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Abstract. We propose a method of construction of plane real algebraic curves given
by y3+p(x)y+q(x) = 0 which has a prescribed arrangement on the affine plane. The
construction is based on a consideration of the arrangement of f−1(RP

1) on CP
1

where f : CP
1 → CP

1 is the homogenized discriminant, i.e. the rational function
defined by f(x) = D/q2, D = 4p3 + 27q2.

As examples of applications, we construct some M -curves of degrees 7 and 9 on

RP
2 whose realizability was unknown.

Résumé. On propose une méthode de construction des courbes algébriques réelles
planes données par y3 + p(x)y + q(x) = 0, qui ont un arrangement préscrit sur
le plan affine. La construction est basée sur la considération de l’arrangement de
f−1(RP

1) sur CP
1, où f : CP

1 → CP
1 est le discriminant homogénisé, i.e. la

fonction rationnelle définie par f(x) = D/q2, D = 4p3 + 27q2.
Comme exemple d’applications, on construit certaines M -courbes de degrés 7 et

9 sur RP
2 dont la réalisabilité n’était pas connue.

1. Introduction. In this paper we propose a method of construction of plane
real algebraic curves given by F (x, y) = 0, degy F = 3 (trigonal curves) which have
a prescribed arrangement on the affine plane. This method allows one to obtain
a complete classification of such curves (singular or not) up to fiberwise isotopies
of the plane (we call an isotopy fiberwise if the image of any vertical line at any
moment is a vertical line). In particular, this means that the same method may
provide some restrictions for trigonal curves.

This result will be published in the next paper. Here we just illustrate the method
of construction by a realization of a complex M -scheme1 of degree 7 and some real
M -schemes of degree 9 on RP2 whose realizability was previously unknown.

The proposed method was inspired by a construction of extremal polynomials for
the Davenport’s bound deg(p3 − q2) ≥ 1 + (deg p)/2 in terms of so-called ”dessins
d’enfant” (see Sect. 3).

Proposition 1. There exists an M -curve of degree 9 on RP2 whose real scheme
is 〈J ⊔ 1〈8〉 ⊔ 1〈14〉 ⊔ 4〉.

Following [3], we say that a curve of degree 7 on RP2 has a jump if it contains
5 ovals arranged with respect to some line as it is shown in Figure 1.

Proposition 2. There exists an M -curve of degree 7 on RP2 without a jump
whose complex scheme is 〈J ⊔ 5+ ⊔ 4− ⊔ 1+〈2+ ⊔ 3−〉〉.

1See [12] for the definition and notation of real and complex schemes.
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11 ovals

2 ovals

Fig. 1 Fig. 2 Fig. 3

Combined with the results of [13, 3, 9, 10, 4], Proposition 2 provides the clas-
sification of complex schemes of M -curves of degree 7 without a jump (for curves
with jump, this classification is already completed in the papers cited above).

In Sect. 5 (Proposition 3), we prove the realizability of some other M -schemes of
degree 9. All the curves in Proposition 3 are constructed by glueing affine sextics
into a 6-fold singular point of a curve of degree 9. We choose this example because
the same glueing was used in [6] but our method allows us to obtain more curves
of degree 9.

2. Preparation. To construct the curves from Propositions 1 and 2, we first con-
struct singular curves depicted in Figures 2 and 3 and then perturb the singularities
glueing (see [13]) the affine sextic depicted in Figure 4 (resp. quartic in Figure 5)
into the 6-fold (resp. quadruple) point.
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Fig. 4 (see [6]) Fig. 5 Fig. 6

Denote by Fn the Hirzebruch surface of degree n and let En be the exceptional
section (whose self-intersection is −n). In particular, F0 = P1 × P1 and F1 is
the blown-up P2. Let πn : Fn → P1 be the fibration with fiber P1. The sur-
faces F1, F2, . . . can be obtained from F0 by successive birational transformations

F0

β0(p0)
−− → F1

β1(p1)
−− → F2

β2(p2)
−− → . . . where βn is the blowup of a point pn ∈ En fol-

lowed by the blowdown of the strict transform of the fiber π−1
n (πn(pn)). If the

points p0, p1, . . . are real then all Fn are also real. Let us denote the set of real
points of Fn by RFn.

