the components by pairs. Then, if N/t
is atoroidal, 7" o ¢ has a fired point.
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To prove this theorem, we will adopt the approach which was given by McMullen
[McM2]. This approach originated in an observation that J. Hubbard made shortly
after Thurston enunciated the Fixed point theorem. Hubbard noticed that the
formula for the coderivative of the skinning map involved a well-known operator
in Teichmiiller theory, the Poincaré series operator. As the proof of Thurston’s fixed
point theorem presented here relies mostly on complex analysis, we must recall briefly
the definition of the Poincaré series.

Let Y — X be a cover of Riemann surfaces. A holomorphic L!-integrable
quadratic differential ¢ on Y can be summed over the sheets of the cover to define
a holomorphic integrable quadratic differential ©y;x¢ on X. If we denote by
Q(X), Q(Y) the space of integrable holomorphic quadratic differentials on X and
Y respectively, this defines a map Oy,x : A(Y) — Q(X), called the Poincaré series
operatoror Theta operator. When Q(X) and Q(Y) are endowed with their respective
L!-norms, the norm of Oy, x is less than or equal to 1.

In view of the formula for the coderivative of o, Hubbard suggested that the
existence of a fixed point for 7* o 0 would be easier to establish if one could prove a
conjecture of Kra [Kr]. This conjecture asserts that the norm of the Theta operator
associated to the universal cover of a finite volume hyperbolic Riemann surface X
is strictly less than 1. It was McMullen who, in 1989, succeeded in carrying out the
program of Hubbard. In [McM1] he proves a generalized version of Kra’s conjecture,
giving a necessary and sufficient condition on a cover Y — X for the norm of By, x
to be strictly less than 1. In [McM2] he shows how this result applies to give a new
proof of Thurston’s fixed point theorem.

82 begins with a proof of the particular case of the Maskit combination theo-
rem we need in order to show the equivalence between the Final gluing theorem
and Thurston’s fixed point theorem. Next, we study the skinning map which is
defined as follows. By the Ahlfors-Bers theorem, there corresponds to any point
8 = (81,"++,8%) € T(ON) a Kleinian manifold N* diffeomorphic to N, such that
ON?® = s (cf. §1). By taking the cover of N® associated to the component S; of
ON , we obtain a quasi-Fuchsian structure on S; x [0, 1] : the Ahlfors-Bers parameters
of this structure are (s;, s}), where s; is a complex structure on S;, the surface S;
with the reversed orientation. Then, the skinning map assigns to dN® the point
o(ON®) € T(ON), whose i-th coordinate is s;. We see spots on the Riemann sur-
face o(ON®): in the cover of N*® associated to S; they are the components of the
preimage of ON°® others than the canonical lift of S;. In particular, to each spot
U is associated a cover U — Xy of a component Xy of dN°. The topological
configuration of the spots on dN*® and the topological type of the covers associated
to them are independent of s. The cover U — X; associated to a spot is geometric:
it arises from a compact incompressible surface contained in X;;. Also the shape
of the spots reflects some important topological properties of N. The basic one is
that each curve on U which is not homotopically trivial projects under the covering
U — Xy to a curve on ON which is one boundary component of an essential an-
nulus in N. In particular, the spots are all simply connected if (and only if) N is
acylindrical, i.e. if N does not contain essential annuli. In §2, we compute also the
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coderivative of ¢: it is a convex linear combination of the Theta operators associated
to the spots.

§4 and 5 are devoted to prove the McMullen theorem that the Theta operator
Oy, x associated to a geometric cover Y — X has norm bounded away from 1 by
a constant depending only on x(X) and on the systole of X, i.e. the length of the
shortest closed geodesic of X. We will follow the approach given by Barrett and
Diller [BD).

§3 contains auxiliary results on Riemann surfaces which are used during the
proof. The most important is Theorem 3.1 which is due to McMullen [McM1]. It
establishes a property of convergence for a sequence of triples (X;,z;,¢;) where ¢;
is an integrable holomorphic quadratic differentials on the Riemann surface X; and
z; € X;. Recall first what it means for a sequence of pointed hyperbolic Riemann
surfaces (X;,z;) having a fixed topological type to converge to a Riemann surface
(X,z). There are two cases to consider, according the behaviour of the injectivity
radius inj(z;) at z;. If inj(z;) remains bounded away from 0, it means that (X;,z;)
converges to (X,z) for the Hausdorff-Gromov topology on pointed metric spaces: in
this case, X is a hyperbolic Riemann surface with finite volume. If inj(z;) tends to
0, it means that (X;,z;) with the hyperbolic metric rescaled by 1/inj(z;) converges
to (X,z): in that case, X = C* with a complete flat metric. Then, if ¢; € Q(X;)
and if ¢ is a holomorphic quadratic differential on X, we say that (¢;) converges
uniformly to ¢, when the local expression of ¢; (in a chart for X; which converges
to a chart for X) converges uniformly to the local expression of ¢. Theorem 3.1
asserts that, if (X;,z;) converges to (X,z) and if (¢;) is a sequence in Q(X;) with
ll¢:|| =1, (¢;) converges uniformly to a non-zero holomorphic quadratic differential
¢ on X, up to multiplying ¢; by a constant and up to extracting a subsequence.
This theorem is proved in two steps. First, we produce a sequence of non-zero
6; € Q(X;) which converges uniformly to a holomorphic quadratic differential ¢
in the above sense. This reduces the uniform convergence of ¢; = (¢;/6;)8; to
the uniform convergence of (the functions) (¢;/6;). This follows from the classical
theorems of Montel and Picard. The proof we give here of the first step is slightly
different from the original one and relies on less advanced machinery than [McM1).

§4 concerns the solution of a certain &-problem on an open Riemann surface
Y ; an open Riemann surface is a Riemann surface with finite topological type but
with infinite volume. On any open Riemann surface Y, the hyperbolic volume form
dv is exact. Moreover, since any open Riemann surface is a Stein manifold, dv is
d-exact. Theorem 4.1, which is due to Diller [Di), provides a well-behaved solution
to the equation Oy = dv. This solution 7 is well-behaved in the sense that it is a
1-form of type (1,0) whose hyperbolic norm is finite, bounded by a function of x(Y')
and of the systole of Y. We consider only the case when Y has no cusps. Then Y
is the union along the boundary of a compact surface Y, with geodesic boundary
and a finite collection of half-infinite annuli. Using the formula for the hyperbolic
metric on an annulus, one can define an explicit 1-form 7, of type (1,0) which is
supported on Y — Yy and which solves dny = dv on a neighborhood of the ends of
Y . By construction, the hyperbolic norm of 7, is independent of Y, and therefore,
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we are led to find a well-behaved solution 7' of 0y’ = dv— 8y, for then n =1y +7'
will be the required solution. Since the 2-form dv — dng has compact support, this
equation can be solved using the Green’s function on Y. Estimates on the circular
averages of this Green's function provide then the required bound on the hyperbolic
norm of 7’.

Also in §4, we prove a refinement of Theorem 4.1, in which one we no longer have
control on the systole of Y. Let ¢ a constant smaller than the Margulis constant.
Rather than finding a well-behaved solution to the equation 8y = dv which is defined
on the entire surface Y, we find such a solution on the unbounded (i.e. non-compact)
components of the e-thick part Y1l of ¥, and whose norm is bounded by a
function of ¢ and x(Y).

In [BD], D. Barrett and J. Diller show how to deduce from Theorem 4.1 the
McMullen theorem about the norm of the Theta operator Oy, x associated to a
geometric cover Y — X . This short proof is explained in §5. For the applications,
one further needs to control how the norm of ©y,/x can approach 1, when the
topological type of the cover Y — X is fixed but when there is no information on
the systole of X . This control can be formulated in terms of the ¢ -amenable part of
the cover Y — X . Recall that the cover Y — X arises from a proper incompressible
surface S C X . Thus, any component of X% or of X!l which can be isotoped
into S can be lifted homeomorphically to a surface contained in Y. The ¢-amenable
part of the cover Y — X is then defined as the union of the preimage of X[®¢l and
the lifts of the components of X! which can be isotoped into S. Theorem 5.1 is
made more precise by the next statement (Theorem 5.3): if {|©y,x¢|| is more than
1 -6 for a unit norm ¢ € Q(Y), then the ¢-mass of the ¢ -amenable part of the
cover Y — X is more than 1—c(6), where ¢(6) depends on ¢ and tends to 0 with
. This result is also due to McMullen, who deals not only with geometric covers,
but also with non-amenable covers [McM1].

In §6, we prove, following McMullen [McM2], Thurston’s fixed point theorem.
The existence of a fixed point for 7* o o is related to a contraction property for
T* 0 ¢ with respect to the Teichmiiller distance. Since 7* is an isometry, the
contraction properties of 7* o ¢ follows from the contraction properties of o. The
results of §5 have direct consequences for the norm of d*s at s € T(ON). From
Theorem 5.1, it follows that ||djo|| is bounded away from 1 by a constant which
depends only on x(0N) and on the systole of s (Proposition 6.1). Proposition
6.2 is also a consequence of Theorem 5.3: it says that if ||d}¢|| 21— ¢ for a unit
norm ¢ € Q(o(ON?®)), then the @-mass of the ¢-amenable part of o(ON®) is more
than 1—¢/(6) where ¢/(6) tends to 0 with § (the e-amenable part of o(ON®) is
the union of the ¢-amenable parts of the covers U — X associated to the spots
U C g(ON°®)). However, these two results of 2-dimensional nature, don’t suffice to
solve the Fixed point problem and another argument is needed. For this, we observe
that the e-amenable part of ¢(9N®) can be decomposed into the union of the simply
connected components of the preimage of X }? *! and the lifts of the components of
X%? “ or Xl[f L. the (possibly empty) union of these lifts forms a compact surface,
called the ¢ -liftable part of c(ON®). With this terminology, Proposition 6.3 asserts
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that, for sufficiently small ¢, if ||djo¢|| 21— ¢ for a unit norm ¢ € Q(a(6N?)),
then the ¢-mass of the ¢-liftable part of o(ON®) is more than 1 — ¢”(6) where
c"(6) only depends on £ and tends to 0 with 6. One deduces Proposition 6.3
from Proposition 6.2 and from Proposition 6.4, whose proof rests on a more global
argument: after a normalization of the limit set of G* in C (which uses the geometry
of the 3-dimensional Margulis tubes) it is a consequence of the compacity theorem
for holomorphic quadratic differentials (Theorem 3.1).

To prove the Fixed point theorem, we exploit the geometric consequences of
Proposition 6.3. There are two cases to consider according as N is acylindrical
or not.

When N is acylindrical, all the spots are simply connected, and in particular, the
¢-liftable part is empty. This implies that ¢ contracts uniformly the Teichmiiller
distance and therefore 7* o ¢ also (for any gluing data 7). Since Teichmiiller space
is complete, 7* o o has a fixed point.

When N is cylindrical, some gluing data 7 may produce non-atoroidal mani-
folds, thereby forbidding the existence of a fixed point for v* o . This occurs for
instance when 7 maps one boundary component of an essential annulus to the other.
Therefore, we must take into account 7 in proving the Fixed point theorem. In the
cylindrical case, we won’t prove that 7* o ¢ is uniformly contracting, but only that
some iterate (7* 0 o)¥ is uniformly contracting on a certain 7* o o -invariant closed
subset of T(ON) (since (7*00)¥ and 700 commute, this suffices to prove the Fixed
point theorem). The principal geometric consequence of Proposition 6.3 and indeed,
the only one necessary to prove the Fixed point theorem is: if ||d}o]| is sufficiently
near to 1, there is an essential annulus in N which joins two curves a and 7 such
that o is shorter than € for the metric s and such that 7 is shorter than ¢ for the
metric o(s) . If we suppose that ||d%(7* oo)¥|| is near 1, then since o is contracting
and since 7* is an isometry, the norm of d*o at 7*(7* 0 0)¥(s) is also near one, for
all 0L k< K —1. Therefore, by successive applications of Fact 6.14, we produce a se-
quence of K essential annuli A; in N with boundary the union of two simple closed
curves o; and +y;, such that o;y; = 7(y;) and such that the curves o; are shorter
for the hyperbolic metric s than the Margulis constant. Then, by the well known
Margulis lemma, each of the curves ¢; is homotopic to one of finitely many disjoint
simple closed curves on dN of length less than the Margulis constant. Therefore, if
we choose K bigger than the maximal number of disjoint pairwise non-homotopic
simple closed curves on O, two of the curves o; are homotopic on ON . It is then
easy to produce an essential singular torus in N/7, contradicting the hypothesis of
atoroidality on N/7.

§3, 4, 5, 6 are completely self-contained. They form the main part of this paper
and give a complete and detailed proof of Thurston’s fixed point theorem.

§7 develops the theory of manifolds-with-corners which was sketched above. It is
the “3-dimensional core” of the proof. Proofs are given with details, but to shorten the
exposition, we use the equivariant versions of the Dehn lemma, the Sphere theorem
and the Torus theorem.
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In §8, we explain the equivariant machinery which allows one to deduce the Final
gluing theorem for manifolds-with-corners from the Final gluing theorem, Then, we
deduce the Hyperbolization theorem.

Thus, granting the by now standard material on Kleinian groups laid out with
appropriate references in §1, the above three equivariant theorems, and the case of
Andreev’s theorem for right-angled compact polyhedra in H?, this survey comprises
a complete proof of Thurston’s hyperbolization theorem for non-fibered Haken mani-
folds whose fundamental group does not contain Z+Z . The extension to the general
case, i.e. to atoroidal manifolds, or to “pared manifolds” (cf. [Mor]) does not en-
counter any difficulties that are unfamiliar or deep. The reader is invited to find the
modifications necessary to establish this general case. For this, he or she needs to ex-
tend the results concerning the norm of Theta operators to geometric covers of finite
volume Riemann surfaces. The topological results of §7 also need to be extended to
deal with the case of “pared manifolds-with-corners”. The Hyperbolization theorem
for pared manifolds is covered by the (still informal) notes [OP].

I wish to thank Peter Shalen and John Stallings who have told me their memories
of the Hyperbolization theorem, some of which I have tried to evoke in the first part
of this introduction. Larry Siebenmann clarified their points of view and induced me
to investigate the earlier literature. I thank him for being so exacting. I felt obliged
to reorganize the combinatorial part of this article after he convinced me that the
most direct way from Thurston’s fixed point theorem to his Hyperbolization theorem
goes via the natural generalization to compact manifolds-with-corners of the case for
right-angled polyhedra of Andreev’s hyperbolization theorem. This approach nicely
complements Francis Bonahon’s observation [OP] that right-angles are sufficient. The
pictures which illustrate this article were drawn by Greg McShane who also patiently
commented on early drafts. With a lot of criticism, Saar Hersonsky helped to bring
the all analytical part of this article to its present form. During the writing, I
benefitted also from several fruitful discussions with Frederic Paulin. In particular,
§7 and §8 emerged from chapters he contributed to the notes [OP].
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CHAPTER 1

Kleinian groups and Teichmiiller theory

We refer the reader to the books [Bea], [BP] and [Ra] for more details on the first
section.

1.1 Kleinian groups

The hyperbolic space of dimension n is the complete and simply connected n-
dimensional Riemannian manifold of constant curvature —1 (we think of n as being
equal to 2 or 3). This manifold has two well-known isometric models, the Riemann

model
D" ={(&, .6 €R", Y <1},
endowed with the Riemannian metric
g2 o AL+ )
-’

and the upper-half space model
Hn={(x1"" azn)E]Rni $n>0}7
endowed with the Riemannian metric

ds? = —___dx% +m+d$’2‘.
3
Any isometry of H™ extends continuously to the boundary R"~1 where it induces
a conformal or anticonformal map according to whether it preserves the orientation
or not. Let Isom(H") be the group of orientation preserving isometries of H".
Therefore, Isom(H?) and Isom(H?) can be identified with PSLy(R) and PSL,(C)
respectively.

Definition.— A Kleinian group is a discrete, finitely generated subgroup of
Isom(H").



J.-P. OTAL— HYPERBOLIZATION OF 3-MANIFOLDS 91

Let vy be an isometry of H" which is different from the identity. It is well known
that v is either hyperbolic (it has exactly two fixed points in OH" ) or parabolic (it
has a unique fixed point in OH" ), or elliptic (it has a fixed point in H"). When 7
is hyperbolic, it leaves invariant the geodesic of H" joining its two fixed points. This
geodesic A(y) is called the azis of y. The isometry ~ acts on A(7) as a translation
of a certain distance £(7) called the translation distance of v.

From now on, all the Kleinian groups will be supposed to be torsion-free.

Let G be a Kleinian group. Then G does not contain elliptic elements and its
action on H" is properly discontinuous. The quotient space M(G) = H"/G is a
complete Riemannian manifold of constant curvature -1.

The limit set and the domain of discontinuity of a Kleinian group.

Definition. — A group is elementary if it contains an Abelian subgroup of finite
index.

One can show that elementary Kleinian groups are characterized among all
Kleinian groups as those which act on JH" by fixing one or two points.

Let G be a non-elementary Kleinian group.

Definition. — The limit set of G is the smallest non-empty closed subset of JH"
which is invariant under G. It is denoted by L(G).

One can also define L(G) as the closure in OH" of the set of fixed points of the
non-zero elements of G. It is a perfect subset of JH" .

Let C(G) be the smallest closed convex subset of H™ whose closure in H"®
contains L(G). It is a convex subset invariant by G. The quotient space N(G) =
C(G)/G is contained in M(G) and is called the Nielsen core of M(G). 1t is the
smallest closed convex subset of M(G) such that the inclusion into M(G) is a
homotopy equivalence [Thi].

For n =2, ON(G) is totally geodesic, but for n = 3, N(G) is not a differentiable
submanifold of M(G) in general: its boundary is “bent” along certain geodesics. One
way to avoid this problem is to replace N(G) by its neighborhood of radius § in
M(G). Denote this neighborhood by Ng(G). It is not difficult to see that, for any
6 >0, Ng(G) is a submanifold of M(G) of class C! which is strictly convex (i.e.
any geodesic arc of M(G) joining two points of Ns(G) is contained in the interior
of Njs(G), except possibly its endpoints). Furthermore, Ns(G) does not depend on
6 > 0 up to diffeomorphism. It is called the thickened Nielsen core.

Although ON(G) is not a differentiable submanifold of M(G), the convexity of
N(G) allows to consider the path metric that the metric of M(G) induces. When
n = 3, a basic property of this distance is that it is “hyperbolic”: with this induced
metric, N(G) is locally isometric to H? (cf. [Th1], [Ro]). This important property
will be used at the end of §6.

Definition. — The domain of discontinuity of G is the complement of L(G) in
OH" . 1t is denoted by Q(G).
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When Q(G) # 0, the action of G on H" U Q(G) is properly discontinuous.
This can be seen using the nearest point retraction. The map which assigns to
z € H" the point of (the closed subset) C(G) which is nearest to z extends
continuously to a map 7 : H" UQ(G) — C(G) called the nearest point retraction.
The map ¥ commutes with the isometries of H" which leave C(G) invariant. In
particular 7 commutes with the elements of G . Therefore, since G acts properly and
discontinuously on C(G) C H", G acts properly and discontinuously on H™ U Q(G)
also and one can form the quotient space of H" U Q(G) by G. It is a smooth
(analytical) manifold with boundary denoted by M (G) whose interior equals M(G).
For n =3, its boundary is a Riemann surface.

Since 7 commutes with the elements of G, it induces a retraction r: M(G) —
N(G). We can define in a similar way a retraction rs : M(G) — N;(G). For § >0,
it follows from the strict convexity of Ns(G) that r;*(8Ns(G)) is diffeomorphic to
ON5(G) x [0,1]. Thus, M(G) is diffeomorphic to Ng(G).

Thus one can associate to G three manifolds:

(i) the manifold with boundary M(G), whose interior is

(ii) the complete Riemannian manifold M(G) with constant sectional curvature
-1, and

(iii) the Nielsen core N(G) or its §-neighborhood Nj(G).

The Margulis decomposition.
Let G be a non-elementary Kleinian group.

Definition. — Let € > 0. The e -thin part of M(G) is the set of points z € M(G)
through which goes a geodesic loop of length less than or equal to €. We denote
the e-thin part by M (G)lo’s] . Equivalently M (G)lo"] is the set of points where the
injectivity radius is less than &/2. The closure of the complement of M(G)°¢! in
M(G), denoted by M(G)E™! is called the e -thick part of M(G).

Margulis lemma [Marg]. — There ezists a constant £(n) > 0 such that, if G C
Isom(H") is a Kleinian group and if = € H", then the subgroup of G generated by
the elements which move z a distance smaller than e(n) is elementary.

The constant €(n) depends on n but not on G. It is called the Margulis constant.

As a consequence of Margulis lemma, we describe now the geometry of M(G)1%l
for n =3 when G has no parabolic elements and for n =2 (cf. [Thi]).

Let G C PSLy(C) be a Kleinian group without parabolic elements. Any elemen-
tary subgroup of G is then a cyclic group generated by a hyperbolic isometry. Let
z € M(G)®¢. For any % in the preimage of z in H®, there is an isometry in
G other than the identity, which moves Z a distance less than or equal to €. Let
g € G be a hyperbolic isometry. The set of points in H® which are moved by g a
distance less than or equal to ¢ is non-empty only when the translation distance of
g is less than or equal to €. Then, by reasons of symmetry, it is a neighborhood
of constant radius of the invariant axis A(g) of g. We denote this neighborhood
by n°(g). Let ((g)) be the maximal Abelian subgroup of G containing g. Since
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g is an hyperbolic isometry ({g)) is a cyclic group generated by a root of g. Let
N¢(g) be the union of the neighborhoods n°(h) over all non-zero elements h in
({g)) . Suppose e<€(3). By the Margulis lemma, the restriction of the covering map
p: H® = M(G) to N°(g) identifies points only when they are in the same orbit
of ((g)). Hence p(N*(g)) C M(G) is a solid tube diffeomorphic to N°(G)/((g)).
This image is a neighborhood of constant radius of the (embedded) closed geodesic
p(A(g)) = A(g)/ ((g)? . It is called the Margulis tube around p(A(g)). By Margulis
lemma again, M(G)!*¢! is a disjoint union of Margulis tubes. It is a nice exercice to
show that the radius of the Margulis tube around a (very short) geodesic of length
£(g) is equivalent to log(¢/£(g)), independently of G ([Th5], [OP]). Qualitatively,
the shorter the geodesic, the larger the Margulis tube around it.

When G is a Kleinian group contained in PSLy(R), M(G)1°¢ can be similarly
described. The set of points which are moved a distance less than or equal to € by a
hyperbolic isometry g € G is a regular neighborhood of the axis of g. For £ < ¢(2)
the quotient of this neighborhood by ((g)) embeds in M(G). Its image, called a
Margulis tube, is diffeomorphic to an annulus. The set of points which are moved a
distance less than or equal to € by a parabolic isometry g € PSLy(R) is an horoball.
For € < ¢(2), the quotient of this horoball by ((g)) embeds in M(G). Its image is
called a cusp. A cusp is conformally equivalent to the punctured closed unit disc.

When n=2, M (G)]O’El is a disjoint union of Margulis tubes and cusps and by
Margulis lemma, no two of them are homotopic. Therefore M (G)lo’s} has finitely
many components. When n = 3, this is not true in general, but will be satisfied by
the groups we will consider.

1.2 Quasi-conformal homeomorphisms
We refer to the books [Ahl], [Ga] and [LV] for more details on this section.

Definition. — Let ¢ : U — V be an homeomorphism between two open sets in
the complex plane. The map ¢ is called quasi-conformal when the following three
conditions hold:

(i) ¢ is orientation preserving,

(ii) the derivatives dp/0z and Op/dy in the sense of distributions exist and are
locally square-integrable, and

(iii) there exists p € L®°(U,C) with ||p|l < 1, such that, for almost all z € U,
0p(z) = u(z)0¢(z) , where

_1,0p 0Oy s _1.0p O
_5( i—) and 6go—2(62+zay

or Oy )

Op

The quasi-conformal homeomorphism ¢ is said to be K -quasi-conformal for

_ _ 14 ]{lulloo
K=K = .
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The function y is called the Beltrami coefficient of ¢ and K(p) the eccentricity
of .

A 1-quasi-conformal homeomorphism is conformal. Therefore log K measures
the deviation of ¢ from being conformal.

When the frontier of U in C is locally connected, any quasi-conformal homeo-
morphism ¢ of U extends continuously to AU . In particular, any quasi-conformal
homeomorphism of the upper half-space extends continuously to the boundary.

Note that the right or left composition of a K -quasi-conformal homeomorphism
with a conformal homeomorphism is K -quasi-conformal. Therefore one can define
the notion of being K -quasi-conformal for a homeomorphism between two Riemann
surfaces.

The fundamental result about quasi-conformal homeomorphisms is due to L. Ahl-
fors and L. Bers.

Ahlfors-Bers theorem [AB].— Let y € L*(C) with ||ullo < 1. Then, there
erists a unique quasi-conformal homeomorphism ¢, of C such that

0
(i) —(p'i(z) = p(2) for almost all points z,
0p,,
(i) @, fizes 0, 1 and oo.
The function p — ¢, 1s continuous for the topology of the uniform convergence
over compact sets. Furthermore, for t< 1 we have

01 (2) = 2 +1F,(2) + O(t?),

R =22 | et

Equation (i) is called the Beltrami equation. A quasx-conformal homeomorphism
of C (resp. of H?) which satisfies (ii) is said to be normalized.

where

The following is a corollary of Ahlfors-Bers theorem (existence and unicity).

Theorem [AB]. — Let p € L®(H?) with ||u||le < 1. Then there ezists a unique
normalized quasi-conformal homeomorphism ¢, of H? which satisfies

%(2)

g, *) = p(2).

1.3 Teichmiiller space

Definition.— A Fuchsian group is a Kleinian group I' C PSLy(R). We say that
T' is cocompact (resp. has finite covolume) if H?/T' is compact (has finite volume).
If H?/T' has finite volume, it is conformally equivalent to the complement of a finite
number of points in a compact Riemann surface. A point in this finite set is called
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a puncture. A connected Riemann surface X is hyperbolic when its universal cover
is conformally equivalent to H?. A Riemann surface is hyperbolic if each of its
components is hyperbolic.

Let X be a connected Riemann surface of negative Euler characteristic. By the
Poincaré-Koebe uniformization theorem, the universal cover of X is conformally
equivalent to H2. Hence X is conformally equivalent to the quotient of H® by
a group of conformal automorphisms. The group of conformal automorphisms of
H? equals PSL,(R) acting by homographies. Therefore X is hyperbolic. Since
PSL,(R) is the group of isometries of HZ, the hyperbolic metric on H? projects to
a complete Riemannian metric of constant curvature —1 on X which is in the given
conformal class. This Riemannian metric is called the hyperbolic metric on X . This
construction gives us our first examples of Kleinian groups.

The goal of Teichmiiller theory is to describe all hyperbolic metrics on a fixed
surface or equivalently, all the “deformations” of a given Fuchsian group I'. We will
restrict our attention to cocompact Fuchsian groups.

Let I ¢ PSLy(R) be a cocompact Fuchsian group. Let X = H?/T'.

Definition.— A Fuchsian deformation of T' is a couple (p,®), where p is a
representation of I' in PSL,(R) and where ¢ is a normalized quasi-conformal
homeomorphism of H? which conjugates I' and p(I"), i.e. such that

(i) forall yeTl,
p(1) =oyof!, and
(i) the continuous extension of  to R fixes 0, 1 and oo.

Define an equivalence relation on the set of Fuchsian deformations of I' by
(0, @)~ (p,¢') ifand only if p=p'.

Observe that the extension of & (resp. @') to the real axis conjugates the action
of T' to the one of p(T') (resp. p'(T')). Thus, the density of the set of fixed points
of elements of T in R implies that: p = p’ if and only if @|R = @’|R. The quotient
of the set of Fuchsian deformations of I' by this equivalence relation is called the
Teichmiiller space of I'. We denote it by T(I") or by T(X).

If (p,®) is a Fuchsian deformation of I', p(T') is discrete because its action on
H? is conjugate to that of I'. So @ projects to a homeomorphism ¢ between H2/T'
and H?/p(T'). One checks that the equivalence relation which defines Teichmiiller
space identifies two Fuchsian deformations (p,) and (p/,&’) when the composed
homeomorphism ¢! o ¢' of H?/T is homotopic to the identity. Therefore a point
in T(X) can be interpreted as a hyperbolic surface with a homeomorphism from X,
which is well defined up to homotopy.

The Teichmiiller distance.
For two points ¢;, 05 in T(I') we define

1. e
d(oy,03) = 5mf108K(902 0@,
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where the infimum is taken over all representatives (p;,$;) (resp. (pg,%s)) of oy
(resp. o3).

Then d is a distance, called the Teichmiiller distance, which turns T(I') into a
complete metric space.

In §6, we will need the following result (cf. [Ga]).

Distortion lemma.— Let 0, = (p,$1), 02 = (p2,$2) be two points in T(T).
Let v €T be a hyperbolic element. Then, we have

e 2407 (py (1)) < Lpa(7)) < 41D py ().
The modular group.

Definition. — The modular group of X is the group of homotopy equivalences of
orientation preserving diffeomorphisms of X . It is denoted by Mod(X).

