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Abstract. The Harnack bound on the number of real components of a plane real

algebraic curve has a natural local version which states that the number of closed
real components obtained by a perturbation of a real isolated plane curve singularity

having at least one real branch is bounded by the genus of the singularity (pertur-
bations attending this extremal value are called M-smoothings). We show that the

latter bound is not sharp for some, explicitly given, singularities.

Introduction

Topologically extremal real algebraic varieties reveal spectacular topological

properties. Such a phenomenon for plane projective curves was discovered by D.

Hilbert, and is stated in the first part of his 16th problem in the form of conjec-

ture for plane curves of degree 6 with maximal number of real components. D.A.

Gudkov [6] corrected the conjecture, generalized it to curves of arbitrary degree

and proved it for degree 6 by the meticulous study of degenerations of curves of de-

gree 6 (improving the so-called Hilbert-Rohn method). Another, in a sense, purely

topological approach was found by V.I. Arnold; it allowed V.I. Arnold [1], V.A.

Rokhlin [ 17] and their followers (see, for example, the surveys [7], [ 19], and [28])

to understand the phenomenon and to obtain a series of different related results

which acquired the common name of Gudkov-Arnold-Rokhlin congruences.

It is worth to say that the notion of M -variety (M for maximal) plays a crucial

role here. In the case of curves it is the usual Harnack maximality: a real plane

projective curve of degree m is called maximal if it has 1
2 (m − 1)(m − 2) + 1 real

components. In general, in accordance with the Smith-Thom bound, which states

that any real algebraic variety X satisfies β∗(XR) ≤ β∗(XC) where β∗ stands for
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the sum of the Betti numbers over Z/2 and Xk is the set of k-points of X , a real

variety X is called maximal if β∗(XR) = β∗(XC).

It happens that the problem of existence of M -varieties is not easy and yet not

much is known about it. For plane curves the answer is given by Harnack’s theorem

[8]: maximal plane curves exist for any degree. Harnack’s recursive construction

of M -curves was generalized by O. Viro [24] to complete intersections in projective

spaces of any dimension. Viro’s recursion involves dimension of the ambient space,

dimension of the complete intersection and its multidegree. For small dimensions

it produces M -varieties and it is expected that this is always the case. For hyper-

surfaces the existence of M -varieties in any degree is proven by I. Itenberg and O.

Viro [9] by means of a toric geometry version of the Viro algorithm.

This problem has local analogues (moreover, according to the Thom-Arnold

principle, they are inseparable). The first nontrivial local objects are the smoothings

of real isolated plane curve singularities.

Here, by a real isolated plane curve singularity, we mean a germ at 0 ∈ R2 of

a real analytic function f in 2 variables with finite Milnor number µ. Commonly

speaking, we identify it with the germ of a curve C defined by f = 0, refer to

a curve C in a real Milnor disc BR ⊂ R2 and, also, in the complex Milnor ball

BC ⊂ C2, and denote by CR and CC the real and complex point sets of C.

A real analytic curve C′ in a Milnor disc BR of C is called smoothing of C if there

exists a real analytic 1-parameter family {Ct} of curves in BR such that C0 = C,

C′ = Ct for some t > 0, and each Ct with t 6= 0 is nonsingular and transversal to

the boundary of BR. We call such a family smoothing out deformation of C.

The real part CR of a smoothing C of an isolated real plane curve singularity C

consists of a finite number of smooth circles (called ovals) and non-closed arcs. The

number of arcs does not depend on smoothing and is equal to the number rR of

real branches of C. The principal local Harnack bound, which is completely similar

to the Harnack bound for projective curves, reads as follows: if C has at least one

real branch, the number v of ovals is bounded from above by g = 1
2 (µ − r + 1),

where r is the number of all, real and imaginary, branches of C; otherwise, v ≤ g+1

(similarly to the global one, it can be seen as the Smith-Thom inequality). Yet in

the middle 70th, V.I. Arnold [3] posed the question: whether this local Harnack

bound is sharp?
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The existence of M -smoothings (i.e., the smoothings which achieve this bound)

was proven for many classes of singularities, see, e.g., [10], [13], [15], [16], [25],

and [22]. In [16] it is erroneously stated that the construction given there provides

M -smoothings for any real plane singularity having no imaginary branches and

branches with common tangent. However, Risler’s construction [16] proves the

following fact: M -smoothings do exist for any unibranch singularity.

The purpose of this paper is to show that there are singularities for which the

local Harnack bound is not sharp.

We treat one real equisingular (i.e., µ-constant) family of singularities, namely,

Sirler cusp singularities (introduced by S. Carlson at Arnold’s anniversary confer-

ence, Moscow, 1988; unpublished). A Sirler cusp singularity is a bouquet of any

three real ordinary cusps, having distinct tangents and spread out as shown in Fig-

ure 1. By a real ordinary cusp we mean a germ u2 + v3 = 0, where u and v are

real function germs vanishing at 0 ∈ R2 with du ∧ dv 6= 0. Thus, a Sirler cusp

singularity is a product of three real ordinary cusps (u2
1 +v3

1)(u2
2 +v3

2)(u2
3 +v3

3) = 0

with v1 + v2 + v3 = 0, dv1 ∧ dv2 6= 0, dv1 ∧ dv3 6= 0, and dv2 ∧ dv3 6= 0.

We prove that for all Sirler cusps singularities the local Harnack bound, which

gives v ≤ g = 13, is not sharp:

Theorem 1. Any Sirler cusp singularity has no M -smoothings (i.e., it has no

smoothing with g = 13 ovals).

1
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b
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p

Figure 1 Figure 2 Figure 3

It is worth noting that the germ (y2−x3)(x2−y3)((x−y)2−(x+y)3) = 0 in BR,

which is topologically equivalent in BR to Sirler cusp singularities, has, contrary
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to them, an M -smoothing. The same is true for a bouquet of any three ordinary

cusps contained in a half plane and having distinct tangents. Indeed, one can either

apply the local version of Harnack construction (see [16]) or simplify the singular

point into an ordinary 6-fold point and then replace the latter singular point by the

Harnack affine sextic (see [12]).

Note also, that for the germs (y2 − x3)(x2 − y3)(x2 + ky3) = 0 , k > 0 which are

degenerations of both the Sirler cusp singularities and the germ in the above remark,

there is an M -smoothing at least for some values of k. It would be interesting to

study the space of singularities which have M -smoothings.

The paper is organized as follows. In Section 1 we formulate and prove some

general geometric properties of smoothings (similar to properties of real algebraic

curves), and derive some preliminary prohibitions on M -smoothings C′ of a Sirler

cusp singularity C. We start from an application of an improved local Harnack

bound which takes into account how the boundary of CR is filled by the non-

closed arcs of C′
R. It implies, in particular, that the non-closed arcs in C′

R should

be arranged as is shown in Figure 2; it is this arrangement, which is then con-

sidered throughout the paper. Afterwards, in Section 1, we associate with C′ a

4-dimensional manifold Y with an involution Conj : Y → Y . This manifold is

glued from two double coverings of BC: one ramified in C, the other in C′; Conj

is induced by the ordinary complex conjugation. Applying traditional tools (like

Bézout’s theorem, complex orientations, and congruences and bounds for the iner-

tia indices of Conj∗ acting on the quadratic form of Y ) to (Y,Conj), we restrict the

number of topological types of (BR, C
′
R) and (BR ∪ C′

C, C
′
R).

In Section 2 we present some methods of constructing sublattices of H2(Y ).

Such sublattices are used in Section 3 to prohibit all the remaining topological

types of (BR, C
′
R) except two. These prohibitions are based on calculations of the

inertia indices and discriminant for full and overfull sublattices of Ker{(1+Conj∗) :

H2(Y ) → H2(Y )}, cf. [12, 27].

The two exceptional topological types of (BR, C
′
R) are prohibited in Section 4

by using the methods of [14]; i.e. by applying the Murasugi-Tristram inequality to

the links associated with C′ and some, attached to C′, special real pencil of lines.

All the statements containing concrete prohibitions on smoothings of Sirler cusp

singularities are called Lemmas; the others are called Propositions.
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Note that the proof of Theorem 1 contains many case-by-case prohibitions based

on various tools, and often the same result can be obtained by different methods

simultaneously, and we used this occasion to demonstrate better the variety of tools

available (specially, when it allows to diminish the complexity of the proof).

Acknowledgments. Our special gratitude is to J.-J. Risler for numerous useful

discussions of related problems, and to Y. Amilin and I. Itenberg for pointing out

some mistakes in calculation.

§1. Local analogues of basic facts in the

geometry of real plane algebraic curves

1.1 Improved local Harnack bound. This bound takes into account the relative

position of the non-closed arcs and the complex boundary of a smoothing:

Proposition 1. (see [10] and [11]) If C is a real isolated plane curve singularity

with at least one real branch, the number of ovals of any smoothing C′ of C is

bounded by g − a, where a + 1 is the number of topological circles obtained from

the union of non-closed arcs of C′
R by identification of boundary points coming

from a common real branch of C (in other words, a+ 1 is the number of connected

components of (C′
R ∪∂C′

C)/Conj minus the number of ovals), g = 1
2 (µ− r+1), µ

is the Milnor number and r the number of all, real and imaginary, branches of C.

Proof. Glue a disc on each hole of C′
C and apply the global Harnack bound. �

Corollary 1. The non-closed arcs of any M -smoothing of a Sirler cusp singularity

are arranged as in Figure 2. �

Note that the above improved local Harnack bound can be sharp when the usual

one is not. For example, a local version of Harnack’s construction of M -curves

applied to a Sirler cusp singularity gives a smoothing with v = 11 and a = 2;

the non-closed arc arrangement for this smoothing is shown in Figure 3 (certainly,

Theorem 1 implies that a smoothing with the non-closed arcs arrangement shown in

Figure 2 never turns the improved bound into an equality). It would be interesting

to know whether the improved local Harnack bound is sharp for any singularity

(see [10] for some related information).

1.2 Elementary consequences of Beźout’s theorem. With an isolated plane

curve singularity C one can associate two numeric characteristics: N1(C) and
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N2(C), which are, respectively, the maximum and minimum of the intersection

numbers of C′ with the straight lines going through the singularity (the maximum

is achieved on one of the tangents). For the Sirler cusp singularities, N1 = 7 and

N2 = 6. These characteristics have the following evident property:

Proposition 2. Let C be an isolated plane curve singularity. Then, for any suffi-

ciently small Milnor ball B, and any smoothing C′ sufficiently close to C,

(1) C′ meets any straight line at most in N1(C) points, counting multiplicities;

(2) there exists a ball B0 ⊂ B, centered at the singular point, such that smooth-

ings close to C meet any straight line crossing (B0)C at least in N2(C)

points, counting multiplicities.

Let C be a Sirler cusp singularity and the non-closed arcs of its smoothing C′

be arranged as in Figure 2 (recall that due to Corollary 1 any M -smoothing must

be of this kind). Denote the four connected components of BR\C′
R by A,B1,B2,

B3, and the number of ovals in them by a, b1, b2, b3, respectively (see Figure 2).

Corollary 2. An M -smoothing of a Sirler cusp singularity has at most one non-

empty oval, and if it does exist then it lies in A.

Proof. If there are two non-empty ovals or a non-empty oval in Bi, trace a real

straight line through two interior ovals, in the first case, and through the interior

oval and a boundary point of Bj , j 6= i, otherwise (see Figure 4). Such a line

intersects C′
R at ≥ 8 points, counting the multiplicities; due to Proposition 2 it is

impossible. �

Further on we encode the arrangement of the ovals of C′ by (a; b1, b2, b3), if

all the ovals are empty, and by (1〈a1〉 ⊔ a2; b1, b2b3), if there is a non-empty oval

embracing a1 ovals.

In the sequel we use intersections with real conics as well.

Lemma 1. Let C be a Sirler cusp singularity, {C′
t}0≤t≤t∗ its smoothing and

{Kt}0≤t≤t∗ a continuous 1-parameter family of real conics. Assume that for each t

the intersection of Kt with C′
t consists of at least 8 points counting multiplicities.

Then there exists a Milnor ball B such that, up to taking smaller t∗:

(1) Each Kt meets C′
t in at most 14 points counting multiplicities.
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(2) Either each (Kt)R, t 6= 0, is an ellipse, contained in BR, or each (Kt)R,

t 6= 0, has two connected components in BR. In the latter case, Kt converges

to the union of two real straight lines (may be, coinciding), as t→ 0. These

straight lines L1, L2 pass through the singular point 0 of C, and Kt intersects

∂BR at four points close to the intersection points of L1, L2 with ∂BR.

Proof. The statements follow from the fact that the intersection multiplicity of a

conic with C at 0 is bounded by 7 if the conic is non-singular at 0 and by 13 if the

conic is not a pair of straight lines tangent to C at 0. �

The following classical statement is of major importance in further applications.

The Cayley lemma. If D ∈ R2 lies inside the triangle generated by A,B,C ∈
R2, each real conic passing through A,B,C, and D crosses any compact real conic

embracing A,B,C, and D at four real points. If five points in R2 are the vertices of

a convex polygon, then they lie on the same connected real component of the conic

passing through them.

