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ABSTRACT. We discuss Tauberian conditions for summability methods
of the type (i) "z(—l)ntnxn converges", (ii) Ky = o(1)" and
(iii) "% _21tixi = o(1)". Using functional analytic methods, we
obtain co;ditions on the sequence (tn) under which (i) and (ii),
(ii) and (iii) are equivalent Tauberian conditions for every
linear and permanent summability method. These results depend

on the fact that c, and (co)Cl are spaces with the Wilansky

property.

AMS-classification: 40 E 05, 40 H 05, 40 G 05

Introduction

In this paper we deal with the problem of weakening Tauberian
conditions for summability methods. Apparently, the first result
of this kind was obtained by Meyer-Kénig and Tietz [8], who
proved that whenever "nxn = o(1)" is a Tauberian condition for
some linear and permanent summability method V, then the weaker
condition "% _Elixi = o(1)" is as well Tauberian for V. Various
other resultslof this type, dealing with related problems, are
known. We just mention [2], [3], [4], [5], [e], [7], [8], [10],
[22], [23].

For the first time, Goes ([3], [4]) brought up functional analy-
tic methods in the treatment of such kind of problems. Our pre-
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sent attempt as well is a functional analytic one. We prove that
a Tauberian condition "x € E" may always be weakened to "x € F"
if and only if F - E + Cs. In many cases, however, the latter in-
clusion may be replaced by the condition E? n bv FB. When this
replacement is possible, is decided by functional analytic me-
thods. The gain of this reduction is that E® n bv c F° seems to
be better adapted to analytic treatment.

We try our method on the following Tauberian conditions

; b n
(i) nEl(-l) t x, converges,
(ii) tX,; = o(1), (n » =),

s 1. B
(i11) = iEltixi = 0(1), (n » =),

asking for which sequences (tn) conditions (i) and (ii) resp.
(ii) and (iii) are equivalent for every linear, permanent summa-
bility method V.

Notation and preliminary results

Concerning notations from FK - space theory, we refer to [14].
Summability is covered by [15].

An FK - space E is said to have the Wilansky property (see
[1]) if every subspace F of E with #® - BB is barrelled in E, or
equivalently, if every FK - subspace F of E satisfying P = EB is
closed in E. It was proved in [1] and [11] that c_ has the Wilan-
sky property. Here we shall need the following more general

THEOREM 0. ([9, theorem 2]).
Let E be a BK - AK - space such that S(E'), the space of all se-
quences y € E' having sectional convergence with respect to the

norm, is separably complemented in E'. Then E has the Wilansky
property. O

General results

Let D be any linear subspace of w containing cs and let V:D» C
be a linear mapping satisfying Vix) = Xy for x € ¢s. Then V is

called a linear, permanent summability method (or just a summa-
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bility method). Examples of particular interest are matrix summa-
bility methods. Here we have V(x) = A—Exi for some permanent in-
finite matrix A.

Let E be a sequence space. Then "x ¢ E" is called a Tauberian
condition for the summability method V with domain D if D n E c
cs. The following easy result, our starting point, gives a de-
scription of when a certain Tauberian condition "x ¢ E" may be
replaced by a (usually formally weaker) condition "x ¢ F",

PROPOSITION 1. Let E,F be sequence spaces. Then the following
statements are equivalent:

(1) Whenever "x € E" is a Tauberian condition for some linear,
permanent summability method V, then also "x € F" is a Tau-
berian condition for V;

(2)FcE+cS-

Proof. Assume (1). Suppose F 4 E + cs, let y ¢ F, y ¢ E + cs.
Let D = es + lin{y} and define V:D - ¢ by V(y) = o, V(x) = e
for x € es. Clearly "x € E" is Tauberian for V but "x € F" is
not, a contradiction.

Assume (2). Let V be a summability method such that "x € E" is
Tauberian for V. Let x € DN F. Then x = y + z, y € E, z € cs.
Since D o ¢s, y € D, hence y € ¢s since "x € E" is Tauberian for

V. This gives x € es. [

It seems to be a considerably more difficult task to replace
statement (1) above by the corresponding phrase referring to ma-
trix summability methods only. No general result of the above
type seems to be valid, but we have a partial answer.