We will denote by X the Riemann surface X with the opposite orientation, i.e.
the quotient of the lower half-plane HZ? by I'. The space of equivalences classes of
Fuchsian deformations of the action of I' on HZ is denoted by T(T) (or by T(X)).
There is a natural map from from J(I') to T(T) induced by the map which assigns
to the Fuchsian deformation (p, ) of T' the deformation (p, @) of I' acting on HZ,
where ¢ is the conjugate of @ by the complex conjugation. It is denoted by s — §
and called the complez conjugation. Its inverse is a map from J(T) to T(I') which
is defined similarly.

Let f be an orientation preserving diffeomorphism of X = H2/T. Choose
a lift f of f to the universal cover jH[z. Since X is compact, f is K -quasi-
conformal for some constant K and f is K -quasi-conformal also. Let (p,) be
a Fuchsian deformation of I'. Then @o f~! is a quasi-conformal homeomorphism
which conjugates I to a certain Fuchsian group. Let a~! € PSL,(R) be an element
which takes the same values as po f =1 on the points 0, 1 and co. Then ao@o
f~! is a normalized quasi-conformal homeomorphism which conjugates the trivial
representation of I' to a representation p;. Therefore, the couple (ps,a0@o f -
is a Fuchsian deformation of I'. One checks easily that the equivalence class of this
deformation depends only of the equivalence class of (p, @), and defines therefore a
map of T(T') to itself, which depends only on the homotopy class of f. We denote
this map by f*: it is an isometry for the Teichmiiller distance. Thus f — f* defines
an isometric action of Mod (X) on T(T).

An orientation reversing diffeomorphism f of X induces also a map f* from
T(T) to T(T) (and also from T(T) to T(T)). This map is an isometry which
commutes with the complex conjugation.

The differentiable structure of Teichmiiller space.

Teichmiiller space has been defined so far as a metric space. In fact it is a smooth
manifold, a property which is crucial in McMullen’s proof of Thurston’s fixed point
theorem. We sketch below how Teichmiiller space can be viewed as a complex
manifold (cf. [Ga]). In order to do this, we first introduce two objects which are
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fundamental for understanding Teichmiiller space from an infinitesimal viewpoint,
the Beltrami forms and the holomorphic quadratic differentials.

Beltrami forms and holomorphic quadratic differentials.
Let T be a (not necessarily cocompact) Fuchsian group. Let X = H?/T.

Definition. — A Beltrami form pu on H2/T is a measurable function % : H? — C,
with finite LZ* -norm and such that

Vyer, ﬁ(v(z))% = i(2)

for almost all z € H?. We denote by B(T') (or B(X)) the Banach space of Beltrami
forms on H?/T' endowed with the L® -norm.

Let BY(I) be the open unit ball in B(I'). Let u € B!(T). By Ahlfors-
Bers theorem, there is a quasi-conformal homeomorphism ¢, of H? with Beltrami
coefficient . A short computation shows that the Beltrami coefficient of the quasi-
conformal homeomorphism p,(7) = <p;1 oy o, vanishes so that p,(7) belongs to
PSL,(R). Clearly, v — p,,( ) is a homomorphism of I' into PSL,(R). On this way,
we define a map IT: BY(I') — T(T") by assigning to x the equivalence class of the
couple (p,,). By definition of T(T'), II is onto.

Definition. — A holomorphic quadratic differential ¢ on H?/T is a holomorphic
function qS on H? which satisfies

Vyel, VzeH?, ¢(v(2)('(2)? = ¢(2).

This transformation rule means that the tensor q?)f(z)dz2 is invariant under the
action of I' and projects therefore to a tensor on X . In particular the expression
|¢(2)||d2?| is invariant under T'. It defines a measure on X. For ¢ € Q(X) and
for E C X a measurable set, the measure of E, [, || is called the ¢-mass of E .
When the ¢-mass of X is finite, ¢ is said to be integrable. We denote by Q(T) (or
Q(X)) the Banach space of integrable holomorphic quadratic differentials endowed
with the L!-norm.

When I' is cocompact, any holomorphic quadratic differential is of course inte-
grable. When I is not cocompact but has finite covolume, the integrability condition
is not necessarily satisfied. It means precisely that when ¢ is expressed in a confor-
mal chart around each puncture, it has at worst a simple pole. When T has finite
covolume, it follows then (for instance from Riemann-Roch theorem) that Q(I') is a
finite dimensional complex vector space. Its dimension is 3g — 3 +p, where g is the
genus of X and p is the number of punctures of X . When I' has infinite covolume,
it is not hard to see that Q(T') is infinite dimensional.

There is a natural pairing between B(I') and Q(I'). If ¢ € Q(T') and p € B(T),
the local expression ¢(z)i(z)|d2?| is invariant under I'. Tt projects to a complex
measure on X which has finite total mass. One defines:

(6,1 / 8(2)u(2)|d2?).
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We denote by N(I') the kernel of this pairing:
NI)={ueB([) | VoeQl), (4,p) =0}

It follows from the Hahn-Banach theorem and from the Riesz representation the-
orem that (.,.) induces a duality between Q(I') and the quotient space B(I')/N(T).

Definition. — Let Y be a hyperbolic Riemann surface with finitely many compo-
nents. The space of Beltrami forms B(Y) is defined as the product of the spaces
B(X) where X varies over the components of Y. The space of integrable holo-
morphic quadratic differentials Q(Y) is defined as the product of the spaces Q(X),
where X varies over the components of Y. The norm on B(Y) (resp. on Q(Y)) is
the supremum norm of the norms on the spaces B(X) (resp. the sum of the norms
on the spaces Q(X)). The pairing between Q(Y') and B(Y) is defined as the sum
of the pairings on the components of Y.

Poincaré series.

Consider a covering of Riemann surfaces 7:Y — X. Let ¢ € Q(Y). f UC X is
an embedded disc, the cover 771(U) — U is trivial so that for each component V;
of 77}(U), the map 7 admits a section s; : U — V;. In any holomorphic chart, the
restriction of ¢ to V; can be expressed in the form ¢;(z)dz?. By Cauchy’s formula
and since ¢ is integrable, the series

3 o 5iu)(siw)?

is absolutely convergent on compact subsets of U. It defines therefore a holo-
morphic function on X . This function transforms under changes of charts like a
quadratic differential and defines an element in Q(X) denoted by ©y;x¢. One
has: ||@y,x¢||<||¢]|. The operator Oy,x : AY) — AX) is called the Theta oper-
ator associated to the cover Y — X . Its norm is less than or equal to 1. The study
of the contraction properties of the operator ©y,x will be the main theme of §5. For
the moment, we note that Oy, x is dual to the pull-back operator on Beltrami forms
for the pairing between Beltrami forms and quadratic differentials. For u € B(X),

one can define a Beltrami form 7*(u) € B(Y) by setting 7*(x) = i. This form is
called the pull-back of 1. For all ¢ € Q(Y) and for all u € B(X), we have

(By/x ¢ 1) = (8,7 ())-

The Bers embedding.

The key ingredient in the proof that the Teichmiiller space carries a complex structure
is a result of L. Bers which allows us to embed T(I') in the complex vector space
Q(T'). We outline below this construction.

Let ' be a cocompact Fuchsian group. Let u € B}(T'). Consider the measurable
function on C which agrees with 4 on H? and which vanishes identically on the
lower half-space H2. This function has a L® -norm strictly less than 1, and by
the Ahlfors-Bers theorem it is the Beltrami coefficient of a unique normalized quasi-
conformal homeomorphism of C. We denote this homeomorphism by ¢* .
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Lemma. — For any two elements u, i’ in BY(T), we have:
ou=py & ¢l =g [,

By construction, the restriction @#|H? is a univalent map. Recall that the
Schwarzian derivative of a univalent map f is the holomorphic function defined
by

B f” ;1 f” )

The transformation rule of 4 under T’ implies that S(p*) transforms under the
action of I' on H? like a holomorphic quadratic differential. Hence S(¢*) € Q(T),
the space of integrable holomorphic quadratic differentials on H2/T". Consider the
map & : BY(T') — Q(T) which assigns to u € BY(I') the holomorphic quadratic
differential S(p*) € Q(T). By the lemma above, ® can be factorized through a
map B : T(I') » Q): ® = Boll. By this lemma also, B is injective since any
univalent map is characterized by its Schwarzian derivative, up to post-composition
with a M6bius map. The map B is called the Bers embedding. We identify T(T')
with its image under B and we continue to denote this image by T(['). By the
Ahlfors-Bers theorem, @ is holomorphic and its derivative D®, at the origin is the
map

Ddy(v)(2) = -;—6 //H2 %dﬁdn, for zeH2.

Since I' is cocompact, Q(T) is a finite dimensional vector space, and the following
result is easy to prove (when I' is an arbitrary Fuchsian group, it is still true but is
a deep theorem due to Bers [Ber]).

Fact. — The map D®, is surjective and induces an isomorphism from B(T')/N(T')
to T).

Thus, by the implicit function theorem, T(I') contains a neighborhood of 0 in
Q(T). It says also that in any sufficiently small neighborhood of 0 € T(T'), ® admits
local sections.

Let u € BY(T) and denote by ', the group conjugated to I' by ¢, . Define a
holomorphic map a,, : BY(T") ~ BY(T',) by

_( vy Oy

a,(v) = (12 Vﬁ)(m) op,

Then a,, is biholomorphic. Furthermore it conjugates ® and @, : B}(T",) — T(T,).

In this way, a neighborhood of T', in T(I') becomes biholomorphically equivalent

to a neighborhood of 0 € Q(T,). In particular, T(I') is an open subset of Q(T)

and so it inherits the complex structure from Q(T'). The derivative D®, induces an

isomorphism from B(I')/N(T) to the tangent space of J(I') at point [' (identified

with 0 € Q(T')). The map a,, induces an identification between the tangent space

of T(T') at I', with the tangent space of T(I';) at the origin. Hence the tangent
space to T(I') at T, is isomorphic to B(T',)/N(T',,).
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The infinitesimal form of Teichmiiller distance.
For the smooth structure constructed above, the Teichmiiller distance has an in-
finitesimal form, that of a Finsler metric.

On BY(T), consider the distance

_ 1
d(py, 12) = ~3 log K(¢,, o ¢;11)'

A short computation gives

K(8,, 0d71) = (L2211 O

from which we deduce the nice formula d(u;, u3) = Sup, gz dp2 (1 (2), 12 (2)), Where
dps is the hyperbolic distance on D?.

By definition, the Teichmiiller distance d satisfies: d(cy,0,) = infd(u;, 1),
where the infimum is taken over all pairs (u;, up) such that IT(y;) = o;. This means
that d is the quotient distance of d by II. Now we construct a Finsler metric on
T(T) with associated distance d. It will appear as the quotient of a Finsler metric
on BY(T') with associated distance d.

)( )o by,

Definition.— A Finsler metric on a Banach manifold B (like for instance an
open set in a Banach space) is a continuous function on the tangent space TB which
induces a Banach norm on the tangent space at each point and which is locally
equivalent to the (ambient) Banach norm.

When B is connected, one can associate a distance to a Finsler metric on B: the
distance between two given points is equal to the infimum of the length of a smooth
arc joining these two points.

On the tangent space of BY(T') (C B(I')) consider the function

Bu(v) =25 Iul2”

where v € B(T) is a tangent vector at u € B*(T). It is a Finsler metric on B}(T)
(which is formally reminiscent of the hyperbolic metric on D?). From the formula

J(Ml,#z) = sup dpa(p1(2), p2(2))
zeH?

one deduces that the distance on B*(T") associated to 3 is d.

The Finsler metric 3 projects to a Finsler metric on T(T'). Let s € T(T). Let
p € BY(T') be such that s = II(u). Let us define

Bs(v) = inf B, (v),

where the infimum is taken over all vectors v such that DII,(v) = v. One shows
that fG,(v) does not depend on p and that f is a Finsler metric on T(T'). Since d
is the quotient distance of d by II, it follows that d is the distance associated to
B. This is a general result on Finsler metrics due to O’Byrne [0’B].
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On the tangent space at the origin of Teichmiiller space T(I') (i.e. at point T'),
B equals the quotient norm of the L*-norm on B(I')/N(I'). The identification of
the tangent space to T(I') at an arbitrary point T, with B(T',)/N(T',,) implies that
f equals on this tangent space the quotient of the L*-norm on B(T',)/N(T,,).

Since the cotangent space of T(I') at T, is identified with Q(I',) via the pairing
(,-), the norm dual to 3 equal the L'-norm on Q(T,).

1.4 Geometrically finite groups

An important feature of the proof of the Hyperbolization theorem for non-fibered
manifolds is that we need only to consider Kleinian groups which are geometrically
finite. Since we will restrict to Kleinian groups without parabolic elements, we adopt
the following definition (for a detailed discussion of geometrically finite groups in
PSL,(C), see [Mor]).

Definition.— A geometrically finite group is a non-elementary Kleinian group
G C PSLy(C) without parabolic elements, such that N(G) is compact.

A cocompact Fuchsian group I' is geometrically finite and Nj(G) is diffeomorphic
to the product H2/T x [0,1]. If G is a geometrically finite group which is not
Fuchsian, N(G) is a 3-manifold with compact boundary and, for all § > 0, Njs(G)
is a compact 3-manifold (of class C!).

Hyperbolic manifolds.

Definition. — Suppose that M is a compact 3-manifold which admits an atlas
A of class C! with charts modelled on convex subsets of H® and with coordinate
changes in PSLy(C). Then the constant curvature —1 Riemannian metric of He
can be pulled back to a Riemannian metric m4 on M (of class C*).

We say that M is hyperbolic if M admits an atlas A such that
(i) the distance associated to my, is complete, and

(ii) the volume of m, is finite.

A Riemannian metric m4 with these properties is called a hyperbolic metric on
M.

To a hyperbolic metric m4 on M, one can associate its developping map ([Thl],
[CEG)): it is a local isometry Dev from the universal cover M of M (endowed with
the lift of the metric m4 ) to H® which conjugates the canonical action of (M)
to the action of a subgroup of PSL,(C) denoted by G4, and called the holonomy
group of my .

Let c(p,q) be a length-minimizing geodesic connecting the points p and ¢ of M.
It follows from the fact that the charts in A are modelled on convex subsets of H?
that Dev(c(p,q)) is a geodesic of H®. The uniqueness of the geodesic connecting two
points of H* implies then that Dev is a diffeomorphism onto its image. Therefore
G, is a Kleinian group. Furthermore, Dev induces an isometric embedding from
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M into M(G,), which identifies isometrically M with a closed convex subset of
M(Gy).

Examples. — 1) The manifold (S' x BZ) is hyperbolic: S! xB? is diffeomorphic to
the quotient of a constant radius neighborhood of a geodesic in H® by a hyperbolic
element fixing this geodesic.

2) Let G be a geometrically finite group. Then, for § > 0, Ns(G) is a hyperbolic
manifold.

Fact.— Every hyperbolic manifold is diffeomorphic to one of the above ezamples.

Proof. — Let m, be a hyperbolic metric on M. Let G4 (=~ m;(M)) be its
holonomy group. Since M is compact, each element of 7;(M) is represented by a
closed geodesic. Therefore, if G4 is elementary, it is a cyclic group generated by a
hyperbolic isometry and M is diffeomorphic to the first example.

Suppose that G4 is non-elementary. Since C(G,) is the smallest closed convex
subset of H3 invariant under G, it is contained in the image of Dev. Therefore
N(G,) is naturally contained in M. Since M is compact, G4 has no parabolic
elements, and N(G,) is compact. Therefore, G4 is geometrically finite. Since M
is convex in M(G,), M is diffeomorphic to Ng(G,). O

Thurston’s hyperbolization theorem gives a sufficient condition on the topology
of M that guarantees that M is hyperbolic.

Thurston’s hyperbolization theorem.— Let M be a Haken manifold whose
fundamental group does not contain Z + Z -subgroups. Then M is hyperbolic.

The definition of a Haken manifold will be given in §7.

Except the arithmetic constructions which give little control on the topology of
the resulting quotient manifold [Bo], there are essentially three ways to construct
Kleinian groups:

() Andreev’s theorem yields a lot of examples of hyperbolic polyhedra in H3® [An]
(cf. introduction);

(ii) the deformation theory, using quasi-conformal maps, gives us a way to deform a
given geometrically finite group;

(iif) Maskit’s combination theorem give conditions under which two geometrically
finite groups can be amalgamated to form a new geometrically finite group [Mas2).

All of these techniques are used in the proof of Thurston’s hyperbolization theo-
rem. Andreev’s theorem will be discussed in §8. Maskit's combination theorem will
be explained in §2. Now, we describe how quasi-conformal homeomorphisms can be
used to deform a given geometrically finite group.

The deformation space of a geometrically finite group.

The deformation theory of a geometrically finite group in PSL,(C) can be formulated
in exactly the same terms as the deformation theory of a Fuchsian group in PSL,(R).
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Let G be a geometrically finite group such that Q(G) # @ and such that each
component of (G) is conformally equivalent to D?. This is equivalent to say that
M = M(G) is a compact manifold with non-empty and incompressible boundary (i.e.
the fundamental group of any component of M injects into m;(M), see §7). We
will suppose also that L(G) C C contains 0, 1 and co. This situation can always
be achieved by conjugating G in PSLy(C).

Definition. — A quasi-conformal deformation of G is a couple (p, ), where p is
a representation of G into PSLy(C) and where ¢ is a normalized quasi-conformal
homeomorphism of C which conjugates the actions of G and p(G) on C, i.e. which
satisfies, for all g € G

plg)=Fogod™
Consider the equivalence relation on the set of quasi-conformal deformations of G

defined by (p,¢) ~ (¢',¢') if and only if p = p'. The set of equivalence classes of
quasi-conformal deformations of G is denoted by §F(G) (or GF(M)).

(i) in the next Proposition is one reason for this notation.

Proposition.— Let (p,§) be a quasi-conformal deformation of G. Then
(i) p(G) is geometrically finite, and

(i) @ induces a quasi-conformal homeomorphism ¢ between Q(G)/G and
Q(p(@))/p(G) which extends to a homeomorphism @ between M(G) and M(p(G)).

One way for proving this Proposition is to use the following result of Thurston
which provides a natural extension of any quasi-conformal homeomorphism of Ctoa
homeomorphism of H?UC ([Th1], [Re]). Let & be a quasi-conformal homeomorphism
of C. Then there is a homeomorphism ® = ®(¢) such that

(i) _5(6) extends continuously to a homeomorphism of H3 UT and restricts to &
on C, and

(ii) for any isometries g, h of H?, ;I;(g oFoh)=god(@)oh.

Definition. — The homeomorphism 5((}5) is called the natural extension of @.

Let us go back to the Proposition. The natural extension &(%) induces a home-
omorphism & = &(yp) from M(G) to M(p(G)), called also the natural extension of
. This proves (ii). Under our hypothesis, M(G) is compact. Therefore (ii) implies
that M(p(G)) is compact also. Thus, p(G) is geometrically finite.

The Ahlfors-Bers map.

The Ahlfors-Bers theorem gives us a way to parametrize §F(M) by a product of
Teichmiiller spaces.

Notations.— Let G be a geometrically finite group such that the manifold M =
M(G) has a non-empty and incompressible boundary. Denote by (S;)i=1,.x the
components of the Riemann surface M = Q(G)/G. For 1< i<k, choose a
component €; of the preimage of S; in (G). Denote by I', the stabilizer of ;
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in G. By Koebe’s uniformization theorem, there is a conformal homeomorphism
fi : Q; = H? which conjugates I} to a Fuchsian group I'; C PSL,(R).

Let (p,p) be a quasi-conformal deformation of G. For 1<i<k, let f! :
@(€;) — H? be a conformal homeomorphism which conjugates the action of p(T%)
on ; with the action of some Fuchsian group g}(T;) on H?. Then fo@o f;' is
a quasi-conformal homeomorphism. Up to post-composing f; with a Mébius map,
we can suppose that fjo@o £ is normalized. Then (g}, f/o@o f;!) is a Fuchsian
deformation of T';. One checks easily that the class of (g, f/ o @o f;!) in T(T})
depends only on the class of (p, ) in §F(M).

Set T(OM) = x;T(T}).

Definition.— The Ahlfors-Bers map is the map from §F(M) to T(OM) which
assigns to (p, ) the k-tuple whose i-th coordinate is the class of (o, f{ 0o fi').
It is denoted by 4.

Theorem. — 0 is a bijection.

Proof.— Let s = (sy,--+,8;) € T(OM). Choose p; € B'(S;) such that s; =
(0i,,,) - By taking the pull-back of each Beltrami form u; to the preimage of S;
in Q(G), we define a function i € L®(2(G)) which satisfies

RN 4 )

u(v(Z))W = i(2),
for all v € G. Extend £ to a function i € L%(C) with norm strictly smaller than
1 by setting it equal to 0 on L(G). Then the quasi-conformal homeomorphism
¢z provided by the Ahlfors-Bers theorem conjugates G to a group p(G). The
uniqueness of the solution of the Beltrami equation implies

6(p)¢ﬁ) = (81,-~ ' ask)'

This proves that 0 is onto. The injectivity is more delicate. The proof uses the
Ahlfors measure 0 theorem, which states that the limit set of any geometrically finite
group has Lebesgue measure 0 or equals the whole sphere [Ahl]. a

Notations. — Let s € T(OM). Let (p, ) such that d(p,») = s. We will denote

by G* the group p(G) and by M* the manifold M(G®). The point s will be then
identified with dM?, thought of as a hyperbolic metric on M .

~— | |

Ahlfors’ lemma.

The following (particular case of a) lemma of Ahlfors compares the lengths of closed
geodesics in dM® and in M(G®). Its proof is an application of Koebe’s 1/4-theorem.
We keep the same hypothesis and notations as for the definition of the Ahlfors-Bers
map.

Lemma [Ahl]. — Let g be a closed curve on OM* which is homotopic to a geodesic
of length £°(g) for the hyperbolic metric OM*®. Then g is homotopic in M° to a
geodesic contained in M(G®) of length smaller than 2°(g).
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Quasi-Fuchsian groups.

Let T be a cocompact Fuchsian group. Then L(T') = R and Q(I') has two invariant
components, the upper-half plane H? and the lower half-plane HZ. Clearly, M(T)
is homeomorphic to (H?/T) x [0,1]; also, one component of AM(T') is conformally
equivalent to H?/T' and the other to H2/T'. Thus the Ahlfors-Bers map leads to a
new class of Kleinian groups, the quasi-Fuchsian groups.

Definition. — A quasi-Fuchsian group is a geometrically finite G such that for
some cocompact Fuchsian group I', there is a quasi-conformal deformation (p, ) of
I' with G = p(I").

If G is quasi-Fuchsian, M(G) is diffeomorphic to the product of a closed surface
by an interval.

Maskit’s theorem.
Same hypothesis and notations as for the definition of the Ahlfors-Bers map.

Let S be a component of M . Then the inclusion m;(S) C m (M) ~ G gives a
representation p : m;(S) — PSLy(C), which is faithful and has discrete image. With
these notations, we have:

Theorem [Mas2]. — The group p(m,(S)) is quasi-Fuchsian.

Remark. — This last result is a particular case of a theorem of Maskit which asserts
that any finitely generated subgroup of a geometrically finite group G (eventually
with parabolic elements) with Q(G) # @, is geometrically finite ([Mor], [OP]). How-
ever, this weaker statement will be sufficient for us: its most important application
will be to define the skinning map (cf.§2).

The Kleinian groups that will appear during the proof of the Hyperbolization
theorem are constructed by induction. It follows from this construction that the
Maskit theorem can be checked for these groups by the same induction.

Remark. — An essential hypothesis of Maskit’s theorem is Q(G) # 0. A finitely
generated subgroup of an arbitrary geometrically finite group is not necessarily
geometrically finite. The basic example to keep in mind is the fundamental group
of the fiber of a hyperbolic manifold which fibers over the circle. This is precisely
the reason why the proof of Thurston’s hyperbolization theorem needs to consider
separately the cases of fibered manifolds and non-fibered manifolds.

One corollary of Maskit’s theorem is the next result which will be used in §2.

Proposition. — Let G be a geometrically finite group. Then, for all n> 0, Q(G)
has only a finite number of components with a diameter bigger than 7.

Hyperbolic annuli.

We give some formulas for the hyperbolic metric on annuli, which will be used in §3
and §4.
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For r <1', we denote by A, . the annulus:
/
A ={z€C, e <|z<e}.

Any hyperbolic annulus H2/(v), where v is an hyperbolic isometry, is conformally
equivalent to an annulus A,-r & . The hyperbolic metric on A,-r .= is given by:

ds = |dz|
2R|z| cos(wlﬂ%ﬂ)'
The circle of radius 1 is the only embedded closed geodesic of this annulus. Its
hyperbolic length is £(y) = 7%/R.
For r < R, the two circles of radius ¢” and e™" are equidistant curves to the
circle of radius 1 at distance D such that
r

tanh D = sm(wﬁ).

The hyperbolic length of these two circles is

7l.2

Rcos(m5%)
The injectivity radius of the hyperbolic metric of A,-z & is constant on the circle
of radius e": if it is bounded above, say by €(2), the injectivity radius on the circle
of radius e" is equivalent to the hyperbolic length of this circle, independently of R.
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CHAPTER 2

The fixed point problem

Let N be a connected and orientable closed 3-manifold. Let S be a (not necessarily
connected) closed, orientable, incompressible surface embedded in N . Suppose that
the Euler characteristic of each component of S is strictly negative. Denote by
M the complement in N of an open regular neighborhood of §. We say that M
is obtained by splitting N along S (cf. §7). Since S is incompressible, M has
incompressible boundary.

The boundary of M is made of the union of two copies S; and S, of S. There
is an orientation reversing diffeomorphism f: §; — S, such that N is diffeomorphic
to the quotient of M by the relation: z =y if and only if z € S;, y € S, and
y = f(z). Rather than to consider the diffeomorphism f : $; — S, it is more
convenient to introduce the map 7: M — @M defined by 7(z) = f(z) for z € S,
and 7(y) = f~!(y) for y € S,. Then 7 is an orientation reversing involution of OM
which permutes the components by pairs. And N is diffeomorphic to M/7, i.e. to
the quotient space of M by the equivalence relation

z~vy if and only if z € M and y =7(z).

The core of the proof of Thurston’s hyperbolization theorem is the following result.

Final gluing theorem.— Let M be a hyperbolic manifold with incompressible
boundary which is not an interval bundle. Let T be an orientation reversing involu-
tion of OM which permutes the components by pairs. If M/t is atoroidal, then it
is hyperbolic.

In this chapter, we prove that if a certain map from T(0M) to itself has a fixed
point, then the conclusion of the Final gluing theorem holds ( M is assumed to satisfy
the hypothesis in the Final gluing theorem).



108 2 THE FIXED POINT PROBLEM

2.1 Maskit’s combination theorem

We keep the same notations as in the introduction of this chapter. But we suppose
that S is connected and we don’t suppose anymore that N is closed. Then M has
two or one components according to whether S separates N or not. We suppose
also that N is not an interval bundle (cf. §7).

Suppose that M is hyperbolic. Then there exists a geometrically finite group
G, (resp. two geometrically finite groups G, and G,) such that we can identify
M with M(G,) (resp. with the disjoint union of M(G,) and M(G,)) in the case
that S does not separate N (resp. separates N ). Maskit’s combination theorem
provides a sufficient condition on G; (resp. on G; and Gj) which implies that N
is hyperbolic. Since S’ = S;U S, is incompressible in M , Maskit’s theorem (cf. §1)
says that the images of m;(S;) and 7;(S;) in G, (resp. in G; and in G; ) are quasi-
Fuchsian groups. We still denote these images by m;(S;), m1(S;). For i =1,2, we
set N; = M(my(S;)) and N; = M(m(S;)). Since m(S;) is quasi-Fuchsian, N; is
diffeomorphic to S; x [0, 1]. Under this diffeomorphism, one component of dN; gets
identified with S; and will be still denoted by §;. The diffeomorphism f induces a
homotopy equivalence f: N; — N,. With these notations we have:

Maskit’s combination theorem [Masl].— Assume that f is homotopic to an
isometry J: N; — N, whose extension to N; satisfies J(S;) = N, —S,. Then N
18 hyperbolic.

Remark. — This theorem would not hold if M(G,) and M(G;) were twisted
interval bundles.

Proof. — We consider the case when S separates N, the proof in the other case
being similar. When one of the manifolds M(G,) and M(G,) is diffeomorphic to a
trivial product, there is nothing to prove. We will suppose during the proof that say,
M(G,) is not a twisted interval bundle over a closed surface. Hence, only M(G,)
might be an interval bundle over a closed surface. Recall that M(G;) is an interval
bundle if and only if m;(S;) has index one or two in G;, if and only if (G;) has
two components, see §7.

For i = 1,2, M(G;) is diffeomorphic to Ns(G;). Consider the covering p; :
N; — M(G;). The map p; extends continuously to a map N; US; — M(G;)U S;
whose restriction to S; is an embedding.

Let f; be the (unique) harmonic function on N; such that f;(z) tends to 1 when
z tends to S; and to 0 when z tends to dN; - S; (the existence of such a function
is obtained by solving the corresponding Dirichlet problem in H?).