1.3 Complex orientations. Let us introduce some invariants of the bound-

ary of an oriented real isolated plane curve singularity involved in the local ver-

sions of Rokhlin’s complex orientations formula. Consider in S3 = ∂BC a 1-

dimensional smooth submanifold Z which is invariant under the complex conjuga-

tion and nowhere tangent to ∂BR. Suppose that Z is oriented and decomposed into

two halves, Z+ and Z−, with ∂Z+ = ∂Z− = Z ∩ ∂BR. Given an orientation ω of

BR and ξ ∈ H1(∂BR, Z∩∂BR;Z) such that ∂ξ = −∂[Z−] = ∂[Z+] (Z± inherit the

orientation from Z), there are well defined linking numbers link([Z−] + ξ, [Z+]− ξ)
and link([Z−] + ξ, ∂[BR]).

To make sense of these linking numbers (depending on ω) we push Z+ ∪ ∂BR

along a special vector field V
√
−1. Namely, on ∂BR oriented as the boundary of

BR we take V tangent to ∂BR, directing its orientation, and then extend V in

an arbitrary way to Z+. Clearly, the linking numbers obtained do not depend on

the choice of the extension and are invariant under auto-homeomorphisms of ∂BC

commuting with complex conjugation and preserving orientation of ∂BR.

Indeterminacy in the choice of ξ is avoided, if we pick up a point p ∈ ∂BR \ Z
and take ξ in H1(∂BR \ {p}, Z ∩ ∂BR;Z).
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Let C be a real isolated plane curve singularity, B its Milnor ball and Z =

C ∩ ∂BC. Orient Z as the boundary of C, fix an orientation ω of BR and pick a

point p ∈ ∂BR \ CR. Suppose, for simplicity, that C has no imaginary branches.

Then CR divides each branch in two halves. The choice of orientation of real

branches of CR is equivalent to the selection of an imaginary half on each branch:

the complex orientation of an imaginary half determines the boundary orientation

of the real branch. Thus, one speaks of a complex orientation of CR and the

associated half C+, for which ∂[C+] = [CR]; the conjugated half is denoted by C−.

We put Z± = C± ∩ ∂BC and

M1 = link([Z−] + ξ, [Z+] − ξ), M2 = link([Z−] + ξ, [∂BR]).

Consider a smoothing C′ of C included in a smoothing out deformation {Ct}
which does not cross p. A smoothing C′ is called of type I if C′

C \ C′
R is not

connected. In this case C′
C \ C′

R has two connected components, C′+ and C′−,

the curve C′
R is the common part of the boundary of C′+ and C′−, and the

complex orientation of C′+ and C′− defines on C′
R the two opposite orientations,

called complex orientations of C′
R.

Let us pick a complex orientation of C′
R. Given a non-closed arc l of C′

R, there

is one and only one connected component Dl,p of BR \ l not containing p. Orient

Dl,p in a way that its boundary orientation is the complex orientation of l ⊂ C′
R

and pose ε(Dl,p) = 1, if the orientation of Dl,p coincides with ω and −1, if it does

not.

Two ovals of C′
R, bounding an annulus in BR, form a positive injective pair

if their complex orientation coincides with a boundary orientation of the annulus,

otherwise the injective pair is called negative. Each oval bounds a disc D in BR and

the oval is called positive (with respect to ω) if its complex orientation coincides

with the boundary orientation defined by ω|D, conversely, it is called negative.

Denote by v the number of ovals; by Π− and Π+, the number of negative and

positive injective pairs of ovals, respectively; by v− and v+, the number of negative

and positive ovals, respectively; by v−(l) and v+(l), the number of negative and

positive ovals contained in Dl,p, respectively.

If C′ is a type I smoothing of C, the smoothing out deformation transports the

complex orientations of C′
R and gives in the limit the complex orientations of CR;
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we call them coherent complex orientations of CR and C′
R.

Proposition 4. (cf. [21]) In the previous notation for any type I smoothing C′ of

C and coherent complex orientations of CR and C′
R,

(1.1)

v + 2(Π− − Π+) +
∑

l

(r(Dl,p) + 2(v+(l) − v−(l))ε(Dl,p))

+
∑

Dl,p⊆Dm,p

ε(Dl,p)ε(Dm,p)r(Dl,p) = M1 ,

(1.2) v− − v+ −
∑

l

ε(Dl,p)r(Dl,p) = M2 ,

where l, m run over all non-closed arcs of C′
R and r(Dl,p) = 1

2 (1 − ε(Dl,p)).

Proof. Follow Rokhlin’s proof of his global complex orientations formula, see [18].

Glue into C′− the discs Dl,p and the discs bounded in BR by the ovals of C′
R.

This gives an integral relative 2-cycle Σ− in (BC, ∂BC). Its boundary is [Z−] + ξ,

where Z− = C′− ∩ ∂BC, ξ ∈ H1(∂BR \ {p}, Z ∩ ∂BR;Z), and Z− inherits the

orientation from ∂C′−. By definition, M1 = link([Z−] + ξ, [Z+] − ξ) and M2 =

link([Z−] + ξ, [∂BR]), where Z+ = C′+ ∩ ∂BC. Take on ∂BR the field V which

directs the orientation of ∂BR. We extend it, first, to BR to obtain a field tangent

to BR and such that nowhere on C′
R it is tangent to C′

R with the direction of

the complex orientation of C′
R (the opposite direction is allowed). Then extend

V arbitrarily to Σ− \ BR and shift Σ− along V
√
−1. The identities (1.1) and

(1.2) follow now from counting the intersection number of the shifted cycle with,

respectively, −Conj(Σ−) (which is, indeed, Σ+) and BR. �

Proposition 5. If a real isolated plane curve singularity C has only real branches

then for any complex orientation of C there exists a smoothing Ĉ of type I whose

complex orientation is coherent to the complex orientation of C.

Proof. As in [16, 10] we use a recursion by the number of blowing-ups making the

strict transform of C nonsingular.

At each step contracting back an exceptional divisor E we deform the strict

transform (and, thus, C) and keep the complex orientation as follows: (1) if E

which we are going to contract meets the strict transform C∗ (C is the current

deformation) at a non-singular branch with multiplicity > 1, then we deform this
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branch so that it intersects E at distinct and only real points; (2) if C∗ has an

ordinary singularity, a transverse intersection of several real branches, then we

move these branches to a general position and smooth out all nodes according to

the complex orientation of intersecting branches. �

p

E

p

Figure 4 Figure 5 Figure 6

To apply Proposition 4 to the Sirler cusp singularities we fix the usual counter-

clock-wise orientation of BR and, in accordance with Proposition 4 and respective

notion, call an oval positive, if it is also oriented counter-clockwise, and negative

otherwise.

Lemma 2. For any M -smoothing of a Sirler cusp singularity the non-closed arcs

are arranged as in Figure 2 and have a complex orientation as shown there. The

respective complex orientation of the ovals satisfies the following relations:

(1.3) a+ − a− = 1,
∑

j

(b+j − b−j ) = 0

if the smoothing is of type (a; b1, b2, b3);

(1.4) a+
2 − a−2 = 0, a+

1 − a−1 +
∑

j

(b+j − b−j ) = 0

if the smoothing is of type (1〈a1〉 ⊔ a2; b1, b2, b3) with positive non-empty oval; and

(1.5) 2(a+
1 − a−1 ) + a+

2 − a−2 = 2, a−1 − a+
1 +

∑

j

(b+j − b−j ) = 0

if the smoothing is of type (1〈a1〉⊔a2; b1, b2, b3) with negative non-empty oval. Here,

by + and − we specify the number of positive and negative ovals in the respective

domains.
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Proof. The first statement follows from Proposition 1. To get the relations (1.3)-

(1.5) we apply Proposition 4. The values of M1 and M2 are calculated using the

type I smoothing shown in Figure 5; this smoothing is obtained by construction

from Proposition 5. Finally, (1.1) and (1.2) give Π− − Π+ +
∑

(v+(l)− v−(l)) = 0

and v+ − v− = 1, and the result follows. �

1.4 Congruence modulo 8.

Lemma 3. An M -smoothing of a Sirler cusp singularity satisfies the congruence

b1 + b2 + b3 − a ≡ 3 mod 8

if the smoothing is of type (a; b1, b2, b3), and the congruence

a1 + b1 + b2 + b3 − a2 ≡ 4 mod 8

if it is of type (1〈a1〉 ⊔ a2; b1, b2, b3).

This is a particular case of the local Gudkov-Arnold-Rokhlin congruences given

in [11]. There exist two approaches leading to such congruences. One of them puts

into action the double coverings. Since we use further the same coverings to obtain

additional prohibitions, we introduce them here and fabricate from them a closed

manifold which is the main object of the next section. The construction below is

quite general. For brevity, we apply it directly to a Sirler cusp singularity.

Let C be a Sirler cusp singularity and C′ its smoothing. Consider a Milnor ball

B, blow up its center, and denote by B̂ the blown-up ball and by Ĉ the strict

transform of C (see Figure 6, where the annulus represents B̂R cut along ER and

the internal circle represents the double covering of ER). The pairs (BC, CC) and

(B̂C, ĈC) have the same boundary and there is a diffeotopy {ϕt}t≥0 of the identity

map ∂BC → ∂BC which transforms ∂(C′
t)C into ∂CC = ∂ĈC. Glue BC and B̂C

along the boundary by ϕt, t > 0. The resulting space, which we denote by X , is a

smooth orientable 4-manifold and S = C′
C ∪ ĈC, where C′ = C′

t can be viewed

as its smooth orientable 2-submanifold. We equip X (and S) with the orientation

which is the usual, complex orientation on BC ⊂ X (and on C′
C ⊂ S). Note that

the genus of S is 13; indeed, the singularity genus of C, i.e., the genus of S ∩BC,

is 13 and ĈC is the union of three discs.



12 V.M.KHARLAMOV, S.YU.OREVKOV, E.I.SHUSTIN

There is a diffeomorphism between X and CP 2 which transforms the orientation

of X into the usual orientation of CP 2, and the exceptional curve E ⊂ B̂ into a

straight line. We keep on E its original complex orientation. Then [S] ◦ [E] = 6

and, thus [S] = 6[E] ∈ H2(X) = Z. Since [S] is divisible by 2, there exists a double

covering π : Y → X branched along S. It is unique and splits into two coverings

π+ : Y + → BC and π− : Y − → B̂C.

Proposition 6. Y is a simply connected Spin-manifold with β2 = 28, χ = 30, and

sign = −16, where β2, χ, and sign stand for second Betti number, Euler character-

istic and signature, respectively.

Proof. To check that π1 = 1 apply Van-Kampen’s theorem to Y = Y + ∪ Y −.

Since Y + is a Milnor fiber of a space surface singularity z2 = f(x, y), it is simply

connected, and it remains to observe that π1(Y
+ ∩ Y −) → π1(Y

−) is surjective.

The Wu class of Y and the other invariants are calculated by the usual projection

formulas for double coverings: w2(Y ) = π∗(w2(X)) + [S] = π∗[E] + [S] = 0 ∈
H2(X ;Z/2), χ(Y ) = 2χ(X)− χ(S) = 6 + 24, and sign(Y ) = 2 sign(X)− S ◦Y S =

2 − 18(E ◦X E) = −16. �

The germ C and its smoothing C′ are real. Thus, the complex conjugation

Conj : BC → BC induces an involution Conj : X → X and lifts into two commuting

involutions Conj1,Conj2 : Y → Y . Denote their fixed points sets by XR, Y
1
R

, and

Y 2
R

. It is clear that XR = π(Y 1
R

) ∪ π(Y 2
R

) and π(Y 1
R

), π(Y 2
R

) are surfaces with

common boundary ĈR ∪ C′
R. All the involutions preserve orientation of their

respective 4-manifolds. Note that these real structures, Conj1 and Conj2, considered

up to equivariant diffeomorphisms depend on the smoothing C′ chosen. However,

for a chosen smoothing they do not depend on t > 0.

Let us set

Y k+
R

= Y k
R
∩ Y +, Y k−

R
= Y k

R
∩ Y −, X+

R
= XR ∩BC, X−

R
= XR ∩ B̂C,

and choose the numeration of Conj1,Conj2 in a way that π(Y 1+
R

) contains the point

p (see Figure 2), and π(Y 2+
R

) does not.

Proposition 7. If C′ is an M -smoothing with non-closed arcs arranged as shown

in Figure 2, the involution Conj2 : Y → Y is Smith-maximal, i.e., β∗(Y
2
R

) = β∗(Y ).
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Proof. The half Y 2+
R

is the trivial double of the half of BR bounded by C′
R and

not containing p. The half Y 2−
R

covers (non trivially) twice the half of B̂R bounded

by ĈR and containing ER. It remains to count the number of components of Y 2
R

and calculate χ(ER). �

Proposition 8. For any k = 1, 2 and any component F of Y k
R
,

F ◦ F = χ(F ∩ Y −) − χ(F ∩ Y +) .

