
SEPARATING SEMIGROUP OF PLANE QUINTICS

MATTHEW MAGIN AND STEPAN YU. OREVKOV

Abstract. A real morphism f from a real algebraic curve X to P1 is called separating if
f−1(RP1) = RX. Such a morphism defines a covering RX → RP1. Denote the components
of RX by X1, . . . , Xr and the degree of the restriction of f to Xi by di(f). Then, each
separating morphism can be associated with the vector d(f) = (d1, . . . , dr) ∈ Nr. Kummer
and Shaw [KS20] defined the separating semigroup of X as the set of all vectors d(f) where
f is a separating morphism X → P1.

In the present paper, we describe the separating semigroup of plane quintic curves.

1. Introduction

By a real curve we mean a complex algebraic curve X equipped with an anti-holomorphic
involution conj : X → X. Its real points set is RX := {p ∈ X | conj(p) = p}. All curves
considered here are smooth and irreducible, unless otherwise specified.

A real curve X is called separating or a curve of type I if X\RX is disconnected. In this case
X \RX consist of two connected components which are interchanged by an anti-holomorphic
involution.

Ahlfors [Ahl50] showed that a real curve is separating if and only if there exists a separating
morphism f : X → P1, that is, a morphism such that f−1(RP1) = RX.

Every separating morphism defines a covering map f |RX : RX → RP1. Let X1, . . . , Xr be
the components of RX. Denoting by di(f) the covering degree of the restriction of f to Xi,
we may associate every separating morphism with the vector d(f) = (d1(f), . . . , dr(f)) ∈ Nr.
Kummer and Shaw [KS20] defined the separating semigroup of X as

Sep(X) = {d(f) | f : X → P1 is a separating morphism}.
It is easy to prove that Sep(X) is indeed a semigroup, see [KS20, Prop. 2.1]. Denote

N = {n ∈ Z | n ≥ 1}, N0 = {n ∈ Z | n ≥ 0}.

In [KS20] Kummer and Shaw computed the separating semigroups of M -curves of arbitrary
genus and all real curves of genus g ≤ 2. Namely, if X is an M -curve of genus g (i.e. b0(RX) =
g+1), then Sep(X) = Ng+1. If X is a separating curve of genus 1, then Sep(X) = N2, and if X
is a separating curve of genus 2, then Sep(X) = N3 or 2+N0. Subsequently, in [Ore19, Ore24]
separating semigroups of all hyperelliptic curves and all curves of genus ≤ 4 were computed.
In [Man24] Manzarolli presented some results on separating semigroups of (M−2)-curves (i.e.
curves of genus g with b0(RX) = g − 1).

In the present paper we describe the separating semigroups of plane curves of degree 5
(which have genus 6). It is well-known (see e.g. [Rok78, p. 95]) that only three isotopy types
of plane quintics can be realized by separating curves: the M -quintic, the (M − 2)-quintic,
and the hyperbolic quintic (a plane real curve is called hyperbolic if the linear projection from
some point on it is a separating morphism). If X is an M -quintic, then, as we mentioned
above, Sep(X) = N7, so we are interested in the latter two cases.
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The hyperbolic quintic and the (M − 2)-quintic are drawn in Fig. 1 (see Lemma 4.1). The
doubled arrows in Fig. 1 represent the complex orientation, i.e. the boundary orientation
induced to RX from one of the halves of X \ RX.
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Figure 1. Isotopy types of separating non-M -quintics.

Let us formulate the main result of the present paper.

Theorem 1.1. Let X be a plane separating quintic. Then, if b0(RX) = 3, we have

Sep(X) =
{
(1, 2, 1), (1, 2, 2)

}
∪
(
(2, 3, 1) + N3

0

)
∪
(
(1, 3, 2) + N3

0

)
.

and if b0(RX) = 5, we have
Sep(X) = (2, 1, 1, 1, 1) + N5

0.

Our proofs are mainly based on the techniques from [Ore21, Ore24] and some recent results
from [MO25].

The present paper is organized as follows. In §2.1 we recall the necessary preliminary
material from [Ore21]. Next, in §2.2 we present the general method for constructing separating
morphisms. This method first appeared in [Ore24] and is based on the combination of the
Abel-Jacobi theorem with the adjunction formula in terms of Poincaré residues. Sections 3
and 4 are devoted to the computation of separating semigroups of hyperbolic quintics and
(M − 2)-quintics, respectively.

2. Preliminaries

2.1. Chess-board orientations. For the purposes of the present paper here we consider only
plane curves. However, one can see that the results from this subsection and from §2.2 hold
in the general setting, see [Ore21].