Suppose that M(G;)) is not an interval bundle. Then f; has the following two
properties:
(i) thelevel surface f;'(1/2) maps injectively into M(G;) under the covering map
p;. This follows from the maximum principle for harmonic functions and from the
hypothesis on the index of 7(S;) in G;.



J.-P. OTAL— HYPERBOLIZATION OF 3-MANIFOLDS 109

(i) f7*(1/2) is compact. The reason is that f;(z) tendsto 0 or 1 as z tends to
oo in M(G;).

(ii) for 6 >0, f7!(1/2) is contained in the interior of Nj(G;). This follows from
the fact that f;}(1/2) is contained in the Nielsen core N(G;), by the maximum
principle again.

Therefore, since p; is a local homeomorphism, for each regular value ¢ of f;
which is sufficiently close to 1/2, I; = f;(c) is a compact surface embedded in the
interior of Nj(G;) such that p;|Z; is an embedding.

Also, if ¢ is chosen sufficiently close to 1/2, £ = f3}(1 — ¢) is an embedded
compact surface in the interior of Ng(G;) which satisfies py|X; is an embedding.

When M(G,) is an interval bundle, then (ii) and (iii) still hold, but (i) does not
anymore. Let t be the deck transformation of the cover Ny — M(G;). Then ¢
leaves f3'(1/2) invariant (inducing a degree two cover) and exchanges f;([0,1/2[)
with f51(]1/2,1]). Therefore, if ¢ < 1/2 is a regular value of f, sufficiently close
to 1/2, £, = f5 (1 —c) is a compact surface embedded in the interior of N5(Gs)
such that p, restricts to f3 ([l —¢,1[) as an embedding. Since by hypothesis, the
index of 7,(S;) in G, is greater than 2, we may suppose for this choice of ¢, that
%, = f3 }(c) is contained in the interior of Ns(G;) and that p;|Z; is an embedding.

By the maximum principle, no sum of components of ¥£; can be homologous to
0 in N;. Therefore since ¥; separates the two components of dN;, it is connected.
Denote by H; the submanifold of N; bounded by ¥; and whose closure in N;
contains S;. The covering map p; is an embedding when restricted to £; and to
the end of H; approaching S;. When m(S;) has index greater than 2 in G;, it
follows that p;|H; is an embedding. When M(G,) is an interval bundle, the same
conclusion holds by the choice of X, .

The hypothesis of the theorem and the uniqueness of the functions f; and f;
imply: fy0J =1~ f;. Therefore £, = J(X;) and J induces an orientation reversing
diffeomorphism from ¥; to I, (X; is oriented as boundary of H;).

Let us consider now the manifold N’ obtained as the result of the gluing of
Mj = N5(G1) — py(H,) and M = N5(Gs) — pa(Hy) identifying py(Z;) and py(Z;)
by the diffeomorphism p,oJop;*. Then N’ admits an atlas with charts modelled
on convex sets of H® (since a neighborhood of N’ is isometric to a neighborhood of
certain components of the boundary of the disjoint union of Ns(G;) and N;(G,))
and with coordinate changes in PSLy(C). Therefore N’ is a hyperbolic manifold.

In order to prove the Maskit combination theorem, it remains to prove that N’ is
diffeomorphic to N. For this, we could invoke Waldhausen's theorem on homotopy
equivalences between Haken manifolds (cf. [Mor]). But since only a small part of
this theorem is necessary, we prefer to explain this point.

Suppose first that p;(X,) is incompressible in N'. Then E; is incompressible
in N;. Therefore, by a theorem of Stallings [Stal], H; U S; is diffeomorphic to
S; x [0,1]. Since p;|H; is an embedding, this implies that M| is diffeomorphic
to M(G;). Under this diffeomorphism, p, o Jop;! : £; — I, is homotopic to
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f:81 — S,. Thus, by a theorem of Nielsen [Nie], p, 0Jo p{l is isotopic to f. So
N' is diffeomorphic to N .

When p,(Z;) is compressible in N’, there exists, by Dehn’s lemma, a compres-
sion disc for py(X;) in N, i.e. there is a disc D’ embedded in N’ which intersects
p1(X;) transversally and exactly along its boundary and such that the curve 6D’
is not homotopic to 0 on py(E;) (cf. §7). Suppose that D' is contained, say in
M} C M(G,). Then D' can be lifted isomorphically to a compression disc D for
Z; in N;. Hence py|(¥; UD) is injective. Therefore, the restriction of p; to the
union of H; and a regular neighborhood N(D) of D is injective. The boundary of
HyUN(D) contains two or one components according to wether 8D does or does not
disconnect X, . Let X} be the component of 8(H, U N(D)) which is homologuous
to X;. If it exists, the other component, denoted by B, , is homologuous to 0. It
bounds therefore a compact (connected) manifold Z; in N,. The surface £} cuts
N, into two components, one of which, denoted by Hj, contains H;. We prove
that p|H; is an embedding. Clearly, H; equals the union along B, of H,UN(D)
and Z;. The surface p;(B;) cuts M(G,) into two components: one is unbounded
and contains p;(H;), the other, denoted by Tj, is compact. The image p;(Z;) is
compact. Since p; is an open map, p;(Z;) contains 7T;. Since p; is an open map
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and since M(G,) is not compact, p;(Z;) equals T; . It follows that p; is an embed-
ding when restricted to Z; and therefore also when restricted to Hj. The surface

5 = J(Z}) cuts N, into two components, one of which, denoted by Hj, is con-
tained in H,. Certainly p, restricts to H; as an embedding since it does already on
H, . Also, for some constant §' > 0, p;(D) and p,(D) are contained respectively in
N§(G;) and Nj(G,). Therefore, up to replacing in the original description of N',
p1(Z;) by p(Z]) and 6 by &', we obtain a hyperbolic manifold N (diffeomorphic
to N').

The genus of p;(Z}) is strictly smaller than the genus of p;(X,) since 9D is
not homotopic to 0 on p;(X;). Hence this process ends up, after a finite number of
steps, with the case when the gluing surface is incompressible, bringing a hyperbolic
manifold diffeomorphic to N. 0

2.2 The skinning map

The skinning map, introduced by Thurston, allows us to formulate the hypothesis
of Maskit’s combination theorem as the existence of a fixed point for a certain map
defined on a Teichmiiller space. In this section, we define this map and we enunciate
the Fixed point theorem.

We keep the same notations and hypothesis as for the definition of the Ahlfors-Bers
map. For 1<i<k, I} is a quasi-Fuchsian group by Maskit's theorem (cf. §1). Thus
Q(T%) has two connected components, £; and £);. Let I'; be a Fuchsian group such
that S; is conformally equivalent to H2/T;. For each i, there is a quasi-conformal
homeomorphism f; of C such that:

(i) fi(H)=0;
(i) fioyofi'=49 forall yeT;.

Set T(OM) = x;T([;) and T(OM) = x;T(T;). Let s € T(OM) and let (p, )
be the quasi-conformal deformation of G such that s = 8(p,@). Then p(T;) is
conjugated to T; by the quasi-conformal homeomorphism @ o f;. This defines a
point in GF(T;). By the Ahlfors-Bers theorem again, §F(T;) is parametrized by the
product T(T;) x T(T;). The first Ahlfors-Bers coordinate of (p|I'j,@o f;) is s;. We
denote the second coordinate by s;.

Definition. — The skinning map associated to M is the map o : T(OM) — T(OM)
defined by

o(s) = (s}, .-8k)-

The Riemann surface s; can be interpreted as the “outside” structure on the
component S;, whether s is the “inside” structure, i.e. the one which appears
when one takes off the “skin” of the manifold M. Another way is to consider the
covering of M having fundamental group 7;(S;). This covering is homeomorphic to
S; xR. Any quasi-conformal deformation of G with Ahlfors-Bers parameters equals
to (sy,-++,8z) can be lifted to a quasi-conformal deformation of this covering. The
parameters of this deformation are (s;,s}).
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Notation. — Let s € T(0M). We will denote o(s) by ¢(OM°), thinking of
o(0M?®) as a hyperbolic metric on 0M (in the same way as we think of s as a
hyperbolic metric on M, cf. §1).

A reformulation of Maskit’s combination theorem.

We use now the skinning map to formulate in a different way the hypothesis of
Maskit’s combination theorem. We keep the same notations as in the statement
of this theorem. Consider first the particular case when S separates N into two
components.

Let o; be the skinning map associated to M;. Let (s;,2;) € T(M;) where
s; denotes the coordinate on the factor S; and 2; denotes the coordinates on the
components of OM; others than S;. Fix z; and z, and denote by o}(s;) the
coordinate of ;(s;,2;) on the factor S;. Consider the quasi-conformal deformation
M=) of M;. Then Nj is deformed to the point with Ahlfors-Bers coordinates

(s;,0(s;)) . The hypothesis of Maskit’s combination means exactly that
(1) f*(s1) =03(s2) and fooi(s1) = 5o

When (1) is satisfied, Maskit’s combination theorem asserts that M) and
M{**) can be “glued together”, yielding a hyperbolic manifold diffeomorphic
to N. (1) can be stated in a more symmetric way. The diffeomorphism 7
from S; U S, to itself defined by 7(z,y) = (f~'(y),f(z)). induces a map
™ :T(S;US,) = T(S,US,). It is straightforward to check that (i) means precisely
that 7*(c1(s,),o3(s3)) = (s1,83), or in other terms, that (s;,s;) is a fixed point of
the composition of 7* with (o},04).

This particular case extends similarly to the case when S is connected but does
not separate N .

Consider now the situation of the Final gluing theorem, i.e. when S is not
necesarily connected. Then M is the disjoint union of hyperbolic manifolds with
incompressible boundary M, -- M, -+, M,.

Definition. — The Teichmiiller space T(8M) (resp. T(OM)) is defined as the
product of the Teichmiiller spaces T(OM;) (resp. T(OM;)). The skinning map
o : T(OM) — T(OM) is the product of the skinning maps o; associated to M;.

Let 7 be an orientation reversing diffeomorphism of OM which permutes the
components by pairs. Then 7 induces a map 7*: T(OM) — T(OM).

With these notations, the following theorem is merely an extension to this general
case of the Maskit combination theorem in the formulation given above. Its proof
follows from the original statement by induction on the number of components of S.

Theorem.— If 7" oo has a fized point, then M/T is hyperbolic.
Using that, the Final gluing theorem becomes equivalent to the following;

Thurston’s fixed point theorem.— Let M be a hyperbolic manifold with incom-
pressible boundary which is not an interval bundle. Let T be an orientation reversing
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involution of OM which permutes the components by pairs. If M/7 is atoroidal,
then * o has a fized point.

We conclude this section by computing the skinning map associated to a connected
hyperbolic manifold M which is an interval bundle. There are only two possibilities
for M up to diffeomorphism. It is either the product of a closed orientable surface
S with the interval [0,1] or the twisted interval bundle over a non-orientable surface
T (cf. §7).

In the first case, we can identify S with the quotient H?/T' for some Fuchsian
group T'. Then T(OM) = T(T') x T(T') and the skinning map is given by o((z,y)) =
(y,z). In the second case, M is identified with the orientation cover S of T'.
The deck transformation ¢ of this cover reverses the orientation on S and induces
therefore a map t* : T(T') — T(T). By definition, we have: o =t*.

The computation in these two cases shows that ¢ is an isometry when T(6M)
and T(OM) are endowed with their respective Teichmiiller distances. Hence when
M is diffeomorphic to an interval bundle, ¢ is an isometry. However if M is con-
nected and is not an interval bundle, then ¢ is contracting. We will understand
why it is so soon in this chapter, when we compute the derivative and the coderiva-
tive of . There is another way to prove this contraction property, by using the
Teichmiiller theorem which describes the extremal quasi-conformal map between two
homeomorphic Riemann surfaces (cf. [Mor]).

2.3 The derivative and the coderivative of o

McMullen’s proof of Thurston’s fixed point theorem entails a detailed analysis of the
derivative of 7* oo . The derivative and coderivative of ¢ at a point s € T(OM) are
expressed in terms of the geometry of the skinned surface o(9M*). Like a leopard
skin, 0(OM?) is covered by spots.

The leopard spots.

Same hypothesis and notations as for the definition of the skinning map. Let s €
T(0M).

Definition. — The image of a component U of QG*) N @(Q;) in the surface
@(%)/p(T%) is called a spot.

Notation.— Let U C ¢(OM*®) be a spot covered by a component U of QG?).
Let l"fuv be the stabilizer of U in G®. Then U is conformally equivalent to the

quotient U /T%Np(T3). Hence U covers the component U /T% of 8M* (cf. Figure
2.2). We denote this component by Xy .

Remark. — The quasi-conformal homeomorphism ¢ projects to a homeomor-
phism between o(0M) and o(0M?®) which maps the spots on o(M) to the spots
on g(OM?®). In particular, the topological configuration of the spots on o(0M*)
does not depend on s. Since ¢ conjugates G with G*, the topological types of the
covers U — Xy, associated to the spots do not depend on s either.
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Xy

Figure 2.2

Since the components of Q(G) are simply connected, the inclusion of each spot
in ¢(0M) induces an injection on the fundamental group.

The coderivative of o.

Notation.— For a spot U contained in o(0M?®), we denote by O the Theta
operator Oy, associated to the cover U — X}, .

Let ¢ € Q(o(OM?)). Since the restriction @y of ¢ to U is integrable, we can
define a holomorphic quadratic differential Oy ¢y . It is an element of Q(OM®) with
norm less than or equal to ||@y|| (cf. §1). Thus, we can sum the differentials Oy ¢y
when U varies over all the spots contained in ¢(9M?®). This defines an element of
Q(0M?), denoted by 3, Oy .

The derivative of o.

The tangent space to T(OM) (resp. to T(c(OM))) at s is isomorphic to the
quotient B(OM®)/N(OM®) (resp. to B(c(0M®))/N(c(0M?)). Let u € B(OM?®).
Let ji(z)dz/dz be the pull-back of ;1 under the covering Q(G®) — dM*. By setting
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E=0 on L(©(G®)), we obtain an element i € L*(C) such that

oY)
Z = VA y
B(v(2)) 7@ iz)
for almost all z € C and for all v € G®. In particular for all i, the restriction of

i to () is invariant under p(I';). It defines therefore a Beltrami form 7; on
@(€2)/p(T;) . In this way, we obtain a Beltrami form 7 = (;) on o(0M?).

With the above notations, we have:

Proposition 2.1. —
(i) p — & induces a map from B(OM®)/N(OM?®) to B(c(OM*))/N(c(0M?))

which is the derivative of o at s, and

(ii) the coderivative of o at s is given by

diop =) Outy.
U

Proof. — Let I : BY(M) — T(0M), and I : B (c(0M)) — T(c(OM)) be the
projections defined in §1. Recall that II (resp. II) induces an isomorphism between
B(OM)/N(OM) (resp. B(c(0M))/N(c(0M))) and the tangent space to T(OM)
(resp. T(c(0M))) at OM (resp. o(dM)). Choose a local differentiable section £
of II, defined in an open neighborhood V of M in T(OM) (cf. §1). It follows
from the definition of & that we have, for s € V: o(s) =IIo£(s). This implies that
the map u — Ji projects to a map from B(OM)/N(OM) to B(c(0M))/N(c(0M))
which is the derivative of o at dM . The differentiablity of ¢ at an arbitrary point
follows from this special case, by using the naturality of the differentiable structure
on T(OM) (cf. §1).

Let u € B(OM?®). Denote by [y the restriction of i to U, and by (:,-)y
the pairing between holomorphic quadratic differentials and Beltrami forms on U
(cf. §1). By definition, & vanishes in the complement of the spots. Thus, for any
¢ € Q(a(0M*)), we have

() = Y (Eu,$v)u,

U

where the sum carries over all the spots U C 0(0M?®). By definition, py is the pull-
back of p under the covering U — Xy . Since the pull-back operator on Beltrami
forms is the adjoint of the Theta operator, we have

(By, du)v = (1, Oudy) x, -

Therefore

(7 9) = (1, ) Oudy)-
U

This proves Proposition 2.1 (ii). 0
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Proposition 2.1 shows the relation between ¢ and the Theta operators associated
to the spots. It implies that, for s € T(OM) and ¢ € Q(oc(8M?®)), we have

lldsodll < 38w lllidull
U

In particular ||d}o]| < supy ||By/||. In order to study more precisely the contraction
properties of o, we will first establish related contraction properties for the operators
6Oy . We describe now the topological type of the covers associated to the spots.

The leopard spots and the topology of M.

If M is an interval bundle over a closed surface, each component of o(0M?) is a
spot and the cover associated to it is trivial: then d*o is clearly an isometry (in that
case, we had already noticed that o was an isometry).

Therefore, we assume in the rest of this section that M is not an interval bundle.
Since this topological type of the covers associated to the spots does not depend on
8, we may suppose M° =M.

Definition.— Let S be a compact surface contained in a connected surface X .
We say that S is incompressible if it is connected and if 7;(S) injects into m;(X).
A cover Y — X between connected surfaces is geometric if m,(Y), viewed as a
subgroup of m,(X), is equal to the fundamental group of a proper incompressible
surface S C X . In this case we say that the cover Y — X 1is associated to S.

Examples. — The universal cover of any surface is geometric: it is associated to a
disc. A non-trivial finite cover of a geometric cover is not geometric.

Proposition 2.2. —
(i) Let U C o(OM) be a spot. Then the cover U — Xy is geometric.
(i) All but finitely many spots in o(OM) are simply connected.

Proof. — We keep the same notations that we used to define the spots. Let S; be
the component of M such that U is contained in o(S;). To simplify the notations
we denote {2; by 2, Q by Q and I} by I'. Then I" is a quasi-Fuchsian group
and QI')=QuU Q Let UCQ bea component of the preimage of U. Denote by
T the stabilizer of U in G. Since U = U/T'NI" and Xy = U/T, the cover U — X
corresponds to the subgroup I'NT of my(Xy) ~ I'. Therefore, (i) is equivalent to
say that [ NI is the fundamental group of a proper incompressible surface of Xj; .

Since I (resp. I') is quasi-Fuchsian, the frontier of Q (resp. I~J) in C equals
the Jordan curve L(I') (resp. L(T')}). Consider the closed set F = L(I') N L(I"),
which is invariant under IY NT'. We note first that F' is a proper subset of L(T).
For if F' were equal to L(T"), then Q(G) would be the disjoint union of Q and U.
This would imply that I is a subgroup of G of index at most 2, i.e. that M is an
interval bundle (cf. §7).

Let y €. Wehave v()NQ =0 if y¢TNI and y(@) =0 if ye T NI,
This implies that F' and y(F) are not linked on L(T'), i.e. that no pair of points in
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F alternates on L(I') with a pair of points in y(F). We consider now distinct cases
according to the cardinality of F.

1) fF>2.
Let C(F) denote the convex hull of F in UUL(T) for the hyperbolic metric on U .

Lemma 2.3. — Under the covering U - Xy , the frontier of C(F) in U maps to
a disjoint union of embedded closed geodesics.

Proof. — Let g be a geodesic in the frontier of C(F) in U. Since, for y € T the
endpoints of § do not alternate on L(I') with the endpoints of 4(g), § maps to a
geodesic g on Xy without transverse self-intersections. Since two distincts translates
of F are not linked, two distincts translates of C(F) intersect atmost along their
frontiers; therefore, C(F) maps to a disjoint union of embedded geodesics. Suppose
for a contradiction that for some geodesic § C dC(F), g is not a closed curve. Then
g is not compact. Hence there is an infinite sequence (7y;) of elements of I' such
that the geodesics 7,(g) are distincts and that their endpoints accumulate on two
distincts points of L(I'). Since the endpoints of § are contained in the frontier of
F in L(T), the components 7;(Q) of Q(G) are all distincts for sufficiently large k.
Then QG) has an infinity of components with diameter bounded from below by a
non-zero constant. This is impossible (cf. §1). O

la) §F =2.

Then C(F) is a geodesic and, by Lemma 2.3 its projection is an embedded closed
curve. Let v € I' be the element represented by this geodesic. Then ~ leaves also
invariant. For, if this is not true, the components (y)"*() of Q(G) are all distinct
and their diameter is bigger than the diameter of F. This is impossible (cf. §1).
Thus, v € I and T'NT" is equal to the cyclic group generated by ~. This proves
Proposition 2.2 (i) in this case.

1b) §F > 2.

In this case, C(F) has non-empty interior. Let X’ be the projection of C(F) to
Xy . By Lemma 2.3 and since Xy is compact, the projection of 8C(F) to Xy
is the disjoint union of a finite number of embedded closed geodesics. Therefore,
Y’ is a compact connected surface with geodesic boundary (however, the projection
of some components of C(F) is maybe contained in the interior of £'). The
complement in X' of an open regular neighborhood of the projection of OC(F)
defines an incompressible surface S. Let S be the component of the preimage of S
that is contained in_C(F). Since S is contained in the interior of C(F), we have,
for yeI': 4(S)=8 if yeT'NI” and v(S)NS =9 if v ¢ TNT’. Therefore NI’
equals 7,(S) (up to conjugacy). This proves Proposition 2.2 (i) in this case.

2) F=0.

Then, for any non-zero y € I, we have 7((7 n U=90. Hence U is homeomorphic
to U which is therefore simply connected. Thus the cover U — Xy, is geometric.
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3) F={f}.
We show that this cannot happen in our case — when G does not contain parabolic
elements (if G contained parabolics elements, it could happen that F' were reduced
to one point; a slight modification of the next argument could prove however Propo-
sition 2.2 (i) in this situation as well).

Let g C (/" be the projection of the Jordan arc L(T') — {f}. Suppose that g
is compact. Then g is a closed curve which is not homotopic to 0 since L(T') — {f}
is not compact. Thus g is homotopic to a closed geodesic, and any of its lifts to
0 accumulates to the two fixed points of some hyperbolic element of IV (since G
does not contain parabolics elements). This contradicts the fact that L(T') — {f}
accumulates to f.

Thus g is non-compact. Since (~2/I" is compact, there exists a sequence of
distincts elements 7, € I such that ,(L(I') - {f}) accumulates to a point p € Q2.
Then the domains 4;(U) are distinct components of (G) and their diameter is
bigger than the distance from p to L(I"). This excludes the case 3) and finishes the
proof of Proposition 2.2 (i).

To prove (ii), recall that, for any spot U ¢ /I", m (U) maps injectively into I'.
In particular, each spot is homeomorphic to the interior of a compact surface with
boundary. Only finitely many spots can have strictly negative Euler characteristic,
since such a spot contributes at least —1 to the Euler characteristic of Q/T'. To
exclude the presence of an infinity of spots which are homeomorphic to annuli, we
argue by contradiction. Then there are also infinitely many spots U; C /T which
are homotopic to the same simple closed curve c¢. These spots can be lifted in {2 to
distincts components of Q(G) which have the same endpoints as some lift ¢ of c.
Since their diameter is bigger than the distance between the two endpoints of ¢, we
obtain a contradiction. This finishes the proof of (ii). 8]

The next result can be proven with the same arguments as Proposition 2.2.

Corollary 2.4.— Let Q and U be components of UG) with stabilizers T' and
I' respectively. Let v € T' be a hyperbolic element which has one fired point in
LT)NL(I'). Then yeI'NT. O

Acylindricity.

The hypothesis that all spots are simply connected will introduce an important
dichotomy in the proof of Thurston’s fixed point theorem. We now show that this
situation reflects a topological property of M, namely that M is acylindrical.

Definition.— Let A denote the annulus §* x [0,1]. Let M be a compact 3-
manifold. A continuous map f : (4,04) — (M,0M) is essential if it induces an
injective map on m,(A4) and on m;(A4,0A). The image f(A) is an essential annulus.

We say that M is acylindrical if it does not contain any essential annulus.

Fact 2.5.— The manifold M = M(G) is acylindrical if and only if all the spots
contained in a(OM) are simply connected.
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Figure 2.3

Proof. — Suppose that M is not acylindrical. Let f: A — M be an essential map.
Let f* be the map induced by f on the fundamental group. Then f*(m(4)) is a
cyclic group generated by a hyperbolic element g. Let f: A — M be alift of f to
the universal cover. Since f induces an injection of (A, 0A), the two components
of f(OA)) are contained in distincts components Q and ' of Q(G). Then, the
intersection of the closures of @ and € in C contains the two fixed points of a
conjugate of g. It follows from the proof of Proposition 2.2 that the image of 94
on the component of o(3M) which is covered by @ = C — 0 is a spot that is not

simply connected.

Conversely let U C o(0M) be a spot which is not simply connected. Suppose that
U is contained in the component o(S;) of ¢(OM). Let U C ); be a component
of the preimage of U. Since U is not simply connected, and since m(U) maps
injectively into m;(S;) =T}, U is invariant by a non-zero element of I';. Then the
intersection of U with L(I";) contains the two fixed points of this element and it is
easy to construct an essential map from A into M (cf. Figure 2.3). 0
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CHAPTER 3

Holomorphic quadratic differentials

In this chapter, we study triples (X, z,¢) where X is a connected Riemann surface,
z € X and ¢ € Q(X). We won't describe the topology on the set of these triples in
all its generality. The reader is referred to [McM1] for the general definition. We will
rather explain, in an elementary way, what it means for a sequence of such triples
to converge, so that the proof of the main theorem, Theorem 3.1, can be reduced to
classical compactness theorems on holomorphic functions.

3.1 Compactness properties of holomorphic quadratic
differentials

Definition.— A pointed Riemann surface is a pair (X,z) where X is connected
Riemann surface and z € X .

We recall first how the space of pointed compact hyperbolic Riemann surfaces can
be compactified ([Thul],{Mu]).

Limits of pointed Riemann surfaces.

Consider a sequence (X;,z;) of pointed compact hyperbolic Riemann surfaces with
fixed topological type. The behaviour of this sequence, viewed as a sequence of
pointed metric spaces where X; is endowed with the hyperbolic metric depends on
the injectivity radius of X; at z;. This is the largest radius of an open embedded
hyperbolic ball centered at z;. It is denoted by inj(z;). Since the topological type
of X; is fixed, the hyperbolic volume of X; is constant: in particular inj(z;) is
bounded from above by a constant depending only on x(X;). We distinguish two
cases according to whether inj(z;) is bounded from below by a non-zero constant or
not.
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a) inj(z;} is bounded from below away from 0.

Let us identify X; with the quotient of D? by a Fuchsian group I; in such a way
that the origin 0 € D? maps to z;. By definition, the Dirichlet domain of T'; with
respect to 0 is the set of points closer to 0 than to any of its translates by non-zero
elements of T';. It is a finite sided convex polygon D;. By an Euler characteristic
argument, the number of sides of D; is bounded independently of i. The hypothesis
on inj(z;) implies that D; contains a ball centered at 0 of radius independent of 7.
Therefore, up to extracting a subsequence, (D;) converges to a finite sided polygon
(having perhaps some vertices on the circle at infinity) which is the Dirichlet domain
of a discrete group I'. This group has finite covolume and is called a geometric
limit of T;. Let X = D?/T and let z be the projection of 0 € D*. We say that
(X;,x;) converges to (X,z). One can prove that this convergence is equivalent to
the convergence of T; to T, for the Chabauty topology, i.e. for the Hausdorff topology
on closed subsets of PSLy(R) [CEG].

b) inj(z;) tends to 0.

We use the formulas for the hyperbolic metric on an annulus (cf §1). Let € < (2).
Suppose that z; belongs to a component of X 3"" which is a Margulis tube around a
geodesic g; . Consider the geometric cover of X; with fundamental group isomorphic
to the cyclic group generated by g;. This cover can be identified conformally with
Ag-r; v, for Ry = 72/4(g;) . By the Margulis lemma, the ¢-thin part of A,- R
embeds under the covering A,-x; ., — X;, and in particular, the anmulus A,-; e
for

el I | £(9:)
pi=—cosT ==
Let Z; be the lift of z; which is contained in A,-s .o, . Denote by Y; the image
of A-r; cr; by the homothety of ratio 1/z;. Up to extracting a subsequence, Y;
converge to the annulus Ay ., = C* and the hyperbolic metrics on Y;, rescaled by
the factor 1/inj(z;), converge to a flat complete metric on C*. We say that (X, z;)
converges to (C*,1).

This normalization allows us, by looking at an appropriate cover of X; —which is
either the universal cover D? or the annulus ¥; — to compare charts around z; € X;
when X, varies.

Definition. — Let (X;,z;) be a sequence of pointed compact hyperbolic Riemann
surfaces which converges to (X,z). Let ¢; € Q(X;) and let ¢ be a holomorphic
quadratic differential defined on X . If inj(z;) does not tend to 0, let ¢i(2)d2?
(resp. ¢(z)dz?) be the pull-back of ¢; (resp. ¢) to D?. If inj(z;) tends to 0, let
Y; be the covering of X associated to the fundamental group of that component
and let ¢;(z)dz? (resp. ¢(z)dz®) be the pull-back of ¢; (resp. ¢) to ¥;. We say
that ¢; converges uniformly to ¢ if @; converges to ¢ uniformly over compact sets
(in D? orin C*).

Theorem 3.1. — Let (X;,z;) be a sequence of pointed compact hyperbolic Riemann
surfaces with o fized topological type which converges to (X,z). Let ¢; € Q(X;)
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with ¢; # 0. Then there ezists constants c¢; and a non-zero holomorphic quadratic
differential ¢ on X such that (c;@;) converges uniformly to ¢ up to extracting a
subsequence.