Proof. The smooth surfaces Y k±
R

are totally real in Y ±, as soon as Y ± are equipped

with their natural complex structure. Our orientation of Y is the complex one on

Y + and the opposite one on Y −. �

Remark. As it follows, f.e., from Proposition 8, there is no almost complex

structure on the whole Y (and, similarly, on the whole X) for which YR (and XR)

is totally real. It is why, in particular, we should adjust properly many of traditional

calculations, though, in many respects, S looks as a “flexible” real curve of degree

6 in P 2.

Proof of Lemma 3. Due to Proposition 7, the Gudkov-Arnold-Rokhlin congruence

(see [17]) applies. According to this congruence, Y 2
R
◦ Y 2

R
≡ sign(Y ) mod 16. In

our case, due to Proposition 8, Y 2
R
◦Y 2

R
= χ(Y 2−

R
)−χ(Y 2+

R
). This gives Y 2

R
◦Y 2

R
=

2(b1+b2+b3−a−3) for type (a; b1, b2, b3) and Y 2
R
◦Y 2

R
= 2(a1+b1+b2+b3−a2−4)

for (1〈a1〉 ⊔ a2; b1, b2, b3). �

1.5 Arnold inequalities.

Lemma 4. A Sirler cusp singularity has no M -smoothing of type (1〈a1〉⊔a2; b1, b2,

b3) with b1 + b2 + b3 > 2.

In fact, this is a particular case of a local version of Arnold inequalities (cf. [2]).

To prove it we need to know some numerical characteristics of the eigenlattices

H ′
ε = {x ∈ H2(Y )|Conj1x = εx}, H ′′

ε = {x ∈ H2(Y )|Conj2x = εx}, and Hε1,ε2 =

H ′
ε1

∩H ′′
ε2
. Note, right away, that the lattices Hε1,ε2 are pairwise orthogonal, since

the involutions Conj1 and Conj2, as any diffeomorphisms preserving orientation,

preserve the intersection form in Y .

In what follows the inertia indices of a lattice (i.e., the numbers of positive and

negative entries in diagonalizations over R) are denoted by ind+, ind−.
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Proposition 9. For any M -smoothing of a Sirler cusp singularity the inertia in-

dices and discriminants of the lattices H ′
ε, H

′′
ε , and Hε1,ε2 , are the following:

H−,+ = H ′′
+, ind+(H ′′

+) = 1, ind−(H ′′
+) = 13 − χ0, discr H ′′

+ = −1 ,

where χ0 is the Euler characteristic of the half π(Y j+
R

) of BR (j = 1, 2) which

contains p;

H−,− = Ze, e2 = 2,

where e ∈ H ′′
− is realized by the pull-back of the exceptional curve E ⊂ B̂C;

H+,− = H ′′
− ∩ e⊥ = H ′

+, ind+(H ′
+) = 4, ind−(H ′

+) = 9 +χ0, discr H ′
+ = −2;

the other bi-eigenspaces are zero.

Note that χ0 = a1 − a2 + b1 + b2 + b3 for smoothings of type (1 < a1 >

⊔a2; b1, b2, b3) and χ0 = 1 − a+ b1 + b2 + b3 for those of type (a; b1, b2, b3).

Proof. Due to Corollary 1 the non-closed arcs of an M -smoothing should be ar-

ranged as in Figure 2. So, according to Proposition 7, Conj2 is a Smith-maximal

involution, and, hence, H2(Y ) = H ′′
+ + H ′′

−. In particular, the lattices H ′′
+ and

H ′′
− are unimodular. To get their signatures it remains to apply the Lefschetz and

Hirzebruch formulas to Conj2. All the other statements follow from the fact that

Conj1◦Conj2 is the deck transformation of the covering Y → X and the deck trans-

formation of this covering induces in H2(Y ) a reflection with respect to e, which is

the generator of the pull-back of H2(X). �

Corollary 3. For any M -smoothing of a Sirler cusp singularity one has −9 ≤
χ0 ≤ 13.

Proof. The inertia indices of H ′′
+ and H ′

+ are nonnegative. �

Proposition 10. All the components of Y 1
R

and Y 2
R

are orientable. The compo-

nents of Y 1
R

realize elements in H ′
+ and that of Y 2

R
elements in H ′′

+.

Proof. The characteristic class of the double coverings Y 1
R

→ π(Y 1
R

) and Y 2
R

→
π(Y 2

R
) is induced by w1(X) = [ER]. �

Note that an orientation of Y 1
R

and Y 2
R

can be chosen in the following way. Pick

an orientation ω of BR. Represent Y + by z2 = f(x, y) where f > 0 in Y 1+
R

.
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Lift ω to the leafs of Y 1+
R

with Rez > 0 and to the leafs of Y 2+
R

with ℑz > 0.

This orientation extends to an orientation of the whole Y 1
R

and Y 2
R

. We call this

orientation the upper leaf orientation induced by ω.

Proof of Lemma 4. Assume that such a smoothing exists. Consider two elements

in H ′′
+: one, [y1], is realized by the component y1 of Y 2

R
covering the region of XR

containing ER, the second, y2, by the component y2 covering the region between

the nonempty oval and the ovals embraced by it. They are orthogonal and have

nonnegative squares: due to Proposition 8, [y1]
2 = 2(

∑
bj − 3) and [y2]

2 = 2a1 − 2.

Then, from Proposition 9, it follows that [y1] and [y2] are dependent over Q. On

the other hand, it follows from the exact Smith sequence applied to the deck trans-

formation of Y → X that the images of [y1] and [y2] in H2(Y ;Z/2) are independent

over Z/2 (the latter follows from the exactness of the Smith sequence and the fact

that the boundary of the regions of XR defining [y1] and [y2] does not divide S). �

Summary. Due to Corollary 1, Lemma 3, Corollary 3, and Lemma 4, an M -

smoothing of a Sirler cusp singularity has the non-closed arc arrangement shown in

Figure 2 and the distribution of its ovals between the regions A,B1,B2, and B3, is

one of the following:

(2.1a) (1; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, b1 + b2 + b3 = 12,

(2.1b) (5; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, b1 + b2 + b3 = 8,

(2.1c) (9; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, b1 + b2 + b3 = 4,

(2.1d) (1〈a1〉; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, a1 + b1 + b2 + b3 = 12, a1 ≥ 10,

(2.1e) (1〈a1〉 ⊔ 4; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, a1 + b1 + b2 + b3 = 8, a1 ≥ 6,

(2.1f) (1〈a1〉 ⊔ 8; b1, b2, b3), 0 ≤ b1 ≤ b2 ≤ b3, a1 + b1 + b2 + b3 = 4, a1 ≥ 2.
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§2. Construction of sublattices in H2(Y )

In this section we construct several series of auxiliary 2-cycles in Y and calculate

their matrices of intersection numbers. They are used in Section 3 to prohibit most

of the remaining schemes of M -smoothings (see Summary in Section 1).

2.1 Purely real cycles. Recall that, due to our notation, Y 1
R

= FixConj1,

Y 2
R

= FixConj2, π(Y 1
R

) contains the point p, and π(Y 2
R

) does not. According

to Proposition 10 all the components y1
i and y2

j of Y 1
R

and, respectively, Y 2
R

are

orientable. Let us denote by [y1
i ] and [y2

j ] their fundamental cycles corresponding

to some (not fixed) orientation.

Let us number the components in such a way that: π(y1
1) contains p; π(y1

2), . . . ,

π(y1
s) (s ≥ 2) are the discs bounded by the empty ovals in B1,B2,B3 and empty ovals

inside the non-empty oval (if it exists); π(y2
1) contains the exceptional curve ER ⊂

X−
R
. If the non-empty oval exists, assume that the component whose projection is

bounded by it is y2
2 .

Note that, according to Summary in Section 1, s = 5, or 9, or 13 and the number

of components of Y 2
R

is 14 − s.

Proposition 11.

(1) [y1
1 ]

2 = 6, or 14, or 22 according to whether C′ is of type (2.1a), (2.1d), or

(2.1b), (2.1e), or (2.1c), (2.1f);

(2) [y2
1 ]

2 = 2(b1 + b2 + b3 − 3); [y1
i ]2 = [y2

j ]2 = −2 for s ≥ i ≥ 2, j ≥ 3;

(3) [y2
2 ]

2 = −2, or 2a1 − 2 according to if π(y2
2) is bounded by an empty or

non-empty oval;

(4) [yk
i ] ◦ [yl

j] = 0 for (k, i) 6= (l, j).

Proof. The relations (1) - (3) follow from Proposition 8. The remaining one, (4),

is trivial. �

2.2 Almost real cycles. Pick a point O ∈ BR \ C′ and two real straight lines

l0 = 0 and l1 = 0 passing through this point. Denote by L the part of BR covered

by the lines lt = 0, where lt = tl0 + (1 − t)l1 and 0 ≤ t ≤ 1.

Let us fix k = 1 or 2 and suppose that:

(i) the number m of intersection points of the line lt with C′
C is constant for

0 ≤ t ≤ 1, except for a finite number of values of t;
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(ii) each of l0 and l1 intersects C′ transversally in m − 2 real points and with

simple tangency in one real point, where the curve C′
R comes up from

the outside of L (and thus a line from the other half of the pencil, lt =

tl0 − (1− t)l1, intersects C′ in m real points, if this line is close to l0 or l1);

(iii) the germs of l0 and l1 at the points of tangency are contained both in the

same component of π(Y k
R

);

(iv) for each 0 ≤ t ≤ 1 the line lt intersects C′
R in at least m− 2 points.

Under these conditions a natural Conjk-invariant surface with boundary lying

inside
⋃

t(lt)C appears. The details of the construction (introduced by Viro [26])

can be found in [12]. Here we summarize the results needed for prohibitions.

To construct the desired surface we pick up an one-dimensional submanifold Λ

of π(Y k
R

) ∩ L such that: ∂Λ is the set of the points of tangency of the half pencil

lt, 0 ≤ t ≤ 1, with C′
R; each lt which is not tangent to C′

R intersects Λ in 2 − j

points, where 2j = 0 or 2 is the number of imaginary points in the intersection of

lt with C′
C.

Then there exists a compact orientable surface M ⊂ BC such that

(1) M is contained in ∪t(lt)C;

(2) ∂M ⊂ C′
C, M ∩BR = Λ;

(3) M = M+ ∪M−, M− = Conj M+, M+ ∩M− = ∂M+ ∩ ∂M− = Λ, where

M+ and M− are homeomorphic to a disc;

(4) the covering Y → BC is trivial over the interior of M .

Denote by Φ the pull-back of M in Y . Due to (2)–(4), Φ is a closed orientable

surface. In particular, the homology class φ of Φ in H2(Y ) is well defined, up to a

sign depending on the choice of orientation of Φ. The self-intersection number φ◦φ
does not depend on this choice.

Proposition 12. For any line sector L = ∪tlt satisfying the conditions (i) – (iv)

above, one has φ ∈ H ′
+, if k = 2 and φ ∈ H ′′

+ otherwise, and in the both cases

φ ◦ φ =
∑

q∈∂Λ

v(q),

where the sum is taken over q ∈ ∂Λ and v(q) = −1 if in its neighborhood the germ

of lt, which is tangent at q to C′
R, is contained in π(Y k

R
) and 1 otherwise (see

Figure 7, where the dotted lines represent Λ).
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Figure 7

This fact follows from Lemmas 5.2, 5.3, 5.4 in [12].

Remark. Note that the surface Φ ⊂ Y is smooth and totally real at all points except

some of the points of tangency of Λ to C′
R. The above formula can be deduced

from the counting the weights of the complex points of a smoothing of Φ and the

adjunction formula χ(Φ) + Φ ◦ Φ = c, where c is the total weight of the complex

points. The surface in question, Φ, depends on the choice of three objects: the

center O, the half pencil lt = tl0 + (1 − t)l1, and the one-dimensional manifold

Λ. They can be changed with conservation of the homology class of the surface.

For example, any small shift of O can be accompanied by a continuous variation

of lt and Λ with preserving all conditions imposed on them. If Φ′ is the surface

constructed in such a way for a point O′, a variation of O, then each orientation of

Φ is transported naturally to Φ′ and Φ′ thus oriented realizes the same homology

class φ as Φ. The formula for φ ◦ φ from Proposition 12 was originally obtained by

Viro through counting Φ ◦ Φ′.

To calculate the intersection number of φ with the real cycles some additional

auxiliary numerical characteristics are needed.

Fix an orientation ω of BR. Consider the point q0 where Λ meets l0. Orient C′
R

locally at q0 as the boundary of π(Y k̄
R

), k̄ = 3 − k, where the latter is oriented by

ω. Denote by M+ that half of M whose cone of tangent rays at q0 contains ξ
√
−1

where ξ directs the chosen orientation of C′
R at q0.

Represent Y + by z2 = f(x, y) with f > 0 in Y 1+
R

, and consider the upper half
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orientation of Y 1
R

and Y 2
R

induced by ω (see 1.5). Orient in an arbitrary way M̃+,

where M̃+ is a half of the pull back ofM+. Extend this orientation to an orientation

of the whole Φ.