In addition to the complex orientation on the set of real points of a separating real curve,
we will need the D-orientation associated with a divisor D ∈ |X +KP2 |.

Let X be a real curve in P2 and D be a real divisor from the adjoint linear system |X+KP2 |.
Assume that D does not have X as a component and write D = D1 +2D0, where D0 and D1

are effective and D1 is a reduced curve.
As D−X ∼ KP2 , it is a divisor of some meromorphic 2-form ω on CP2. Since D and X are

real, ω can also be chosen real. Then ω defines a «chess-board» orientation on RP2 \ (RX ∪
RD1): this orientation changes each time we cross RX ∪RD1 at its smooth point (see Fig. 2).
This orientation induces a boundary orientation on RX \ RD. The orienation on RX \ RD
described above is called D-orientation.
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The D-orientation, similarly to the complex orientations, is defined up to simultaneous
reversal on each connected component of RX. In fact, we can choose the orientation which
corresponds to ω or the orientation which corresponds to −ω. Hereafter, by choosing a D-
orientation, we will mean precisely the choice of one of these two orientations.

X

D

Figure 2. D-orientation.

Remark 2.1. Let ωD be the Poincaré residue of the form ω. Then the D-orientation coincides
with the orientation defined by ωD in the following sense: for v ∈ T (RX) we have ωD(v) > 0
if the D-orientation is positive on v. Also, for v ∈ Tp(RX) we have ωD(v) = 0 ⇐⇒ p ∈
RX ∩ RD.

Often it is more convenient to speak not of separating morphisms themselves, but of divisors
corresponding to their fibers. Namely, let us call a totally real divisor P = p1 + . . .+ pn on a
real curve X separating if there exists a separating morphism f : X → P1 and a point p0 ∈ RP1

such that P = f−1(p0). It this case, we say that P has degree partition d(P ) := d(f) ∈ Sep(X).
The following theorem expresses the connections between complex orientations,D-orientations

and separating morphisms. The notation in the theorem is as given above.

Theorem 2.2 (see [Ore21, Theorem 3.2]). Let P be a separating divisor on a real curve X.
If P 6⊂ D, then the D-orientation cannot coincide with the complex orientation at all points
of P \D.

2.2. Construction of separating morphisms. In this section we discuss a general method
for constructing separating morphisms. This method was used in the calculation of separating
semigroups of hyperelliptic curves and all curves of genus ≤ 4, see [Ore24]. Since this method
works for curves of arbitrary genus, we will provide its general formulation and, for the con-
venience of the reader, give a proof here (though it follows almost verbatim the arguments
given in [Ore24, latter part of the proof of Lemma 2.3]). To simplify further formulations we
introduce the following notation.

Let X be a separating real curve. Fix the complex orientation and some D-orientation on
RX. For p ∈ RX \ RD let us write that

signD(p) :=

{
+1, if the complex orientation coincides with the D-orientation at the point p,
−1, otherwise.

Setup 2.3. Let X be a real plane separating curve. Fix the complex orientation on RX.
Consider a divisor P = p1+p2+ . . .+pn, where pi ∈ RX are pairwise distinct points. Suppose
that

• h0(P ) ≥ 2;
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• the complete linear system |P | is base-point-free.
Under these conditions there exists a smooth deformation Pt = p1(t)+ . . .+pn(t) ∈ |P |, where
pj : [0, t0]→ X are smooth paths such that pj(0) = pj and vj := p′j(0) 6= 0, see [Ore24, Lemma
2.2].

Lemma 2.4. Assume Setup 2.3. Suppose that there exists a real divisor D ∈ |X +KP2 | such
that two following conditions hold:

• P \D = {pi, pj};
• signD(pi) = − signD(pj).

Then the complex orientation is of the same sign on the vectors vi and vj .

Proof. Let ω be a meromorphic 2-form with the divisor D−X and ωD be its Poincaré residue
(see §2.1). Since for all t ∈ [0, t0] Pt ∈ |P |, by the Abel-Jacobi theorem we have

∀t ∈ [0, t0]
n∑

j=1

∫
pj([0,t])

ωD = 0.

Differentiating this identity at t = 0 we get

(∗) ωD(v1) + ωD(v2) + . . .+ ωD(vn) = 0.

Since ωD(vk) = 0 ⇐⇒ pk ∈ RX ∩ RD and P \D = {pi, pj}, the equality (∗) simplifies to

ωD(vi) = −ωD(vj).