Remark. — One important feature of this theorem is to produce a non-zero limit,
merely by applying a homothety to ¢;. The existence of a limit for a sequence (¢;),
when ||¢;|| is bounded can be shown by a more elementary argument. It follows
from the precompacity of a sequence of holomorphic functions with bounded L?-
norm. However, this is not sufficient to guarantee that the limit is non-zero, even if

ligall =1.

Remark. — The limit ¢ produced by Theorem 3.1 is not necessarily integrable.
The basic example of a non-integrable limit appears in Lemma 3.4.

In order to prove Theorem 3.1, we construct first non-zero holomorphic quadratic
differentials 6; on X; and 6 on X such that (f;) converges uniformly to 6 as ¢
tends to infinity.

Proposition 3.2. — Let (X;,z;) be a sequence of pointed compact hyperbolic Rie-
mann surfaces with a fized topological type which converges to (X,z). Then there
ezists non-zero 0; € Q(X;) and a non-zero holomorphic quadratic differential 6 on
X, such that (8;) converges uniformly to 8, up to extracting a subsequence.

Proof. — We consider two cases according as X is a finite volume hyperbolic
surface or is an annulus.

1) X is a finite volume hyperbolic surface.
We begin with the following lemma.

Lemma 3.3. — Suppose that (X;,z;) converge to (X,z) where X is a finite volume
hyperbolic surface. Then Opz/x. converge weakly to Opa,y , i.e. forany P € Q(D?),
Opa/x, P converges uniformly to Opz x P.

Proof. — Assume that X; and X are uniformized by Fuchsian groups I'; and I’
acting on D?, in such a way that 0 € D? projects to z; and z respectively. Let
P € Q(D?). Fix a compact set K C D?. For each r < 1, there is a compact
neighborhood C,. of Id € PSLy(R) such that, for any g ¢ C,., g(K) is contained
outside of the disc A, of radius 7. We may assume that the frontier of C, in
PSL,(R) is disjoint from I' so that I';NC, = TNC, as i tends to co. We can
choose 7 so that the |P|-mass of D? — D, is arbitrarily small. Therefore, for i
sufficiently large, the difference |Op2,x P(z) — Ops,x, P(2)| can be made arbitrarily
small over K : this follows directly from Cauchy’s formula. O

We use now the fact that ©pa/y is surjective when X has finite volume. The
proof can be sketched as follows. For a general Riemann surface X, the image of
the restrictions of the polynomials to D? is dense in Q(X), when Q(X) is endowed
with the Weil-Peterson scalar product (cf. [Kr]). If the hyperbolic volume of X is
finite, 2(X) is a finite dimensional vector space (cf. §1). It follows that Opz/x is
surjective in this case. For a composition of covers of Riemann surfaces Z - Y — X,



J.-P. OTAL— HYPERBOLIZATION OF 3-MANIFOLDS 123

we have: ©z,x =Oy;x00z/y. Hence if X has finite volume, the operator By,x
is surjective.

Lemma 3.3 and the surjectivity of Oy /X yield a proof of Proposition 3.2 as
follows.

1a) X is different from the thrice punctured sphere.

In this situation, the vector space Q(X) is non-trivial. By the above, it contains
a non-zero element of the form O,y P. By Lemma 3.3, (8pa/x P) converges
uniformly to 6 = Bpa,x P. For all sufficiently large i, 6; = Opa2/x P is non-zero.
This proves Proposition 3.2.

1b) X is the thrice punctured sphere.

Then the space of integrable holomorphic quadratic differentials is trivial and the
reasonning above cannot be applied. The proof we will give could be extended with
a minor modification to the case when X has finite volume but is not compact.
However, we present it only when X is the thrice punctured sphere: any puncture
on X corresponds to a closed geodesic g; C X; whose length tends to 0, and since
X is a thrice punctured sphere, we can choose such a geodesic g; which gives rise to
a single puncture on X .

The cover of X; associated to the cyclic subgroup of I'; representing the curve
g; can be conformally identified with A,-, &, (cf. §1). Let € < ¢(2). By Margulis
lemma, the annulus A,-,; .»; embeds under the covering map into X;, for

2Ri e(gi) )

- -1
pi=——cos™ (=

Without loss of generality we may assume, (up to applying an inversion through the
unit circle) that the image of the circle of radius e remains at a bounded distance
from z; on X;. Denote by Y; the image of A,-, ,r; by the homothety of ratio
e™P, ie. the annulus A,-ri-p; oR;-p; (the unit circle has now length €). Since
£(g;) tends to 0, R; tends to infinity; therefore R; —p; ~ 2m/e. Up to extracting a
subsequence, (Y) converges to the annulus Y = A; 2+/ , and the hyperbolic metrics
on Y; converge to the hyperbolic metric on Y. The annulus Y is also the covering
of X corresponding to the puncture we have selected.

Consider the holomorphic quadratic differential ¢ = dz%/2z% on C*. Since ¢ is
integrable on Y; , we can apply the operator Oy, /x, to it, obtaining a differential §; =
Oy, x,® € AX;). However ¢ is not integrable on Y and therefore Oy, x¢ cannot
be defined in the classical way. Nevertheless, ¢ is integrable in the complement of
the unit disc. By the Margulis lemma, the punctured unit disc embeds under the
covering Y — X . Let B be a small ball contained in X. The preimage of B
in Y consists of disjoint copies of B. At most one of them is contained in the
punctured unit disc, all the others are in A1 anse . Therefore in the series defining
Oy, x ¢, the sum of the terms coming from A1 axse converges uniformly over B (by
Cauchy s formula) and gives an integrable holomorphm quadratic differential. The
term coming from the punctured unit disc contributes as a differential with a double
pole at the puncture. This allows us to define § = ©y/x¢. It is a holomorphic
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quadratic differential on X , which is non-zero because it has a pole of order 2 at the
puncture. The following lemma implies Theorem 3.1 in this case.

Lemma 3.4. — (6;) converges uniformly to 0.

For this lemma to be true, it is necessary that g; gives rise to a single puncture
in X . In the case when g; gives rise to two punctures, (6;) converges to the sum of
the two differentials constructed in the same way as 8 for each of these punctures.

Proof. — We will prove that the pull-back of 6; to Y; converges to the pull-back
of 4 to Y. This will imply the lemma. We denote by the same letter 7 the covering
maps from Y to X or from ¥; to X;. Let K CY be a compact set, which we
choose to be a lift of a small ball 7(K) embedded in X . Since A,-3 ; embeds into
X; (as consequence of the Margulis lemma), at most one component of 7~ Yr(K))
is contained in A =393 1 - Since the metrics on Y; converge to the metric on Y,
the distance on Y; between K and the circle of radius 1 is bounded from above
independently of . Now, we analyze the contribution of the various components of

77} (r(K)) to By, x,9-

Fact 3.5.— The hyperbolic distance on Y; between the circle of radius e 2% and
-1 , , , .
any component of 7" (n(K)) contained in A,-ri-o; o-2; tends to co with i.

Proof.— If not, then the image on X; of the circle of radius e™2" is at a
bounded distance from 7(K) and thus at a bounded distance from z; too. By
the normalization of Y;, the projection of the unit circle is at a finite distance from
K . But since g; gives rise to a single puncture in X, only one of the two boundary
components of A,-3,; ; can stay within a bounded distance of z; . This contradiction
proves Fact 3.5. a

The formula for the hyperbolic distance on Y; between two circles shows that
the components of 7~ (m(K)) contained in Ag-Ri-p; o35, are confined inside an
annulus Ae_n,.-pi,e-r,--pi where R; — r; tends to 0 when i tends to oo. The ¢-
mass of this strip is equal to 27(R;—7;) and so tends to 0. In particular, the ¢-mass
of n~Y(n(K)) N A,-R;-p; o-30; tends to 0 when i tends to oco.

Since ¢ is integrable near the exterior end of Y, we can select, for all 7 > 0,
a radius r < efiP such that the ¢-mass of A, ,ri-p; is smaller than 7 for all i
sufficiently large. In particular, the ¢-mass of w‘i(w(K ))NA, r;-5; is smaller than
7, for all i sufficiently large.

The components of 7~} (r(K)) N A,-2; r are K itself, and finitely many others
which intersect A;,. Asin Lemma 3.3, it follows now from Cauchy’s formula that
the pull-back of 8; to ¥; converges to the pull-back of # uniformly in the interior
of K. This ends the proof of Lemma 3.4. O

2) X=C.

We keep the same notations as for the description of the convergence of (X;,z;).
The annulus Y; is identified with an annulus A o ~IRHR] ] for a certain number
R;, in order for the lift T; of z; to be the pomt 1. As in the case of the thrice
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punctured sphere, we can apply Oy, /x, to ¢ = dz%/2%, and define a holomorphic
quadratic differential 6; on X;.

Lemma 3.6.— (0;) converges uniformly to ¢ = dz?/2*.

Proof.— Let K C C* be a compact set. The length of the unit circle for the
hyperbolic metric of ¥; of the unit circle is equivalent to inj(z;). It follows from
the formula for the length of the circles on Y; that the in ect1v1ty radius tends to
0 uniformly over K. In particular, K is contained in }3 “ for all 4 sufficiently
large, and the hyperbolic distance between K and BY ¢l tends to oo with i.

By the Margulis lemma, Y] ! maps mjectlvely to X;. Therefore K is the single
comg;onent of 7~ 1(r(K)) contained in ¥;*¢!, and the hyperbolic distance between
BY and the components of 7~} (m(K )) others than K tends to oo with i. It
follows that the components of 7~ !(r(K)) which are near the exterior end (say)
are confined inside an annulus Ae"""t (& such that R; —r; tends to 0 when %
tends to infinity. The same holds for the' components which are near the interior end.
Therefore, as in the case of the thrice punctured sphere, the pull-back of 6; to the
interior of K converges to ¢ uniformly in the interior of K. This proves Lemma
3.6. O

This completes the proof of Proposition 3.2. a

Proof of Theorem 3.1.— Let (f;) be the sequence constructed in Proposition
3.2. The ratio f; = ¢,/6; is a rational function X; — C. The degree d of f; is
independent of i, by the Hurwitz formula. The preimage E; = £710,1,00} has
cardinality less than 3d. Denote by E; the preimage of E; in the universal cover
D? or in the annuli Y;, according to the nature of inj(z;). Let f; be the lift of f; to
the corresponding cover D? or Y;. Let K be an arbitrary compact set contained in
D? if inj(z;) is bounded away from 0, or in C* if inj(z;) tends to 0. If K C D?,

the cardinality of K N E is bounded only in terms of d and of the “degree” of the
restriction to K of the covering map 7 : D? — X, i.e. the maximal cardinality of
77 1(2)NK of apoint z € n(K). If K C C*, the covering map 7 : Y; — X; restricts
to K as an embedding (cf. proof of Lemma 3.6); hence, the cardinality of KN E; is
bounded independently of i. Therefore, up to extracting a subsequence, the sets E

converge to a discrete set E contained in D? or in C*. By the Montel theorem, the
rational functions f, converge to a holomorphic function f uniformly on compact
setsin K — E , up to passing to a subsequence. The degree of f is finite because the
degree of f, over K is bounded independently of i. Hence by the Picard theorem,
f extends across E to a meromorphic function. Thus, the functions f; converge to
a meromorphic function f uniformly on compact sets.

Up to scaling f; by a constant, we can ensure that f is not identically 0 or oo.
To see this, consider a point z, € X,, — E,, which tends to a point in X — E. Then
the functions f, = fa [ fa(z,) converge to a meromorphic function uniformly over
compact sets by the argument above. This function is not identically 0 nor oo by
construction. Hence the functions ¢, / fa (z,) converge uniformly on compact sets
in D? (orin C*), to a non-zero holomorphic function ¢.
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When inj(z;) is bounded away from 0, a(z)dz2 is invariant under I by conti-
nuity. So ¢(z)dz® induces a non-zero holomorphic quadratic differential ¢ on X .
This concludes the proof of Theorem 3.1. O

3.2 Applications of Theorem 3.1

Let X be a hyperbolic Riemann surface. Let ¢ be a holomorphic quadratic dif-
ferential. In a conformal chart around a point in X, the hyperbolic metric can be
written A(z)|dz| and ¢ can be written ¢(z)dz>. Then, the quantity

(6(2)) = 1#(2)]A~*(2)
is independent of the chart and it defines & function on X.
Definition. — We call (#)(z) the hyperbolic norm of ¢ at the point z.

The quantity (¢)(z) can be viewed also as the Riemannian norm of the tensor ¢
on the hyperbolic surface X .

Definition.— The systole of X is the length of the shortest closed geodesic of
X.

This is well defined since a hyperbolic surface X has finitely many closed geodesics
shorter than €(2) (cf. §1). When X is compact, one can prove that a lower bound
€ > 0 for the systole gives an upper bound for the diameter of X which is a function
of ¢ and of x(X).

Let Z be the set of zeroes of a non-zero ¢ € Q(X). If X has genus g, the
cardinality of Z is smaller than 4g—4 (cf. [Ga]). Denote by Z(r) the neighborhood
of radius 7 of Z on X and let

(¢(2))-

Proposition 3.7 [Di]. — Let ¢ > 0. Let X be a compact connected hyperbolic
Riemann surface with systole bigger than € and let ¢ € Q(X) with ||@|| = 1. Let
r <e/2. Then, m(r) 2 m where m >0 is a function of r, £ and x(X).

= inf
mir) zE)é—Z(r)

Proof. — We argue by contradiction. Suppose that there exist compact hyperbolic
Riemann surfaces X; with fixed topological type whose systole is bigger than ¢, and
¢; in Q(X;) with ||¢;|| = 1, such that

mi(r)=_inf  ($i(2))

i
z€X;-Z(r)
tends to 0, when 4 tends to oo.

We keep the same notations as for the description of the convergence of pointed
Riemann surfaces. Let z; € X;. Since inj(z;) 2 €, the pointed surfaces (X;,z;)
converge to a hyperbolic surface (X,z), up to extracting a subsequence. Since
the systole of X; is bigger than ¢, the diameter of X; is bounded from above
independently of i. Therefore the diameter of D; is bounded independently of
i and X is compact. By Theorem 3.1 there exist constants c¢; and a non-zero
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¢ € (X) such that (c;¢;) converges uniformly to ¢: this means that the functions
cidi(2) converge to ¢(2), where ¢;¢;(z)dz? (resp. §(z)dz?) is the pull-back of g
(resp. ¢) to D?. Choose a ball B C D? of finite radius which contains D in its
interior. It meets only a finite number of translates of D by I'. Hence, the number
of the translates of D; by elements of I'; that meet B is less than a constant C
independent of i. Therefore, we have

[ el = Jim [ fod(a)def < lim Clel.
B 1—00 B 1—00

It follows that |c;| is bounded from below by a non-zero constant.

For all 1 sufficiently large, D; is contained in B. Therefore
[ 1Blasf = tim [ el 2 fim
B 1—0 B 1—00

so that |¢;| is bounded also from above. This means that we can choose all of the
constants c; equal to 1.

Since Z is discrete, we may suppose that 0B does not intersect the set of zeroes
Z of ¢. Then Z;NB converges to ZN B, and Z;(r)N B converges to Z(r) N B.
Therefore, if we write the Poincaré metric of D? in the form \(z)|dz|, we have

mi(r) = inf |§:(2)|\(z) 2

z€B-Z(r)

So the uniform convergence of ¢; to ¢ over B implies that m;(r) tends to m(r)
as 4 tends to co. Since m(r) #0, this is a contradiction. O

Notation.— Let X be a hyperbolic Riemann surface. We denote by B(z,r) the
hyperbolic ball of radius r centered at z.

Proposition 3.8 [McM2]. — Let X be a connected compact hyperbolic Riemann
surface and let x € X. Let a2 1. Then, for any non-zero ¢ € QX)

fB(z,ar) |¢I
fB(z,r) |¢|

where the constant c(a) < oo is a function of x(X) and of .

< c(a),

Proof. — Observe that multiplying the differential ¢ by a non-zero constant does
not affect the ratio of the ¢-masses that we are considering. To prove Proposition 3.8,
we argue by contradiction. Then there is a sequence of pointed compact hyperbolic
Riemann surfaces (X;,z;) with fixed topological type, non-zero ¢; € 9(X;), and
balls B(z;,r;), constant such that the ratio of the ¢,-masses of B(z;,7;) and
B(z;,ar;) tends to oo with ¢. We keep the same notations as for the description of
the convergence of pointed Riemann surfaces.
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1) inj(z;) is bounded from below.

Under the covering map D?* — X;, B(z;,r;) is isomorphic to B(0,r;) C D* and
B(z;,ar;) is the image of B(0,s;) C D?. In particular, for any ¢ € Q(X;), the
¢-mass of B(z;,7;) equals the ¢-mass of B(0,r;) and the ¢-mass of B(z;,ar;) is
less than or equal to the ¢-mass of B(0,ar;), where ¢ denotes the pull-back of ¢
to D?.

By Theorem 3.1, up to passing to a subsequence and up to multiplying ¢; by a
non-zero constant, we can suppose that (¢;) converges uniformly to a holomorphic
quadratic differential ¢ # 0. Since B(z;,r;) is embedded, and since the area of X;
is constant, r; is bounded from above. If r; admits a non-zero lower bound, we may
suppose that it converges to r > 0. Then the ¢;-mass of B(0,r;) and B(0,ar;)
converge respectively to the ¢-mass of B(0,r) and B(0,ar). Both are non-zero,
since ¢ # 0. We obtain a contradiction in this case. When r; tends to 0, suppose
that ¢ vanishes exactly up to the order n at 0. Then after a change of variables,
we find

Jsoarg 1
Jpo.r0 18

This gives a contradiction.

2) inj(z;) tends to 0.

In our normalizations, the rescaled hyperbolic metrics on Y; tend to the flat metric
on C* and 1€ C* maps to z;. Denote by B;(1,7) the ball of radius r centered at
1 for the rescaled hyperbolic metric on Y; and by B, (1,7) this ball for the limit flat
metric. Then, under the covering Y; — X;, B;(1,r;/inj(z;)) maps isomorphically
to B(z;,1;), and B(z;,ar;) is the image of B;(1,ar;/inj(z;)). Since B(z;,r;) is
embedded, r; < inj(z;). As in 1), we are led to consider two cases according to
whether the ratio r;/inj(z;) admits a non-zero lower bound or tends to 0. Observe
that for any R > 0, there are non-zero constants a and b such that, for all < R
each ball B, (1,r) is contained in the euclidean ball of radius ar and contains the
euclidean ball of radius br. The same result holds for the balls B;(1,r) when ¢ is
sufficiently large because of the convergence of the rescaled metrics on Y;. Using this
property and applying the same arguments as in 1), we obtain a contradiction. O

Proposition 3.9 [McM2]. — Let 0 < € < ¢&(2). Let X be a compact hyperbolic
Riemann surface with systole smaller than /2. Let ¢ € Q(X) with ||¢|| =1. Then
the ¢-mass of a component of X% is bigger than a constant ¢ > 0 which is a
function of € and x(X).

Proof. — The number of components of X1%¢! is less than 3g — 3, where g is the
genus of X . In order to prove Proposition 3.9 by contradiction, we may therefore
suppose that there is a sequence of Riemann surfaces X; with the same topological
type, with systole smaller than €/2 and ¢; € Q(X;) with ||¢;]| = 1 such that the
¢; -mass of X!O’El tends to 0 as i tends to co. The number of components of X,ls’°°
is smaller than |x(X;)|. Let Z; be one of these components with the property that
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its ¢;-mass is bigger than some number v > 0, for all ¢ sufficiently large. Let
z; € Z;. Since inj(z;) 2 ¢ the sequence (X;,z;) converges, up to extracting a
subsequence, to (X,z) where X is a hyperbolic Riemann surface. By assumption,
X10¢/21 is non-empty. By Theorem 3.1, there exist constants c; such that (c;é;)
converges uniformly to a non-zero holomorphlc quadratic differential ¢ defined on
X . As the ¢;-mass of Z; is more than v, ¢; can be chosen equal to 1 (cf. the
proof of Proposition 3.7). Since ¢ # 0, the ¢;-mass of X]0 el X] /2 does not
tend to 0. This is a contradiction. 0

The next result asserts that the pairing (¢, u) between a unit norm holomorphic
quadratic differential and a unit norm Beltrami form can be estimated from a certain
local data.

Definition.— Let X be a compact hyperbolic Riemann surface. Let E be a
measurable set contained in X . For a non-zero ¢ € 9(X) and for a Beltrami form
€ B(X), define the efficiency of the pairing between ¢ and p over E to be the

ratio
(6, )E
e(E) = BHIE
)= ols
where (¢, ) = ([ ¢(2 (2)|d2%)), and where ||¢||z is the ¢-mass of E.

When ||p|| £ 1, we have e(E) < 1. Equality holds if and only if the restriction
of p to E equals ¢/|¢| a. e.

Proposition 3.10 [McM2]. — Let X be a compact hyperbolic Riemann surface. Let
¢ € UX) with ||¢]| =1 and let p € B(X) with ||u||<1 Let E C X be a measurable
subset of ¢-mass bigger than m for some m > 0. Suppose that each point of E
is the center of an embedded hyperbolic ball on which the efficiency of the pairing
between ¢ and p is less than 1-a, for some a > 0. Then (@, p) < 1-cma, where
¢> 0 depends only on x(X).

Proof. — By a Vitali type argument, we can extract from the family of balls provided
by the hypothesis, a family of disjoint balls {B;} such that the balls 5B; cover E.
Then by Proposition 3.8, we have:

(1 [ois | 1= el [ Nz

Since the balls B; are disjoint we have

( CuB.
(&, 1) = lllleus, olcus +ZH¢||B

Using (1) we obtain
(¢ ) S 1= lgllup, + (1 - a)ligllup, < 1 - am/c(5).



130

CHAPTER 4

The volume form on open Riemann surfaces

Definition. — An open Riemann surface is a connected hyperbolic Riemann surface
of finite topological type but of infinite hyperbolic volume.

Equivalently an open Riemann surface is conformally equivalent to D?, to an
annulus, or to the quotient of D? by a Fuchsian group I’ with Q(T') # 0.

Let Y be a hyperbolic Riemann surface. A I-form of type (1,0) on Y isa
smooth 1-form 1 which can be written in any complex chart on the form 7(z)dz. In
any complex chart, the hyperbolic metric can be written on the form A(2)|dz|. So,
when 7 is a 1-form of type (1,0) on Y, the quantity |(z)|A(z)~? is independent
of the chart.

Definition.— The function (n) : ¥ — R defined by (n)(z) = |n(2)|A(2)7! is
called the hyperbolic norm of 1.

Thus (n) is the norm of the 1-form 7 when Y is endowed with its hyperbolic
metric. The norm of any tensor on Y can be similarly defined. For instance, when
w isa 2-formon Y, {(w) equals the ratio w/dv where dv is the hyperbolic volume
formon Y.

Theorem 4.1 [Di].— Let € > 0. Let Y be an open hyperbolic Riemann surface
whose systole is bigger than €. Then there 1s a 1-form n of type (1,0) such that

(i) On=dv, and
(i) [|{M]lec is finite and bounded by a constant C which is a function of € and
x(Y).

Remark. — This theorem applies to give an isoperimetric inequality for domains
in Y. If XCY is a compact domain with smooth boundary, a direct application
of the Stokes formula gives

1

Area(X) < 6@(69().
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This means that the hyperbolic metric of Y satisfies a linear isoperimetric inequality
with a constant depending only on the systole of Y and on x(Y).
Proof. — We consider only the case when Y has no cusps.

Suppose first that Y is conformally equivalent to a disk or to an annulus. On
D?, the hyperbolic metric is given by

2

ds= dz|.
=T
Hence the 1-form
-2z
= ——:d
T= 1

satisfies dn = dv and (n)(2) = |2|. Therefore |[(n)|lc = 1 and n satisfies the
conclusions of Theorem 4.1.

Suppose that Y is conformally equivalent to
A-r . ={z€C, e’ < |z < ef}.

The hyperbolic metric on this annulus is

T
ds = ———————1dz|.
2R|z|cos(7rl—°§]¥l)I |
Hence the 1-form
—im log |2|
=—t d
1= o, P )%

satisfies On = dv. Moreover for all z € A,-r ok , e have

(m)(z) = sin(w“’zgf'f') <1

Therefore 7 is the required differential. We note also that ||(n)}||c =1 is independent
of the systole of Y.

In the other cases, since Y has no cusps, the Nielsen core of Y is a compact
surface Y, with geodesic boundary. The surface Y equals the union of ¥, and a
collection of half-infinite annuli. For an open Riemann surface such Y a lower bound
on the systole does not guarantee that ¥ remains in a compact set of metrics, since
the length of 9Y; could tend to infinity. For instance, imagine a pair of pants tending
closer and closer to a bikini. The strategy to prove Theorem 4.1 is to use the explicit
solution constructed above in the half-infinite annuli which are components of ¥ -Y}
and then to extend it over Y using the Green’s function on Y.

The Green’s function on a Riemann surface X .

Definition. — Let X be a Riemann surface. A Green’s function of X is a positive
function G(.,.) on X x X — diagonal which satisfies:
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(i) AG(.,y)=46,,ie. for z not equal to y, the function £ — G(z,y) is harmonic
and in a holomorphic chart around y, the function

1
—1 -
z - G(z,y) + o og |z — y|

is harmonic, and
(ii) G is minimal among all positive functions satisfying (iii).

In D?, the Green’s function equals

d(z, y))

2 Y
where d is the hyperbolic distance. But there does not always exist a Green’s function
on a given Riemann surface (cf. [Ah3], [Nic], [Ts]). For instance on a hyperbolic
Riemann surface of finite volume, it does not. But, when a Green’s function exists,
it is unique. Let Y be an open Riemann surface isomorphic to the quotient of D?
by a Fuchsian group I'. Consider the positive function on D? x D? — diagonal

~ - 1 d(xiv(y))

(1) G(z,y) = ...z;;logtm( )

1
~5- log tanh(

This series is invariant under I' and therefore induces a function G on Y x Y ~
diagonal .

Lemma 4.2.— Let Y =D?/T' be an open Riemann surface. Then for all a >0,
the series (1) converges uniformly for all pairs (z,y) such that d(z,T'(y)) 2 . The
function G is the Green's function of Y .

Proof. — For d(z,v(y)) 2 c, we have:
- lOg ta-n.h(d(m—,;(yﬁ) S C(a)e_d(ma'Y(y))

for some constant C(a). By applying the triangle inequality, we see that the
convergence of Y, .r.e”*®®) implies the convergence of the series (1). From
the formula of the hyperbolic metric in DD, we obtain that the general term in the
second series is equivalent to (1 — |7(0)[?). A direct computation based on the fact
that the Mobius transformations preserve the cross-ratio implies that for any § € 6D?
we have (cf. [Nic])

7 O = (1 = O))16 - ~(0)[ 2.

Since Y is an open Riemann surface, (') # @. Let I C Q(I') be a small
interval which is disjoint from all its translates by non-trivial elements of I'. The
total euclidean length of the union of the translates of I is less than the length of

the circle. Therefore
> / Iy (6))d8 < 2.
yer?!{

Since |y'(8)] 2 1/4(1 - |y~*(0)[?), the convergence of the series (1) follows.
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The function G defined by (1) is positive and satisfies property (i) of the Green’s
function. To check that it satisfies (ii) also, it suffices to prove that for any y € Y,
G(z,y) tends to 0 as z tends to oo in Y. Let ¥y be the Nielsen core of Y. Then
Y, is a compact surface with geodesic boundary and its preimage Yy in D? is a
closed convex set. Saying that z tends to oo in Y means that the distance d(z,Yp)
tends to co. Let 7 € D? be any _point in the preimage of z. Denote by Zy the
nearest point projection of Z on Y. Let y €Y and let y € D? be a point in its
preimage. Then an elementary distance estimate gives, for all y€T',

|d(Z,v(®) - (&, %o) - Ao, Y@NI < ¢,

for a constant ¢ independent of = and of . Therefore by the proof of (i), G(z,y)
tends to 0 as d(z,Yp) = d(Z,T,) tends to oco. O

The surface Y is the union along the boundary of ¥, and a finite number of
half-infinite annuli called A, , A, -, A}. Denote by 7, the geodesic YN Ay .
Consider the covering 7 : Ay — Y with fundamental group equal to that of 7.
The ammulus A, can be identified conformally with A,-=, &, , where Ry satisfies
{(yx) = 7*/R;, (cf. §1). In particular, the existence of a lower bound on Uyy) is
equivalent to the existence of an upper bound on Rj . The restriction of m; to one
of the two halves of A; bounded by the unit circle is an embedding. Up to applying
an automorphism of A, we can assume that the identification of A; with Ag-Ry e
is such that m;, restricts to the “inner” half-annulus 4,-=, ; as an embedding. In
this way Aj gets identified with A,-&, ;.

Let 7, denote the restriction to A} of the 1-form constructed above that solves
Theorem 4.1 for Aj. Choose a decreasing smooth function A on [-1,1] such that

(i) Az)=1for < -1/2, and
(ii) AMz)=0 for z20.