Denote by λ(q) = ±1 the sign of Rez, if k = 1, or ℑz, if k = 2, on the part of

Λ̃ = π−1Λ∩M̃+ adjacent to q. In other words, this sign is well defined at each point

of the interior of Λ, it is constant on each connected component and we extend it

to the boundary points by continuity.

Proposition 13. Under conditions of Proposition 12, for any connected compo-

nent y of Y 3−k
R

equipped with its upper half orientation

[y] ◦ φ =
∑

q∈π(y)∩∂Λ∩L1

λ(q)v(q) −
∑

q∈π(y)∩∂Λ∩L2

λ(q)v(q);

where L1, L2 are the two, properly numbered, halves of L \ O. All the values of

λ(q) are determined by λ(q0) and the position of Λ with respect to the branches of

C′
R: when q jumps from a connected component of Λ to the next one on ∂M+,

the variation of λ(q) is equal mod 4 to the number of the components of C′
R ∩ L

lying in between.

Proof. It follows, for instance, from Lemmas 5.2, 5.3, 5.4 in [12].

Corollary 4. Let L = ∪tlt be a line sector satisfying (i) – (iv) and touched from

the outside by two ovals ν1 and ν2 lying in Bs. Suppose that k = 2 and the lines lt

with 0 < t < 1 do not intersect any oval of C′. Then φ ∈ H ′
+ and

φ2 = −2, φ ◦ [y1
i ] = λ(q0), φ ◦ [y1

j ] = λ(q0), φ ◦ [y1
m] = 0, m 6= i, j,

where: y1
i , y

1
j are the two cycles defined in section 2.1 and coming from the ovals

ν1, ν2; and [y1
· ] is the fundamental class corresponding to the upper half orientation.

In particular, φ can be chosen in a way that λ(q0) = 1.

2.3 Imaginate cycles. This construction contains less information but it is more

general than the others. It is applied to any Z/2 ×Z/2 action. We are applying it

to Y +. There, such an action is generated by Conj1 and Conj2.

Let y1 and y2 be two components of Y k
R

, k = 1 or 2. Assume that C′ is dividing

and there is a smooth arc Λ ⊂ X k̄+
R
, k̄ = 3−k, which connects two points q1 ∈ ∂π(y1)

and q2 ∈ ∂π(y2).
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Connect q1 and q2 by a smooth arc Σ in one half of C′. Lift Λ to a smooth

arc Λ̃ connecting in Y the pull backs q̃1 and q̃2 of q1 and q2. Since Y + is simply

connected (see 1.4), the loop γ formed by Λ̃ and Σ bounds in Y +. Let D be an

oriented surface in Y + with ∂D = γ. The combined cycle (1+ Conjk)(1−Conjk̄)D

represents an element s(D) ∈ H2(Y ).

Proposition 14. Let C′ be dividing. In the above notation, s(D) ∈ H ′
+ if k = 1

and s(D) ∈ H ′′
+ otherwise. For a component y of Y k

R
, s(D) ◦ [y] = 0 mod 4 if y

does not contain any of qj and ±1 mod 4 if y contains one and only one of them.

It holds

s(D) ◦ s(D) = 0 or 2 mod 4

if, respectively, a complex orientation of C′
R at q1 and q2 is directed to the same or

opposite sides of Λ. Moreover, for two imaginate cycles s(D) and s(D′) in generic

mutual position

s(D) ◦ s(D′) = 2([Λ ◦ Λ′] + [Σ ◦ Σ′]) mod 4.

The proof is by straightforward calculation of the orbits of intersection (or self-

intersection) points. The result is contained in Lemmas 2 – 4 in [20].

2.4 Mixed cycles. Such cycles are built out of YR and some surfaces in Y invariant

simultaneously under Conj1 and Conj2 (such an invariance implies the invariance

under the deck transformation of Y → X).

Let us fix k = 1 or 2. Let F j , 1 ≤ j ≤ s, be smooth oriented surfaces embedded

in Y which intersect each other transversally and satisfy the following conditions:

(i) the intersection points lie outside (Y +∩Y −)∪Y k
R

, each F j is transversal to

∂Y + = ∂Y − and, thus, F j,+ = F j ∩ Y + and F j,− = F j ∩ Y − are oriented

surfaces with common boundary ∂F j,+ = ∂F j,− = F j ∩ ∂Y ±;

(ii) for every j the real part F j
R

= F j ∩ Y k
R

of F j divides F j in two halves Φj
+

and Φj
− = ConjkΦj

+ with F j
R

as the common boundary;

(iii) the sum of the fundamental classes of F j
R

corresponding to the boundary

orientation determined by Φj
+ realizes 0 ∈ H1(Y

k
R

;Z);

(iv) for each j the tangent bundle of Y k
R

restricted to ∂Φj
± contains a field K of

nonempty open convex cones of lines such that all the complex directions
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generated by the elements of K are transversal to F j (in particular, K does

not contain the directions tangent to ∂Φj
±) and at the points of ∂Φj

±∩∂Y ±

the real directions tangent to ∂Y k
R

belong to K.

Note, that the condition (iv) and the orientability of F j are satisfied if F j,+ and

F j,− are holomorphic.

Equip Φj
+, 1 ≤ j ≤ s, with the orientation inherited from F j and Φj

− with the

opposite one. Denote by F and Φ± the oriented surfaces which are the union of F j

and, respectively, Φj
± over all 1 ≤ j ≤ s. Then [Φ−] = Conjk[Φ+].

Under conditions (i)–(iii), there exists a 2-dimensional singular cycle [N ] which

is an integral combination of the fundamental cycles of the closures of the connected

components of Y k
R
\F and which satisfies the relation ∂[N ] = −∂[Φ+]− ∂[Φ−]. Let

us denote by nN the corresponding integral valued function on Y k
R

and set

ξ = [Φ+] + [N ] + [Φ−].

Proposition 15. For any F = ∪jF
j with F j satisfying the conditions (i)–(iv),

ξ2 = [F ]2 +

∫

Y k−

R

n2
N (x)dχ(x) −

∫

Y k+
R

n2
N (x)dχ(x);

and, for any j,

ξ ◦ [yk
j ] =

∫

yk
j ∩Y

k−

R

nN (x)dχ(x) −
∫

yk
j ∩Y

k+
R

nN (x)dχ(x).

The integrals above are taken against Euler characteristic (see, for example, [27]).

Proof. Due to Proposition 10, the components of Y k
R

are orientable. Hence, ∂Φ±

is two sided in Y k
R

. Pick a nonzero section ν1 of the field K (see (iv) above) on

∂Φ± which is tangent to ∂Y k±
R

on ∂Φ± ∩∂Y ±. It is everywhere tangent to Y k
R

and

transversal to ∂Φ±. Extend ν1 to a section ν+
1 of the tangent vector field of Y +

R
and

a section ν−1 of the tangent vector field of Y −
R

respecting the following conditions:

ν±1 are nowhere zero on ∂Y ±
R

; νǫ
1 is directed inside Y ǫ

R
on the components β of

∂Y ǫ
R
\ ∂Φ± where ν1 is directed inside β and νǫ

1 is directed outside Y ǫ
R

on the other

components of ∂Y ǫ
R
\ ∂Φ±; ν+

1 and ν−1 restricted to ∂Y ±
R

have equal components

tangent to ∂Y ±
R

and their normal components are opposite.

Due to these conditions and (iv), multiplying ν+
1 and ν−1 by

√
−1 (in respective

natural complex structures on Y ±) we get a continuous vector field ν2 on YR which
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is transversal to N± and F on ∂Φ±. The numbers ξ2 and ξ ◦ [yk
j ] are degree 2 or 1

polynomials in the index of ν2 and obstruction for extending ν2 to Φ±. It remains

to use the fact that Y k±
R

are totally real with respect to the complex structure of

Y ± (cf. Proposition 8). �

Consider a smooth Conj-invariant oriented surface G in X which meets S =

C′
C ∩ ĈC transversally. Let U be a simply connected domain in BR or in B̂R (f.e.,

U can be the interior of BR). Pick a Conj-invariant function f : U → C such that

f = 0 defines S in U and f ≥ 0 in π(Y k
R

) ∩ U. Then over a regular neighborhood

T (U) of U the covering Y → X is given by the standard projection V → T (U),

V = {z2 = f} ⊂ C × T (U), and Conjk = Conj × Conj on V .

Assume that the covering surface F = π−1(G) is divided by FR = F ∩ YR into

two halves Φ+ and Φ− with ∂Φ+ = ∂Φ− = FR. An orientation of F induces an

orientation on Φ+, which, in its turn, defines an orientation of ∂Φ+. In particular,

{z ≥ 0}∩π−1(GR)∩Y k
R

⊂ ∂Φ+ becomes oriented. We descend the latter orientation

via projection into an orientation of GR ∩ π(Y k
R

).

Proposition 16. Let G and U be as above. If at each point of GR ∩S the tangent

planes of G and their orientations are complex, then the introduced orientations of

the connected components of GR ∩ π(Y k
R

) alternate when moving along GR in U .

Proof. Same as for the alternating rule for the complex orientations of the real part

of the Riemann surface of a function z =
√

Π(x− ai), see [20, Lemma 8]. �

Remark. The condition on the tangent planes and their orientation can be replaced

by the hypothesis that G is holomorphic in U .

Let us introduce one auxiliary notation. It is applied to smooth curves g, g′ inXR

intersecting transversally and equipped with alternating orientations of g∩U∩π(Y k
R

)

and g′ ∩ U ∩ π(Y k
R

), where, as above, U is a simply connected domain in BR or

B̂R. If q ∈ XR\π(Y k
R

) is an intersection point of g with g′ and q ∈ U , put w(q) = 1

if the compound orientation of g ∩ U ∩ π(Y k
R

) and g′ ∩ U ∩ π(Y k
R

) alternate when

moving along g to p and then along g′ out of p, and put w(q) = −1 otherwise.

Proposition 17. Suppose that F = ∪F j , 1 ≤ j ≤ s, where the family F j satisfies

the conditions (i)–(iv) and each F j is the pull-back of an orientable surface Gj ⊂ X

satisfying the hypotheses of Proposition 16. If all the singular points of F belong to
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BR ∪ U , U being a simple connected domain of B̂R, then

[F ]2 = 2
∑

j

[Gj ]2 + 4
∑

q∈BR

w(q) − 4
∑

q∈U

w(q) ,

where q runs over all intersection points of Gj.

For two mixed cycles ξ, ξ′, constructed by means of the corresponding objects

F,G = ∪Gj ,Φ±, N, nN , U and F ′, G′ = ∪Gj ′,Φ′
±, N

′, nN ′ , U ′ = U , respectively,

assume, in addition, that any two irreducible components of G and G′ meet transver-

sally and only at points belonging to (BR ∪ U)\π(Y k
R

). Then

ξ ◦ ξ′ = 2
∑

q∈BR

w(q) − 2
∑

q∈U

w(q) +

∫

Y k−

R

nNnN ′(x)dχ(x) −
∫

Y k+
R

nNnN ′(x)dχ(x) ,

where q runs over all intersection points of surfaces G, G′.

Proof. Same as in [20, Lemma 10] and similar to the proof of Proposition 15.

§3. Prohibitions via lattice calculations

In this section we prohibit most of the remaining schemes of M -smoothings of a

Sirler cusp singularity (see Summary in the end of §1). To prohibit them we apply

the constructions from Section 2 to get some special sublattices in H2(Y ). The

prohibitions come from analysis of their inertia indices and discriminants. Often,

the lattices obtained are isomorphic to An, n ∈ N, the standard integral negative

definite lattice of rk = n generated by elements ei, 1 ≤ i ≤ n, with e2i = −2 and

ei ◦ ej = 1 for |i− j| = 1 and 0 for |i− j| > 1.

Typically, the construction of cycles is preceded by application of the Bézout

theorem to specially selected straight lines and conics.

3.1 Prohibitions for smoothing with non-empty oval.

Lemma 6. There is no smoothing of type (2.1d), (2.1e), (2.1f), except, perhaps,

(3.1) (1〈a1〉 ⊔ a2; 0, 1, 1), a1 = 10, 6, or 2 .

Proof. Let C′ be a smoothing of type (2.1d), (2.1e), or (2.1f) (recall that b1 ≤ b2 ≤
b3). Without loss of generality assume that all the ovals of C′ are in a sufficiently

small ball B0 ⊂ B, each non-closed arc of C′ crosses ∂B0 at 2 points, and the real
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straight lines intersecting B0 cross C′
R near ∂BR at ≤ 1 point. Fix a point q on

the non-closed arcs of C′ as shown in Figure 8, consider the pencil of real straight

lines through q, denote by Q the minimal segment of this pencil, containing all

lines which intersect empty ovals inside the non-empty one, and denote by R the

minimal segment of this pencil, containing all the lines which intersect ovals in the

domain B3 (it may be empty if b3 = 0).

Proposition 18. The lines L ∈ Q do not intersect ovals lying outside the non-

empty oval. The lines L ∈ R do not intersect ovals lying outside the domain B3.