PROPOSITION 2. Let E,F be sequence spaces. Suppose F admits a

decomposition F = F+ - F+, where F+ denotes the cone of all y€ F

with Yo 2 © for all n. Then the following are equivalent:

(1) Whenever "x € E" is a Tauberian condition for some permanent
matrix summability method V = A-y, the same is true for the
condition "x € F";

(2) F - E + cs.

Proof. (2) implies (1) by proposition 1. Assume F 4 E + cs.
Then F+ & E + cs. Choose y € F+, y Q E + cs. Notice that Sy =
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(yl,y1+y2,y1+y2+y3,...) must be unbounded. Now a classical result
of Mazur (see [14, p.48]) asserts the existence of a permanent
matrix A with domain c, = ¢ + 1in{Sy}. Consequently, V = A-I has
domain D = cs + lin{y}. Again, "x € E" is Tauberian for V, but

"x € F" is not. O

Wilansky property enters

It is clear that a necessary condition for the validity of the
inclusion F —c E + cs is EP n bv ¢ F®. It turns out that, under
certain circumstances, the latter condition is also sufficient to
imply F <« E + cs.

THEOREM 1. Let E be an FK - space with FAK and let F be an FK-
AK - space with the Wilansky property. Then F c E + ¢cs if and
only if Ef n bv c FP.

Proof. Clearly F  E + cs implies F® o (E + cs)P = EP n csP -
EP N bv. Conversely, assume EE n bv FB. We have to prove that
(E+cs)NF=F. Let G=(E + ecs) n F. Then G is an FK - space
with its 'natural' topology (see [15, pp.59, 221]) and is dense
in F in view of the fact that it contains $. Since F has the
Wilansky property, it suffices to prove P = FB, for then G is
closed in F, and this implies G = F.

We have G = ((Fn E) + (F n cs))B = (Fn E)B n (Fn cs)ﬁ.
Since E has FAK and F, cs have AK, [4, Satz 2.3] implies that
(FnE)P® =F + 85, (Fncs)P =F + csP = F° + bv. This yields
6B = (P + E®) n (¥® + bv) = F® + (EP n bv) = FP. This ends the
proof. O

When it is known that E « F, a similar result may be obtained
without the FAK - condition on the space E.

THEOREM 2. Let E be an FK - space and let F be a BK - AK -
space such that S(F') has a separable complement in F'. Suppose
E - F. Then EP n bv ¢ F® implies F ¢ E + cs.

Proof. We have to prove F + cs = E + cs. First observe that
the space F + cs has the Wilansky property. Indeed, F + cs is an
AK - space, hence (F + cs)' = (F + cs)P = F® n bv = F' n bv. But
S(F' n bv) = S(F') n bv,, where bv, = bv n cg,. Suppose F' = S(F")
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® L, then F' n bv = (S(F') n bv) @ (L n bv) = (S(F') n bvo) ®
(S(F') n lin{e}) @ (L n bv), hence S(F' n bv) is complemented in
F' n bv with separable complement (S(F') n lin{e}) @ (L n bv).
By theorem o, F + e¢s has the Wilansky property.

Observe that E + ¢cs is a dense subspace of F + cs. Since the
latter space has the Wilansky property, it suffices to prove that
(E +cs)P = (7 + cs)B. But this is clear in view of our assump-
tion: (E + cs)B = 8P n bv - Fﬁ, hence (E + cs)B c (F + cs)B. The
reverse inclusion is obvious. [J

Weakenin i) to (ii

We shall now apply our results from the previous section to the
problem of weakening condition (i) to (ii). In the case tn = n,
this problem has been treated by Goes in [3]. Here we assume that
(tn) is any sequence having t # o for all n.

Let E = {x € w: (-t x ) € es}, F = {x € w: (t;x) € c }.
Then condition (i) is "x € E", condition (ii) is '"x € F". Note
that E,F are both BK - spaces with their natural topologies. For
E take the topology inhereted from cs, for F the topology coming
from cye Since F is a domain of c¢_ with respect to a diagonal
matrix, the Bennett/Stadler result ([1], [11]) shows that the
space F has the Wilansky property. We may therefore apply theo-
rem 1 or 2. This gives the following

PROPOSITION 3. Let (tn) with 'tn ¥ o be fixed. Then the follo-
wing statements are equivalent:

(1) Whenever (i) is a Tauberian condition for some permanent
matrix summability method V = A-%, then (ii) as well is a
Tauberian condition for V;

(2) Whenever z € bv satisfies ((—l)nzn/tn) € bv, then it must in
fact satisfy (z /t ) € 1.