Consider the 1-form 7' on Y which vanishes on Y and which is defined on A}
by n'|Ak = Ak, where

Mle) = A2,

The 1-form 7' is smooth and satisfies O = dv on the union of the annuli
ARy o-Ryf2 - Thus the 2-form

dvg =dv—0n' = (1 —ZAk)dv—Zéx\k/\nk

has compact support in Y . Therefore we can define a function h on Y by
2) h(z) = 4/ G(z, w)dvo(w).
Y

The 2-form 99h equals dvy. Therefore, n = n' + 8h is the required 1-form if we
can show that its hyperbolic norm is bounded by a function of ¢ and x(Y). Since
the hyperbolic norm of 7' on Y is easily seen to be bounded only in terms of A, it
suffices to study the L* -norm of (0h).
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Lemma 4.3. — There exist positive constants C; and Cp such that if u is a C?
function on D?, one has

[1{8u)llo < Crllulloo + Coll(000)|oo-

Proof. — Using the invariance of () under conformal automorphisms of D?, it
suffices to prove that, for appropriate constants C, and C;, the right-hand side is
bigger than (Au)(0). For 2 contained in the disc 1/2D* we have

|Au| < 31100} |o < C11(80U)|co-

4
(1-12)
Green’s formula on 1/2D? gives

u(z) = G(z,w)Au(w)dw + /

z, wu(w)dw.
1/2p? [w]=1/2 51’( Ju(w)

where G denotes the Green’s function on 1/2D?. By differentiating this expression
twice, we obtain Lemma 4.3. a

By Lemma 4.3 (applied to the lift of A to D?), in order to obtain the required
bound for ||{0h)||s , it suffices to bound ||(6<9h)||oo and |||l . In fact it is easy
to bound ||(88h)||s . The computation of 8A;, shows {[(BA A n)lee < ¢, where ¢
depends only on A. It follows that ||(dvp)|lee < c+1.

In order to estimate ||h||o , we split the formula (2) into the sum of three integrals:

1 Z  Glew)(1 = X))

- Z G (z,w) A + | G(z,w)dv(w).
0

To get a bound on each of these terms we use the following estimate on the circular
averages of the lift of G to Ay (cf. [Di]).

Lemma 4.4. — Let ék be the lift of G to Ay. Let 7 € Ay. Then, for all r such
that —Ry, <logr < Ry, we have

% / Gi(Z,re®)df < oy (logr + Ry),

where the oy are positive constants which satisfy Y oy =1.

Proof.— By definition Gi(Z,#) = G(mi(2),x()). Therefore Gi(3,@) is a
harmonic function of w in the complement of the preimage of 74 (2). This preimage
is a discrete set in A, which contains at most one point in Aj,.

Let © be a harmonic function on a circular annulus. It is well-known that the
average of u over the circle of radius r is an affine function of logr ([Ah3], p. 164).

Let z € Ay and set
_1 A (5 il
= o / Gi(3,rei®)d8
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The minimality property of the Green's function implies that, for any z € Y, G(2,w)
tends to 0 as w tends to oo in Y. Therefore since A}, embeds under the covering
Ay > Y, Gk('Z, w) tends to 0 as log|w| tends to —Ry. Thus v, (r) tends to
0 when logr tendsto —R;. Set z = m(z) and let Z; be the lift of 2 to A; which
has the smallest modulus. Then we have

Yr(r) = ax(logr + R;) for — Ry <logr < log|z|.

Since Gk(z, .) is positive on_Ag, we have a; > 0. There is an interpretation of
ay . Consider the 1-form *de(z, .}, which is the “complex conjugate” of de(z, )
([Ah3] p. 164). Then oy is the period of *de( .) along a circle of radius smaller
than |z|. The union of the projections to Y of those circles for all the annuli Ay is
null-homologous on Y . In particular the sum of the periods of *de (z,.) equals the
period of *dG(z,.) on a small circle around the single singularity of G(z,.), i.e. the
point z. In a conformal chart around z, G(z,w) is equivalent to —5= log|z — w].
Therefore this period is equal to 1. So we have

Zak =1.

In particular each o is less than 1. Consider the change of 1, when logr crosses
the value log |2], corresponding to the first singularity of Gi(z,.). It is a continuous
function of r. Just after crossing the circle of radius || it becomes again an affine
function of logr. The slope of this new function equals the period of *de( J)
along a circle of radius slightly bigger than log|z]. The same homological argument
as before implies that this new period is equal to o} = a;—v, where v is the number
of points of smallest modulus in 7;*(z). Hence o} < 0. This argument can be used
across the entire annulus Ay, showing that ¥ is a piecewise affine function of logr.
The slope of 9 decreases by a positive integer each time the circle of radius logr
contains a point in the preimage of z. This completes the proof of Lemma 4.4. O

Let us go back to the estimate of each term in (3). On the annulus {w €
Ai| — Ri/2 < log |w| < Ri/2}, the hyperbolic volume element dv is bounded by

C

E-z-drdﬂ
where C is a constant depending only on an upper bound on Ry, or equivalently on
a lower bound on ¢. Hence, each integral in the first term of (3) is dominated by

c =
o 7 / o CelEre)ards,

~ 1
where Z is any point in the preimage of z. The estimate — / Gy (Z,re®)d <

logr + Ry (Lemma 4.4) implies that (4) is bounded above only in terms of Ry.
We remarked earlier that there exists a constant ¢ depending only on A, such that
H{0Ak A mi)lloo < c. Therefore, by the same argument, the second term of (3) is
bounded from above. However the last term of (3) is of different nature. It is an
integral over the Nielsen core Y;. The following lemma allows us to replace it by an
integral over a certain annulus.



136 4 THE VOLUME FORM ON OPEN RIEMANN SURFACES

Lemma 4.5.— Let ¢ > 0. Let Y be an open Riemann surface whose systole is
bigger than €. Then, there exists a constant D which depends only on € and on

x(Y) such that

(i) any point of Yy is at distance smaller than D from the longest component, say
Y0, Of a},O;

(i) for po = %“sin"l(tanhD) , the restriction of the covering map my: Ay —» Y
to Ajeeo is onto.

Proof. — (i) follows essentially from the fact that the area of Y, is finite, depending
only on x(Yp). Another way to think about this result is by considering the Margulis

decomposition of the compact hyperbolic surface obtained by doubling Yy along its
boundary. (ii) is a restatement of (i) using the formula for the metric in A, . 0

Figure 4.1

Using Lemma 4.5, the positivity of G, and the fact that , is a local isometry,
we obtain
G(z, w)dv(w) < / Go(Z, B)dv(iD),

Yo Allepo

for any point Z in the preimage of z. On A; .o the hyperbolic volume element dv
is bounded by C/R2drd9 where C' depends only on D, and therefore only on €
and x(Y). So by Lemma 4.4 we have

. C, eP0
/ G(z, w)dv(D) < — (logr + Ry)dr,
Al,cpo 1
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where C’' depends only on ¢ and on x(Y). An easy computation using the ex-
pression of p, gives that the integral is bounded from above in terms of R,. This
concludes the proof of Theorem 4.1. O

A primitive to the volume form in presence of short geodesics.

In the next chapter we will need a refinement of Theorem 4.1, which will allow us
to deal with the case when Y contains geodesics shorter than the Margulis constant
£(2). For e <¢(2), Y is the union of Y1 and Y&l Rather than finding
solutions on Y to 8n = dv which satisfy explicit bounds, we instead solve this
equation on Y!©®!. In fact, for the later applications, we only need to solve it on
the unbounded components of Y&l

Definition. — Let Y be an open Riemann surface. A component of Y&l is
unbounded if it is not compact (cf. Figure 4.2). Equivalently, a component of Y
is unbounded if it is not entirely contained in Yj.

Theorem 4.6. — Let 0 < €<e(2). Let Y be an open Riemann surface. Then there
exists a constant C depending only on € and on x(Y), such that on any unbounded
component of Y&l there ezists a 1-form n of type (1,0) which satisfies

(i) on = dv, and
(i) Mllw=C-

Proof. — When Y is homeomorphic to a disc or to an annulus, the explicit solution
described at the beginning of the proof of Theorem 4.1 has hyperbolic norm less than
1, independently of the length of the core geodesic.

In the other cases, let Y’ be a component of Y&l which is unbounded. Suppose
first that Y’ is contained in a component of Y -Y;, say A}, . The 1-form constructed
on A, has norm less than 1. Since A} is isometrically embedded in Ay, the
restriction of this form to Y’ is a solution.

If Y’ intersects Y, then each component of 8Y; which intersects Y’ is contained
in Y’ and so its length is bigger than . The surface Y’ is the union of the
compact surface Y’ NY; and a non-empty collection of half-infinite annuli, which
are components of Y — Y. The proof of Theorem 4.6 follows exactly the same lines
as that of Theorem 4.1. The restrictions of the 1-forms constructed on the annuli in
Y’ - Y, can be modified near the boundary of Y, to give a form 7'. The 2-form
dvg = dv — On' has compact support in Y’ so that we can define a function on Y’
by the formula: h(z) =4 [} G(z,w)dv(w), where G is the Green’s function on Y.
The proof that the form n = ' +8h is the 1-form required in the theorem reduces to
showing that h is bounded over Y’. The only difference between this proof and that
of Theorem 4.1 appears in the estimate of the third integral in (3). The following
lemma substitutes Lemma 4.5.

Lemma 4.7.— Let ¢ > 0. Let Y be an open Riemann surface. Let Y' be a
component of Yleol yhich intersects Yy. Then there ezists a constant D' which
depends only on ¢ and on x(Y) such that any point of Y' NY, is at distance less
than D' from the longest component of 8Y, which is contained in Y'.
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unbounded component

Figure 4.2
This concludes the proof of Theorem 4.6.
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CHAPITRE 5

Contraction properties of the Theta operator

Theorem 5.1. — Let € > 0. Let X be a compact hyperbolic Riemann surface whose
systole is bigger than €. Let m: Y — X be a geometric cover of X . There ezists a
constant ¢ = c(e, x(X)) > 0 such that ||By/x||<1~-c.

This theorem is a special case of a theorem of McMullen [McM1]. Here the
hypothesis “geometric” has replaced the original hypothesis “non-amenable”. We
present the proof that Barett and Diller have given [BD] using the result of [Di] that
was described in the previous chapter. Theorem 5.1 remains true when X has finite
volume. It can be proved using the same techniques.

Averaging operators.

We need to extend the averaging procedure of Poincaré series to other types of tensors.
For instance, if F is a function on Y we can sum it (in certain cases) over the sheets
of the cover 7 :Y — X by the formula

OF@z)= Y F).

yer~i(z)

The Cauchy formula implies that this series converges uniformly when F is holo-
morphic and integrable with respect to the hyperbolic volume on Y. More generally,
this will hold when F' is not necessarly holomorphic, but has modulus less than that
of an integrable holomorphic function. A special case is the following. For ¢ € Q(Y),
we defined in §3 a function (¢): it is the density of the measure |¢(y)||dy?| with
respect to the hyperbolic volume measure on Y. Then 6(¢) can be defined using
the formula above and 6{(¢)(z) is the density with respect to the hyperbolic volume
on X of a measure which has the same total mass as the measure |$(y)||dy?| on Y .

The same averaging procedure can be applied to 1-forms. Let 7 be a 1-form of
type (1,0) on Y. Let U be a conformal chart around a point £ € X. For each
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component U; of 7~1(U), let s; : U — U; be a holomorphic section of 7. On Uj,
7 can be written as 7;(z)dz. Then the series

S ()5

defines, in certain cases, a 1-form of type (1,0) on U. This happens for instance
when the hyperbolic norm (n)(y) is bounded by the modulus of an holomorphic
function which is integrable on Y with respect to the hyperbolic volume. These
local expressions paste together defining a 1-form on Y denoted by 67. In the next
paragraphs we will commute the exterior differentiation with the averaging operator
0. This will be allowed since the series that we consider converge uniformly.

Proof of Theorem 5.1. — We denote by © the classical operator Oy,x acting
on integrable holomorphic quadratic differentials, and by & the averaging operator
introduced above, acting on other types of tensors. Since the cover ¥ — X is
geometric, Y is an open Riemann surface and the results of §4 can be applied.

Let ¢ € QY) with ||¢]] = 1. The pull-back 7*(8¢) of O to Y is a
holomorphic quadratic differential (which, if not identically 0, is not integrable). Its
zero set is exactly the preimage of the zero set Z of ©¢. Assuming that ©¢ does not
vanish identically, we define a meromorphic function F on Y by ¢ = Fr*(6¢). Let
Z(r) denote the neighborhood of radius r of Z on X, and by Z(r) the preimage
of Z(r) in Y.

Lemma 5.2.— For any » > 0, F is integrable in Y — Z(r) with respect to the
hyperbolic volume.

Proof.— Let m(r) > 0 be a lower bound for (8¢)(z) on X —Z(r). On Y - Z(r),
we have

Hence, fY—E(r) |Fldv < 1/m(r). O

This observation means that we can define 6F and 6|F| on X — Z. Since
0F =1, 6|F| 2 1. As ||¢]| =1, the integral of 6(¢) with respect to the hyperbolic
volume is 1. Thus, we have

1- ol = [ oterin— [ leol

/wm—n%>

> /0 m(r)( /a o DY) — 20

In the last line, we have bounded from below the integral over X of the positive
function (f|F| — 1)(©¢) by its integral over Z(ry) for a sufficiently small constant
ro which will be fixed later.
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Let n be the 1-form on Y constructed in Theorem 4.1. Its hyperbolic norm is
less than C'. In particular, 8(Fn) is well defined since F is integrable on Y. We

have
1
[ earanz gl [ o)
aZ(r) aZ(r)

=1 86(Fn)| by Stokes formula
C' Jx-2x)

= }—l 6(Fdv)| since F is holomorphic
C X-Z(r)
1

B 5 X-2Z(r)

= éArea(X - Z(r))

- %(27r|x(X)| ~ Area(Z(r)).

The holomorphic quadratic differential 8¢ has at most 4g — 4 zeroes, where g is
the genus X . Hence, for < ¢/2, the area of Z(r) is less than ¢;r% and the length
of 8Z(r) is less than cyr for constants ¢; and ¢, depending only on x(X). It
follows that for all r sufficiently small in terms of e, faz, 8(|F|ds) — £(8Z,) 2 c,
where ¢ > 0 depends only on ¢ and on x(X).

If ||©¢|| 2 1/2, we know from Proposition 3.7 that m(r) is bounded from below,
independently of ©¢, by a positive constant depending only on r, £ and x(X).
Recall that the constant C' provided by Theorem 4.1 depends only on € and x(Y).
Therefore, if ||6¢|| 2 1/2, 1—||6¢|| is bounded from below by a constant which
depends only on ¢ and x(X).

When ||64|| < 1/2, we obviously have 1 - ||8¢|| 2 1/2.

This concludes the proof of Theorem 5.1. O

dv|

Remark. — Geometric covers of a Riemann surface are examples of non-amenable
covers , which were defined by McMullen’s. Without going into the precise definition,
let us just say that an example of amenable cover is given by a Galois cover whose
automorphism group is amenable. The basic result of [McM1] is that the Theta
operator associated to a non-amenable cover is strictly contracting. There is a
link between McMullen’s proof and the one of Barrett and Diller. The basic tool
for the proof of Theorem 5.1 was the existence of a @-primitive to the volume
form, whose hyperbolic norm is bounded from above. As we noticed, this implied
a linear isoperimetric inequality on Y. This is reminiscent of Folner’s criterium
which characterizes non-amenable graphs as those which satisfy a linear isoperimetric
inequality (cf. [Gr]).

Remark.— McMullen proved also a converse to his theorem, namely that the
Theta operator associated to an amenable cover Y — X, has norm 1 [McM1]: i.e.
there is a sequence of elements ¢; in Q(Y) with ||@;|| = 1 such that ||©¢;|| tends to
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1. However, one should notice that, for any infinite cover 7 : Y — X there does not
exist a ¢ € Q(Y) such that ||¢]| =1 and ||©¢|| = 1. Let us justify this observation
in the case of a Galois cover. This won’t never be used as such in the sequel, but
is behind the argument that we will use for proving Proposition 6.3. If, for some
¢ € QY), ||¢ll = ||84|| =1, then there exists u € B(X) with ||u|| = 1 such that
(8, u) = (¢,7*p) =1 (cf. §1). It follows easily from the definition of the pairing
that
_¢

ol
Let g be an element of the automorphism group of the cover ¥ — X. As #*p is
invariant under g, (1) implies ¢(g2)g'(2)? = k¢(2) for a constant k # 0. If g has
infinite order, this equality contradicts that ||¢|| is finite.

(1) p

The norm of ©y,x in presence of short geodesics.

Let 0 < €<¢(2). Thesurface X can be decomposed as the union of the ¢-thin part
X1%¢! and the e-thick part X[, Recall that the cover 7 :Y — X we consider
is associated to a proper incompressible surface S C X .

Definition. — A component of X1%¢! or of X6l is liftable if it can be isotoped
into S.

Let Z be a component of X% or of X[&#®l, If Z is liftable, 77Y(Z) consists of
a single isomorphic copy of itself, which is called the lift of Z, and a disjoint union of
copies of the universal cover of Z . Note that the latter are necessarily contained in the
unbounded components of Y!&:°°l, If Z is not liftable, any component of 7~(Z) is
an infinite cover of Z . Therefore, it is entirely contained in an unbounded component
of Y1&l, So the only components of the preimage of X1%¢ or of X6l which are
compact are the lifts of the liftable components. All the others are contained in the
unbounded components of Y&l

Definition. — The ¢ -amenable part of the cover Y — X is the union of the total
preimage of X!%¢! and of the lifts of the liftable components of X&®!. We denote
it by A(X)=.

The following result explains how the presence of short geodesics does influence
the behaviour of of ||Oy,x||.

Theorem 5.3.— Let 7:Y — X be a geometric cover of Riemann surfaces. Let
€< €(2). Let 1> 0. There exists a § > O which depends only on 7, € and on
X(X), such that: for oll ¢ € QY) with ||¢]| =1 and ||Oy,x¢l| 21 -6, then the
¢ -mass of A(X)® is more than 1 -1,

Proof. — We argue by contradiction. Then, there is a sequence of isomorphic
covers ¥, — X, and ¢, € Q(Y,) with unit norm, such that ||y, ;x_¢n|| tends
to 1 and that the ¢,-mass of A(X,)° is bounded away from 1. Observe that
the topological type of a geometric cover associated to an incompressible surface
S C X only depends on the embedding of S into X ; therefore we can assume
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that the covers ¥;; — X, have the same topological type. Denote 8y ;x_ by
©,,. Since the number of components of X,[f'°°[ is bounded independently of n,
there is some component K, of X ,[f | for which the ¢, -mass of the total union of
the non-compact components of 7~!(K,) admits a lower bound m > 0. Let W,
denote the total union of the non-compact components of 7~}(K,). Let z, € K.
Choose a uniformizing map (D?,0) — (X,,z,). We can suppose, up to extracting
a subsequence, that (X,,z,) converges to (K,z) where K is a hyperbolic surface
of finite area, since inj(z,) > €.

If K were compact, the injectivity radius of X,, would be bounded from below
independently of n. Then, Theorem 5.1 would contradict the hypothesis of Theorem
5.3.

Therefore K is non-compact. Fix a positive number p<¢ smaller than the systole
of K. For ¢/ <y, let K,[{‘"“’[ be the component of X,[,“I’°°[ which contains K,
and let W*'>°l be the union of the non-compact components of L KWl Ttis
important to notice that K,[{‘"°°[ is not necessarily diffeomorphic to K,,. However,
since 4 is smaller than the systole of K, forall u'<p, K (w00 i diffeomorphic to
Kool and K,{,“I"”{ converges therefore to K [w's00

In order to obtain a contradiction, we distinguish two cases according as K,[f"°°[

does or does not lift to Y, for sufficiently large n. When K[**! lifts, we will show
that the ¢, -mass of W,[l"""’( tends to 0 when n tends to co. Since W,, C W,[,"'°°[,
the ¢, -mass of W,, tends to 0 also. This contradicts our assumption that the ¢y, -
mass of W, is bigger than m. When K,[f"‘”[ does not lift, we will contradict the
hypothesis ||6,4,|| — 1.

Let 0 < ¢/ < i be a constant that will be fixed precisely later. As discussed
already, we can associate to the cover W,[[‘l’°°[ - K,[{‘"°°[ an averaging operator,
which operates on integrable holomorphic quadratic differentials, and tensors of other
types. We denote this operator by ©/,, when it is considered as acting on integrable
holomorphic quadratic differentials and by 6/, , when acting on tensors of other types.

1) KBl lifts to Y, for sufficiently large n.
Since K,[f‘"w[ is isotopic to K,[,"'°°[, it is liftable to Y, also. The preimage of

K,,[,“"°°[ is the disjoint union of W*'! and the isomorphic lift I?,[{‘I'“l of Kol
Therefore in restriction to KL“"wl , we have

(1) 6, 0n = 0| K1 =L + 00,

where we have identified the restriction ¢n|I?,[f‘"°°[ with its projection on KL“I oo,
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For any measurable subset U C X, we have [ 6,4, < [ 1) |¢n| and
therefore

1- Ilen¢nll

- + - 6,4 ~ / o
Lo B o 91 @l = [ 1O
>

> /t_w,m[)w i O

To obtain a contradiction, it suffices to bound from below the last expression in the
above inequality. Applying the triangle inequality and (1), we find that it is bounded
from below by fyyiu,ect [énl — [iutot [6,8n]. The hypothesis that Kl ifts to
Y,, has the following topological consequence.

Fact 5.4.— Let i < p. Then for all sufficiently large n, W,[f‘"°°[ is contained in
yr!#,w[_

Proof. — If this is false, some component W' of W[“"°°[ intersects a component
Y’ of y]O,u] Since the cover 7 :Y, — X,, is geometric, the restriction of 7 to each
component of Y1 is a homeomorphism. In particular, w'nY' is homeomorphic
to its image by . Since (W) = Kl x(W'NY") is the intersection of K¥ !
with a component of X, 10,4 . By our ch01ce of p, any component of K 104 i5 8 cusp.
Such a cusp is approxunated in X1%¥ by an annulus whose core geodesic has length
tending to 0. Therefore, for all sufficiently large n, the intersection of K/ w000 with
any component of X 104 is an annulus such that the injectivity radius equals u
on one boundary component and y' on the other. It follows that the component
of W[" [ which is contained in W' contains a boundary curve of Y]O"‘] This
is 1mpossxble because all components of Wl**l are simply connected since K} [i,00]
lifts. ]

Since the differentials ©],¢,, have norm less than 1, they converge uniformly to a
holomorphic quadratic differential ¢ defined on K} [ , up to possibly passing to a
subsequence (cf. the remark after the statement of Theorem 3.1). But this does not
guarantee that ¢ is non-zero, in contrast to Theorem 3.1. Therefore, we consider
two subcases.

1la) ¢ =0.

The diameter of K} w0l i bounded from above independently of n. Hence there
exists a ball of fixed radius in D? centered at 0 whose projection to X, contains
K¥ [0l for all n. Therefore the uniform convergence of 6},¢, to 0 implies

lim |e ¢'n| -

n—00 K[p' oof

So we obtain a non-zero lower bound on fW[“ ool O] = . Kool |8%.¢,| for all suffi-
ciently large n. This contradicts the hypothesis of Theorem 5.3.
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KL/-’WOO

Figure 5.1

1b) ¢ #0.

The proof in this case is similar to that of Theorem 5.1. Denote by Z (resp. Z,)
the zero set of ¢ (resp. ©'¢, ). Denote by Z,(r) the neighborhood of radius r of
Z, in KIFl, Let (6,¢,) be the hyperbolic norm of ©),¢y, .

Fact 5.5.— Let p'<p. Forany r >0, there is lower bound m(r) >0 for (8,,¢,)
over KW'-ol_ Z (r) which is independent of n.

This lower bound m(r) depends on p'.

Proof. — The proof is exactly the same as the one of Proposition 3.7: it follows
directly from the convergence of ©;,¢, to ¢. 0

Let 7*(©},¢,) be the pull-back of 6/,¢, to W'l The zero set of 7*(65,¢s)
is the preimage Z, of Z, . Let F, be the meromorphic function on W,f,“ 0l defined
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by ¢, = F,7*(6;¢,). Then F, is integrable on W,L""“’[ —-Zn(r) (as in the proof of
Lemma 5.2). Thus the averages 0. |F,| and 6, F, are well defined; also, 6, F, =1.
Therefore, 0|F,| 2

Suppose that u’ < p is chosen so that 0K w0l 5 disjoint from Z. Then, for
all n sufficiently large, OKY w00 i disjoint from Z, too. Following the proof of
Theorem 5.1, we obtain

_ = ! - /
J AR R TEE IS TR B

- / (0L IF,] ~ 1){€Ln)dy
KW' ool

/ m(r) / 0 (|Fylds) — £(B(KY oL — 7,,(r))))dr.
(KW +rl_z (r))

In the formula above, ry > 0 is chosen for the moment small with respect to 4’ and
to the distance between Z and 0Kl but will be fixed more precisely later.

Consider the 1-form %, that was constructed in Theorem 4.6 on the unbounded
components of Y[‘"°°[ Its hyperbohc norm is less than a constant C' depending
only on i and on x(Y). Since W[" ol ¢ ylmool (Fact 5.4), we obtain by imitating
the argument used at the end of the proof of Theorem 5.1:

O (| Frlds) 2 0| Frun|

" C Japsmmtz, ()

= Sl Area(K+rl - 2, (1),

/a(KL"’“'w‘—zn(r»

If 7y is sufficiently small, then for all 7<r;, the bounda.ry of K} W'+rool_ 7 (r) is
the disjoint union of K lw'frool gnd 0Z,(r). When 4’ and 7 tend to 0, the length
of OK¥+7l tends to 0. When r tends to 0, the length of Z,(r) also tends to
0. However since the ca.rdmahty of Z, N K} o' o0l might increase when 4’ tends to
0, we first fix a choice of y'. The hyperbohc area of K 1.0l admits a lower bound
v >0 which depends only on x(X). Choose TS u/2 such that £(0K}: 2,00y < y /2
and such that 8K¥-*lNZ = . Then, for all r < i, we have

Area( Kl +neoly — g(aK+riool) 5 2

With this choice of u', the number of zeroes of 6,4, that are contained in
K} 300l j5 bounded above independently of n because it converges (counting multi-
phc1ty) to the number of zeroes of ¢ contained in K*':*!, Hence the area of Z,(r)
and the length of its boundary are bounded from above by c;r? and c,r respectively
for constants ¢, and c, which are independent of n. Therefore, there is some <y’
such that, for all < ry, and for all sufficiently large n, we have

0. (|F,lds) — LKW+l - Z.(r))) 2 —=.
/ gy T4 =20 N2 o
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Therefore
TD ,
/ m(r)( / 0,1 Fylds) - LKL+ — Z,(1))))dr
SR 4=l 7, (r))

is bounded away from 0 independently of n by Fact 5.5. This leads to a contradiction
as in la).

2) KWl does not lift to Y, for sufficiently large n.

An important subcase to keep in mind occurs when Y, is the universal cover of X,, .
However this situation could be handled with the same methods as above. The main
difference between the first case and second case occurs when K [us00] , although not
liftable to Y;,, contains some boundary components which are hftable Because of
such curves, certain components of W[“ | intersect Y10H for 4 <y and Fact 5.4
is no longer true. We need to argue dlfferently

Since Kl is not liftable, 7~ (Kl»>l) = wk*l, Hence ©, = ©/, and
6, = 6,. Keeping the same notations as in 1), we assume that (X,,z,) converge
to (K,z) where K is a hyperbolic surface of finite area. By Theorem 3.1, (6,4,)
converges uniformly to a holomorphic quadratic differential ¢ on K. Since the
O, ¢, -mass of K,, is bounded away from 0, ¢ is non-zero (cf. 1a)). Let Z, (resp.
Z) be the zero set of ©,¢, (resp. ¢). Let Z, be the preimage of Z, in ¥, and
Zy(r) be the neighborhood of radius r of Z, . Let F, be the meromorphic function
on Y, defined by ¢, = F,7*(0,¢,). Forany r > 0, F, is integrable on Y, —Z,(r)
with respect to the hyperbolic volume. Its L!-norm is smaller than 1/m(r), where
m(r) > 0 is a lower bound for (6,4,) on K, — Z,(r) (cf. Lemma 5.2).

Since Y, covers Xy, its universal cover is naturally identified with D?. Let F,
be the lift of F,, to D?. Let Z (resp. Z,) be the preimage of Z (resp. Z,)in D?.

Lemma 5.6. — Up to eztracting a subsequence, the functions F, converge uniformly
on compact subsets of D? — Z to a holomorphic function F .

Proof.— Let X C D? be a compact set. Under the covering D* — K, the
“degree” of the projection X — K is finite, i.e. the cardinality of the preimage of
any point of K which is contained in X is bounded, independently of that point.
Hence since (X,,z,) tend to (K,z), the degree of the projections X — X,, is
bounded independently of n. The same property holds a fortiori for the projections
X — Y,. By the uniform convergence of ©,¢, to ¢, Z, converges to Z and
Z,(r) converges to Z(r) when n tends to co. It follows that for any r > 0, the
L'-norm of F,|X — Z(r) is bounded independently of n. By Cauchy formula, this
implies that F,, converges uniformly to a holomorphic function F on compact sets
in X — Z, up to passing to a subsequence. O

2a) F is not constant.