Proof. If the first statement is violated, one obtains the situation shown in the right

drawing in Figure 9. Then the conic passing through q and intersecting the four

empty ovals indicated has ≥ 16 common points with C′ in contradiction to Lemma

1.

Assume that the second statement is violated. Then, up to switching q to q′,

we have either the situation shown in the left drawing in Figure 9, or that in the

left drawing in Figure 12, or that in Figure 11. In the first two cases the conics

shown contradict Lemma 1. In the last case the straight line passing through the

two ovals meets C′ at ≥ 8 points, which contradicts Proposition 2. �

B0

3

p

q q

Figure 8 Figure 9

Now, using Proposition 18, the construction of real and almost real cycles pre-

sented in subsections 2.1, 2.2, and Propositions 11 and 12, one obtains a sublattice

of type A2a1−1 ⊕ A2b3−1 if b3 > 0, or a sublattice of type A2a1−1 if b3 = 0 in H ′
+.

According to Proposition 9, this implies

ind−(H ′
+) = 9 + χ0 = 2(a1 + b1 + b2 + b3) − 3 ≥ 2(a1 + b3) − 2 if b3 > 0,
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ind−(H ′
+) = 9 + χ0 = 2(a1 + b1 + b2 + b3) − 3 ≥ 2a1 − 1 if b3 = 0,

which contradicts b1 ≤ b2 ≤ b3, and thus completes the proof of Lemma. �

Lemma 7. There is no smoothing of type (3.1).

Proof. Let C′ be a smoothing of type (3.1). First, construct a mixed cycle as

described in 2.4. Pick a point q0 in the disc bounded by an empty oval inside the

non-empty one, and consider the pencil P of real straight lines through q0. Let

L′
1, L

′
2 ∈ P be the tangents to the non-closed arcs bounding the domains B1,B2

such that the interval (L′
1, L

′
2) ⊂ P consist of lines which do not meet the non-

closed arcs indicated. Denote by L1, L2 ∈ P the lines close to L′
1, L

′
2, respectively,

and intersecting the above non-closed arcs in two real points (see Figure 10).

q q

s

L
1

L 2

Figure 10 Figure 11

Without loss of generality, one can suppose that q0 is the singular point of C and

that the gluing diffeomorphism ϕ : ∂B → ∂B̂ defining X takes ∂(L1)C and ∂(L2)C

to ∂(L̂1)C and ∂(L̂2)C, where L̂1, L̂2 are the strict transforms of L1, L2 in B̂. Thus,

for every j = 1, 2, we get a sphere Gj = (Lj)C ∪ (L̂j)C ⊂ X meets S = C′
C ∪ CC

at eight points which are all real. Hence F j = π−1(Gj) ⊂ Y is a surface of genus

3. It is invariant with respect to Conj1 and Conj2, F
j
R

= Y 2
R
∩ F j consists of four

ovals and divides F j into two halves, Φj
+ and Φj

−, cf. 2.4.

Proposition 19. Under proper orientations of Φ1
+ and Φ2

+

[∂Σ+
1 ] + [∂Σ+

2 ] = 0 ∈ H1(Y
2
R

) .
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Proof. From Proposition 16 applied to G = G1∪G2 and U = BR it follows that Φ1
+

and Φ2
+ can be oriented in a way that the associated orientations of the connected

components of ((L1)R ∪ (L2)R) ∩ π(Y 2
R

) are as in Figure 10. Under this choice

of orientations, there exists an oriented part N ⊂ Y 2
R

such that [∂N ] = [∂Φ1
+] +

[∂Φ2
+]. �

To finish the construction of the mixed cycle takeN as in the proof of Proposition

19 and lying over
⋃

L∈[L1,L2]

LR ∩ Y 2
R
,

where [L1, L2] ⊃ [L′
1, L

′
2]. Then put

ξ = [Φ1
+] + [Φ1

−] + [Φ2
+] + [Φ2

−] + 2[N ] .

Note that N is contained in Y 2
1 ∪ Y 2

2 and denote ∆1 = N ∩ Y 2
1 , ∆2 = N ∩ Y 2

2 .

Proposition 20. One has

ξ2 = 8s, ξ ◦ [y2
2 ] = ±4s, [y2

2 ]
2 = 2(a1 − 1),

where s is the number of empty ovals bounding from inside the domain π(∆2).

Proof. The third formula is contained in Proposition 11. The second one follows

from Proposition 15: the only nontrivial contribution in the integrals is given by

∆2 where nN = 2 and, thus, ξ ◦ [y2
2 ] = −2χ(∆2) = ±4s. To calculate ξ2 we apply

Propositions 15, 17: the contribution of 2(∆1 + ∆2) is

4(−χ((∆1 ∩ Y +) ∪ ∆2) + χ(∆1 ∩ Y −)) = 8s ,

the contribution of self intersections of Φ1
+ + Φ1

− and Φ2
+ + Φ2

− is 4, and the contri-

bution of (Φ1
+ + Φ1

−) ∩ (Φ2
+ + Φ2

−) is −4 by the definition of w(q). �

By Proposition 20 the classes ξ, [y2
2] generate a sublattice inH ′′

+, which is positive

definite if 0 < s < 2a2 − 1, and is positive semidefinite if s = 0 or 2a2 − 1. Since

ind+(H ′′
+) = 1 by Proposition 9, to complete the proof of Lemma 7, it remains to

show that ξ, [y2
2 ] are linearly independent for the cases s = 0 and s = 2a2 − 1.

Assume that s = a2 − 1. One should show that [ξ] 6= ±2[y2
2 ].

Pick a smooth arc λ ⊂ A, which does not intersect L1, L2, and C′ and joins a

point p1 ∈ ∂B2 and a point p2 on the non-empty oval such that p1, p2 6∈ π−1(∆1 ∪
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∆2). The construction in 2.3 provides us with an imaginate cycle c such that

ξ ◦ c ≡ 0 mod 2, while [y2
2 ] ◦ c ≡ 1 mod 2 according to Proposition 14.

Assume that s = 0. Then one has to show that [ξ] 6= 0.

Consider the pencil segment Q. Proposition 18 and and the rule of orientations

in a pencil [5] imply that a+
1 − a−1 = 0 in the notation of Lemma 2. The formulae

(1.4), (1.5) imply that one of the ovals in B2 ∪ B3, say, that in B3, is oriented

negatively with respect to the boundary of B3. Then the same rule of orientations

applied to the pencil generated by L1, L2 shows that there exist empty ovals in A
swept by lines L ∈ [L1, L2]. Now we pick up a point p1 on such an oval, a point p2

on the boundary of π(∆1∪∆2), join them by an arc λ ⊂ BR\(C′
R∪(L1)R∪(L2)R)

and construct an imaginate cycle c. By Proposition 14

[ξ] ◦ [π−1(D ∪ Conj(D))] ≡ 2 mod 4 ,

which completes the proof of Lemma 7. �

3.2 Prohibitions of smoothings of type (a; 0, 0, b3).

Lemma 8. There is no smoothing of type (2.1a), (2.1b), (2.1c) with b1 = b2 = 0.

Proof. Let C′ be a smoothing of type (2.1a), (2.1b), or (2.1c).

As in the proof of Lemma 6, suppose that all the ovals of C′ are in a small ball

B0 ⊂ B, consider the pencil of straight lines through the point q and the minimal

segment R of this pencil containing all the lines which intersect ovals in B3. Denote

by R′ the analogous segment of the pencil of lines through the point q′ (see Figure

8).

Proposition 21. Each L ∈ R ∪R′ intersects at most one oval of C′.

Proof. Such a line crosses the non-closed arcs of C′ at ≥ 4 points and the result

follows from Lemma 2. �

Let us orient R clock-wise, and R′ counter clock-wise. This defines an ordering O
(resp. O′) on the set s (resp., s′) of ovals swept by the lines L ∈ R (resp., L ∈ R′).

Proposition 22. (1) (s,O) = (s′,O′).

(2) The ovals in B3 form not more than two maximal sequences (with respect to

O = O′) non-interrupted by the ovals from A.
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Proof. (1) First, note that O = O′ on the ovals in B3, since otherwise there exist

two ovals in B3, located as shown in Figure 11, and a line through these ovals

intersects C′ at ≥ 8 points, contradicting Proposition 2.

Therefore, if (s,O) 6= (s′,O′), we have one of the situations shown in Figure

12 (up to exchanging q and q′). Consider a conic K through the points q, q′,

intersecting the three ovals indicated. By Cayley’s lemma, K ∩BR consists of two

branches and their intersection with the non-closed arcs of C′ is determined by the

configuration of the straight lines indicated. Then (K ·C′
R) ≥ 16, which contradicts

Lemma 1.

qq q q qq

Figure 12

(2) Assuming that the sequence of ovals in B3 is interrupted at least twice, we

have one of the situations shown in Figure 13 (up to exchanging q, q′). By Cayley’s

lemma and due to the arrangement of straight lines through the four ovals indicated,

the conic K, passing through q and these ovals, must go as shown in Figure 13,

which implies (K · C′
R) ≥ 15, contradicting Lemma 1. �

By Proposition 22, we have either one non-interrupted sequence of b3 ovals in B3,

or two non-interrupted sequences of b′3 and b′′3 ovals in B3, b
′
3 + b′′3 = b3. Hence, the

construction of real cycles and almost real cycles in a pencil gives us a sublattice

of type A2b3−1, or A2b′3−1 ⊕ Ab′′3 −1 in H ′
+, which implies the contradiction

2b3−1 ≤ ind−(H ′
+) = 2b3−3, or 2b′3−1+2b′′3−1 = 2b3−2 ≤ ind−(H ′

+) = 2b3−3,

completing the proof of Lemma. �

3.3 Prohibitions of smoothings of type (a; 0, b2, b3), b2, b3 > 0.
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q

b   - 13

b   - 1
2

q
3

2

Figure 13 Figure 14

Lemma 9. There is no smoothing of type (2.1a), (2.1b), (2.1c) with b1 = 0,

b2b3 > 0.

Proof. Assume that C′ is a smoothing of C of type (2.1a), (2.1b), or (2.1c) with

b1 = 0, b2b3 > 0.

Let a straight line L intersect an oval in B2 and an oval in B3 (let us call these

ovals ν2, ν3, respectively), and not separate any two ovals from B2 ∪ B3 in BR

(see Figure 14). Fix points q2, q3 ∈ L inside ν2, ν3, respectively, denote by Qi the

pencil of real straight lines through qi, i = 2, 3, and introduce the minimal segments

Pi ⊂ Qi, containing the lines which intersect ovals in the domain B5−i, i = 2, 3. An

orientation of Pi defines an ordering on the set Vi of ovals swept by lines l ∈ Pi,

i = 2, 3.

Proposition 23. One of the following statements holds.

(1) The set Vi contains only ovals from B5−i, i = 2, 3.

(2) The set V3 contains only ovals from B2. The set V2 contains all the ovals

from B3 and a non-empty set V0 of ovals in A. The sequence of ovals from B3 is

interrupted by the ovals in V0 exactly once. The line L separates in BR the ovals

in V0 from the rest of the ovals in the domain A.

(3) The statement (2) with the indices 2 and 3 exchanged.

Proof. First, note that Vi contains no oval from Bi, i = 2, 3. Indeed, otherwise

we have one of the situations shown in Figures 15a, b. In the situation 15a the

straight line L′ crossing the two ovals indicated meets C′ at ≥ 9 points contradicting

Proposition 1. In the situation 15b the conic K going through the four ovals
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Figure 15

indicated and the point q meets C′ at ≥ 15 points, which contradicts Lemma 1.

Assuming that both V2 and V3 contain ovals in A, one should have the situation

shown in Figure 15c, where the conic through the five ovals indicated meets C′ at

≥ 15 points which contradicts Lemma 1.

If V2 contains a non-empty set V0 of ovals in A, and the straight line through ν2

and an oval v ∈ V0 separates in BR two ovals from B3, then so does the straight

line through v and the point q. Indeed, otherwise we have one of the situations

shown in Figures 15d, f, e. In each case the conic through the four ovals indicated

and the point q meets C′ at ≥ 15 points which contradicts Lemma 1. Then we

finish the proof of Proposition 23 as it was done in the proof of Proposition 22 by

application of Lemma 1 shown in Figure 13. �

If the statement (1) of Proposition 23 holds true, one takes the real 2-cycles in Y

generated by the ovals in B2∪B3, and the almost real cycles, constructed by means

of the pencils P2, P3, and obtains a sublattice in H ′
+ isomorphic to A2b2−1⊕A2b3−1,

according to Proposition 11 and Corollary 4. Hence

2b2 − 1 + b3 − 1 = 2(b2 + b3) − 2 ≤ ind−(H ′
+) = 2(b2 + b3) − 3,
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which is absurd, completing the proof of Lemma 9 in the case considered.

Assume that the statement (2) of Proposition 23 holds true, V0 contains a1 ≥ 1

ovals and V2 contains two non-interrupted sequences of ovals of lengths b′3, b
′′
3 , where

b′3 + b′′3 = b3.