We present RFn in pictures as a rectangle obtained by cutting RFn along En

(horizontal edges) and a fiber (vertical edges). The interior of such a rectangle
corresponds to an affine coordinate system on Fn where a generic smooth curve C
is defined by a polynomial whose Newton polygon is (0, 0)-(l + kn, 0)-(l, k)-(0, k)
where k (resp. l) is the intersection of C with a fiber (resp. with En). We call (k, l)
the bidegree of C. The action of βn (for an even n) on RFn is shown in Fig. 6. We
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see in this picture that RFn is a torus for an even n and a Klein bottle for an odd
n.

Since RF1 is the blown-up RP2, the existence of the curve in Fig. 2 (resp. Fig. 3)
follows from the existence of a curve of bidegree (3, 6) (resp. (3,4)) arranged on
RF1 as it is shown in Fig. 7 (resp. Fig. 8).

10 ovals

. . . 

Fig. 7 Fig. 8

If a curve C of bidegree (k, l) on Fn has multiplicity m at the point pn then the
strict transform of C on Fn+1 under βn(pn) has bidegree (k, l−m). Hence, applying
β1(p1) ◦ · · · ◦βh(ph) to the curve C in Fig. 7 for h = 6 and {p1 . . . ph} = C ∩E1, we
obtain the curve of bidegree (3, 0) on F7 whose real part is depicted in the upper
part of Fig. 9. Analogously, for h = 4, we obtain Fig. 10 from Fig. 8. The isolated
points in Fig. 9 and Fig. 10 are simple double points with imaginary tangents (like
x2 + y2 = 0). The curves in Fig. 9 and Fig. 10 will be constructed in Sect. 4.

Fig. 9

3. Degression. Let p(t), q(t) ∈ C[t], deg p = 2k, deg q = 3k and set

r(t) = p3 − q2. (1)

Suppose r is not identically zero. How small can be deg r? This question was posed
in [1] in 1965. The same year Davenport [2] had shown that deg r ≥ k + 1 but
it was unknown if the estimate is sharp. This estimate is very natural. Indeed,
if we write p = t2k + a1t

2k−2 + · · · + a2k−1, q = t3k + b1t
3k−2 + · · · + b3k−1 with

indeterminate coefficients then the condition deg r ≤ k+1 imposes 5k−2 equations
that is equal exactly to the number of the unknowns. However, it is very hard
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Fig. 10

to show algebraically that this system has solutions other than p = s2, q = s3,
s = tk + c1t

k−2 + · · · + ck−1.
Stothers [11] proved the sharpness of Davenport’s estimate for any k. His result

was rediscovered by Zannier [14]. A. Zvonkin gave another (?) elegant proof but he
did not publish it because he claims that his proof coincides with the Zannier’s one.
However, he kindly permitted us to publish his proof and we do it in this section.

The main idea is to divide the both sides of (1) by q2. Denote the obtained
rational function by f . Then f(t) = r/q2 = p3/q2 + 1. This means that

(i) f has 3k poles of multiplicity 2 at the roots of q,
(ii) the equation f = 1 has 2k triple roots at the roots of p,

and if deg r = k + 1 then

(iii) f has a zero of multiplicity 5k − 1 at t = ∞.

Conversely, any rational function f of degree 6k satisfying (i)–(iii), defines the
required p and q.

From the topological point of view f is a branched covering CP1 → CP1. Denote
the preimage of the real segment [1, +∞] by Γ. If (i)–(iii) hold then Γ is a graph on
CP1 whose vertices f−1(∞) have valence 2 (white vertices) and the vertices f−1(1)
have valence 3 (black vertices). The graph Γ cuts CP1 into polygons homeomorphic
to a disc, one of which should have 5k − 1 white vertices and 5k − 1 black ones.