Since F is holomorphic and not constant, there exists a point § € D?— Z such that
F(3) has a non-zero imaginary part. By the uniform convergence of F, to F, there
exists positive numbers a, n and p so that for all ¢ in the ball B(g,p) and for all
sufficiently large n, we have
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() Fa(@)l>a>0,and
(i) 0<n<argF(g)<m—n.

Suppose that § is near the origin in D?, so that the projection B, of B(J,p)
on X, is contained in KL, If p< /2, B,, is embedded for all sufficiently large
n. Since § ¢ Z, the ball B(g,p) is at distance bigger than p from Z, for any
sufficiently small p and for all sufficiently large n. In particular B,, is contained in
K, —Z,(p). Let g, denote the image of § in Y;,. For sufficiently large n, B(g,,p)
maps homeomorphically to B, , under the covering Y, — X, .

Let z and y be complex numbers such that z+y =1, |z 2 a > 0 and
0 < n<arg(z) < 7 —1n. Then, we have |z| + |y| — 12 c(n,&) > 0. Hence, for all
2 € B(gn, p)

|Fa(2)l 41 = Fa(2)| - 1 2 c(n, ).

Thus, for all sufficiently large n
/ . / 1Ongnl> / (6lFal  1)(@nn)dv
"—I(Bn) B, Bn
> / (Fa(2)| + |1 = Fa(2)] - Lim(p)dv
B(gn.p)

>c(n, @)m(p) / d,

where m(p) is a lower bound of (6,¢,) on K, — Z,(p). This is impossible as
||©n¢n|| tends to 1.

2b) F is a non-zero constant.

Let y, € Y, be the image of 0 € D? under the covering map D? — Y,,. Since
Yn Projects to z,, inj(y,) 2 €. Let B(y,,R) denote the ball in Y, of radius R
centered at y,, .

Lemma 5.7.— For any sufficiently small positive r, the hyperbolic ares of
B(yn, R) — Z,(r) tends to oo with R, uniformly in n.

Proof. — Since K"l does not lift to Y, y, is contained in an unbounded
component of Y,E“""”][. Denote B(y,, R)**! = B(y,, R) N Y»l,

Suppose that y, belongs to the Nielsen core Y, of Y,,. By Lemma 4.7, there is
a geodesic v, C Y, whose length £(,) is bigger than p, such that d(y,,7,) <
C(p,x(Y)). Thus, B(y,,R) contains a ball of radius R — C(u,x(Y)) centered at
some point on 7, . Since £(y,) > g , the volume of B(y,, R)*>! is (much) bigger
than (R - C(u,x(Y)))u, for large R and for all n.

Suppose that y, belongs to component of Y, — Y, (which is an annulus). Since
inj(y,) 2 p a short computation shows that the volume of B(y,, R)**! is (much)
bigger than Rpu.

In both cases, the volume of B(y,, R)**! tends to infinity with R, uniformly

in n.
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Any ball of radius p in ¥, which is contained in the preimage of K,[{"°°[ embeds
into X,,. Therefore the cardinality of the intersection of Z, with any ball of radius
p is smaller than the number of zeroes of ©,¢, and so is smaller than 4g — 4.
Thus, for all sufficiently small r > 0, the volume of B(y,, R)!»>®! - Z,_(r) tends to
oo with R uniformly in n. This implies Lemma 5.7. O

Fix 7 > 0 so that the conclusions of Lemma 5.7 are satisfied. For any R, |F,)|
is bounded from below over B(y,, R) — Z,(r) by |F|/2 for all sufficiently large n
because |F,| tends uniformly on B(0,R) — Z,(r) to the non-zero constant |F|.
By Lemma 5.7 the volume of B(y,, R) — Z,(r) is bigger than 3/(m(r)|F]), for a
sufficiently large R independent of n. This is impossible since the L' -norm of F,
on Y, — Z,(r) is less than 1/m(r).

2¢) F=0.

We will apply essentially the same argument as in 1). We introduce first some
notations. Let p'<pu to be fixed later. Recall that K} [1's00] i isotopic to K (ool | for
all n sufficiently large. Restrict in what follows to those values of n. By hypothems,
K} w00l cannot be lifted to Y., . However, some components of dK! [1' 00 might be.
We denote the union of these curves by SOK! [0l

For 4’ < u, each component of SaK ool cytg K} [0l into two components,
one of which is an annulus. We call SK! o’ the union of those annuli. Then the
boundary of SK! [6:4#] equals SoK ool US 0K} (w0l Gince SKlw Wl i isotopic into
S, it can be lifted isomorphically to Y, . The following is a generalization of Fact
54.

Fact 5.8.— Forall p' <p, W,[,“"°°[ is ct,mtained in the unbounded components of
Yol ezcept the isomorphic lift of SKI*1, which is contained in YIO#

Proof. — The preimage W¥' ! equals the union of Wl and n=1(KW'#l).

Clearly, W[“'°°[ C Y[“’°°{ Moreover since K} (1%l does not hft W["’°°[ is contained
in the unbounded components of Y[“’°°[ Let A be a component of K} ' ’°°(—K Jus00l

If A¢S KIP*1 it is not liftable to Y, . Therefore 7 1(A) is a disjoint union of
discs and thus is dlSJOlnt from Y0 (cf. Fact 5.4). If A S KI#1| 771(A) equals
the isomorphic lift of A and a union of discs. Again only this isomorphic lift meets
(is contained in) Y)#. This proves Fact 5.8. 0

We need now to estimate fa(KU":wl—z (=) On(|Falds). Let n, be the I-form on

the unbounded components of Y,**! constructed in Theorem 4.6. Then (n,) is
bounded from above by a constant C independent of n. In contrary to 1), 7,
is not defined over all W,[{"'°°[ but only on the complement of the isomorphic lift
of SK,[i',u]. We need to modify the definition of §, to take these annuli into

consideration.

A 1-form 65|F,3,| can be defined on K,({‘"°°[ by applying 6, to the discontinuous
1-form defined by extending |F,7,| by 0 in the complement of the unbounded
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Figure 5.2

components of Y["’ Let ¢ be a component of 0K} Iw's00f _5 0K} ol Since
771(c) is contained in the unbounded components of Y[“ >l we have

en(an'dS) 2 aeannnnl = Eolennnl

More generally, if c is a component of AKl, we have 8, (|F,|ds) > —I—BSIann|

A 1-form 85(F,n,) can be defined on Kl w0l ysing the same construction as
for 85|F,n|. It is a form of type (1,0) in the complement of SOKP=l, Its
dlscontmulty along SoKU [0l can be described as follows. Each component A of
SK W'al Jifts to Y,. Over A the covering map 7 : Y, — X, has an 1nverse L
We denote by f, the function defined on 5K w4 which equals F,, o7~ on each
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of his components. Then the 1-form §3(F,7,) has a jump discontinuity along the
curves S9KW*!l, which equals f,7,. We have
005 (Fum) =dv, on KWl _SKWmM  ang
50§(Fﬂ77n) = (1 - fn)dv, on SK'[lp’,p.].
Suppose, up to increasing p slightly, that 9Kl is disjoint from Z. Then,

0K, [“;‘”[ is disjoint from Z, for all sufficiently large n. For all 4’ < p such that
KWl is disjoint from Z, for all sufficiently large n and for all sufficiently small

r, we have:

orsu. (F nnn)

/3(K,[.""°°[-Zn(f))

05(Fn77n) + L OS(F,,'I]")
dKwl

65~ |

/a(xﬁ""“hzn(r» SoK ool

/ (1= fo)dv+ / dv + / Jaln
SKWW' M2, (r) KWl SKl -z, () JsoRime!

= / dv—/ fndv+[ fnnn .
KW=z (r) Skl -7, (r) Sak ool

Fix a p' asin 1). Since (f,) tends uniformly to 0 over SK,[{‘”“] ~ Z,(r) the
same inequalities as in 1) hold for all n sufficiently large. This gives a contradiction
which finishes the proof of Theorem 5.3. 0

v




152

CHAPTER 6

McMullen’s proof of the Fixed point theorem

In this chapter we prove, following [McM3], the Fixed point theorem.

Thurston’s fixed point theorem.— Let M be a hyperbolic manifold with incom-
pressible boundary which is not an interval bundle. Let T be an orientation reversing
involution of M which permutes the components by pairs. Suppose that M/t is
atoroidal. Then 7* oo has a fized point.

Through all this chapter, ¢ will denote a strictly positive constant smaller than
(3).

In the first two sections, we denote by M a connected hyperbolic manifold with
incompressible boundary which is not an interval bundle, and by G be a geometrically
finite group such that M is diffeomorphic to M(G).

6.1 Consequences of the contraction properties of the Theta
operators for the skinning map

In this section, we deduce two corollaries for the norm of d*o from the results of §5.
An immediate consequence of Theorem 5.1 is the following.

Proposition 6.1.— Let s € T(OM). Then the norm of d*c at s is less than or
equal to a constant k < 1 which is a function of the systole of s and of x(OM).

Proof. — Let s € T(0M). Let do denote the coderivative of o at s. We have
djod =) Oydy,
7

where U varies over all the spots contained in ¢(8M*) (Proposition 2.1). Then
(1) lldsell < sup |Gy |

where the supremum is taken over all the spots U C o(0M®).
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Since M is not an interval bundle, all the spots U C ¢(OM?®) are proper surfaces
(cf. §2). By Proposition 2.2, all the covers U — X; are geometric and those which
are not isomorphic to the universal cover are finite in number. Therefore, by Theorem
5.1, the norms of the various operators By; are all smaller than a constant &k < 1
which is a function of the systole of s and of x(0M). By (1), the same k is also an
upper bound for the norm of djo. This proves Proposition 6.1. a

By Proposition 6.1, in order to study the contraction properties of ¢ over all
T(@M), we need to understand what happens when s contains short geodesics.
Theorem 5.3 gave a precise information on Theta operators in that situation. In order
to apply this theorem to the skinning map, we introduce first another definition.

Let s € T(OM). We denote by A(c(0M?®))® the part of c(0M®) which equals
the disjoint union of the e-amenable parts A(Xy)® of the covers U — Xy over all
the spots U C o(0M*).

Proposition 6.2.— Let 0 < n < 1. There exists 6§ > 0 such that: for any
s € T(OM) and for any ¢ € Uo(OM?®)) with ||¢|| =1 and ||djod|| 21 -6, the
¢ -mass of A(c(OM?®))° is bigger than 1 —7.

Proof. — Let 0 < § <1. Assume that ||¢|| =1 and ||d;o¢|| 2 1~ 8. Then, since
d;o¢ =Y Oydy, the ¢-mass of the union of the spots U for which ||Bydy||2(1-
V)||¢y]| is bigger than 1-+/3. For any spot U such that ||©y¢yll>(1-v8)||dull,
Theorem 5.3 asserts that the @y -mass of A(Xy)¢ is bigger than (1 — ¢(6))||¢vl|
for a constant c(6) which tends to 0 with 6 and which depends only on ¢ and
x(Xy) - Since there are only finitely many possibilities for the topology of the covers
U — Xy (Proposition 2.2), ¢(§) can be taken independent of U. Thus the ¢-mass
of A(a(OM?®))* is bigger than (1-+/8)(1—c(6)). Proposition 6.2 directly from this.

a

6.2 Inefficiency over the thin part

By Proposition 6.2, if ||d}o@|| is near 1 for a unit norm ¢, the ¢-mass concentrates
over the amenable part. In this section, we show that the ¢-mass concentrates over
the ¢ -liftable part.

Definition. — The ¢ -liftable part L(o(OM?®))® is the union over the spots U C
(BM®) of the lifts of the (liftable) components of X1 and of X!, Note that
L(c(0M?*))® is a compact surface that might be empty. We denote by S$(c(0M*))*
the union over all the spots U C a(OM?) of the simply connected components in the
preimage of X}?"]. Hence A(c(0M?®))¢ is the disjoint union of L(a(0M®))® and
S(c(OM®))=.

Proposition 6.3. — There ezists a constant £y > 0 depending only on x(0M),
such that for all € < €p and for all 7 > 0, there ezists 6 > 0 such that: let
s € T(OM), let ¢ € Qo(OM®)) with ||¢|]] = 1 and ||diod|| 2 1 — &, then the
@ -mass of L(c(OM?®))® is bigger than 1—1n .
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Although this proposition looks very similar to Proposition 6.2, its proof is entirely
different: it lies on the next result, whose proof is partially “3-dimensional”.

Proposition 6.4. — There exists a constant ¢); depending only on x(0M) such
that, for all 0 < € < ey, we have: let s € T(OM), let ¢ € Qo(OM®)) with
ligll =1, let p € B(OM®) with ||p|| =1, then every z € §(c(OM?))* is the center
of an embedded hyperbolic ball on which the efficiency of the pairing between ¢ and
d,op is smaller than 1 — o, where the constant o > 0 depends only on € and on
x(0M).

Proof. — We argue by contradiction. The contradiction will follow easily from
Theorem 3.1 once we suitably normalize the limit set of G* in C. Suppose that
there exists a sequence (¢;) tending to 0 and a sequence (s;) in T(@M) such that
the systole of s; is smaller than ¢; , for which Proposition 6.4 fails. Denote to simplify
M* =M% and G* = G*. Then for each i, there is a point z; € $(c(OM*))% such
that: there exists ¢; € Q(c(OM"*)) and ; € B(OM*) with ||¢;|| = ||m)| = 1, such
that on any embedded hyperbolic ball B; C o(0M"®) centered at z;, the efficiency
of the pairing between ¢; and d, op; tends to 1.

For each 4, choose a component (; of Q(G?), with stabilizer T;, such that
z; belongs to the component o(Q;/T;) of o(M*). Then Q(I;) is the disjoint
union of (I';) and another component denoted by {);. By definition, §); covers
o(/T;). Let Z; € Q; be a point in the preimage of z;. Let U; be the component
of Q(G*) which contains Z;. The projection of U; to o(€;/T;) is the spot denoted
by U; which contains z;. Since z; € $(c(0M*))%, there is a non-zero element
v; € G* which stabilizes U; and which moves Z; a distance smaller than ¢; for the
hyperbolic metric on U;. Since the component of §(a(9M*))% which contains z;
is simply connected, v; ¢ I; (cf. the proof of Proposition 2.2). Since G* has no
parabolic elements, «; is a hyperbolic isometry. Let o; and w; be its two fixed
points in 0D® ~ C. With these notations, we have:

Lemma 6.5.— Let 0 < ey <¢(3) We can conjugate G* inside PSLy(C) so that,

for all sufficiently large i, the following properties hold

(l) a; = 0;

(i) oo€ L(T;) and

(i) v; moves the center of D* a hyperbolic distance equal to £ -

Proof. — By a conjugacy of G* in PSL,(C), it is easy to achieve (i) and (ii).
The element v; stabilizes U; . By Corollary 2.4, a; (resp. w; ) does not belong to

L(T;) since «; ¢ T;. For the hyperbolic metric on U;, «; is a hyperbolic isometry

with translation distance smaller than ¢;. By the Ahlfors lemma, the translation

distance of 4; in H® is less than 2¢;. In particular, for all i sufficiently large, this

translation distance is less than &;. The set of points in D® which 5; moves a

distance exactly & is the boundary of the tube n®(7y;) (cf. §1). Since w; # 0o, the

boundary of n®(y;) is pierced in exactly one point by the geodesic 0co. Therefore,

after conjugating G* by a hyperbolic transformation fixing Oco, we can achieve (ii).
)
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Denote by Ap the disc of radius R centered at 0 € C.

Lemma 6.6.— Let R > 0. If ¢y is smaller than a constant which depends only on
x(0M) and on R, then in the normalization provided by Lemma 6.5, §); contains

Ap, for all sufficiently large 1.

Proof. — Recall that «4; ¢ T;. The convex hull C(T;) of L(T;) is the universal
cover of N(I';), the Nielsen core of M(I';) (cf. §1). With the induced path metric,
ON(T';) is isometric to a hyperbolic surface (cf. §1). Since M is compact, ON(T;)
is compact and there are only a finite number of possibilities for its topological type.
Thus the injectivity radius of the induced metric on dN(I';) is bounded from above
by a constant d depending only on x(0M). Therefore any point of AC(T;) is moved
a distance smaller than 2d by a non-zero element of T';.

For v >0, n¥(v;) contains the neighborhood of radius 2d of n"_“"(’y,-) (cf. 81).
Recall that, by the Margulis lemma, for any v<e(3), the tubes n”(g) corresponding
to elements g € G* which are not contained in the same cyclic sub%roup are disjoint.
Using this, we prove by contradiction that for any s < e(3), n® “¢(y;) is disjoint
from C(T';). Suppose this is not the case. Then, n e £(7;) must intersect aC(T;),
since v; ¢ [';. We saw above that any point in C(I;) is translated a distance
less than 2d by some non-trivial element g; € I';. Thus the tubes n°(y;) and
n(g; 07; 09; ') have non-empty intersection. By Margulis lemma, g; 0y, 0g;} and
7; are contained in the same cyclic group. Then 7; and g; must have the same fixed
points. Therefore «; € T';. This provides the required contradiction.

In our normalization, 7; moves 0 € D?® a distance equal to &, for sufficiently
large ¢. Thus for any K > 0, the hyperbolic ball of radius K centered at 0 € D?
is contained in n® “(v;). By the last observation, if we choose &y = g4(K) so that

e2dtX ¢, < (3), then this ball is disjoint from C(T;). Since oo € L(T;), this implies
that Q contains Apx), where R(K) depends only on K and tends to co with
it. This implies Lemma 6.6. 0O

Lemma 6.7.— If ¢y is smaller than a constent which depends only on x(0M),
then, for all sufficiently large i, A, is contained in Q and embeds in §; /T

Proof. — By Lemma 6.6, for all R > 0, we can choose gy = &o(R) such that
Ap C Qy, for all i sufficiently large. If R > 1, then A, C §; for all i sufficiently
large.

We show now by contradiction that A; embeds in Q, i/T;, for all i sufficiently
large (in the normalization of Lemma 6.6). If A; does not embed into Q ;/T;, then
there is a non-zero §; € T; such that 6;(A;) NA; # @. The two fixed points of
0; are contained in L(I';) and in particular they are outside from Ap. Thus, for
the natural metric on PSLy(C) §; is C(R)-close to a parabolic isometry é which
fixes 0o and moves 0 € C an euclidean distance less than 2. In particular, § moves
then 0 € D® a hyperbolic distance smaller than 2. When R tends to oo, C(R)
tends to 0. Thus we can choose R sufficiently large such that 6; moves 0 € D? a
hyperbolic distance smaller than 3, for all i sufficiently large. But v; moves 0 € D3
a distance smaller than €y = €o(R) (depending only on x(0M)). Therefore, if €,
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also satisfies e4e® < £(3), the tubes nfoe’ (v;) and n5°°3(6,-’y,-6,-" 1) must intersect.
Since 6;v;,6;! and v; do not belong to the same cyclic subgroup of G*, this is
impossible by Margulis lemma. This ends the proof of Lemma 6.7. a

In the sequel, we fix ¢y such that Lemma 6.7 and Lemma 6.6 for R = 2 are
satisfied. In order to obtain a contradiction, we need to find, for each %, a hyperbolic
ball centered at z; on which the efficiency of the pairing between ¢; and d, ou; is
bounded away from 1, for any non-zero holomorphic quadratic differential ¢; and
for any Beltrami form g; of unit norm.

Note that up to extracting a subsequence, (vy;) tends in PSLy(C) to a parabolic
isometry fixing 0. Since each 7y; moves 0 € D® a distance exactly equal to &g,
some subsequence of (7;) converges to a non-trivial element y € PSLy(C). Since
the translation distance of +; tends to 0, < is parabolic. By the normalization of
Lemma 6.5, v fixes 0 € C.

Fact 6.8.— The point =; tends to 0 as i tends to co.

Proof.— The hyperbolic metric on U; can be written );(z)|dz|. By the Koebe
1/4-lemma and since 0 € dU;, A;(2) 2 1/4d,,.(2,0U;) 2 1/4|z|. The hyperbolic
distance between Z; and ~;(Z;), for the hyperbolic metric on Uj, tends to 0 as
i tends to oo. Therefore, if Z; would remain a bounded euclidean distance away
from 0, the spherical distance between Z; and +;(Z;) would tend to 0. Then any
accumulation point of Z; would be a fixed point of . Since « is a parabolic isometry
fixing 0 € C, this is impossible. |

Let B; denote the largest ball for the hyperbolic metric on S~2,- which is centered
at T; and contained in the disc A = A;.

Fact 6.9.— Any limit of E,- for the Hausdorff topology on compact subsets of C
contains a neighborhood of 0.

Proof. — Let R; be the radius of the largest Euclidean ball centered at 0 and
contained in €);. In our normalization, R; is bigger than 2. By the Schwarz lemma,
the conformal factor \;(z) of the hyperbolic metric on 2; is less than the one of the
hyperbolic metric on Ap, which equals

2R,
R} - 1>
As we noticed above, Koebe’s 1/4-theorem implies
1
4deuc(zv aﬁz) .
Therefore on A we have supy A; < Cinfy A;, for some constant C' independent on
i. Thus on A, the hyperbolic metric of €); is Lipschitz equivalent to the euclidean

metric by a factor independent on 4. Fact 6.9 follows from this and from Fact 6.8.
a

Ai(z) 2
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Let B; be the projection of B; in ;/T;. By Lemma 6.7, the ball B; is
embedded. Suppose that the efficiency of the pairing between ¢; and d, ,OH; on
B; tends to 1. From (the proof of) Theorem 3.1 we know that, up to extractmg
a subsequence and up to multiplying the differentials ¢; by non-zero constants,
their pull-back ¢;(2)dz? to & converge umformly over compact sets to a non-zero
holomorphic quadratic differential ¢(z)dz®. Let fi;(z)dz/dz be the pull-back of
d,,ou; to C. We can suppose that (u‘) converges weakly to & € L®(C) with

IIuH < 1. The uniform convergence of ¢; to ¢ and the weak convergence of 7; to
ji imply that the efficiency of the pairing between ¢ and g on any fixed ball which
is contained in the limit of B; equals 1. We observed already that, when i tends
to 0o, v; tends to a parabolic isometry v fixing 0. By continuity, & is invariant
under <. The transformation ~ leaves a family of round balls containing 0 in their
boundary invariant. By Fact 6.9, one of these balls, denoted by B, is contained in
the geometnc limit of the balls B Then the efficiency of the pairing between ¢
and Ji on B equals 1. Since ||| < 1, we have therefore on B

z|&t|

b=

, =

Since j is invariant under v, #(v(2)) = nj)(z)fy’(z)z, for a constant k # 0. But
this is impossible since ¢ is integrable on B, as being holomorphic and defined on
a larger domain. This concludes the proof of Proposition 6.4. O

Proof of Proposition 6.3.— Let ¢, be the constant provided by Proposition
6.4. Let 0 <e<ep. Let ¢ € Qo(8M?®)) with ||¢|| = 1. Let m be the ¢-mass
of §(c(dM*))*. From Proposition 6.4 and Proposition 3.10, we deduce that for any
p € B(OM?®) with ||ul| = 1, (¢,dsop) < 1— cam, where ¢ > 0 only depends
on x(6M). But ||d}o¢|| = supu(d 0¢, 1) = sup,(¢,d,op), where the supremum
are both taken over all u € B(OM?®) of unit norm. Thus ||djod|| £ 1 - cam.
Therefore if ||djo¢||=21—8, then the ¢-mass of §(6(OM®))* is less than 6/ca. Since
A(g(OM*))* is the disjoint union of L(a(0M?®))* and 8(c(OM?®))°, Proposition 6.3
follows from this estimate and from Proposition 6.2. a

6.3 Proof of Thurston’s fixed point theorem
The proof of the Fixed point theorem amounts now essentially to translate Proposi-
tion 6.3 in terms of the topology of M.

In this section M is not necessarily connected. Denote by M,., M,,., M, its
components. For s = (sy, -+, 8, ,8,) € T(OM), we denote by M*® the disjoint
union of the manifolds M,*. Recall that o equals the product of the skinning maps
oy associated to M, and that the norm on Q(o(0M®)) = @, A(c(0M})) is the sum
of the norms on the spaces Q(c(0M,*)). Therefore, we have

(1) lld3ol| = st:plld:,azﬂ-

Now, we distinguish two cases.
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1) M is acylindrical.

Theorem 6.10. — Let M be an acylindrical hyperbolic manifold with incompressible
boundary. Then o contracts the Teichmiiller distance by a factor strictly less than
1.

Proof.— Since ¢ is differentiable and since Teichmiiller distance is induced by a
Finsler metric, it suffices to prove that ||d,o|| is bounded by some constant k < 1
independent of s. It is more convenient to prove the dual statement, namely that
||d;o]| is bounded away from 1 independently of s. Since M is acylindrical, each
of its components is acylindrical also. In view of (1), we may suppose that M
is connected. Since M is acylindrical, each spot in ¢(8M?) is simply connected.
Therefore L(c(0M?))° is empty, for all s and for all €. Therefore the norm of d;o
is bounded away from 1 independently of s. 0

Proof of the Fixed point theorem in the acylindrical case.— Since 7* is
an isometry of the Teichmiiller distance (cf. §1), Theorem 6.10 implies that 7* o ¢
contracts the distance on T(OM) by a factor strictly less than 1. Since Teichmiiller
space is complete, 7% o o has a fixed point. O

As an application, we have the following.

Theorem 6.11. — Let N be an acylindrical hyperbolic manifold with incompressible
boundary. Then N carries a hyperbolic metric for which ON is totally geodesic.

Proof. — This result is a consequence of the Fixed point theorem when M is the
union of two copies of N having opposite orientations, and when 7 is the natural
identification between the two copies of dM . By Corollary 6.11, 7* o ¢ has a fixed
point s € T(@M). Consider the hyperbolic manifold M° corresponding to s via
the Ahlfors-Bers isomorphism. Denote by N the Nielsen core of the component of
M?* which has the same orientation as N. Let I be the image in PSLy(C) of
the fundamental group of a component of ON. Then I is a quasi-Fuchsian group.
Saying that s is a fixed point of 7* o & means precisely that the two components of
(") are isometric by an orientation reversing map which extends to the identity on
L(I'). Since the Ahlfors-Bers map is injective, I" is conjugated in PSL,(C) to a
Fuchsian group. It follows that I leaves invariant a totally geodesic plane. Therefore
ON is totally geodesic. Since N is diffeomorphic to N, this proves Theorem 6.11.

O

2) M is cylindrical.

The hypothesis of Thurston’s fixed point theorem is that M is not an interval bundle.
Still some connected components of M can be cylindrical, like for instance interval
bundles, some others may not. The hypothesis excludes only the case when all
components are interval bundles. Let e be the smallest of the constants ey,
provided by applying Proposition 6.4 to the components M, of M which are not
interval bundles. Recall that ¢ is an isometry when M is an interval bundle (§2).
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Definition. — Denote by C the number of components of M . Denote by S the
maximal number of homotopy classes of disjoint simple closed curves in M . Set
K=C+S§.

Theorem 6.12. — Let M be a hyperbolic manifold which is not an interval bundle.
Let 7 be an orientation reversing involution of OM which exchanges the components
by pairs. If N = M/t is atoroidal, then (7* 0 o)X has a fized point.

Observe that this theorem does not claim that (7* o )% contracts uniformly
Teichmiiller distance, like in the proof of the Fixed point theorem in the acylindrical
case. However, it is sufficient.

Proof of Thurston’s fixed point theorem. — Some component of M is not an
interval bundle. By Proposition 6.1, the skinning map associated to this component
contracts strictly Teichmiiller distance. Since 7* is an isometry and since K is
bigger than the number of components of M, it follows that (7* o O')K contracts
strictly Teichmiiller distance. Therefore the fixed point provided by Theorem 6.12 is
unique. Since (7*00)¥ and 7% oo commute, this fixed point is also fixed by 7* 0.

O

Proof of Theorem 6.12. — Choose an arbitrary point s° € T(6M). Let L be the
Teichmiiller distance between s° and 7* 0 ¢(s°). Denote by T(6M);, C T(OM) the
set of points which are moved a Teichmiiller distance smaller than L by 7*oc. Then
T(0M)y, is a non-empty closed subset of T(OM) which has the following properties:

(i) it is invariant under 7* oo (because 7* oo decreases the Teichmiiller distance),
and

(ii) for any s € (M), the Teichmiiller geodesic between s and 7* o o(s) is
contained in T(OM), (this is a consequence of the triangular inequality).

In order to prove Theorem 6.12, it suffices to establish that the norm of the
derivative of (7* o g)X is bounded over T(OM), by a constant ¢ < 1. This will
imply that the path which equals the union of all the positive iterates by (7* o o)X
of the geodesic joining s° to (7" 00)¥(s°) has finite Teichmiiller length. Therefore,

this path accumulates on a fixed point of (7* 0 g)K .