First, we prohibit certain dispositions of ovals by constructing a mixed cycle

which together with [y2
1 ] generates a positive sublattice in H ′′

+ in contradiction with

ind+(H ′′
+) = 1 (see Proposition 9). Let L′ be a straight line through the point q

crossing an oval ν0 ∈ V0. Rotate the line L′ around a point on ν0 keeping two real

intersection points with the boundary of B2 and making L′ close to a tangent to

C at the singular point (see Figure 16a, b). Then we can assume that the proper

transform L̂′ ⊂ B̂ of L′ crosses Ĉ and the exceptional divisor E as shown in Figure

16c. Following the procedure set up in 2.4, we take F 1 = π−1(L′
C
∪ L̂′

C
), F 2 =

π−1(EC). Clearly, F 1, F 2 satisfy the conditions (i)-(iv) in 2.4 with k = 2. Then

we choose halves Φ1
+,Φ

2
+ of F 1, F 2, respectively, so that to obtain the orientations

of the components of (L′
R
∪ L̂′

R
) ∩ π(Y 2

R
) and ER ∩ π(Y 2

R
) as shown in Figure 16a,

b, c. We claim that 6[∂Φ1
+] + 2[∂Φ2

+] = 0 ∈ H1(Y
2
R

). Indeed, the latter 1-cycle is

the boundary of the 2-cycle N combined from the closures of the components of

Y 2
R
\(F 1 ∪ F 2) with the multiplicities indicated on their projections to X in Figure

16a, b, c (we assume that these components have the orientation induced from Y 2
R

).

Now we can define the class

[η] = 3[Φ1
+] + 3[Φ1

−] + [Φ2
+] + [Φ2

−] − [N ] ∈ H ′′
+ .

Remark. The ovals inside B2∪B3 are not shown in Figure 16a, b. It easily follows

from Proposition 23 and its proof that these omitted ovals are located as follows:

(1) in Figure 16a, b2 ovals are in the part of B2 marked with “−1”, b′3 and b′′3 ovals

are in the parts of B3 marked with “−5” and “+1”, respectively, (2) in Figure 16b,

b2 ovals are in the part of B2 marked with “−1”, b′3 and b′′3 ovals are in the parts of

B3 marked with “+5” and “+1”, respectively.

A routine computation based on Propositions 15 and 17 gives

(3.2a) [η]2 = 2b2 + 2b′′3 + 50b′3 − 56, [η] ◦ [y2
1 ] = −2b2 + 2b′′3 − 10b′3

in the situation shown in Figure 16a, and

(3.2b) [η]2 = 2b2 + 2b′′3 + 98b′3 − 80, [η] ◦ [y2
1 ] = −2b2 + 2b′′3 + 14b′3 − 12
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in the situation shown in Figure 16b.

If a = 1, then b2 + b′3 + b′′3 = 12 and the above formulae together with (2) of

Proposition 11 always give the nonzero value of the discriminant of the sublattice

〈[η], [y2
1]〉 ⊂ H ′′

+. The real cycle y2
2 coming from the empty oval in A has self-

intersection −2 and is orthogonal to [η], [y2
1]; hence the lattice 〈[η], [y2

1], [y
2
2]〉 ⊂ H ′′

+

has rank 3 contradicting rkH ′′
+ = 2 in the case considered, which prohibits all the

arrangements with a = 1.

If a = 5 or 9, formulae (3.2a, 3.2b) give a nonpositive discriminant of the lattice

〈[η], [y2
1]〉 only for the following triples (b2, b

′
3, b

′′
3):

(3.3a)
(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 5, 2), (1, 6, 1), (2, 4, 2), (2, 5, 1),

(3, 4, 1), (4, 1, 3), (4, 2, 2), (4, 3, 1), (5, 1, 2), (5, 2, 1), (6, 1, 1),

for the arrangement shown in Figure 16a, and in the cases

(3.3b) (b2, b
′
3, b

′′
3) = (1, 2, 1), (1, 6, 1),

for the arrangement shown in Figure 16b. Thereby, and since σ+(H ′′
+) = 1, the rest

of arrangements are prohibited.

Next we construct a full rank sublattice in H ′
+ and compute its discriminant,

obtaining contradiction whenever this discriminant is not −2n2, n ∈ Z.

The real 2-cycles in Y generated by the ovals in B2 and the almost real cycles

constructed by means of the pencil P3 give classes ξ2i ∈ H ′
+, i = 1, ..., 2b2 − 1.

Assuming that they are properly numbered, starting with the class defined by the

oval ν2, these classes form a standard basis of a lattice of type A2b2−1:

(3.4) (ξ2i )2 = −2, 1 ≤ i ≤ 2b2−1, ξ2i ◦ξ2j = 1, |i−j| = 1, ξ2i ◦ξ2j = 0, |i−j| > 1 .

Similarly, the real 2-cycles in Y generated by the ovals in B3 and the almost

real cycles constructed by means of the pencil P2 give classes ξ3i , i = 1, ..., 2b3 − 1,

numbered according to the ordering defined by the orientation of P2, where ξ31 is

generated by the oval ν3. By Propositions 11, 12, and Corollary 4, we have (after

suitable orientation of the cycles considered)

(3.5) (ξ3i )2 = −2, 1 ≤ i ≤ 2b3 − 1, i 6= 2b′3, (ξ32b′3
)2 = 2a1 − 2,

(3.6) ξ3i ◦ ξ3j = 1, |i− j| = 1, ξ3i ◦ ξ3j = 0, |i− j| > 1 .
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Then we complete the above set of classes with [y1
1 ] and two more classes obtained

from the following mixed cycles τ0, τ1.

For τ0 we take G = EC, where E is the exceptional divisor in B̂. Let us deform

the curve Ĉ slightly in order to obtain six real intersection points with E (see Figure

17, where the opposite points on ER should be identified). The surfaces G ⊂ X and

F = π−1(G) ⊂ Y , clearly, satisfy the conditions (a)-(c) and (i)-(iv) in subsection

2.4, and we can define the cycle

τ0 = Φ+ + Φ− + 2(π−1(δ1) + π−1(δ2) + π−1(δ3)),

where Φ+,Φ− are presented by the components of F\Y 1
R

, and δ1, δ2, δ3 are the discs

bounded by ĈR and ER, indicated in Figure 17.

-3
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-3+3
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q
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3
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Figure 16

For τ1 we take G = LC∪L̂C, where L is the line introduced in the very beginning

of this section, and L̂ ⊂ B̂C is the strict transform of the copy of L in B̂ (see Figure

17). The surfaces G and F = π−1(G) ⊂ Y satisfy the conditions (a)-(c) and (i)-

(iv) in subsection 2.4. Indeed, (i) and (iv) follow directly from the construction

of G and F , (ii) is satisfied, since G is diffeomorphic to the sphere and all the

intersection points of G and S = C′
C ∪ ĈC are real, (iii) follows from Proposition

16, establishing the orientation of the components of GR ∩ π(Y 1
R

) shown by arrows

on Figure 17. Hence we can construct the cycle

τ1 = Φ+ + Φ− +
∑

±Λ ,

where λ runs over the closures of all the components of Y 1
R
\F adjacent to F .
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Proposition 24. Orientations of the cycles τ0, τ1 can be chosen so that

(1) [τ0]
2 = 14, [τ1]

2 = 2 + 2a, [τ0] ◦ [τ1] = 0,

(2) [τ0] ◦ [y1
1 ] = 6, [τ1] ◦ [y1

1 ] = 2a+ 2 − 4a1, [y1
1] ◦ ξ32b′3

= 2a1,

(3) if b′3 > 1 then [τ1] ◦ ξ32 = 1 and [τ1] ◦ ξ32b′3
= −2a1,

(4) if b′3 = 1 then [τ1] ◦ ξ32 = 1 − 2a1,

(5) if b2 > 1 then [τ1] ◦ ξ22 = 1.

All the other intersection indices of [τ0], [τ1] with [y1
1], ξ

2
i , i = 1, ..., 2b2 − 1, ξ3i ,

i = 1, ..., 2b3, are zero.

Proof. All the formulae follow from Propositions 12, 13, 15, 16, and 17. Let us

show, for example, that [τ0] ◦ [τ1] = 0. We fix the orientation of τ0 so that it

coincides with the orientation of y1
1 on π−1(δi), i = 1, 2, 3, and fix the orientation

of τ1 so that it coincides with the orientation of y1
1 on π−1(δ1), π

−1(δ2) and is the

reverse on π−1(δ3). The corresponding orientations of the components of ER\SR

and LR ∪ L̂R\SR, defined in Proposition 16, are shown by arrows in Figure 17.

The geometric intersection of τ0 and τ1 consists of π−1(δ1)∪π−1(δ2)∪π−1(δ3) and

two points π−1(E ∩ L̂). The contribution of π−1(δ1) ∪ π−1(δ2) ∪ π−1(δ3) to the

intersection index is 2, and the contribution of π−1(E ∩ L̂) is −2 by Proposition

17. �

L
1

2

3

E

L

Figure 17 Figure 18

Now we obtain a total of 2(b2 + b3) + 1 = dimH ′
+ classes

[τ0], [τ1], [y1
1 ], ξ2i , i = 1, ..., 2b2 − 1, ξ3i , i = 1, ..., 2b3 − 1 .

The determinant of the intersection matrix of these classes is a function ∆(b2, b
′
3, b

′′
3 , a1)
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of positive integral variables b2, b
′
3, b

′′
3 , a1, satisfying

b2 + b′3 + b′′3 = 4, or 8, or 12, a1 ≤ 13 − b2 − b′3 − b′′3 .

The direct computation, based on Propositions 11, 24 and formulae (3.4), (3.5),

(3.6), shows that among cases (3.3a, 3.3b) the function ∆ takes value −2n2, n ∈ Z,

only for (b2, b
′
3, b

′′
3 , a1) in the following list:

(3.7)
(1, 1, 2, 1), (1, 1, 2, 5), (1, 1, 2, 7), (2, 1, 1, 4), (1, 5, 2, 1), (1, 5, 2, 3),

(1, 5, 2, 4), (2, 4, 2, 4), (2, 4, 2, 5), (4, 1, 3, 2), (4, 1, 3, 4), (4, 3, 1, 2).

In particular, this prohibits (3.3b) and leaves only the situation shown in Figure

16a.

In the cases

(3.8) (b2, b
′
3, b

′′
3 , a1) = (2, 4, 2, 4), (2, 4, 2, 5), (4, 1, 3, 4)

one obtains a sublattice 〈ξ01 , ..., ξ08, [η], [y2
1]〉 ⊂ H ′′

+, where ξ01 , ..., ξ
0
7 are represented

by the real and almost real cycles coming from the chain of four interrupting empty

ovals in A and ξ08 is represented by the real cycle coming from the remaining oval in

A; η is the mixed cycle constructed above and shown in Figure 16a, c. The nonzero

intersections of the 10 classes considered are given by formulae (3.2a) and

(ξ0i )2 = −2, i = 1, ..., 8, ξ0i ◦ ξ0i+1 = 1, i = 1, ..., 6, [y2
1 ]

2 = 10, [η] ◦ ξ02 = ±3 .

Calculating the discriminant of the lattice 〈ξ01 , ..., ξ08, [η], [y2
1]〉, one obtains no value

−n2, n ∈ Z, which contradicts dimH ′′
+ = 10, discrH ′′

+ = −1, and thus prohibits

the cases (3.8). (Note that the similar computation for the case (b2, b
′
3, b

′′
3 , a1) =

(1, 5, 2, 4) gives no prohibition.)

To prohibit the rest of cases (3.7) we introduce one more mixed cycle. Fix

a point inside an oval ν0 ∈ V0 and draw through this point a straight line L2

crossing the oval ν2, and a straight line L3 crossing the oval ν3 (see Figure 19a).

Without loss of generality we can suppose that the point L2 ∩ L3 is the singular

point of C, and the strict transforms L̂2, L̂3 ⊂ B̂ meet ER and ĈR as shown in

Figure 19b. The surfaces F 1 = π−1(L2,C ∪ L̂2,C), F 2 = π−1(L2,C ∪ L̂2,C), clearly,

satisfy the conditions (i)-(iv) in 2.4 with k = 1. Then we choose halves Φ1
+,Φ

2
+
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of F 1, F 2, respectively, so that to obtain the orientations of the components of

(L2,R ∪ L̂2,R) ∩ π(Y 1
R

) and (L3,R ∪ L̂3,R) ∩ π(Y 1
R

) as shown in Figure 19a, b. The

1-cycle [∂(Φ1
+ + Φ1

− + Φ2
+ + Φ2

−)] is the boundary of the 2-chain N consisting of

the closures of connected components of Y 1
R
\(F 1 ∪ F 2) taken with multiplicities

indicated in Figure 19a, b on the projections of these components on BR ∪ B̂R.

Denote the mixed cycle [Φ1
+ +Φ1

− +Φ2
+ +Φ2

− −N ] by ζ and consider the sublattice

in H ′
+ generated by

(3.10) ξ2i , i = 1, ..., 2b2 − 1, ξ3i , i = 1, ..., 2b3 − 1, [y1
1 ], [τ0], [τ1], [ζ].

Computations along the formulae in Propositions 15, 17 give

Proposition 25.