By the definition, signD(pi) = − signD(pj) means that the D-orientation coincides with the
complex orientation at one of the points pi and pj and they are opposite at the other. Hence
the complex orientation has the same sign on vi and vj . �

The next Lemma follows immediately from [KS20, Prop. 2.11].

Lemma 2.5. Assume Setup 2.3. Let pi1 , . . . , pik denote the points of P lying on the compo-
nents of RX, which contain more that one point of P . Suppose that the complex orientation
has the same sign on vij , j = 1, . . . , k. Then P is separating.

Also we will use the following recent result:

Theorem 2.6 ([MO25]). Let X be a real curve of genus g with b0(RX) = r and P =
p1 + . . .+ pg be a separating divisor on X with h1(P ) = 1. Then d(P ) + Nr

0 ⊂ Sep(X).

3. Separating semigroup of hyperbolic quintics

Let X be a hyperbolic quintic, fix the numeration of the components of RX as in Fig. 1:
let X1 be the pseudoline, X2 the outer oval and X3 the inner oval.1

It is well-known (see e.g. [KS20, Example 2.8]) that the linear projection from a point on
the inner oval of X defines a separating morphism with degree partition (1, 2, 1). The linear
projection centered at a point inside the inner oval defines a separating morphism with degree
partition (1, 2, 2).

Lemma 3.1. The following hold:

(1) For all n,m ∈ N we have (n, 1,m) /∈ Sep(X).
(2) For n,m ∈ N with n+m ≥ 4 we have (n, 2,m) /∈ Sep(X). Moreover, (2, 2, 1) /∈ Sep(X)
(3) For all n ≥ 3 we have (1, n, 1) /∈ Sep(X).

1Note that in [KS20] and [Ore19] the order of components of hyperbolic curves is reversed.
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Proof. (1) Let P be a separating divisor with degree partition (n, 1,m), let p be its point on the
outer oval. Consider a line ` passing trough p and such that P 6⊂ `. Set D = 2` ∈ |X +KP2 |.
Fix a complex orientation on RX and choose a D-orientation so that it coincides with the
complex orientation on the pseudoline. Then P \D 6= ∅ and the two orientations coincide at
all points of this set, which contradicts Theorem 2.2.

(2) Let P be a separating divisor with degree partition (n, 2,m). Consider a doubled line
D = 2` ∈ |X+KP2 | passing trough two points of P on the outer oval and choose aD-orientation
so that it coincides with the complex orientation on the pseudoline. As P is separating, by
Theorem 2.2 we have P ⊂ `. Hence if n + m ≥ 4 we obtain a contradiction with Bézout’s
theorem.

Let us prove that (2, 2, 1) /∈ Sep(X). As degX1
P = 2, the line ` intersects the pseudoline

X1 in at least two points. Hence ` · X1 ≥ 3, as the intersection number of ` and X1 is odd,
and we obtain a contradiction with Bézout’s theorem.

(3) Let P be a separating divisor with degree partition (1, n, 1). Once again, consider a
doubled line D = 2` ∈ |X +KP2 | passing trough two points of P — on the inner oval and on
the pseudoline. Choose the D-orientation so that it is opposite to the complex orientation on
the pseudoline. Since P is separating, by Theorem 2.2 we have P ⊂ ` and hence, if n ≥ 4, we
obtain a contradiction with Bézout’s theorem.

Let us prove that (1, 3, 1) /∈ Sep(X). As degX2
P = 3, we have ` ·X2 ≥ 3 and, since their

intersection number is even, we have ` · X2 ≥ 4. Hence the line ` intersects X in at least
1 + 4 + 1 = 6 points, which leads us to a contradiction. �

In the following Lemma we construct separating divisors realizing all degree partitions
except those prohibited by Lemma 3.1. It finishes the calculation of Sep(X) for the hyperbolic
quintics.

Lemma 3.2.
(
(2, 3, 1) + N3

0

)
∪
(
(1, 3, 2) + N3

0

)
⊂ Sep(X).

Proof. Consider a divisor P = p1+ . . .+pn lying on the degenerate conic C1 (shown by a solid
line in Fig. 3) intersected by another degenerate conic C2 (shown by a dashed line in Fig. 4).
Clearly, P has degree partition (1, 3, 2).

p1

p2

p3

p4

p5

p6

Figure 3. Divisor P with de-
gree partition (1, 3, 2) and auxil-
iary conics C1 and C2.

q1

q2

q3

q4

q5

q6

Figure 4. Divisor Q with de-
gree partition (2, 3, 1) and auxil-
iary conics.