To prove that the norm of the derivative of (7*00)¥ at any point in T(0M)y, is
less than a uniform constant ¢ < 1, we argue by contradiction. Let § > 0 a constant
to be fixed later. Then there is s € T(OM),, such that the coderivative d%(* o a)¥
has norm bigger than 1/(1+68). For 0S k< K, set s¥ = (7" 0 0)¥(s) and denote
to simplify M* = M. Hence, for 0< k< K, there exists ¢, € Q(0M*) such that

(i) ¢ =du(m" 0 )P4, and
(i) 1<|oell <146,

Notation.— If X is a union of components of M*, we denote by ||¢x||x the
¢, -mass of X .
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Choose & > 0 such that € < ey and log(e) + 2KL < log(e(2)) . By Proposition
2.2, 0(0M) contains only finitely many spots which are not simply connected. Let
S’ be twice the number of those spots and set

__¢
" eesE

For all k < K and for any component M} of M*, we have:
0= ld*r* bx41lloqonasy — Bellangs < NlA°7* Brsall — ||l < 6.

By Proposition 6.3 and since ¢y = d*o(d*7"¢y4,), we can choose § sufficiently
small so that for any component M} which is not an interval bundle and whose
¢i-mass is more than 7, the d*7*¢y,,-mass of o(OMF) - L(c(OME))/? s less
than 7.

Notation.— Let X be a compact hyperbolic surface and let ¥ C X be a closed
curve homotopic to a geodesic shorter than €/2. We denote by X(~y) the component
of X1%¢ which contains this geodesic.

By Proposition 3.9, there is a constant { # 0 depending only on x(6M) such
that, if X is a component of dM* which contains a closed geodesic shorter than
£/2, then the ¢ -mass of X(a) is bigger than ||¢x|[x for some geodesic @ C X
shorter than ¢/2.

Fact 6.13. — Let 0Sk< K-1. Let o}, be a closed curve contained in the boundary
of a component Mf of M* and suppose that a;, is homotopic to a geodesic shorter
than €/2. Set p = ||kllop(a,) ond assume p>n. Then, OM*(ay) lifts to an

annulus contained in o(OM}) whose d*7* ¢y, -mass is bigger than u' = (u—n)/S’ .

Proof.— Since ¢y = d*o(d*7"¢x,,) and since d*o decreases the mass, the
d*7* ¢y.4, -mass of the entire preimage of MF(ay) in o(OMf) is bigger than 4.
If M} is an interval bundle, this preimage consists of exactly one isomorphic lift
of OMF(ay). The d*7" @1 -mass of this lift equals 4 and thus is bigger than '.
If M is not an interval bundle, the preimage of dMF(a) equals the disjoint
union of isomorphic lifts of 6M¢’° (o) and simply connected components contained
in 8(c(dMF))*/%. By our choice of &, the d*7* @y, -mass of S(c(OMF))*/? is less
than 7. Thus, the d*7" @y, -mass of the union of the isomorphic lifts of My ()
is bigger than p — 1. Since the cover associated to any spot is geometric, each spot
which is not simply connected contains at most two isomorphic lifts of M, ,"(ak) (cf.
§2). Therefore the number of the isomorphic lifts of M} (cy) is less than S’ so
that the d*7*¢ , -mass of one of them is bigger than u'. O

The geometric consequence of this result is the following.

Fact 6.14.— Under the hypothesis of Fact 6.13, there is an essential annulus con-
tained in MF which joins oy to a curve 7 C OMF which satisfies

(i) 7(vk) is homotopic to a geodesic shorter than €/2 for the hyperbolic metric on
AM*L | and
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(ii) the @r,q-mass of OM**1(r(y,)) is bigger than u'.

Proof. — Let A, be the isomorphic lift of 3MJ(a;) which is provided by Fact 6.14.
The annulus A, is isometric to &M} (ay) for the hyperbolic metric of the spot which
contains it. Let 8, C A, be the lift of @, . Since the Poincaré metric decreases under
inclusion, By is shorter than ¢/2 for the hyperbolic metric of o(@M}). For the same
reason, A, is entirely contained in ¢(OM¥)(By) . In particular, the d*r*(¢,) -mass
of o(OMF)(By) is bigger than 4.

Let Y be the component of M} such that B C o(Y). Let Y be the covering
space of M} with fundamental group 7,(Y). Then Y is naturally contained in the
manifold M(my(Y)). Since m(Y) is a quasi-Fuchsian group, M(m;(Y)) has two
boundary components and these are identified with Y and o(Y) respectively. One
component of 3y is the canonical lift of Y, whereas the others components are the
spots contained in o(Y’). From the proof of Fact 2.5 (see also Figure 2.3) §; can be
homotoped inside Y to a curve 4, C Y. Let f be the composition of this homotopy
with the covering map Y — M, ," . Then £ is a map from the annulus into M} whose
image joins the image of 8, —i.e. a; — to the image of 4, — a curve contained in
Y which we denote by ;.. The map f is essential. It is injective on the fundamental
group since ay is not homotopic to zero. It is injective on the relative fundamental
group since the two components of its lift to Y are contained in distinct boundary
components.

Now, the length of the geodesic homotopic to 7(y;) for the hyperbolic metric on
OMF*+! = 7* 0 0(OM*) equals the length of the geodesic homotopic to 7, for the
hyperbolic metric on o(0M*). This is also the length of the geodesic homotopic to
B for the metric on ¢(Y"). Therefore 7(v) is homotopic to a geodesic shorter than
€/2 for the metric of IM*+!,

Similarly the ¢, ;-mass of AM**!(r(y)) equals the d*r*¢j,;-mass of
o(OM*)(B), and so is bigger than . This proves Fact 6.14. m]

In order to obtain a contradiction, we will construct by induction a finite sequence
of essential annuli contained in M. The boundary of these annuli will match up
under 7 to produce a 7, -injective map from a torus into M/7. This will contradict
atoroidality of M/ .

The construction begins with the following result.

Fact 6.15. — There ezists 0< k< C—1, such that IM® contains a closed geodesic
o shorter than €/2 and such that the @) -mass of OM*(c) is bigger than (/C.

Proof. — The ¢ -mass of some component X of M? is at least 1/C. Denote by
V the component of M® which contains X .

Suppose that V' is not an interval bundle over a closed surface. Since ¢y =
d*o(d*r"¢,) and since d*o decreases the mass, the d"7*¢;-mass of the union of
the spots on g(OM®) which cover X is more than ||¢y||x . By the choice of § and
since ||do|lx = 1/C 2 7, one of these spots must (intersect and therefore) contain
a component of L(o(MP))/2. Th~-f-=- 2240 ~swbnien o ~lannd gondesic shorter
than €/2. Fact 6.15 follows then frc
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Suppose that V is an interval bundle. Since ¢ is an isometry in that case,
the d*r*¢, -mass of o(X) equals ||@g||x . The differential d*7*¢, is defined on a
boundary component of V' endowed with the reversed orientation. This component
is identified by 7 with a component X' of OM®. Since 7* is an isometry, ||¢;||x: =
lgollx = 1/C. If X" lies in the boundary of a component of M! wich is not an
interval bundle, the reasoning of the previous case can be applied. Then Fact 6.15
holds with k = 1. If X! lies in the boundary of a component of M' which is
an interval bundle, we can repeat the same argument. Since M has less than C
components and is not an interval bundle, there exists ¥ < C — 1 and a component
X* of M* such that

(D) llellx+ 2 1/C and
(i) X* is not contained in the boundary of a component of M* which is an interval

bundle.
The reasoning of the first case concludes then the proof of Fact 6.15. g

We are now ready for constructing essential annuli A; C M/r. We start with
the curve oy, provided by Fact 6.15, for some 0 < k< C — 1. Up to shifting the
indices, we suppose that k = 0. Since K = C + S, we have now a sequence
MO ... M. M with R>S+1.

Recall that each M* is identified with M by a diffeomorphism well defined up
to isotopy. In what follows we use implicitely this identification.

By Fact 6.14, there exists an essential annulus Ay C M with 04y = o Up.
The curve oy is shorter than £/2 for the hyperbolic metric M° and a; = (o) is
homotopic to a geodesic shorter than /2 for the hyperbolic metric OM 1 The ¢;-
mass of M*(a;) (and in particular the ¢, -mass of the boundary of the component
of M! which contains a; ) is bigger than

[1.’ - C/ C - Ui > C
S T oSt
Since K > 2, Fact 6.14 can be applied again. On this way, we define by induction a
sequence of curves (o;) on M, such that

(i) o is homotopic to a geodesic shorter than e/2 for the hyperbolic metric IM*,

(ii) there is an essential annulus A; C M whose boundary components are «; and
a curve «;,

(iii) for >0, a; = 7(y;-1), and
(iv) the ¢;-mass of OM*(c;) is bigger than (/C(25')*!.

By (i) and (iv), the sequence (o;) can be defined as long as i+1< K and i< R.
Since K2 S+1 and R2 S, it is defined at least for all i < §. The length of ¢
is less than €/2 for the metric AM". By the triangular inequality, the Teichmiiller
distance between AM® and OM? is smaller than KL . Thus, our choice of ¢ implies
that the length of c; for the metric dM° is smaller than €(2) (cf. §1). Therefore,
by the Margulis lemma, the curves «; can be homotoped to be disjoint. Hence, by
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the definition of S, their homotopy classes form a set of cardinality smaller than S.
Therefore, two among the curves a;, say a, and a,, must be homotopic on M.
This means that the result of gluing with 7 the annuli A; along their boundaries
for £ <1 < m can be closed up with an homotopy between o, and ¢, to create
a map from the torus T2 into M. This map is =, -injective. This follows from the
fact that each annulus A; is essential. This contradiction with the hypothesis that
M/t is atoroidal concludes the proof of Theorem 6.13. 0
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CHAPTER 7

Manifolds-with-corners

In this chapter, we describe the topological tools necessary to reduce the proof of
Thurston’s hyperbolization theorem to the Final gluing theorem.

Let M be a compact orientable 3-manifold (of class C*).

Definition. — We say that M is irreducible if any 2-sphere embedded in M
bounds a 3-ball. We say that M is atoroidal if the fundamental group of any
component of M does not contain subgroups isomorphic to Z + Z.

In what follows, a surface is always a compact orientable surface.

Definition.— A surface S C M is properly embedded when it is a submanifold
of M and when 0S=0MnNS.

Definition. — Suppose that S C M is either a properly embedded surface or the
disjoint union of components of M. We say that S is incompressible when any
component S’ of S satisfies

(i) if x(S') <0, then m;(S’) maps injectively into my(M) and m,(S’,05’) maps
injectively into m,(M,0M),

(i) if x(S") =1, then S’ is an essential disc, i.e. a disc whose boundary is not
homotopic to 0 on OM.

Dehn’s lemma allows to replace (i) above by the following more geometric condi-
tions (cf. {Hel}, [Ja])
(i) if yC & is a curve which bounds a compression disc , i.e. a disc embedded in
M whose interior is disjoint from S’, then 7 also bounds a disc in S,
(ii) if kC S and k' C M are properly embedded arcs such that kU k' bounds

a 0 -compression disc i.e. a disc embedded in M whose interior is disjoint from ',
then there is an arc k" C 3§’ such that kUk” bounds a disc in S’.

Definition. — We say that S C M is a splitting surface if S is an incompressible
surface and if no component of S can be isotoped into M .
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Haken manifolds.

Definition. — A compact connected manifold M is Haken if it is irreducible and
if it contains a splitting surface.

When M is Haken, it contains a splitting surface S and a new manifold M’ can
be formed by splitting M along S . This manifold M’ is defined as the complement
in M of an open regular neighborhood of S. It follows from Dehn’s lemma that M’
is irreducible. The boundary of any component of M’ is non-empty. Therefore, M’
is a 3-ball or is again Haken (cf. [Hel], [Ja]).

We need now to distinguish a particular class of 3-manifolds.

Definition. — A manifold M is called an handlebody if it is diffeomorphic to the
manifold obtained from the 3-ball by attaching g I-handles I x B? along OI x B2.
The integer g = g(M) is called the genus of M.

Let M be an handlebody with g(M)21. Then M is Haken since it contains an
essential disc, for instance 1/2 x BZ. Furthermore the manifold obtained by splitting
M along the surface which is the disjoint union of the g discs 1/2 x B? contained
in each 1-handle is diffeomorphic to B?.

Definition.— Let M be an handlebody. A system of meridians for M is a
disjoint union of essential discs properly embedded in M such that the manifold
obtained by splitting M along m is diffeomorphic to B2.

Clearly, each system of meridians for M contains g essential discs, if g is the
genus of M.

Handlebodies are the most docile of all Haken manifolds: they can be immediatly
reduced to the 3-ball. If M is a Haken manifold which is not an handlebody, then
it contains a connected splitting surface which is not an essential disc (cf. [Ja, p.
59]). Furthermore, if M # 0, such a splitting surface exists which has non-empty
boundary ([Ja, p. 35]). A connected splitting surface with these two properties is
called a special splitting surface.

Definition. — Let M be a compact connected Haken manifold. A partial hierarchy
of length n for M is a finite sequence My, -- , M, such that
(i) My=M,and
(ii) for k< n -1, there is a special splitting surface Sy C My, such that My, is
obtained by splitting M, along Sy .

If M is a Haken manifold which is not an handlebody, it admits a partial hierarchy
of length at least 1.

Definition. — We define the length of M, as the largest integer n such that M
admits a partial hierarchy of length n. We denote it by ¢(M) .

It is a basic observation due to Wolfgang Haken that £(M) is always finite ([Hak],
[Ja, p. 61]). Also, £(M) =0 if and only if M is an handlebody. Another important
property which follows from the defini * if M is not an handlebody and
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if M’ is a component of the manifold obtained by splitting M along an arbitrary
special splitting surface, then ¢(M’) < {(M). So, if M is a Haken manifold, (M)
measures the distance from M to handlebodies. This measure of the complexity of
M simply with an integer goes back to Haken. It will be used during the proof of
the Hyperbolization theorem for manifolds-with-corners.

Definition.— Let S C M be a properly embedded orientable surface. Let D C M
be a compression disc for S and let ¥ = dD. Let N(D) be an open regular
neighborhood of (D,«) in (M,S): the boundary of N(D) consists of an annulus
contained in S and two parallel copies of D. Then we define a new surface S’
properly embedded in M as the union of § — N(D) and these two discs. Similarly,
let D bea 0-compression disc for S andset k=DNS, k¥ =DNOM. Let N(D)
be an open regular neighborhood of (D, k) in (M,S). We define a new surface S’
as the union of S— N(D) and the two parralel copies of D contained in N(D). We
say (in both cases) that S’ is obtained from S by surgery along D.

Fact 7.1.— Let S be a splitting surface for M. Let D be a 0 -compression disc
for S. Let S’ be the surface obtained from S by surgery along D. If S is a special
splitting surface, then one component of S’ also. If M is an handlebody and if S
is a system of meridians for M , then S' contains a system of meridians.

Proof.— When S is a special splitting surface, then one component of S’ is a
disc and the other component, denoted by X, is homeomorphic to S. It follows
from standard technics in 3-dimensional topology that ¥ is a splitting surface for
M . Since ¥ is homeomorphic to S, it is a special splitting surface.

Let M be a handlebody and let S be a system of meridians for M. Let m
be the component of S which intersects D. Then the surface obtained from m by
surgery along D is the disjoint union of two discs. Since the union of these two discs
is homologuous to m, one of them, called m’, is non-separating. It follows that
S —{m}U{m'} is a system of meridians for M. a

Interval bundles.

Definition.— An interval bundle is an orientable manifold which fibers over a
closed surfr  with fiber diffeomorphic to [0,1].

Up to di.. _morphism, there are two types of interval bundles: the trivial product
S x10,1] of a closed connected orientable surface S with the interval, and the twisted
product Sx[0,1] of S with the interval, i.e. the quotient of §x [0,1] by the relation:
(z,0) ~ (y,0) if and only if z = 7(y), where 7 is an orientation reversing fixed point
free involution of S.

The following characterization of interval bundles was used in §2 (cf. [Hel]).

Theorem ([Stal].— Let M be a connected irreducible manifold with non-empty
boundary and let S be a component of M . If the index of m (S) in m (M) equals
1, then the inclusion of S into M extends to a diffeomorphism between S x [0, 1]
and M. If the indez of m (S) in m (M) equals 2, then the inclusion of S ertends
to a diffeomorphism between Sx[0,1] and M .
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7.1 Manifolds-with-corners

Definition. — A manifold-with-corners is a triple (M, ,0°M) such that
(i) M is a compact 3-manifold,

(i) G is a trivalent graph contained in M,

(iii) each component of M — G equals the interior of its closure, and

(iv) each component of 8°M equals the closure of a component of M —§.

The closure of a component of &M — § which is not contained in 8°M is called
a mirror of (M,§,0°M). The surface 8°M is called the boundary of (M,S,°M).

From a differentiable structure on M, we can construct a differentiable structure
with corners on M associated to (M,G,8°M), i.e. there is an atlas of class C* on
M such that

(i) each point of M has a neighborhood isomorphic to an open set in (R*)?, and

(ii) the points on edges (resp. the vertices) of § are exactly the points which have
a neighborhood isomorphic to the neighborhood of a point of (R*)? with 2 (resp. 3)
coordinates equal to 0.

When we are given a manifold-with-corners (M, G,8°M), we always think that
M has such a differentiable structure with corners, i.e. that corners are really corners.
This structure is unique. Any homeomorphism of M which preserves G is isotopic
to a diffeomorphism: this follows essentially from [C].

Remark. — The definition of a manifold-with-corners can be made in any dimen-
sion. For instance a surface-with-corners having empty boundary is a pair (S, P)
where § is a compact surface and P C 95 a finite set such that any component of
0S — P equals the interior of its closure. This is clearly equivalent to say that each
component of 3§ either is disjoint from P or contains at least 2 points of P. In par-
ticular, let (M, S,8°M) be a manifold-with-corners and let P be the set of vertices
of G contained in (the boundary of) 8°M . Then (8°M, P) is a surface-with-corners.

Definition. — Let (M, 3) be a manifold-with-corners having empty boundary. Let
S’ € M be a surface which is a union of mirrors of (M, G). Let G’ the trivalent
graph obtained by erasing the edges of § which intersect the interior of S'. Then
(M,§',S") is a manifold-with-corners. We say that (M,§’,S’) is obtained from
(M, S) by erasing the mirrors contained in S’ .

Given a differentiable structure with corners on M associated to (M,§G), one
can define a differentiable structure on M associated to (M,5’,S’) by “rounding
the corners” contained in the interior of S'. This differentiable structure is unique
up to diffeomorphism [Do].

Let (M,5,8°M) be a manifold-with-corners.
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Definition.— Let ¥ C M be an embedded closed curve. We say that «
intersects G tranversally if « is disjoint from the vertices of G and if + intersects
the edges of G transversally.

Deflnition. — Let (M,5,0°M) be a manifold-with-corners. We say that
(M, $,8°M) has incompressible boundary when, if ¥ C OM is an embedded closed
curve which bounds a disc in M and satisfies

(i) ynd®M #0, and
(i) -~ intersects § transversally in at most 3 points,
then < bounds a disc in @M which has one of the forms described in Figure 7.1.

S S

M M

Figure 7.1

Definition. — Let (M, S) be a manifold-with-corners having empty boundary. We
say that (M,S) is irreducible and atoroidal if the following conditions are satisfied:
(i) M is irreducible and atoroidal,

(i) if A is an annulus properly embedded in M with JANG = @, and such that
m1(A) maps injectively into 7; (M), then A is parallel to an annulus contained in a
mirror of (M, ), and

(iii) if ¥ C M is an embedded closed curve which intersects G transversally in at
most 4 points and which bounds a disc in M, then v bounds a disc in M whose
intersection with § has one of the forms described in Figure 7.2.

Remark. — Let (M,S) be an irreducible and atoroidal manifold-with-corners hav-
ing empty boundary. Then it follows from the definition that any mirror of (M, 9)
has one of the following shapes:

(i) an-gonwith n>5,

(i) an annulus with at least one vertex of § in its boundary, or

(iif) a surface with strictly negative Euler characteristic.

Remark. — The present notion of a manifold-with-corners essentially coincides

with that of an orbifold that happens to be modelled on the quotient of R® by
the group of eight elements generated by sign reversal of one of the 3 coordinates.
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§

irreducible
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atoroidal

Figure 7.2

A manifold-with-corners is irreducible and atoroidal if and only if the corresponding
orbifold is irreducible and atoroidal, i.e. does not contain spherical nor euclidean
suborbifolds (cf. [Thi]).

Proposition 7.2. — Let M be an irreducible and atoroidal 3-manifold. Then there
is a graph G C OM such that (M,S) is an irreducible and atorvidal manifold-with-
corners having empty boundary.

Proof. — We can suppose M # @. Let T be a triangulation of M. Refine T
to a triangulation 7’ by modifying it inside each triangle as described on Figure 7.3
(this triangulation was shown to us by Emmanuel Giroux). Let G be 1-skeletton
of the cellulation dual to 7'. Then (M, S) defines a manifold-with-corners having
empty boundary. Each mirror of (M, ) is homeomorphic to a disc. To prove that
(M, §) is irreducible and atoroidal, it suffices to check property (iii). In fact, we will
prove that any closed curve v C OM which intersects § in at most 4 points is as
described on Figure 7.3. Such a curve v gives rise to a closed path 7 contained in
the 1-skeletton of 77 which follows at most 4 edges. From the way I’ was defined,
4 is contained in the union of at most 2 triangles of T which have a common edge
or a common vertex. Then a new look at Figure 7.3 shows the existence of a disc
bounded by ~ which intersects § like on Figure 7.2. O
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Figure 7.3

Splitting of a manifold-with-corners.

We now explain how the notion of splitting of a 3-manifold along a splitting surface
can be extended to the context of manifolds-with-corners.

Let (M,S) be a manifold-with-corners having empty boundary. Let S be a
splitting surface for M such that 95 intersects § transversally. .

Definition. — Let Mg be the manifold obtained by splitting M along S. Denote
by S*, S~ the two copies of S which are contained in Mg and set §' = StUS~.
There is an orientation reversing involution 7' of §' such that M is diffeomorphic
to the quotient space Mg/7’ i.e. to the space of equivalence classes of the relation

z~yifand only if z € §' and y = 7' ().

Denote the quotient map by 7’ : Mg — M. Let Gg C 8Mg be the graph equal to
(7)"1(§U BS). Each vertex of Gg has valence 3. The closure of any component
of OMg ~ Gs equals either a component of S’ or the closure of a component of
f—=(fNaS) where f is a mirror of (M,9). Thus (Mg,Sg,S’) is a manifold-with-
corners. We say that (Mg, Gg,S’) is obtained by splitting (M, ) along S.

Let P be the set of vertices of Gg which are contained in 8S’. Then (5',7)
is a surface-with-corners having empty boundary. By construction, 7' preserves
P. Therefore 7' can be considered as an orientation reversing involution of (S’,P).
Then, (M, ) can be reconstructed from the data of (Mg, Gg) and 7. The manifold
M is diffeomorphic to the quotient Mg/’ and G equals the complement in Gg/7’
of the interior of the edges of G5 NAS’.

Definition.— Let (M,5) be a connected manifold-with-corners having empty
boundary. A good splitting surface for (M, ) is a splitting surface for M such that

(i) S is a system of meridians if M is an handlebody, and S is a special splitting
surface if not,



J-P. OTAL— HYPERBOLIZATION OF 3-MANIFOLDS 171

(i) QS intersects § transversally, and
(iii) (Mg,SGs,S") has incompressible boundary.

Proposition 7.3.— Let (M,5) be an irreducible and atoroidal manifold-with-
corners having empty boundary. Suppose that M is Haken. Then there is a good
splitting surface for (M, ).

Proof. — Since M is Haken, it contains a splitting surface S which is a system
of meridians if M is an handlebody, or a special splitting surface if it is not. We
can assume furthermore that S intersects G transversally and minimizes (3% N G)
among all the splitting surfaces ¥ such that

(i) X is a special splitting surface for M if M is not an handlebody, or is a system
of meridians if M is an handlebody, and

(i) X intersects G transversally.

We show now that (Mg, Gs,S’) has incompressible boundary.

Let v C OMg be a closed curve such that y NS’ # @, which intersects Gg
transversally in at most 3 points and which bounds a disc D embedded in Mg.
Observe that ¥ N &S’ contains an even number of points.

1) ynas' =9 .
Then v C &' and v bounds a disc in S’ since S is incompressible in M .

2) yN8S #40.

If fi(vNGs) = 2 (resp. 3), 7 is the union of one arc k C §' and one arc k' contained
in a mirror f' of (Mg,Sg,S’) (resp two arcs k] and kj contained in mirrors fi,
f3 of (Mg,G5,5')). Then n'(D) is a disc embedded in M and its boundary is the
union of the two arcs #'(k) C § and «'(k’) C OM (resp. ='(kyUk;)). By Fact 7.1,
the surface obtained from S by surgery along #'(D) contains a splitting surface for
M which is a system of meridians if M is a handlebody or a special splitting surface
if not. We observe that 0 is obtained from 85 by replacing an arc k C 8D’ by
x'(k') (resp. m'(ki Uk})) and that kU =’'(k') (resp. xUn'(kjUk3)) is a closed
curve embedded in @M which bounds a disc in M.

2a) f#(ynGs)=2.

The mirror ' is obtained by splitting a mirror f of (M,§) and #’(k') is contained
in f. If kNG =0, then kUn'(k') is contained in f. Since (M, §) is irreducible and
atoroidal, kUn’(k’) bounds a disc contained in f. It follows that ¥ bounds a disc on
&M which is as described in Figure 7.1. If kNG # 0, then §(OZNG) < §(@SNG).
This is impossible by the choice of S.

2b) H(vNGs) =3.

Then f; and f} intersect along an edge of Gg. Each mirror f; is obtained by
splitting a mirror f; of (M, ) so that f; and f, share an edge e of § in common.
We have 7'(k} Uk}) C fiU f, and «'(k{ UK}) intersects e in exactly one point. If
kNG =0 or 1 point, then kUx’(kjUk}) intersects § in 1 or 2 points. Since (M, G)
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is irreducible and atoroidal, U n'(k] Uk3) bounds a disc contained in f, U f;. It
follows that 4 bounds a disc contained in Mg which intersects Gg like on Figure
7.1. If §(,kNG) 22, then §(0ENG) < §(@SNG). This contradicts our choice of S.

a

Proposition 7.4.— Let (M,5) be an irreducible and atoroidal manifold-with-
corners having empty boundary. Let S be a good splitting surface for (M,5). Then
there is a trivalent graph G5 C Mg such that

(i) (Ms,S%) is an irreducible and atoroidal manifold-with-corners having empty
boundary,

(ii) S is a union of mirrors of (Mg, S%), and
(iii) (Mg, SGs,S’) is obtained from (Mg, G5) by erasing the mirrors contained in S'.

The meaning of this lemma is that we can add to Gg edges which are contained
in S’ to obtain a graph G% such that (Mg,G%) is an irreducible and atoroidal
manifold-with-corners having empty boundary.

Proof.— When 35 # 0, we begin by adding finitely many points to the set of
vertices of Gg which sit on 8S5’, so that this new set of points forms the 0-skeletton
of a triangulation of 8S’ (i.e. so that there are at least 3 points per components).
Denote by V this set of vertices. Choose now a triangulation T of S’ which extends
this triangulation of 0S’. Refine then T to a new triangulation 7' by modifying it
inside each triangle as described on Figure 7.3. Let € be the 1-skeletton of the dual
cellulation of 7. Observe that each edge of € which is contained in 8S’ contains
at most one point of V in its interior, and in particular at most one vertex of Gg.
The union of the edges of € which intersect the interior of ' form a graph €’. The
vertices of & which are contained in the interior of S’ have valence 3 and those
which are contained in S’ have valence 1.

Define G5 = GsUE'. By construction, (Mg, G%) is a manifold-with-corners which
satisfies Proposition 7.4 (ii), (iii). Observe also that each mirror of (Mg, Ss) which
is contained in S’ intersects S’ in at most one edge, and that this edge contains
at most one point of §g in its interior.

We show now that (Mg,S%) is irreducible and atoroidal. If A is an annulus
properly embedded in Mg such that =;(A) maps injectively into m,(Mg), then
71(A) maps injectively into (M), by Van Kampen and since S is incompressible.
Therefore, there is a parallelism in M between A and an annulus contained in a
mirror of (M, ), since (M,9) is irreducible and atoroidal. By incompressibility, S
is disjoint from this parallelism. Hence, A is parallel in Mg to an annulus contained
in a mirror of (Mg, Ss).

Let v C M5 be a closed curve which bounds a disc embedded in Mg and which
intersects G transversally in at most 4 points. We consider distinct cases, according
to the cardinality of YN S’
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1) yc 5.

Then ~ gives rise to a closed path contained in the 1-skeletton of 7" which follows
at most 4 edges. One deduces from the way the triangulation 7’ was defined that v
bounds a disc on dMg which intersects S5 (i.e. €') like on Figure 7.2.

2) ynS' =40.

Then 7'(y) is a closed curve which intersects § transversally in at most 4 points
and which bounds a disc embedded in M. Since (M, §) is irreducible and atoroidal,
7'(7y) bounds a disc on M which intersects § like on Figure 7.2. Since S is a
splitting surface, this disc is disjoint from 8S. It follows that 4 bounds a disc on
OMg which intersects G5 (i.e. Gg) like on Figure 7.2 (cf. Proposition 7.2).