(1) [ζ] ◦ ξ2i = [ζ] ◦ ξ3j = 0, i = 1, ..., 2b2 − 1, i 6= 2, j = 1, ..., 2b3 − 1, j 6= 2, 2b′3,

(2) [ζ] ◦ [y1
1 ] = 8 + 4(a′1 + a′2), [ζ] ◦ [τ0] = 4, [ζ] ◦ [τ1] = 4(a′2 − a′1), [ζ]2 =

12+8(a′1+a′2), where a′1 is the number of ovals in V0 different from ν0 and contained

in the real part of ζ, a′2 is the number of ovals in A which do not belong to V0 and

are contained in the real part of ζ,

(3) if b2 > 1 then [ζ]◦ ξ22 = 1, or −1, according as the ovals in B2, different from

ν2, lie in the domain A, or B (see Figure 19a),

(4) if b′3 = 1 then [ζ] ◦ ξ32 = 5 + 4a′1 ± 2,
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(5) if b′3 > 1 then [ζ] ◦ ξ32 = ε, [ζ] ◦ ξ32b′3
= 5 − ε + 4a′1 ± 2, where ε = 1, or −1,

according as the ovals in B3, different from ν3 and not separated from ν3 by L2, lie

in the domain M , or N (see Figure 19a).

Note that there cannot be ovals both in the domains A and B, or both in M

and N . Indeed, first, all ovals in B2,B3 are on one side with respect to the line L

passing through the ovals ν2, ν3 (see Figure 17). Assuming there there is an oval

in the domain A and an oval in B (similarly for M and N), one can easily obtain

that the conic crossing these two ovals and the ovals ν2, ν3, ν0 must intersect C′ at

> 14 points contradicting Lemma 1.

To proceed further we shall specify the position of ovals:

Proposition 26. (1) If (b2, b
′
3, b

′′
3) = (2, 1, 1) then a′1 is 0 or a1 − 1.

(2) If (b2, b
′
3, b

′′
3) = (1, 1, 2), (1, 5, 2), (4, 1, 3), or (4, 3, 1), then a′1 = a1 − 1.

(3) If (b2, b
′
3, b

′′
3) = (1, 5, 2) then a1 + a′2 is even. In particular, there exists a

noninterrupting oval in A which does not belong to the real part of ζ, and one can

draw three straight lines L3, L4, L5 through this oval and the ovals ν0, ν3 which are

located as shown in Figure 20b.

(4) If (b2, b
′
3, b

′′
3 , a1) = (2, 1, 1, 4), (4, 1, 3, 2), or (4, 3, 1, 2), then there are no ovals

in the domain B.

(5) If (b2, b
′
3, b

′′
3) = (1, 5, 2) then there are no ovals in the components of B3

marked by −4 in Figure 20b.

Proof. (1) This follows from Lemma 1. Indeed, assuming the contrary, one can

draw a conic intersecting the ovals ν2, ν3, ν0, two other interrupting ovals in A, one

in the real part of the cycle ζ and the other outside. Due to Cayley lemma, this

conic must cross C′ at > 14 points, providing a contradiction.

(2) Assuming a′1 < a1 − 1, one obtains two interrupting ovals in A such that

the straight line through these ovals separates ovals in B3 (see Figure 20a). Then

one can construct a mixed cycle η1 in the same way as the mixed cycle η shown in

Figure 16 (orientations and multiplicities of the real components of η1 are indicated

in Figures 21a, 16c). Propositions 15 and 17 imply

[η1]
2 = 2b2 + 2b′′3 + 50b′3 − 50, [η1] ◦ [y2

1 ] = −2b2 + 2b′′3 − 10b′3 + 6,

which gives the positive discriminant of the lattice 〈[η1], [y2
1]〉 ⊂ H ′′

+ contradicting

σ+(H ′′
+) = 1.
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Both (3) and (4) follow from the complex orientation formula
∑

(b+i −b−i ) = 0 in

Lemma 2, since otherwise, using the straight line pencils centered in the ovals ν2 and

ν0 and applying the rule of orientations in a pencil [5], one obtains
∑

(b+i −b−i ) = ±2,

thus, a contradiction.

(5) Assume that the last statement is not true. It follows from Cayley lemma

and Lemma 1, that all the b′3 − 1 = 4 ovals must be in one of the domains marked

by −4 in Figure 20b. Then one constructs a mixed cycle η2 out of the lines L3, L5

and the doubled line L4 (orientations and multiplicities of the real components of

η2 are indicated in Figure 20b). Calculations based on Propositions 15, 17 give

[η2]
2 = 132, [η2] ◦ [y2

1 ] = ±36, [y2
1 ]

2 = 10, hence the discriminant of the lattice

〈[η2], [y2
1]〉 ⊂ H ′′

+ is positive, completing the proof. �

A nonzero value of the determinant of the intersection matrix for the classes

(3.10) prohibits the corresponding arrangement of ovals, since the number of classes

(3.10) is greater than rkH ′
+. We compute this determinant in the cases (3.7),

different from (3.8), under the restrictions imposed by Proposition 26, and obtain

nonzero values for all the cases, except for the following two:

(3.9) (b2, b
′
3, b

′′
3 , a1, a

′
2) = (1, 5, 2, 1, 3), (1, 5, 2, 4, 0)

such that four ovals in B3 lie in the domain marked by −2 in Figure 20b.

In the case (b2, b
′
3, b

′′
3 , a1, a

′
2) = (1, 5, 2, 4, 0) we consider the sublattice in H ′′

+

generated by: [y2
1 ], [η], [η2]; the classes ξ01 , ξ

0
2 , represented by the real cycles coming

from the oval ν0 and the oval crossed by the lines L4, L5 (Figure 20b); and the

classes ξ0i , i = 3, ..., 7, represented by the real and almost real cycles in the chain of

the remaining three interrupting ovals in A. In the case considered,

〈[y2
1], [η], [η2], ξ

0
1 , ..., ξ7〉 = 〈[y2

1 ], [η], [η2]〉 ⊕A1 ⊕A1 ⊕ A5 .

From Propositions 15, 17 and formulae (3.2a) we derive

[y2
1 ] ◦ [η] = −48, [y2

1 ] ◦ [η2] = −20, [η]2 = 200, [η2]
2 = 36, [η2] ◦ [η] = 94,

which gives the discriminant −29 · 33 · 53 contradicting rkH ′′
+ = 10, discrH ′′

+ = −1.

In the case (b2, b
′
3, b

′′
3 , a1, a

′
2) = (1, 5, 2, 1, 3) we have a sublattice in H ′′

+ generated

by classes [y2
1 ], [η], [η2] and classes ξ01 , ξ

0
2 , ξ

0
3 , ξ

0
5 , ξ

0
7 , represented by the real cycles
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coming from ovals in A. Let us construct two more classes in H ′′
+ represented by

imaginate cycles (see section 2.3). Namely, take an arc l1 (resp. l2) connecting ovals

in A which give rise to the classes ξ03 , ξ
0
5 (resp. ξ05 , ξ

0
7), then, following the procedure

of section 2.3, construct imaginate cycles representing classes ξ̃04 , ξ̃
0
6 ∈ H ′′

+. By

Proposition 14,

ξ̃04 ◦ ξ03 ≡ ξ̃04 ◦ ξ05 ≡ ξ̃06 ◦ ξ05 ≡ ξ̃06 ◦ ξ07 ≡ 1 mod 4, (ξ̃04)
2 ≡ (ξ̃06)

2 ≡ 0 mod 2,

and the other intersection numbers with ξ̃04 or ξ̃06 are divisible by 4. Direct compu-

tation shows that the discriminant of the sublattice

〈[y2
1 ], [η], [η2], ξ

0
1 , ξ

0
2 , ξ

0
3 , ξ̃

0
4 , ξ

0
5 , ξ̃

0
6 , ξ

0
7〉 ⊂ H ′′

+

is 29 mod 210, which contradicts rkH ′′
+ = 10, discrH ′′

+ = −1.

The proof of Lemma 9 is completed.

3.4 Prohibitions for smoothings of type (a; b1, b2, b3), b1, b2, b3 > 0. Assume

that there exists a smoothing of type (a; b1, b2, b3), b1b2b3 > 0.

We start with the study of the oval arrangement of such a smoothing.

Proposition 27. Let qi be a point inside an oval in Bi, i = 1, 2, and let Pi, i = 1, 2,

be the minimal segment in the pencil of straight lines through qi, which contains all

the lines intersecting the ovals in B3. Then,

(1) the lines L ∈ Pi intersect no ovals outside B3, except for the oval embracing

qi, i = 1, 2;

(2) suitably oriented segments P1, P2 define the same order on the ovals in B3.

Proof. This can be shown by application of Lemma 1 as in the proof of Proposition

23. For instance, assuming the contrary to the statement (1), we obtain five ovals

of C′ located as shown in Figure 18. The conic K passing through these ovals must

intersect C′
R in at least 16 points, which is impossible. �

We order the ovals in each domain Bi, i = 1, 2, 3, as in Proposition 27. Let us

choose the first oval νi in Bi, i = 1, 2, 3, and three real straight lines L1, L2, L3 in

B such that Li crosses νj , νk for i /∈ {j, k}, and Li, Lj with i 6= j meet at a point

in Bk outside νk, k /∈ {i, j} (see Figure 21).
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The lines L1, L2, L3 divideBR into seven domains, which we denote byB(ε1, ε2, ε3),

ε1, ε2, ε3 = ±1, where

εiLi(z) > 0 if z ∈ B(ε1, ε2, ε3) ,

and L1, L2, L3 are positive inside the triangle with vertices at the intersection points

(see Figure 21). Let aε1ε2ε3 be the number of ovals in Aε1,ε2,ε3 = B(ε1, ε2, ε3) ∩A,

and bε1ε2ε3
i be the number of ovals in Bε1,ε2,ε3

i = B(ε1, ε2, ε3)∩Bi different from νi,

i = 1, 2, 3.

Proposition 28. (1) At most one of bε1ε2ε3
i with ε1ε2ε3 = −1 and i = 1, 2, 3 is

different from zero.

(2) If b−++
3 > 0 or b+−+

1 > 0, then

a++− = a−−+ = a−++a+−− = a−+−a+−+ = 0 .

(3) If b+++
3 > 0 or b−−+

1 > 0, then

a−+− = a+−− = a−−+a++− = 0 ,

and if a−−+ > 0 then

a+−+a−++ = 0 .

(4) The above statements hold for any renumeration of B1,B2,B3.

Proof. This follows from Bézout’s theorem in the form of Lemma 1, because oth-

erwise one can draw a conic intersecting C′ at ≥ 15 points. �
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Lemma 10. There do not exist M -smoothings of types (a; b1, b2, b3), b1, b2, b3 > 0,

except, perhaps, for the cases

(3.11)

{
b1 = b2 = 1, b3 = 2, a = 9,

b−++
3 = 1, a+++ = 3, a−++ = 1, a−+− = 5

(3.12)

{
b1 = b2 = 1, b3 = 6, a = 5,

b−++
3 = 5, a+++ = 1, a−+− = 4,

(up to permutation of indices 1, 2, 3).

Proof. Our plan is to construct dimH ′
+ + 1 classes in H ′

+ and compute the deter-

minant ∆ of their intersection matrix. If ∆ 6= 0 then the corresponding smoothing

does not exist.

We start with the class [y1
1 ] ∈ H ′

+.

Then, as in 3.3, we construct the real and almost real 2-cycles coming from the

ovals in B1 ∪B2 ∪B3 and the corresponding segments of the pencil of lines centered

inside the ovals ν1, ν2, ν3, and which give the classes

(3.13) ξ1i , i = 1, ..., 2b1 − 1, ξ2i , i = 1, ..., 2b2 − 1, ξ3i , i = 1, ..., 2b3 − 1,

where ξj
1 is generated by the oval νj , j = 1, 2, 3. By Proposition 27, these classes

form the standard basis in a sublattice A2b1−1 ⊕ A2b2−1 ⊕ A2b3−1 ⊂ H ′
+ which is

orthogonal to [y1
1 ].

Four more classes in H ′
+ are represented by the following mixed cycles τ0, τ1, τ2,

and τ3. Taking a smoothing C′ closer to C, we may suppose that the three points

where Li meet are arbitrarily close to the singular point q0 of C. Then there are

three lines L′
1, L

′
2, L

′
3 close to L1, L2, L3 and such that they pass through q0, and

there is an equivariant diffeomorphism ψ : BC → BC close to identity which is

identical on C ∪ (1− ǫ)BC, preserves the spheres concentric to BC, and transforms

L′
i∩∂BC in ϕ(Li∩∂BC), where ϕ is the gluing diffeomorphism defining X . Denote

by L̂1, L̂2, L̂3 ⊂ B̂ the strict transforms of L′
1, L

′
2, L

′
3. Now we construct τ0, τ1

exactly as in the proof of Lemma 9: the role of L is played here by L1. The cycles

τ2, τ3 are constructed in the same manner as τ1 by substituting the line L1 for

the lines L2, L3, respectively. The orientations of the cycles τ1, τ2, τ3 are chosen in

correspondence with the orientations of components of (L1,R∪L2,R∪L3,R)∩π(Y 1
R

)

shown in Figure 21.
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Thus, we obtain a total of 2(b1 + b2 + b3) + 2 = dimH ′
+ + 1 classes (3.13) and

(3.14) [y1
1], [τ0], [τ1], [τ2], [τ3] .