Proof. By proposition 2, statement (1) above is equivalent to
F - E + cs, where E,F are defined as above. By theorem 1 or 2,
this is equivalent to EP n bv - FB. By the definition of E, F,

B’ = {z € w: ((-1)z /t ) € by},

P o= {z € w (2 /t) € 11},
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and so the inclusion readily implies statement (2). O

THEOREM 3. Let (tn) be any sequence of reals having t  * o.
Then the following conditions (1) or (2) are sufficient for the
equivalency of (i) and (ii) as Tauberian conditions:

(1) (1/tn) € bv, (2) t, =6 >o for all n.

Proof. In both cases we check statement (2) of proposition 3.
First consider case (1). Let z € bv satisfying ((—l)nzn/tn) € bv
be fixed. Since bv+-bv « bv, condition (1) implies (zn/tn) € bv.
Combining this with the above condition implies

(0,22/t2,0,24/t4,0,...) € bv,
hence (ZZn/tzn) ¢ 11. Consequently, we also obtain

(zlftl,o,zs/ts,o,...) € bv,

1 1

giving (zzn+1/t2n+1) € 17, hence (zn/tn) € 1.

Let us now consider case (2). Let z € bv with ((—l)nzn/tn) €
bv be fixed. The latter may be expressed by
1
(Zn/tn 43 Zn+1/tn+1) € I
But note that

Zn/tn + Zn+1/t = (2~ Zn+1)/tn & Zn+1(1/tn+1 8 l/tn)'

n
. . i 1
Since z € bv implies (zn - Zn+1) € 17, (2) gives

1
((zn - zn+1)/tn) € 1",

1
Therefore,l(zn+1(1/tn+1 + 1/tn)) € 17, hence (|zn+ll(1/tn+1 +
l/tn)) € 1°. Since

n+1

95 |zn+11(1/tn+1) < lZn+1|(1/tn+1 * l/tn)’

we obtain the desired (z_/t)) € 1l. o

From a practical point of view, theorem 3 covers all inter-
esting cases of sequences (tn) giving rise to Tauberian condi-
tions (i) or (ii). Nevertheless, one may ask whether (i) and (ii)
are still equivalent Tauberian conditions in the case where the
sequence (tn) is not bounded away from o. Here we have the fol-
lowing partial answer.

PROPOSITION 4. Let (t,) be a positive null sequence. Then
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there exists a permanent matrix summability method V = A-I such
that (i) is a Tauberian condition for V, but (ii) is not.

Proof. We prove that statement (2) of proposition 3 is not va-
lid here. Let T denote the diagonal matrix with entries tl’tz""
and let R denote the diagonal matrix with entries 1,-1,1,-1,....
Then statement (2) of proposition 3 may be translated into

1

bv n bv__ 1" _4.
T 1R c T 1

= = B = i ¢
Clearly, bv N bvy-1p = (cS + cSTR) » where cq = cs and where S ic

the summation matrix. But

(og + Cgeg)™F o 'p-1P = my,
giving

((cST—l + cSR)T)BB > my
hence

(cST-l + cSR)BB o m,

But this is possible only in the case where H = cST-l + cgp con-

tains Cor Indeed, H is an FK - space densely contained in Cot

We have @ -« Cgr < © and ¢..—1 - ¢_, the latter since tn - 0.

o ST o

But the above calculation shows HB = coB = 11, hence H = c, as a
consequence of the fact that S has the Wilansky property. Thus

C =

- cST—l + Cgpe. Since cSTrl - (co)T—l c ¢, We obtain

% = (co)T-l * Cgr’

which in view of (c )y = ¢, and ((co)T_l)R = (co)Trl gives us

€ - (co)T_1 + Cge

It is easy to see, however, that the latter equality is not true
in the case tn » 0, so statement (2) cannot be true either. O

Remarks. 1) Theorem 3 (1) has been proved by the second author
in [12] by a different method. The case tn = n has been treated
by Goes [3], Buntinas [2] and Kuttner/Parameswaran [6]. In [2],
similar problems are considered where the sequence (-1)" is re-
placed by other sequences of *1 entries.