3) H(ynas) =2.
Then yN S’ is a single arc that we denote by k. We distinguish two subcases.

3a) kNé& =0.

Then k is contained in a mirror f of (Mg, Gs). By the construction of £, f is
simply connected and e = f NS is a single 1-cell of €. Therefore, k can be
isotoped relatively to 0k to an arc « C e. By construction, e contains at most one
vertex of Gg. Therefore if 7’ denotes the curve obtained from <y by replacing k by
x and slightly perturbed to be disjoint from S, then n'(y’) is a closed curve which
intersects Gg transversally in at most 3 points and which bounds a disc embedded in
M. Since (M,§) is irreducible and atoroidal, 7'(7") bounds a disc on M which
intersects G like on Figure 7.2. This disc is disjoint from S. Therefore v bounds
also a disc contained in dMg which intersects Gy like on Figure 7.2.

3b) kNE #0.

Then #(yNGs) < 3. Since (Ms,5s,S5') has incompressible boundary, v bounds a
disc A C Mg which intersects Gg like on Figure 7.1. Since §(kNG5) <4, k gives
rise to a path contained in the 1-skeletton of T' which follows at most 2 1-cells.
From the way T’ was defined, we deduce that A intersects G as described on
Figure 7.2.

4) #(ynos’) = 4.

Then 7N S is the union of two disjoints arcs k; and k, which are contained in
mirrors of (Mg, §’). By the same reasoning as in 3a), k; can be isotoped relatively
to Ok; into an arc k; contained in an edge e; of €. Also, k; contains at most one
vertex of Gg in its interior. Let 7' be the curve obtained from v by replacing k; by
k; for i =1,2 and perturbed to be disjoint from S’. Then #'(y') is a closed curve
which bounds a disc in M and which intersects Gg in at most 2 points. Since (M, §)
is irreducible and atoroidal, #'(v") bounds a disc on M which intersects G like on
Figure 7.2. It follows that 4 bounds a disc contained in Mg which intersects G
like in Figure 7.2. a
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7.2 The mirrored manifold

Let (M,§,0°M) be a manifold-with-corners. We explain now a canonical procedure
for associating to (M, S,8°M) a compact 3-manifold. This 3-manifold will carry an
action by diffeomorphisms of a finite group which encodes the data of (M, $,8°M).

For a set §, we denote by (Z/2Z)® the set of maps from § to Z/2Z.

Definition. — Let M be the set of mirrors of (M, §,8°M). The mirrored manifold
M is the quotient of M x (Z/2Z)™ by the equivalence relation R generated by

(z,%) ~ (z,j) when z is contained in the mirror f € M and the two maps %
and j satisfy i(f) =j(f) + 1 and i(f') = j(f') for f' #f.

By looking at these identifications in the neighborhood of point which is contained
in a mirror of (M, §) or in an edge of § or which is a vertex of G, one checks that M
is a manifold with boundary (cf. Figure 7.4). Clearly the action of H = (Z/2Z)™ on
M x(Z/2Z)™ by translation on the second factor preserves the equivalence classes of
R. Tt projects therefore to an action by homeomorphisms of H on M. The group
H is the mirror group of M. When (M,S,8°M) carries a differentiable structure
with corners, then M inherits a differentiable structure and the mirror group acts
by diffeomorphisms of class C*.

Remark. — If M is connected, then M is connected. This is due to the fact that
for any two maps i and j in (Z/2Z)™, there is a sequence (ij)g=1,.. , Such that

@) i =4, i,=j and
(i) for k< p—1 the maps i, and ix,, agree except on a single mirror.

It follows that if M is connected, the two copies M x i and M X j map to the
same component of M under the equivalence relation R.

An important feature of the construction of M is that one can recover
(M,§,8°M) from the action of H on M. First the quotient space M /H is clearly
homeomorphic to M and 9M maps to a surface OM /H contained in B(M /H).
The motropy group of a point in M under the action of H is isomorphic to Z/2Z,
(Z/2Z)? or (Z/ 2Z)3 . The set of points in (M / H) whose isotropy group is isomor-
phic to (Z/2Z) or (Z/2Z)° form a trivalent graph §' C 8(M/H). Each mirror
of (M / H,§,0M/H) can be characterized as the closure of the set of points whose
isotropy group is a given non-zero element in H . Therefore (M/H,§',0M / H)isa
manifold-with-corners isomorphic to (M, §,8°M).

Definition. — Let f be a mirror of (M,5,8°M). Let h; be the element of H
which has the f-coordinate as its single non-zero coordinate. Then h; acts as an

involution on M . Its fixed point set is exactly the image under R of f x (z/22)™

This fixed point set can be described as follows. Let 8 be the set of mirrors of
(M, S,8°M) which intersect f. Consider the natural inclusion of (Z/2Z)® into H
where i : 8§ — Z/2Z is extended to a map M — Z/2Z by the constant map 0 on
M - §. Then the image of f x (Z/2Z)™ under the equivalence relation R is made
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of disjoint homeomorphic copies of the image of f x (Z/%)s. This image is an
embedded surface denoted by F and called the surface in M above f.

Remark. — Suppose that (M, §) is irreducible and atoroidal. From the description
of the possible shapes for f, it follows that f is a hyperbolic surface-with-corners,
i.e. that f has a hyperbolic metric such that the edges of § contained in Jf are
totally geodesic and that adjacent edges meet orthogonally. This implies that F is
a hyperbolic surface and therefore that x(F) < 0.

Figure 7.4

‘We describe now a relative version of the construction of the mirrored manifold.

The partially mirrored manifold.

Let (M,S) be a manifold-with-corners having empty boundary. Let § C 0M be a
splitting surface for (M, §). Let (Mg, Ss,S’) be the manifold-with-corners obtained
by splitting (M,S) along S. Then each mirror of (Mg,3s,S’) is contained in a
unique mirror of (M, 5).

Definition. — We denote by M, s the quotient space of Mg x (2/2Z)™ by the
equivalence relation Rg generated by the relation (z,1) ~ (z,j) if and only if

(i) z belongs to a mirror f of (Mg,3Gs,S’) which is contained in the mirror
fEM, and

(i) the maps i and j satisfy i(f) = (/) +1 and i(f") = j(f") for f"# .
M is called the partially mirrored manifold of (Mg, Ss,8") .
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Then Mg is a compact 3-manifold on which the group H = (Z/2Z acts by
homeomorphisms. The boundary of My is the image of S’ x (Z/ 2Z)™ under the
equivalence relation Rg. Like in the case of M, Mg is connected once My is. If
we put a differentiable structure with corners on M associated to (M,§), then Mg
has a differentiable structure with corners associated to (Mg, Gg,S’). Then My is
manifold with boundary of class C* on which H acts by diffeomorphisms, and, like
for the case of the mirrored manifold, the manifold-with-corners (Mg, g, S’) can be
reconstructed from the action of H on Mg.

We will consider too other differentiable structures on M\s. Let (Mg,55) be
a manifold-with-corners having empty boundary such that $' is a union of mirrors
of (Mg,5%). Suppose that (Mg,Gs,S’) is obtained from (Mg,Gg) by erasing the
mirrors contained in §'. When M is endowed with a differentiable structure with
corners associated to (Mg, Ss), then Mg inherits a differentiable structure with
(maybe) corners on the boundary. Denote by M, s_this differentiable manifold-with-
corners. Then H acts by diffeomorphisms on M, s and M, s is H -equivariantly
diffeomorphic to the manifold obtained from M! s by rounding the corners.

Recall now that (M,) can be described as the quotient space (Mg, Ss,S’)/7".
In a similar way, we can describe M as a quotient of Mg. Define for that an
involution 7" of Mg x (Z/2Z)™ by 7"(x,i) = (7'(z),i). Then 7" preserves the
classes of the equivalence relation Rg and commutes with each element in H. It
induces therefore an orientation reversing involution 7 of oM, s which exchanges the
components by pairs and which commutes with the action of H. It follows from the
definitions of Mg and 7, that M is H -equivariantly diffeomorphic to Mg/7.

We justify now the terminology irreducible and atoroidal for a manifold-with-
corners.

Proposition 7.5.— Let (M,S) be an irreducible and atoroidal manifold-with-
corners having empty boundary. Then M is irreducible and atoroidal.

Proof. — This proposition could be proven using elementary technics from 3-
dimensional topology. But to simplify the exposition we will use “the Equivariant
Dehn’s lemma”, “the Equivariant sphere theorem” and “the Equivariant torus
theorem”. Recall that M carries an action of H = (Z/2Z)™.

Suppose for a contradiction that M is not irreducible. Then M contains an
essential sphere, i.e. an embedded sphere which does not bound a ball. By the
Equivariant sphere theorem ([MY], [Du]) there is an essential sphere ¥ which is
disjoint or equal to any of its translates by elements of H. Let H(X) denote the
stabilizer of £ in H. Then H(Z) is isomorphic to the trivial group, to Z/2Z,
(Z/2Z)* or to (Z/2Z)°. A fundamental domain for the action of H(Z) on I is
naturally contained in a copy M X i of M sitting in M. This fundamental domain
is ¥ or a disc whose boundary intersects § transversally in 0, 2 or 3 points. Since
(M,S) is an irreducible manifold-with-corners, this contradicts that X is essential.

In order to show that M is atoroidal, we first prove that it is Haken. To see
this, select a mirror f € M. Consider the involution h; of M which is associated
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to f and consider the surface F above f. The quotient M /hf is a manifold
with boundary which naturally embeds in M. The growp H' = H/ (hs) acts
by diffeomorphism on M /hf and OM equa.ls the H’-orbit of F. Suppose for a

contradiction that F is not incompressible in M. Then by Van Kampen’s theorem
F is not mcompresmble in M / h; and by Dehn’s lemma, there is an essential disc

properly embedded in M / h; . By the Equivariant Dehn’s lemma [MY], there is such
adisc D which is either disjoint or equal to any of its translates by H'. Let H'(D)
be the stabilizer of D' in H'. Then H'(D) is isomorphic to the trivial group, to
Z/2Z or to (Z/2Z)*. A fundamental domain for the action of H'(D) on D is
naturally contained in a copy M x i of M sitting in M/h;. This fundamental
domain is isomorphic to D or to a disc whose boundary intersects § transversally
in 2 or 3 points. It follows from the irreducibility and the atoroidality of (M,3)
that D cannot be an essential disc. Therefore ¥ is an incompressible surface in M
(which has a strictly negative Euler charactenstlc) Thus M is Haken.

Let us show by contradiction that Mis atoroidal. Suppose that (M) contains
a subgroup isomorphic to Z +Z. Since M is Haken, the Torus theorem asserts
that M contains an incompressible torus ([F], [JS], [Joh]). By the Equivariant torus
theorem ([BS], [JR], [MS]), there exists such a torus T which is disjoint or equal
to any of its translates by elements of H. Let H(T) be the stabilizer of T' in H .
Then H(T) is either the trivial group or isomorphic to Z/2Z or to (Z/2Z)*. A
fundamental domain for the action of H (T) on T is naturally contained in a copy
of M sitting in M . This fundamental domain is either a torus, or an annulus with
boundary disjoint from G, or a disc whose boundary intersects § transversally in 4
points. Again, the irreducibility and the atoroidality of (M, §) imply that T' cannot
be incompressible. O

The next proposition shows an important property of a good splitting surface.

Definition. — We say that a 3-manifold M is fibered if it contains a splitting
surface S such that the manifold obtained by splitting M along S is an interval
bundle over a (not necessarily connected) closed surface.

Note that a fibered manifold is not necessarily fibered over the circle.

Let (M,5) be a connected irreducible and atoroidal manifold-with-corners with
empty boundary. Let S be a good splitting surface for (M,5). Let (Mg,Ss,S')
be the manifold-with-corners obtained by splitting (M, G) along S. Let Mg be the
partially mirrored manifold of (Mg, $g,S5’).

Proposition 7.6.— With these notations, we have:
(i) the boundary of ﬁs i3 incompressible;

(ii) #f M is not fibered over the circle or if OM # 0, then M, s is not an interval
bundle over a closed surface.

Proof. — The proof of (i) is similar to that of Proposition 7.5.
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To prove (ii) suppose first that @M = @. Then since M is not fibered, the
manifold obtained by splitting M along any embedded surface is not an interval
bundle.

Suppose now that M # 0. Then S # @, since S is a good splitting surface.
Let f be a mirror of (M,§) such that f NS # 0. Let F be the surface above
[. Since (M, 9) is irreducible and atoroidal, the Euler characteristic of F is strictly
negative. Let f’' be the union of the mirrors of (Mg, Gs) which are contained in f.
Let 8 be the set of mirrors of (M,§) which intersect f. Let ' be the image of
f' x (Z/2Z)® under the equivalence relation Rg. Then F' is homeomorphic to the
complement in F of a non-empty disjoint union of annuli. In particular x(¥') <0
and 8F # 0. The arguments used for proving the incompressibility of F and the
fact that (Mg, 9s,S’) has incompressible boundary show that J' is incompressible
in Mg. Suppose for a contradiction that Mg were an interval bundle. Then, by
a theorem of Stallings [Stal], each component of 3 would be an annulus. This is
impossible since x(F') < 0. 0

7.3 Hyperbolic manifolds-with-corners

Let (M,5,0°M) be a manifold-with-corners. The definition of a hyperbolic metric
on a manifold (cf. §1) can be made in exactly the same way if M has a differentiable
structure with corners. For (M,G,0°M) to be hyperbolic, we require two more
properties.

Definition. — We say that (M, §,0°M) is hyperbolic if M (with its differentiable
structure with corners) has a hyperbolic metric such that

(i) each mirror of (M,§,0°M) is totally geodesic,

(i) any two distincts mirrors or components of 3°M which share a common edge
meet orthogonally.

Observe that along the components of M which are not mirrors M is locally
convex (from the definition of a hyperbolic metric).

We have:

Fact 7.7.— Let (M,5) be a manifold-with-corners having empty boundary. If
(M,9) is hyperbolic, then (the differentiable manifold) M is hyperbolic.

Proof. — There exists a geometrically finite group G and an isometric embedding
of M into M(G) which realizes M as a convex of M(G) (cf. §1). For sufficiently
small §, Ns(G) is contained in M. Then the retraction 75 (cf. §1) allows to
construct an homeomorphism between M and the hyperbolic manifold N(G). It
follows from the Cerf theorem and from the uniqueness of the rounding that (the
differentiable manifold) M is diffeomorphic to Ns(G). O

Definition. — Let H be a finite group of diffeomorphisms of a manifold M. We
say that M is H -equivariantly hyperbolic if M carries an H -equivariant hyperbolic
metric, i.e. a hyperbolic metric for which H acts by isometries.
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Let (M,5,0°M) bea manifold-with-corners and let M be its set of mirrors. Let
H = (Z/2Z)™ be the mirror group of M.

Fact 7.8.— The manifold-with-corners (M, G,8°M) is hyperbolic if and only if M
is H -equivariantly hyperbolic.

Proof.— Suppose that (M,§,8°M) is hyperbolic. Since the mirrors of (M, )
are totally geodesic and meet orthogonally, the “product” hyperbolic metric on
M x (Z/2Z)™ is invariant under the equivalence relation R. It defines therefore
a hyperbolic metric on_M . Therefore M is hyperbolic. By construction H acts by
isometries. Therefore M is H -equivariantly hyperbolic.

Conversely, suppose that Mhasa H -equivariant hyperbolic metric. The fixed
point set of a reversing orientation diffeomorphism of a hyperbolic 3-manifold is a
totally geodesic submanifold of codimension 1 which meets the boundary orthogo-
nally. Furthermore, if two distinct orientation reversing isometries of an hyperbolic
manifold commute, the components of their fixed point sets are disjoint or intersect
orthogonally. It follows then from the way the manifold-with-corners (M, S, M)
can be reconstructed from the action of H on M, that (M, ,8°M) is hyperbolic.

O

Let (M,SG) be a manifold-with-corners having empty boundary. Let S be a
splitting surface for (M, G). Let (Mg, S%) be a manifold-with-corners having empty
boundary such that S’ C Mg is a union of mirrors of (Mg, 5%). Suppose that
(Mg, Ss,S') is obtained from (Mg, G%) by erasing the mirrors that are contained in
S’. With these notations, we have:

Fact 7.9.— If (Mg, G%s) is hyperbolic, then
(i) (Ms,Ss,S’) is hyperbolic, and
(ii) M s is H -equivariantly hyperbolic.

Proof. — We begin by proving (ii). Recall that M, s is H -equivariantly diffeomor-
phic to the manifold obtained by rounding the corners of Mg. When Mg carries
a hyperbolic metric arising from a hyperbolic metric on (Mg, S%), the “product”
hyperbolic metric on Mg x (Z/2Z)™ is invariant under the equivalence relation Rg.
It defines therefore a H -equivariant hyperbolic metric on the differentiable manifold
with corners Mg . There is a geometrically finite group G such that Ns(G) is nat-
urally embedded in Mg (cf. the proof of Fact 7.7). The group H preserves Ns(G)
and commutes with the retraction r5. It follows that Ny(G) is H -equivariantly
homeomorphic (and hence diffeomorphic, by uniqueness of the rounding) to the man-
ifold obtained from Mg by rounding the corners. Therefore, Mg is H -equivariantly
hyperbolic.

Since ONg(G) is invariant under H , the fixed point set of any non-trivial isometry
in H is either disjoint from ONj(G) or intersects Ng(G) orthogonally. It follows
then from the way that (Mg, Ss,S’) can be reconstructed from the action of H on
Mg that (Mg, SGs,S') is also hyperbolic (cf. Fact 7.8). ]
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CHAPTER 8

Proof of Thurston’s hyperbolization theorem

Hyperbolization theorem for manifolds-with-corners.— Let (M,5) be an
irreducible and atoroidal manifold-with-corners having empty boundary. If M is
Haken, then (M,S) is hyperbolic.

In this chapter, we prove this theorem when M is not fibered. The major step
of the proof is the following result.

Gluing theorem.— Let (M,S) be an irreducible and atoroidel manifold-with-
corners having empty boundary such that M is not fibered. Let S be a good splitting
surface for (M,S) and let (Ms,Gs,S') be the manifold-with-corners obtained by
splitting (M, S) along S. Suppose that (Mg, SGs,S') is hyperbolic. Then (M,S) is
hyperbolic.

Proof. — We may suppose that M is connected Let M be the set of mirrors of

(M,5) and set H = (Z/2Z)™. Let M be the mirrored manifold of (M,S) and
let Mg be the partially mirrored manifold of (Mg, G, S’). The group H acts by
diffeomorphisms on M and on M, g. There is an orientation reversing involution 7’
of §' which permutes the components and such that (M, §) is diffeomorphic to the
quotient space (M. As,Ss, S S}/’ . This involution 7' lifts to an orientation reversing
involution 7 of Mg which permutes the components by pairs and which commutes
with the action of H. Also Mis H- -equivariantly diffeomorphic to the quotient
space Mg /7.

By hypothesis and by Fact 7.9, E s is hyperbolic. Since S is a good splitting
surface, Proposition 7.6 says that Mg has incompressible boundary _and that Mg
is not an interval bundle. Since (M, ) is irreducible and atoroidal, M is atoroidal
(Proposition 7.5). Let

T(6Ms) — T(9Ms)
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be the map induced by 7. Let o : T(OMs) — ‘3'(6_M/:) be the skinning map
associated to M, s - By Thurston’s fixed point theorem (§6), 7* oo has a fixed point.
This implies that M = Ms/r is hyperbolic (cf. §2).

In order to prove that (M,§) is hyperbolic, we need to prove that M is
H -equivariantly hyperbolic (Fact 7.8). We introduce first some notations. Since M, g
is H -equivariantly hyperbolic, there exists a geometrically finite group G (resp.
geometrically finite groups G,,---,G,, when S is separating) with an isometric
action of H on M(G) (resp. on the disjoint union of M(G,),---,M(G,)) such
that MS is H-equivariantly diffeomorphic to M(G) (resp. the disjoint union
of M(G,), - ,M(G,)). To each s € '.T(BMS), it corresponds via the Ahlfors-
Bers map a quasi-conformal deformation (p,$) of G (resp. quasi-conformal
deformations (p;,@;) of G; for ¢ = 1,---,p) such that d(p,§) = s (resp.
(8(ps, @;) = 5). We denote by M3 the manifold M(p(G)) (resp. the disjoint union
of M(p1(G1)), -, M(pp(G,):

The group H acts on BMS by diffeomorphisms but, since the elements of H
don’t all preserve the orientation, H does not act in a direct way on 'J‘(QM s)-
An element h € H induces a map h* from ‘J’(BMS) to itself or from J(0Mg) to

(BMS) according as h preserves or not the orientation (cf. §1). We define an
action of H on T(BM s) as follows. Let s € ‘.T(BMS) For an element h € H which
preserves the orientation, we set h'(s) = h*(s). If h € H reverses the orientation,
we set h'(s) = h*(s), where h*(s) is the complex conjugated of h*(s) (cf. §1).
Since h* commutes with the complex conjugation (cf. §1), h — h’ defines an action
of H on T(6Mjg). Denote by ‘J'(GMS) p the fixed point set of this action. Since
H acts by isometries on M, s, the point 3MS € ‘J’((’)MS) is fixed by H. Hence

T(0Ms)y #0.
Fact 8.1.— The map 7" o0 leaves ‘J'(al/ll\ s)y invariant.

Proof. — Consider an element h € H which preserves the orientation. From the
definition of &, it follows that o and h* commute. Therefore, since 7 and h
commute, 7* 0o¢ and k' = h* commute also.

For an element A € H which reverses the orientation, the same conclusion holds.
One needs only to observe that the skinning map & for the hyperbolic manifold M, )
with the reversed orientation satisfies 3(5) = o(s). This implies Fact 8.1. 0

Since T(@]T/I\S) # is a closed non-empty subset of ‘J’(Bﬁs) and since ™ oo is
contracting, its fixed point belongs to ‘J'(BMS) - Let so = d(p, ) be this ﬁxed
point. Then H acts on BMS" by isometries. Since the action of H on oM,
extends to an action on Mg° by diffeomorphisms, it follows from the m_]ectmty of
the Ahlfors-Bers map that it extends also to an action by isometries. Also, & induces
a quasi~conformal homeomorphism ¢ : BMS — OM s° which conjugates the a,ctlons
of H. Denote by @ the natural extension of ¢ (cf. §1). Then & : Ms — M
a homeomorphism. By naturality, since ¢ conjugates the isometric actions of H on
BMS and BMS , ® conjugates the isometric actions of H on Ms and on M
The uniqueness of the differentiable structure on the manifold-with-corners M, s / H
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implies that ® is isotopic to a diffeomorphism which conjugates the actions of H.
Therefore, Mg is H -equivariantly diffeomorphic to Mg°

In order to show that M, s/T is H -equivariantly hyperbolic, we need to recall the
proof of Maskit’s combination theorem given in §2. Using harmonic functions, we
constructed a codimension 0 submanifold N contained in the interior of Mg®. By
definition, N is invariant under the action of H . Since s; is a fixed point of 7" o0,
7 induces an orientation reversing isometry J of N (cf. §2). Since sy € ‘J’(BMS) H>
J commutes with the action of H. Therefore the quotient space M’ = N/J is a
hyperbolic manifold on which H acts by isometries. We need to show that M’ is
H -equivariantly diffeomorphic to Mg. Like in §2, we distinguish two cases.

1) AN is incompressible in M’ .

To conclude then, we need an equivariant version of Stallings theorem, which in our
case goes as follows. By construction, N divides M s° into two manifolds. Let V' be
the one which contains Mz s° - Consider the product action of H on oM " X1 where
H acts on the standard way on oM, ¢ and acts by the identity on the second factor.
The quotient (OMg°xI)/H can be viewed then as a manifold-with-corners, naturally
isomorphic to the product of a surface-with-corners (S’, P) by I (its boundary is
S x {0} U S’ x {1} and its mirrors are squares, product of mirrors of (S',P) by
I'). From the proof of Maskit’s combination theorem, V' embeds H -equivariantly in
8 x I in such a way that AMZ° maps to S’ x {1}. Then the surface-with-corners
ON/H embeds in (S',P) x I. Its boundary 9(0N/H) is contained in the reunion
of the mirrors and N/H divides (S’,P) x I into two manifolds, one of which
being V/H. Since N is incompressible, (ON/H,0(6N/H)) is an incompressible
surface in the pair ($',85’) x I. Therefore by Stallings theorem, ON/H is isotopic
to §' x {1/2}. In particular, ON/H is homeomorphic to S’ and each component
of 3(ON/H) intersects as many mirrors as the corresponding component of 85'.

Therefore the Euler characteristic of every component of dN is smaller than the
Euler characteristic of §' with equality if and only if each component of 9(ON/H)
intersects each mirror in a single arc. Since each component of N is homeomorphic
to §', this must be the case. Since the mirrors are squares, it follows that we
can suppose that the isotopy in Stallings theorem respects the mirrors. Thus N
is H -equivariantly diffeomorphic to MS and therefore to M also. Under this
identification 7 and J are homotopic diffeomorphisms and they commute with the
action of H. By the equivariant version of Nielsen theorem (which can also be
deduced in this special case from the classical version), 7 and J are H -equivariantly
isotopic. This implies that M’ and M, S/T are H -equivariantly diffeomorphic.

2) N is not incompressible in M’.

Then there is a compression disc for N in M’. By the equivariant Dehn’s Lemma,
there is such a disc D which is either disjoint or equal to any of its translates by
H . By doing equivariant surgery to N along the H -orbit of D, we define a H-
invariant manifold N’ contained in the interior of M2 ¢ with an involution 7' of
ON', such that M’ is H -equivariantly diffeomorphic to the quotient space N'/J'

(cf. §2).
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If N’ is incompressible in M’, then the reasoning of case 1) can be applied.
If not, we do equivariant surgery again. This process stops after a finite number of
steps. )

Proof of the Hyperbolization theorem for manifolds-with-corners. —
The proof is by induction on £(M).

If £(M) =0, M isahandlebody. Let S be a good splitting surface for (M, ) (S
is a system of meridians). Let (Mg, Sg,S’) be the manifold-with-corners obtained by
splitting (M, §) along S. Then My is diffeomorphic to the 3-ball. Let (Mg,S%s) be
the manifold-with-corners with empty boundary provided by Proposition 7.4. Since
(Mg, G%s) is irreducible and atoroidal, the intersection of two distinct mirrors of
(Mg,G5) is either empty or a single edge. Therefore (Mg, G%5) can be viewed as a
polyhedron whose faces are in correspondance with the mirrors of (Mg, §5)). Saying
that (Mg, G%s) is hyperbolic means that this polyhedron can be realized in H® with
all dihedral angles equal to w/2. This turns out to be a special case of a theorem
of Andreev which provides sufficient conditions on a polyhedron with prescribed
dihedral angles to be realizable in H®. Here is a formulation of Andreev’s theorem,
when the prescribed dihedral angles all equal 7/2 and in our particular case (recall
that any vertex of G has valence 3).

Theorem ([An), [Th1]). — Let P be a polyhedron distinct from the tetrahedron or
from the triangular prism. Then P can be realized in H® with all dihedral angles
equal to /2 if and only if

(i) every cycle of faces of length 8 surrounds a vertez of P, and
(ii) every cycle of faces of length 4 surrounds an edge of P.

Definition. — A cycle of faces of length k of P is a finite sequence of faces
(fi)i=o,.. k With fo = fi and such that any two successive faces share exactly an
edge in common.

By the construction of %, the polyhedron (Mg, Ss) has too many faces to be
isomorphic to a tetrahedron or to a triangular prism. Also the hypothesis of Andreev’s
theorem are satisfied since (Mg, %) is irreducible and atoroidal. Hence (Mg, 9%)
is hyperbolic. By Fact 7.9, (Mg, Gs,5’) is hyperbolic. Since (M, §) is irreducible
and atoroidal and since M # @ (cf. Proposition 7.6), the Gluing theorem implies
that (M,S) is hyperbolic. This proves the initial step of the induction.

Let now (M,§) be an irreducible and atoroidal manifold-with-corners such that
M is a Haken and suppose the theorem true for all manifolds-with-corners (M’,§')
with £(M') < £(M). Let S be a good splitting surface for (M, §). Let (Mg, 5s,S")
be the manifold obtained by splitting (M,G) along S. Since the length of any
component of Mg is smaller than ¢(M) (cf. §7) the manifold-with-corners (Mg, §s)
provided by Proposition 7.4 is hyperbolic. By Fact 7.9, (Mg, $s,S’) is hyperbolic.
Since M is not fibered, the Gluing theorem implies that (M, §) is hyperbolic also.

This proves the Hyperbolization theorem for manifold-with-corners. O
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Thurston’s hyperbolization theorem. — Let M be an irreducible and atoroidal
manifold. If M is Haken, then M is hyperbolic.

Proof. — By Proposition 7.2, there is a graph § C M such that (M,§) is an
irreducible and atoroidal manifold-with-corners. If M is Haken, (M, §) is hyperbolic
by Thurston’s hyperbolization theorem for manifold-with-corners. By Fact 7.7, M
is hyperbolic. 0
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