It is easy to see that the conic passing through the points of P is unique, so we have
dim |KX − P | = 0. Hence P is special with h0(KX − P ) = 1. By Riemann-Roch theorem we
have h0(P ) = 2.
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Let us show that the complete linear system |P | is basepoint-free, i.e. that dim |P − pj | = 0
for all j = 1, . . . , 6. Indeed, by Riemann-Roch theorem

dim |P − pj | = dim |KX − (P − pj)|+ 5− 6 + 1 = dim |KX − (P − pj)| = 0,

as, the conic, passing trough the five points of the divisor P − pj is unique.
Thus, the conditions of the setup 2.3 are satisfied and can apply Lemma 2.4. In the no-

tation of 2.3, we prove that a properly chosen complex orientation is positive on the vectors
v1, v2, v3, v4, v5.

Figure 5. Orientations at points
p1 and p2.

Figure 6. Orientations at points
p3 and p4.

Denote the line passing trough p1, p2 and p5 by `1 and the line passing trough p3, p4 and p6
by `2. Let ` be a real line passing trough the point p5 as in Fig. 5. Consider a conic D = `∪ `2
and the corresponding D-orientation. Then P \ D = {p1, p2} and signD(p1) = − signD(p2)
(see Fig. 5). Hence by Lemma 2.4 the complex orientation has the same sign on v1 and v2.

Similar arguments show that the complex orientation has the same sign on the vectors v3
and v4, see Fig. 6. Finally, from the construction of the divisor P we have signC2

(p4) =
− signC2

(p5), so by Lemma 2.4 the complex orientation has the same sign on v4 and v5.
Therefore, by Lemma 2.5 P is separating and (1, 3, 2) ∈ Sep(X).

To prove that (2, 3, 1) ∈ Sep(X), it suffices to consider the divisor Q = q1 + . . .+ q6 taken
as in Fig. 4 and apply similar arguments. The conics required for this can be easily seen in
Fig. 4.

Note now that degP = degQ = 6 (which equals to the genus of a plane quintic), and also
that we have already shown above that h1(P ) = h1(Q) = 1. Therefore, by Theorem 2.6, the
inclusion (

(2, 3, 1) + N3
0

)
∪
(
(1, 3, 2) + N3

0

)
⊂ Sep(X)

holds. �

4. Separating semigroup of (M-2)-quintics

The following lemma is a classical fact in real algebraic geometry.

Lemma 4.1. A plane (M−2) quintic X is separating if and only if its ovals are in non-convex
position, see Fig. 1 (right).

To prove Lemma 4.1, it suffices to apply the arguments from [Vir84, §3.2 and §3.3]. We will
specifically need the following detail from this proof (cf. [Vir84, §3.3]):
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Proposition 4.2. Let X be an (M − 2)-quintic whose ovals are in non-convex position (see
Fig. 1). Take one point on each oval. Then the pencil of conics passing through these four
points defines a separating morphism f : X → P1.

In her recent work [Man24], Manzarolli generalized this property (of non-convex arrange-
ment of ovals) to the case of plane (M − 2)-curves of arbitrary degree.

Let X be a separating (M − 2)-quintic. Fix the numeration of the components of RX as in
Fig. 1: let X1 be a pseudoline, X2 the oval located inside the triangle with vertices inside the
other ovals, and X3, X4, X5 the remaining ovals.

Separating morphism f from the proposition 4.2 has degree partition (2, 1, 1, 1, 1). In [Man24,
Example 2.6] Manzarolli, using Theorem 2.2, proves that a separating morphism of degree 6
from an (M − 2)-quintic can only have degree partition (2, 1, 1, 1, 1) and possibly (1, 2, 1, 1, 1).
In the following Lemma we prove that a separating morphism from an (M −2)-quintic cannot
have degree 1 on the pseudoline.

Lemma 4.3. (1, a, b, c, d) /∈ Sep(X) for all a, b, c, d ∈ N.

Proof. It is easy to check that there exist four bitangents such that their union with quintic
is as in Fig. 7 (up to isotopy).

p

Figure 7. Proof of Lemma 4.3.

Suppose that f is a separating morphism with d1(f) = 1. Let D be a small perturbation
of two bitangents shown in Fig. 7. Then on f−1(f(p)) the complex orientation coincides with
the D-orientation, which contradicts Theorem 2.2. �

The following Lemma finishes the calculation of the separating semigroup of (M − 2)-
quintics.
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Lemma 4.4. Let X be a separating (M − 2)-quintic. Then

(2, 1, 1, 1, 1) + N5
0 ⊂ Sep(X).