Fig. 11

Now we are ready to construct f . Let us start with any binary tree in S2 with
k − 1 triple vertices and k + 1 ends and transform it to the graph Γ as it is shown
in Figure 11. Define the mapping Γ → [1,∞] which takes the white vertices to ∞
and the black vertices to 1, and extend it continuously to a mapping f : S2 → CP1
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which maps each bigon homeomorphically onto CP1 \ [1,∞] and whose restriction
onto the polygonal component of S2 \ Γ is a branched cyclic covering ramified in
a single point t0 such that f(t0) = 0. Pull back the complex structure from CP1

to S2. By Riemann’s theorem, the obtained surface is isomorphic to CP1. Choose
the isomorphism so that it takes t0 into ∞. Than f becomes a rational function
satisfying (i)–(iii).

Remark 1. Given any k and coprime a, b, similar arguments allow to construct
polynomials p, q, and r = pb − qa such that deg p = ak, deg q = bk, deg r =
(ab − a − b)k + 1. Like is the case a = 3, b = 2, this is the minimal possible value
for deg r.

4. Construction. Let us construct a curve C of bidegree (3, 0) on Fn (n = 7 or
5) whose real part is depicted in Figure 9 or Figure 10 respectively. It is defined by
a polynomial whose Newton polygon is the triangle (0, 0)-(3n, 0)-(0, 3). Killing the
coefficient of y2, we rewrite C in the form

y3 + p(x)y + q(x) = 0, deg p = 2n, deg q = 3n. (2)

The discriminant of (2) with respect to y is

D(x) = 4p3 + 27q2. (3)

Let x0 be a root of D (”∗” in Figures 9 and 10). This means that either x0 is the
x-coordinate of a double point of C (then x0 is a double root of D) or the vertical
line x = x0 is tangent to C (a simple root of D). Let F (y) = y3 + p(x0)y + q(x0) =
(y−y1)(y−y2)

2. Since the coefficient of y2 vanishes, y1 and y2 have opposite signs.
Hence, q(x0) = F (0) > 0 when y1 < y2, and q(x0) = F (0) < 0 when y2 < y1. This
means that the real roots of q (”◦” in Figures 9 and 10) must separate the root of
D where y1 < y2 from those where y2 < y1. Thus, to construct C, we need to find
polynomials p(x), q(x), and D(x), satisfying (2), (3) such that the real roots of D
and q are arranged as in Figures 9 and 10.

880 27

Fig. 12

Now we apply the main idea of Sect. 3: let us divide (3) by q2. The result is
a rational function f(x) = D/q2 = 4p3/q2 + 27 whose poles are the roots of q
taken with multiplicity 2, zeros are the roots of D, and the solutions of f = 27
are the roots of p taken with multiplicity 3. To construct f , consider the graph
Γ ⊂ S2 depicted in the lower parts of Figures 9 and 10 (since Γ is symmetric, we
show only half of it). Let us map Γ onto RP1 according to the coloring in Figure
12 and then continue this mapping up to a branched covering f : S2 → CP1

sending homeomorphically each component of S2 \ Γ onto one of the half-planes of
CP1 \RP1 in an alternating order. The additional vertices (which are not mapped
onto 0, 27, or ∞) are mapped to arbitrarily chosen points on the corresponding
segments of RP2. Then the pull-back of the complex structure makes f to be a
rational function which has the needed properties. Due to the symmetry principle,
f becomes real in suitable coordinates.
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In conclusion of this section, let us give a list of condition on a colored embedded
graph Γ ⊂ S2 which are sufficient to construct a curve of bidegree (3, 0) on Fn (these
conditions are satisfied in the constructions of Section 5).

(1) The graph Γ is symmetric with respect to an equator of S3 (which is included
to Γ) and the coloring of the equator is imposed by the desired arrangement
of the real algebraic curve as it is explained above;

(2) The valence of each ”•” is divisible by 6, and the incident edges are colored
alternatively by the colors of the segments [0, 27] and [27,∞];

(3) The valence of each ”◦” is divisible by 4, and the incident edges are colored
alternatively by the colors of the segments [27,∞] and [∞, 0];

(4) The valence of each ”∗” is even, and the incident edges are colored alterna-
tively by the colors of the segments [∞, 0] and [0, 27];

(5) The valence of each non-colored vertex is even, and the incident edges are
of the same color;

(6) The sum of the valences of all ”∗”-vertices is equal to 12n (together with
the conditions (2)–(5), this implies that the sums of the valences of all ”◦”-
and ”•”-vertices are also equal to 12n);

(7) Each connected component of S3\Γ is homeomorphic to an open disk whose
boundary (considered as the set of Carathéodory boundary elements) is
colored as a covering of RP1. Moreover, the orientations of neighbouring
disks induced by the coverings of their boundaries are opposite.