2) Theorem 3 (2) may still be generalized to some extent. We may
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assume that the sequence (tn) is divided into blocks I;, J;, I,,
J2,..., where tn = § > o0 on I1 U 12 Ui tn - 0 on J1 U J2 Ueariatesa
Suppose the blocks J, are of bounded length |Ji| < r. Then (i)
and (ii) are still equivalent Tauberian conditions. This may be
shown using a similar reasoning as in the proof of theorem 3(2).

Weakening (ii) to (iii)

We shall now examine the problem of replacing the Tauberian con-
dition (ii) by the weaker condition (iii). We shall use the same
method.

Let F be defined as in the previous section and let G = {x € w:
(t x ) € (co)clf, where (co)Cl denotes the zero domain of the Ce-

siro method C;- Then condition (iii) is "x € G". Asking for con-
ditions on the sequence (tn) under which (ii) may be weakened to
(iii) therefore leads to the question when G - F + cs. Again we
wish to express this by FP n bv < GB. This requires checking the
assumptions of theorem 1. Recall that F is a BK - AK - space. On
the other hand, G is a BK - space since (co)Cl is.
LEMMA. G is a BK - AK - space with the Wilansky property.
Proof. First observe that (co)C is a BK - AK - space (see [15,
p.42 or p.104]). Its dual and itsl g-dual therefore coincide. But
o0
(co)ci = {z € w: T nlz -z .| <=, nz = 0(1)}.
n=1
This may in fact be derived from [15, p.105]. We wish to prove
that this p-dual has sectional convergence, which is not clear
from the above form. But note that we may add on the right hand
side the redundant condition z € 11. Using the identity

n(zn - Zn+1) = (nzn - (n+1)zn+1) # L s

this shows that
1
(co)Ci = |z € w: (nzn) € bv, z € 17}.
Let us prove that we may actually write (nzn) € bv0 on the right

hand side here. Indeed, suppose we had nz, - 1 for some z in the
B-dual. This means |zn| > 1/2n eventually, contradicting z € 1™ -
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This proves that (c_).? = (c_).' is a BK - AK - space, hence the
o C1 o C1
result of Bennett [1] and Stadler [11] implies that (c,). has
1
the Wilansky property. Since G is the domain of (co)C with re-
1

spect to a diagonal matrix, we deduce that G is as well a BK - AK
- space whose dual G' is BK - AK, hence G has the Wilansky pro-
perty. O

Notice that by the above calculation of (co)CB, the g-dual of
G is 1

P = {z € w: (nzn/tn) € bv, (zn/tn) & 11}.
This permits us to state the following

PROPOSITION 5. Let (tn) be a fixed sequence having tn + o for
all n. The following statements are equivalent:
(1) Whenever (ii) is a Tauberian condition for some linear, per-
manent summability method V, then (iii) as well is Tauberian
for V;
(2) Whenever z ¢ bv satisfies (zn/tn) € 11, then it must in fact
satisfy (nzn/tn) ¢ bv.

Proof. The proof is now clear in view of proposition 1, theo-

rem 1, the lemma above, and the above calculation of FP and GB.D

THEOREM 4. Let (tn} with tn # o be fixed. A sufficient condi-
tion for the equivalence of (ii) and (iii) as Tauberian conditi-
ons is (n/t_) ¢ bv. In particular, this is the case when (n/tn)
is bounded and monotone.

Proof. We check condition (2) of proposition 5. But this is
clear here, since z ¢ bv, (n/tn) € bv implies (nzn/tn) € bv in
view of the inclusion bv-bv - bv. The second part of the result
is clear since boundedness and monotonicy of (n/tn) gives us
(n/t)) € bv. O

The second part of theorem 4 is [8, Satz 2.1]. We obtain an-
other result from [8] using proposition 5.