Proof. Let f : X → P1 be a separating morphism from Proposition 4.2 and P = f−1(p0) be the
corresponding separating divisor. Then, since the points of the divisor P lie on a conic and,
moreover, only one conic can pass through the points of P , we have h1(P ) = h0(KX −P ) = 1.
Therefore, the claim follows from Theorem 2.6. �

References

[Ahl50] Lars L. Ahlfors. Open Riemann surfaces and extremal problems on compact subregions. Commentarii
Mathematici Helvetici, 24(1):100–134, December 1950. doi:10.1007/BF02567028.

[KS20] Mario Kummer and Kristin Shaw. The separating semigroup of a real curve. Annales de la Faculté
des sciences de Toulouse : Mathématiques, 29(1):79–96, July 2020. arXiv:1707.08227 [math]. URL:
http://arxiv.org/abs/1707.08227, doi:10.5802/afst.1624.

[Man24] Matilde Manzaroli. Real plane separating (M-2)-curves of degree d and totally real pencils of degree (d-
3), July 2024. arXiv:2404.09671 [math]. URL: http://arxiv.org/abs/2404.09671, doi:10.48550/
arXiv.2404.09671.

[MO25] Grigory Mikhalkin and Stepan Orevkov. In preparation., 2025.
[Ore19] S. Yu. Orevkov. Separating semigroup of hyperelliptic curves and of genus 3 curves. St. Petersburg

Mathematical Journal, 31(1):81–84, December 2019. URL: http://www.ams.org/spmj/2020-31-01/
S1061-0022-2019-01586-2/, doi:10.1090/spmj/1586.

[Ore21] S. Yu Orevkov. Algebraically unrealizable complex orientations of plane real pseudoholomorphic
curves. Geometric and Functional Analysis, 31(4):930–947, August 2021. arXiv:2010.09130 [math].
URL: http://arxiv.org/abs/2010.09130, doi:10.1007/s00039-021-00569-1.

[Ore24] S. Yu Orevkov. Separating semigroup of genus 4 curves, December 2024. arXiv:2412.02460 [math].
URL: http://arxiv.org/abs/2412.02460, doi:10.48550/arXiv.2412.02460.

[Rok78] V A Rokhlin. Complex topological characteristics of real algebraic curves. Russian Mathemati-
cal Surveys, 33(5):85–98, October 1978. URL: https://www.mathnet.ru/eng/rm3519, doi:10.1070/
RM1978v033n05ABEH002514.

[Vir84] O Ya Viro. Real plane curves of degrees 7 and 8: new prohibitions. Mathematics of the USSR-
Izvestiya, 23(2):409–422, April 1984. URL: https://www.mathnet.ru/eng/im1439, doi:10.1070/
IM1984v023n02ABEH001777.

Matthew Magin: Saint Petersburg University, 7/9 Universitetskaya nab., St. Petersburg,
199034 Russia

Email address: matheusz.magin@gmail.com

Stepan Yu. Orevkov: Steklov Mathematical Institute, Gubkina 8, 119991, Moscow, Russia;
IMT, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France.

Email address: orevkov@math.ups-tlse.fr

https://doi.org/10.1007/BF02567028
http://arxiv.org/abs/1707.08227
https://doi.org/10.5802/afst.1624
http://arxiv.org/abs/2404.09671
https://doi.org/10.48550/arXiv.2404.09671
https://doi.org/10.48550/arXiv.2404.09671
http://www.ams.org/spmj/2020-31-01/S1061-0022-2019-01586-2/
http://www.ams.org/spmj/2020-31-01/S1061-0022-2019-01586-2/
https://doi.org/10.1090/spmj/1586
http://arxiv.org/abs/2010.09130
https://doi.org/10.1007/s00039-021-00569-1
http://arxiv.org/abs/2412.02460
https://doi.org/10.48550/arXiv.2412.02460
https://www.mathnet.ru/eng/rm3519
https://doi.org/10.1070/RM1978v033n05ABEH002514
https://doi.org/10.1070/RM1978v033n05ABEH002514
https://www.mathnet.ru/eng/im1439
https://doi.org/10.1070/IM1984v023n02ABEH001777
https://doi.org/10.1070/IM1984v023n02ABEH001777

	1. Introduction
	2. Preliminaries
	2.1. Chess-board orientations
	2.2. Construction of separating morphisms

	3. Separating semigroup of hyperbolic quintics
	4. Separating semigroup of (M-2)-quintics
	References