5. Other M-curves of degree 9.

Proposition 3. (a). There exist M -curves of degree 9 whose real schemes are

2) 〈J ⊔ α ⊔ 1〈β〉〉, α = 27 − β, β = 17∗, 20, 21
3) 〈J ⊔ α ⊔ 1〈β〉 ⊔ 1〈γ〉〉, α = 26 − β − γ where

β = 1, γ = 20, 21
β = 2, γ = 11∗, 12∗, 13, 15, 16∗, 17, 19, 20
β = 3, γ = 14, 17
β = 4, γ = 9, 11, 13, 14, 17, 18
β = 5, γ = 12, 13∗, 14, 15, 16, 17
β = 6, γ = 11, 12, 14
β = 7, γ = 14, 15
β = 8, γ = 9, 11, 12, 13, 14
β = 9, γ = 9, 10, 11

4) 〈J ⊔ α ⊔ 1〈β〉 ⊔ 1〈γ〉 ⊔ 1〈δ〉〉, α = 25 − β − γ − δ where
(β, γ) = (1, 1), δ = 8, 12, 15, 16, 17, 22
(β, γ) = (1, 3), δ = 13, 14, 15, 16
(β, γ) = (1, 5), δ = 8, 12
(β, γ) = (1, 6), δ = 13
(β, γ) = (1, 8), δ = 9
(β, γ) = (1, 9), δ = 11, 12, 14
(β, γ) = (1, 10), δ = 13
(β, γ) = (2, 3), δ = 9
(β, γ) = (3, 3), δ = 8
(β, γ) = (3, 5), δ = 9
(β, γ) = (3, 7), δ = 8
(β, γ) = (4, 5), δ = 5
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(β, γ) = (5, 5), δ = 8, 10
(β, γ) = (7, 7), δ = 10

6) 〈J ⊔ α ⊔ 1〈β ⊔ 1〈γ〉〉〉, α = 26 − β − γ where
γ = 1, β = 1∗, 17, 22
γ = 3, β = 1∗, 4, 5∗, 8

(b). There exist flexible2 M -curves of degree 9 whose real schemes are

3) 〈J ⊔ 3 ⊔ 1〈5〉 ⊔ 1〈18〉〉, i.e. β = 5, γ = 18
4) 〈J ⊔ α ⊔ 1〈β〉 ⊔ 1〈γ〉 ⊔ 1〈δ〉〉, α = 25 − β − γ − δ where

(β, γ, δ) = (1, 1, 19), (1, 7, 13), (5, 7, 9)

6) 〈J ⊔ α ⊔ 1〈β ⊔ 1〈γ〉〉〉, α = 26 − β − γ where
γ = 5, β = 2, 3, 5, 8, 9
γ = 7, β = 1, 3, 4

Remark 2. The list of the real schemes in Proposition 3 is given is the same format
as the list in [5; Theorem 6] (this explains, in particular, such a strange numbering
of the series). We do not include here the M -schemes which are listed in [5] but
we include those which are constructed in [6] (marked by the asterisk) and in
Proposition 1.

Remark 3. We found the following misprints in [5].
In [5; Theorem 6, Series 4], there should be ”(β, γ) = (5, 7), δ = 8, 10” instead

of ”(β, γ) = (5, 8), δ = 8, 10”.
In [5; Theorem 6, Series 5], there should be (α, β, γ, δ) = (1, 1, 3, 15) instead of

(1, 1, 3, 13).
In [5; Theorem 7], ”α, β, γ – even” in Series 4 means ”each of α, β, γ is even”

whereas ”α, β, γ, δ – even” in Series 6 means ”one of α, β, γ is even”.

We shall call central blocks the rectangles depicted in the upper parts of Fig-
ures 13.1–13.5 or their images under the reflection with respect to a vertical or a
horizontal line.