THEOREM 5. If (tn) with tn + o satisfies n/tn = 0(1) and
n(tn+1 - tn) = 0(tn+1), then (ii) may be weakened to (iii).
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Proof. We establish (2) from proposition 5. Let z ¢ bv having
1 5 i
(z,/t)) € 17 be fixed. Since (n(t —tn)/tn+1) is bounded, we ob-
tain

n+l

1
(nzn/tn - nzn/tn+1) o =

By assumption, n/t = (n+l1)/t - n/(n+l) = 0{1), so z ¢ bv

n+1 n+l

implies
1
(n/tn+1)(zn - Zpyp) €17
In view of the identity

nzn/tn - (n+1)zn+1/tn+1 = nzn/tn - nzn/tn+1

* (n/tn+1)(zn = Zpy1)s
this implies (nzn/tn) ¢ bv. O
The authors of [8] prove that in the case where n/tn 5 oo, (ii)
and (iii) are not equivalent Tauberian conditions. In fact, they
prove that in this case there exists a permanent matrix method

V = A-S such that (ii) is a Tauberian condition for V, but (iii)
is not. Using our proposition 5, we obtain the following related

PROPOSITION 6. Let (tn) with t + o be fixed. Suppose that (iii)
is a Tauberian condition for a summability method V whenever
this is true for (ii). Themn n/t, = O(1) and (n*/t)) € bv for o
having o < o < 1.

Proof. We use condition (2) of proposition 5. First we prove

that [tn| > 8 > 0. Assume the contrary and let t - o for some
i

sequence (ni) of indices satisfying n -n; = 2. First assume

i+l

that gl/ni converges. Define z € 1~ by setting z = tn/n in case
i : : 1

i Zp = © otherwise. Since (zn/tn) € 17, we have (nzn/tn) €

bv. But this is absurd. Next assume that zl/ni = o, Here we set

n=nm

2
z = n=n,
» tn/n in case n,,

(nzn/tn) € bv in view of condition (2) of proposition 5, a con-

z, =o© otherwise. Again this implies

tradiction. This proves Itnl =& > o.

Since (l/tn) is bounded, every sequence z € 11 may now be ta-
ken as a test sequence in (2) of proposition 5. Hence (nzn/tn) £
bv holds for all z € 11, This proves n/tn = 0(1). Indeed, (n/tn)
is an element of {y € w: yz € bv for all z € 11}, which is just
m.
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. 1-o 1
Finally, let o <a <1, z = 1/n""%, then z € bv, (zn/tn) € 1.
Therefore, (nz /t ) = (naftn) € bv, as desired. O

Remark. We do not know whether proposition 6 also holds in the
case @ = 1, i.e. whether (n/tn) ¢ bv is both a necessary and
sufficient condition for the replacability of (ii) by (iii).

Concluding remarks

Our present methods also apply in the case where the sequence
(tn) has entries o. Indeed, in this case let (sn) denote the se-
quence arising from (tn) by omitting all entries t = o. Now let

E, = {x € w: (opSp%,) € cst, Fy = {x € w: (spx) € e}, Gﬁ =
{x € w: (snxn) € (co)cli, where s = t implies o, = (=1)". Then
(i), (ii), (iii) are described by "X € Eo"’ "X E Fo", "X € GO"

respectively, when X denotes the sequence arising from x by dis-
carding the entries Xn where tm = 0. Clearly, the equivalency of
(i) and (ii) may now be expressed by F  c Eo + cs, while the re-

placability of (ii) by (iii) turns into G, c F, + cs. This trans
scription permits us to apply once more our functional analytic
approach.

One may consider Tauberian conditions of type (iii), where the
Ceshro method is replaced by some permanent method of weighted
means. This provides Tauberian conditions of type (iii) also in
the case where the sequence (tn) does not satisfy condition (2)
of proposition 5. For instance, the Borel method B has Tauberi-
an condition "fnxn = o(1)". Since (n3/4/n1/2) is not in bv, we

cannot weaken this o-condition to "% S Jix; = o(1)". And, in
i=1
fact, it is known that the latter condition is no longer Taube-

rian for the method B (see [8]). Nevertheless, it is possible to
obtain (iii) type Tauberian conditions for the Borel method by
replacing C1 by an appropriate method of weighted means.
Absolute Tauberian conditions may as well be treated using our
present methods. The result corresponding with proposition 1 in
this case states that an absolute Tauberian condition "x € E"
for some linear, permanent absolute summability method V may be
replaced by an absolute Tauberian condition "x € F" if and only
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if Fc E + 11. Depending on the spaces E,F, the latter condition
ought to be replaced by the dual condition EP nmc FB, which
should be expected to be somewhat better adapted to further ana-

lytic treatment.
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