Proposition 29.

[τi]
2 = 2 + 2a, i = 1, 2, 3;

[τi] ◦ [τj] = 2
∑

ε1,ε2,ε3=±1

εiεja
ε1ε2ε3 , 1 ≤ i < j ≤ 3;

[τi] ◦ [y1
1 ] = 2 + 2

∑

ε1,ε2,ε3=±1

εia
ε1ε2ε3 , i = 1, 2, 3 .

If bε1ε2ε3
i > 0 and ε1ε2ε3 = −1, then

ξi
2 ◦ [τj] = −ξi

2 ◦ [τk] = ±1,

where {i, j, k} = {1, 2, 3}. If bε1ε2ε3
i > 0 and ε1ε2ε3 = 1, then

ξi
2 ◦ [τj] = ξi

2 ◦ [τk] = ±1,

where {i, j, k} = {1, 2, 3}. All the intersection indices of [τ1], [τ2], [τ3] with the other

classes (3.13), (3.14) are zero.

Proof. Follows from Propositions 12, 15, and 17, as in Proposition 24. �

Direct computation of the determinant ∆ of the intersection matrix of the classes

(3.13) and (3.14), based on Propositions 24 and 29, for all the non-negative values

of the parameters aε1ε2ε3 , bε1ε2ε3
i , i = 1, 2, 3, ε1, ε2, ε3 = ±1, satisfying

∑

ε1,ε2,ε3=±1

(
aε1ε2ε3 +

3∑

i=1

bε1ε2ε3
i

)
= 13 ,

∑

ε1,ε2,ε3=±1

aε1ε2ε3 = 1 or 5 or 9 ,

and the conditions of Proposition 28, shows that ∆ 6= 0 except for the cases (3.11),

(3.12) (up to renumeration of Bi), which completes the proof of Lemma 10. �

The possible arrangement of ovals for smoothings (3.11) and (3.12) left by Lemma

10 is the following:
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Proposition 31. In a smoothing of type (3.11) or (3.12) the ovals are located

with respect to the lines L1, L2, L3 and the non-closed arcs as shown in Figure 22.

Moreover, no straight line through L1 ∩L2 and an oval in A−++ ∪B−++
3 separates

an oval in A−+− from L1.

Proof. The region A−+− may consist of two connected components (see Figure

22), but the component of A−+−, adjacent to the line L3, does not contain ovals.

Indeed, otherwise one can draw a conic intersecting an oval in that component, ovals

ν1, ν2, ν3, and an oval in B−++
3 , and then show by Cayley’s lemma and Lemma 1(2)

that such a conic intersects C′
R in at least 16 points.

Similarly, assuming that a straight line through L1 ∩ L2 and an oval from

A−++ ∪ B−++
3 separates some oval in A−+− from the line L1, one can draw a

conic intersecting these two ovals and the ovals ν1, ν2, ν3, and show by Cayley’s

lemma and Lemma 1(2) that such a conic intersects C′
R in at least 16 points. �

§4. Application of Seifert forms

According to the results of §1–3, an M -smoothing C′ of a Sirler singularity C can

have, if it exists, only the following arrangements of ovals: (9; 1, 1, 2) and (5; 1, 1, 6).

Moreover, as it follows from Lemma 10, there exist three lines L1, L2, L3 which are

located with respect to C′ as is shown in Figure 22.

Without loss of generality we may assume that L1 and L2 intersect at the origin of

B. Then the pencil λ1L1+λ2L2 defines on B̂ a fibration by disks, π : B̂ → E = CP 1

(here, as before, B̂ is B blown up at the origin and E is the exceptional curve). The

Euler number of this fibration is −1. The real part B̂R of B̂ is the Möbius band
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and π|B̂R
is a fibration by segments over ER = RP 1. We use the same notation

for C′ and its pull-back to B̂. Note, that, according to our above convention, C′

does not go through the origin.

We may assume also that: (1) C′
R is located in B̂R with respect to the fibers of

π as it is depicted in Figures 23 and 24 where the fibers are viewed as vertical lines

and 〈a〉 denotes a horizontal chain of a ovals; (2) the number of the fibers tangent

to C′
R is 28 (2 on each oval and 2 on each of two non-closed branches, which is the

minimal number of tangent fibers). The part (1) follows from Proposition 31, (2)

is achieved by transformation of C′
R described in [14; Prop. 3.5.1]. We suppose,

in addition, that no vertical line goes through two ovals. For the group of three

ovals in Figure 23 we may suppose this by [14; Prop. 3.5.1], and in other cases it

follows from Bézout’s theorem. The two ovals 〈1〉 in the Figure 23 are placed one

above the other to emphasize that their mutual position with respect to the fibers

is unknown. Thus, we have to consider three possibilities: two for Figure 23 and

one for Figure 24.

2

<1>

<4>

L1L

Q

<5>

<1>

<1>

Q

2

<5>

<3>

L L1

Figure 23 Figure 24

The full transform Ĉ of C in B̂ is the sum of E taken with multiplicity 6 and

three smooth real curves having a quadratic tangency with E at three distinct real

points. The real parts of these three curves are in alternate position with respect to

the sides of ER: in an affine system of coordinates (u, v) in B̂ with v = 0 defining

E, these 3 curves are defined by v = ai(u− ui)
2 with u1 < u2 < u3, a1a2 < 0, and

a2a3 < 0.

The smoothing C′, considered as situated in B̂, is a deformation of Ĉ. Outside a

neighborhood of E, it is a small perturbation. Thus, there are three disjoint disks



SINGULARITY WHICH HAS NO M-SMOOTHING 45

D1 ∪D2 ∪D3 ⊂ E, vi ∈ Di such that π|C′ is 7-fold over D1 ∪D2 ∪D3 and 6-fold

outside.

Let γε, ε ≥ 0, be a family of simple closed curves lying in one of the components,

E+ of E \ ER on distance ε from ER (γ0 = ER). Denote by Hε the closed disk

bounded by γε in E+. Clearly, π−1(Hε) are diffeotopic to π−1(H0) inside π−1(H0),

at least for small ε, and they are diffeomorphic to a polydisc D2 ×D2. Denote by

S3
ε its boundary.

As in [14], we study the surface Nε = C′∩π−1(Hε). There exists ε0 such that for

0 < ε < ε0 the surfaces Nε are identified by a diffeotopy of π−1(Hε) and we denote

all Nε with 0 < ε < ε0 by N as well as omit ε in the notation of other objects. The

boundary K = ∂N is a link in S3 whose isotopy type is determined by C′
R up to

some unknown integer parameters.

In what follows we compute the nullity of the Seifert form of K as a function

of these parameters and show that any of their values contradict the Murasugi–

Tristram inequality for the Euler characteristic of N .

Proposition 32. χ(N) = 2.

Proof. As mentioned in the Introduction, the genus of a Sirler singularity is 13, and

hence χ(C′) = 2 − 2g − r = −27. Denote by c the number of branching points of

π|C′ → E counted with multiplicities. Clearly, c = cR + 2cH where cR (resp. cH)

is the number of branching points lying over ER (resp. over H). By Riemann –

Hurwitz formula, χ(C′) = 6χ(CP 1) + χ(D1 ∪D2 ∪D3) − c, and, hence, c = 42.

Similarly, χ(N) = 6χ(H)+χ(H ∩ (D1 ∪D2 ∪D3))− cH = 6+3− cH . According

to the assumptions made in this section in what concerns real fibers tangent to C′
R,

we have cR = 28, and, hence, cH = (c−cR)/2 = 7. Thus, χ(N) = 6+3−7 = 2. �

Proposition 33. The determinant of the symmetrized Seifert matrix of K van-

ishes.

Proof. The Murasugi–Tristram inequality [23] states that

null(K) ≥ χ(N) + |sign(K)|

where null(K) and sign(K) are respectively the nullity and the signature of the link

K. By Proposition 32, this implies null(K) ≥ 2. �



46 V.M.KHARLAMOV, S.YU.OREVKOV, E.I.SHUSTIN

End of the proof of Theorem 1. Here, we find explicitly all the links K which can

appear for the smoothings shown in Figures 23, 24 and prove that the determinants

of their symmetrized Seifert matrices are non-zero.

Since π−1(H) is identified with D2 ×D2, the sphere S3 = ∂π−1(H) is naturally

decomposed into two solid tori S3 = T1 ∪ T2. In this decomposition, T1 = π−1(γ)

(recall that γ = ∂H) and T2 = H × S1.

Figure 25

The real curve G := C ∩ S3
0 (where S0 is the sphere Sε for ε = 0) consists of

the following seven parts. Four of them, namely, the ”core” ER (the real part

of the exceptional curve) and the three parabolas lying on the Möbius band B̂R.

The other three pieces are the arcs lying on the surfaces of the ”solid half-tori”

((∂Di) ∩H) × S1, i = 1, 2, 3 (they are subsets of T2). Note that B̂R is embedded

into T1 = D2 × S1 as a left Möbius band {(z, eiϕ)|e− 1
2 iϕz ∈ R}.

In the Figure 25 (left) we have depicted the solid torus T1, the three solid half-

tori with the three pieces of G carried by them, and the Möbius band B̂R. In the

Figure 25 (right) we have depicted the Möbius band B̂R and the four pieces of G

carried by it.

The perturbed curve G′ := C′ ∩ S3
0 is obtained from this picture by replacing

the core and the three parabolas with the curves shown in Figures 23, 24. And to

obtain the link K we apply the procedure described in [14, 3.4, 3.5]. The result is
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-1

Q

Figure 26

depicted in Figure 26 where the variable pattern Q corresponds to the pattern Q

in Figures 23, 24 and contains one of the following three braids:

α(i) = β(i) · τ1,2σ
−1
2 σ−1

1 σ−1
3 ·

( h(i)∏

j=1

σ−1
2 σ

ej

3 σ
−ej

1

)
· σ3σ1σ

−1
2 , i = 1, 2, 3 where

β(1) = τ2,3σ
−1
3 τ3,4σ

−1
4 τ4,1σ

−5
1

β(2) = τ2,4σ
−1
4 τ4,3σ

−1
3 τ3,1σ

−5
1

β(3) = τ2,4σ
−5
4 τ4,1σ

−4
1

and h(1) = h(2) = 4, h(3) = 2. The braids α(1), α(2), correspond to different mutual

positions of 〈1〉’s in Figure 23; the braid α(3) corresponds to Figure 24. In all the

cases we use the convention in Figure 27 for the generators σj of the braid group;

∆ is the Garside element (see Figure 27) ∆ = ∆6 = Π5,1Π5,2Π5,3Π5,4 · σ5 where

Πk,l =

{
σkσk+1 . . . σl if l > k

σkσk−1 . . . σl if l < k

and τk,l is defined as in [14], by

τk,l =





Π−1
l,k+1Πk,l−1 if l > k

Π−1
l,k−1Πk,l+1 if l < k

1 if l = k
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. . .

. . .
m

2

i

i+1

1 1
2

i

i+1

m
. . .

. . .

σi σ−1
i ∆6

Figure 27

In Figure 26 we marked some arcs of K by zigzags. Replacing them by the

dashed lines we obtain a link which is a braid on 7 strings

∆−1
6 · Π2

5,1Π6,1 · α(i) · Π1,6 · σ1 · Π2
1,5 = (Π−1

5,5 . . .Π
−1
5,1) · Π2

5,1Π6,1 · α(i)σ2 · Π1,6Π
2
1,5

= δ−1
(
σ1Π6,1 · α(i)σ2

2 · Π1,6 · σ2σ1σ3σ2 · σ−1
5

)
δ where δ = Π5,3Π5,4σ5

Using the algorithm from [14, 2.6.5], we have computed the determinant of the

Seifert form as a function of the unknown integer parameters ej . In the two cases

in Figure 23 the determinant is (up to a non-zero constant factor)

d(1) = − 228 + 28e1 + 64e2 + 100e3 + 136e4 − 9e21 − 32e22 − 41e23 − 36e24

− 16e1e2 − 14e1e3 − 12e1e4 − 48e2e3 − 32e2e4 − 52e3e4;

d(2) = − 1236 − 120e1 + 36e2 + 192e3 + 348e4 − 85e21 − 324e22 − 381e23 − 256e24

− 120e1e2 − 70e1e3 − 20e1e4 − 416e2e3 − 184e2e4 − 348e3e4.

Each d(i), i = 1, 2 is a quadratic function of ej whose Hessian is negatively definite

and whose value at the minimum is also negative. Hence, the determinant of the

Seifert form is non-zero.

In the case of Figure 24 the determinant is

d(3) = −180 + 240e1 − 60e2 + 109e21 + 256e22 + 76e1e2.

The equation d(3) = 0 has no integer solution.

Thus, in all the cases we obtain a contradiction with Proposition 33. �
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