= 1h

= 2h
= 3h

Fig. 13.1 Fig. 13.2 Fig. 13.3

2See [12] for the definition of a flexible curve.
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= 3h = 3h

A

Fig. 13.4 Fig. 13.5

B(   ) B(   )

D(   )

8 8D D0

s1(   )D

sp(   )D

*

Fig. 14 Fig. 15

Lemma 1. Let B0, B∞ be two central blocks and h0, h∞ the corresponding val-
ues of the parameter h (indicated in 13.1–13.5). Then for any sequence of signs
s1, . . . , sp, p ≥ 0, there exists a real algebraic curve C of bidegree (3, 0) on Fn,
n = p + h0 + h∞ such that the pair (Fn \ En, C) (recall that En ⊂ Fn, E2

n =
−n) is obtained (up to a fiberwise isotopy, see the Introduction) by the successive
cyclic glueing (according to the arrows) of the blocks B0, B(s1), . . . , B(sp), B∞,
B(−sp), . . . , B(−s1), where B(+), B(−) are shown in the upper part of Fig. 14.

Proof. Let D0 and D∞ be the half-discs which are shown in Figures 13.1–13.5 under
the blocks B0 and B∞, and let D∗

∞
be the inversion image of D∞. Let D(+) be the

half-annulus shown in the lower part of Fig. 14 and D(−) be its mirror image. Let
us fill the lower half-plane by the domains D0, D(s1), . . . , D(sp), D

∗

∞
according to

Fig. 15, and do symmetrically the upper half-plane. Let us deal with the obtained
graph Γ in the same way as in Sect. 4 (in the case 13.4, to construct the mapping
of the region A, one should take a double covering branched at a single point). �

Example. We show in Fig.16 how the curve in Fig. 9 can be obtained from the
central blocks 13.1 and 13.3 by applying Lemma 1 followed by a contracting of an
oval into an isolated double point (see Lemma 2 below).

8 8BB0

Fig. 16
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Corollary 1. Let (s1, . . . , sp), p ≥ 1, si = ±1, be an arbitrary sequence of signs
such that s1 = 1. Let a1, . . . , ap be non-negative integers such that

(1, s1, . . . , sp, 1,−sp, . . . ,−s1) = (1, . . . , 1
︸ ︷︷ ︸

a1

, −1, 1, . . . , 1
︸ ︷︷ ︸

a2

, −1, . . . , 1, . . . , 1
︸ ︷︷ ︸

ap

, −1).

Then there exists a curve of bidegree (3, 0) on Fp+2 arranges as in Fig. 17 with
bi = 2ai + 1, i = 1, . . . , p.

.  .  .

.  .  .

.  .  .

.  .  .b1

b2

b3

Fig. 17

Proof. Set B0 = B∞ = [the block in Fig. 13.1] in Lemma 1. �

Corollary 2. There exist curves of bidegree (3, 0) arranged on F7 as in Figure 17
with p = 5 and (b1, . . . , b5) = (15, 1, 1, 1, 1), (11, 5, 1, 1, 1), (9, 5, 3, 1, 1), (9, 1, 7, 1, 1),
(7, 5, 1, 1, 5), (7, 3, 5, 3, 1), (7, 1, 3, 1, 7), (5, 3, 5, 3, 3), or (5, 5, 5, 1, 3). �

Lemma 2. Let A ⊂ Fp+2 be a curve constructed in Lemma 1 (or in Corollaries
1 and 2). Then there exist a nodal curve A′ ⊂ Fp+2 of the same bidegree obtained
from A by applying of any number of transformations shown in Figure 18.

Fig. 18 Fig. 19

Proof. Apply the transformations in Figure 19 to the graph Γ. �

Remark 4. Corollary 1 can be easily proved by Viro’s method using the subdivision
of the triangle (0, 0)-(3p + 6, 0)-(0, 3) into n + 2 triangles (3p, 0)-(3p + 3, 0)-(0, 3).
However, it is not clear how to prove Lemma 2 in this way.

Corollary 3. There exist curves of degree 9 with a simple 6-fold singular point and
13 ovals distributed as in Figure 20 where a and b are the number of ovals in the
corresponding regions, the exterior ovals are not shown, and S1 = {(a, b) | a+b ≤ 10
and a, b are odd}, S2 = S1 ∪ {(1, 11)} \ {(5, 5)}.

Proof. Apply Lemma 2 and the transformation β1(p1) . . . β6(p6) (see Sect. 2) to the
curves from Lemma 1. The curves from Corollary 2 provide the upper two rows of
Fig. 20.1. In the other cases, one should choose the central blocks in Lemma 1 in
the following way.

The curves in the lower row in Fig. 20.1. The left: (13.1 and 13.3) or (13.1 and
13.5); the middle: (13.1 and 13.4); the right: (13.2 and 13.2).

The curves in Fig. 20.2 and 20.3. The upper left curve in each of Fig. 20.2 and
20.3: (13.1 and 13.4); the other curves: (13.1 and 13.2). �
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(a,b) S1 (a,b) S2

a

b

b

aab

(a,b) = (1,1), (1,3), (1,5),
(3,3), (3,5), (5,5)

a

a = 0, ... ,8
a = 10, 11

*

(3,3), (3,5), (5,1), (5,3), (5,5), (7,5)

(a,b) = (1,1), (1,3), (1,5), (1,7), (3,1)

a

a = 0, ... ,8
a = 10

a

a = 0, ... ,8
a = 10

b

a a

b

a

b

(a,b) = (1,1), (1,3), (1,5), (1,11),

(3,3), (3,5), (3,9), (5,5)

a

a = 0, ... ,12

a

a = 3, 7, 11

a
a = 0, ... ,4
a = 6, 9

a
a

a
a

a,b a,b
a,ba,b

a

a

a

a

a

a

a,b

Fig. 20.1

(a,b) = (1,1), (1,2), (1,4), (1,5),

(3,2), (3,3), (3,7), (5,1),
(5,2), (5,4), (7,3), (9,1)

(a,b) = (1,1), (1,2), (1,4), 
(1,5), (1,8), (3,3), (3,6),
(5,1), (5,2), (5,4), (7,2)

(a,b) = (1,1), (1,5), (3,3), 
(3,7), (5,1), (7,3), (9,1)

a

a = 10, 11
a = 0, ... ,7

a

a = 0,1,2,3, 5,6,7, 10

a

a = 0,1,2,3, 5,6, 10

a

a = 0, ... ,10

a

b
a

b

a

b

a

a a a a

a,b
a,b

a,b

Fig. 20.2

Remark 5. It is clear from the construction that any collection of the tangents at
the singular point is realizable in the case of the left curve in the lower row of
Fig. 20.1 (it is marked by the asterisk). Unfortunately, in the other cases this is
not so.

Remark 6. Using the braid-theoretical methods (the Garside normal form of the
braid from [7]), one can prove that Fig. 20.1–20.3 contain all the isotopy types of
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(a,b)  =  (12,1),  (8,1),  (6,3),  (6,7),
(4,1), (4,5), (2,1), (2,3), (2,5), (2,7)a = 2, ..., 8

a

a = 0,1,2,3, 5,6,7, 10

a

a = 2, 3, 5, 7, 9

a

b
a

b

a

(a,b) = (1,2), (1,6), (1,8), (1,12), (3,2),

(3,4), (5,2), (5,4), (7,2), (9,4)

a
b

(a,b) = (1,2), (1,6), (3,2), (3,4), (5,2), (5,4),

(2,1), (2,3), (2,7), (4,3), (6,1), (8,1)

a a a
a,b

a,ba,b

Fig. 20.3

curves of degree 9 which have a simple six-fold point and whose perturbation can
provide an M -curve of degree 9.

Proof of Proposition 3. (a). Maximal dissipation (see [13]) of a simple 6-fold singu-
lar point are described in [6]. Two more dissipations B2(1, 8, 1) and A3(0, 5, 5) are
constructed in [8]. Applying all the dissipations of the series A (resp. B or C) to
all the curves in Fig. 20.1 (resp. Fig. 20.2 or Fig. 20.3) one obtains all the required
algebraic curves.

(b). Flexible dissipations of the types A4(1, 4, 5), B2(1, 4, 5), and C2(1, 3, 6) are
constructed in [7; Sect. 7.2]. Applying them to the singular point of the curves in
Fig. 20.1–Fig. 20.3, one obtains all the required flexible curves.
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