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1 Introduction

Optimization has been playing a prominent role in any of the modern image processing techniques,
and variational models are used in such different fields as image segmentation and edge detection,
compression, and sharpening of blurred images or in noise reduction. The present paper is mainly
concerned with the restoration problem, which arises when images have been severely degraded
during recording.

Restoring a blurred image may be a crucial part of a successful processing when sharp contrasts
have been smoothed away by the recording channel. As a consequence, sharpening has to be achieved
before other techniques like segmentation, edge detection, or noise suppression could hopefully be
brought into play.

One of the basic approaches towards enhancing degraded images is by direct filtering, and
there exists a vast field of recipes, mostly heuristic, for designing such filters, cf. Jahne [14]. The
overall advantage of these direct methods is their computational speed and the fact that they apply
even to very large images found in many applications, where some of the more sophisticated inverse
methods to be discussed here may be too slow. For instance, the maximum entropy restoration
method to be discussed here works fairly well for an image up to a size of say 500 x 500 pixels,
but does not seem to be attractive for images of size 1000 x 1000 or larger, unless some speeding
up e.g. by parallelizing is obtained. Nevertheless, the field for applications of variational type
restoration techniques is fairly wide, and they are used e.g. for photographic or satellite images, in
tomography, but also for enhancing pictures obtained from electron microscopes, or for deblurring
data from radar astronomy.

2 A recording model

Designing a sophisticated restoration technique requires modeling the recording channel. It is a
widely accepted rule in the engineering literature that devoid some more detailed information on
the nature of the degradation, the transmission may be represented by a linear model

v(z) = /ﬂq(m, yu(y) dy + e(x), z€Q (1)

where u(z) > 0 represents the relative gray levels of the unknown original image over a region
Q C R v(z) > 0 represents the relative gray levels of the recorded dirty image, the integral
term represents signal dependent blurring, and e(z) represents the signal independent (white or
colored) channel noise. Usually, the channel neither absorbs nor generates optical energy, that is
fﬂ q(z,y) dy = 1 for every z € Q, and the noise process will then have zero mean. In applications, the
signal dependent degradation may represent phenomena like optical system aberrations, defocussing,
atmospheric turbulence, or relative object and camera motions, while the additive noise could
represent a variety of noise sources such as film grain noise, scattering, random channel noise, but
also nonphysical noise due to digitization or measurement errors, or uncertainties due to physical
phenomena which have not been included among the channel model.

As is often the case, the underlying transmission is non-linear in nature, but exploiting the
concrete physical model allows for retaining a linear model (1). As a typical example consider
photographic images, where the relation between the original and the image planes, given by the
characteristics of the exposure mapping, is in fact non-linear. However, when the exposure mapping
is known in advance, it is possible to perform what is called an a priori gray level correction,
which leads to a linear model (1). An alternative often used to justify a linear recording model



is introducing a logarithmic scale. See [23] for a discussion of both procedures for photographic
images.

Nevertheless, in the context of mathematical morphology (cf. [1]), a variety of nonlinear
approaches to describe blurring phenomena have been proposed. They expand on the diffusion
process as the physical prototype of any degradation, replacing it with other dynamic equations
(see [1] for an overview). While these approaches are mathematically appealing, it may be doubted
whether identifying the correct dynamic equation describing a given blur is possible if restoration,
as is often the case, has to start out with a sample v;; of the degraded image v(z) as the only source
of information.

Accepting the linear recording model (1) for the time being, observe that in a practical situation
the dirty image v(z) would be known only partially, say sampled at the nodes z;; of a grid over the
region Q C R?. It is now a question of convention whether we choose the continuous model (1) or
prefer to replace it with a discretized version

N M
Uij:ZZQijMUM"‘eij, i=1,... N, j=1,..., M. (2)
k=14=1

Here u;; = u(z;;) and v;; = v(z;;) represent the values of u,v at say the nodes z;; of the grid
with fixed mesh over the (usually rectangular) region Q, gijxe = h?q(zi;; zxe), and the e;; = e(z;j)
represent the noise terms. Our discussion will be using both types of approaches, but it will be
clear how to make the transition from the continuous to the discrete model, and vice versa.

Restoring u;; given v;; requires estimating what we call the the model parameters: The blurring
¢ijke, and the statistical parameters of the noise process e(z), represented by its covariance matrix
cov(e). Assuming that noise is stationary over large parts of the region, it is often possible to
estimate cov(e) by inspecting parts of the dirty image v(z) with a homogeneous gray tone, where
covariance of v should in fact represent noise covariance. The difficult task remaining is to identify
the blurring parameters ;..

Spatial blurring is usually of local character, i.e. ¢(z,y) — 0 rapidly as |z — y| = co. In the
discretized model (3) it is therefore typical to work with small support: ¢z = 0 if [i — k| > p or
|7 — £] > p for some p « N, M. Moreover, if blurring is spatially invariant, a hypothesis which in
practice is met at least over large parts of the region, then ¢;jrs =: ¢i—x j—¢, reducing the degrees of
freedom to (2p + 1)%, and the linear model (1) resp. (2) takes the convolutional form v = ¢ x u + e,
or more explicitly,

P P
Vi = D > eslicrjos ey, i=1.. N j=1,... M (3)

r=—ps=—p

If blurring is to some extent symmetric, the number of degrees of freedom may be further reduced,
hopefully to a manageable size. Approaches to solving the blind inversion problem (3) may now be
roughly grouped into two types: techniques for random input signals, and methods using Kalman
filtering.

3 Blind deconvolution

Kalman filtering is based on the hypothesis that the unknown signal and noise processes are real-
izations of mutually independent Gaussian random variables, and that moreover, the true image



u(z) may be represented as a 2D autoregressive model of the form

Uj; = g CijkeUge + Wij (4)
(k,Z)E’Plj

with an unknown transition filter ¢, and a driving random process w accounting for the uncertainty
in the state model. Notice that (4) requires introducing a direction of recursion (a time axis) into
the image, the usual one being left-to-right, top-to-bottom, and the indices P;; represent the past
of pixel (i, j).

Although the Kalman filter is linear, computing the filter gain is nonlinear and at each iteration
k=1,..., NM requires solving a matrix Ricatti equation with computational cost of order O(T?),
where T}, is the dimension of the state at iteration k. Since the state should in principle cover the past
information, which would be of order %k, i.e. T, = O(k), the total cost of a naive implementation of
the classical Kalman filter is of order O((N M)?). Practical implementations therefore need to limit
the memory of the state to a constant Ty, = O(1), reducing the cost and storage to a manageable
size. In the same vein, the transition filter ¢ is usually chosen to be spatially invariant, a hypothesis
which reduces the degrees of freedom, but contradicts the true nature of the recorded information.
Engineers try to overcome this by embedding the image into a properly chosen larger frame. See for
instance [2], where an approximative model (called ROMKF) is discussed and compared to other
limited memory models.

While Kalman filtering — due to the dynamic (4) — requires introducing artificial parameters,
cijke and the statistics of the driving noise w;;, and a time axis not inherent to the image, its
attractivity lies in the fact that estimating even non stationary blurring parameters g;;x, is possible
(cf. [2]). Due to the assumption of Gaussian random processes u(z), e(z), this may be done
by maximum likelihood parameter identification. The likelihood function is evaluated through
intermediate steps of the Kalman filtering process, so no analytic form of the likelithood function
is available, and gradients are hard to calculate, which in practice limits the use of the procedure.
We refer to [15], where an approach based on the expectation maximization algorithm (EM) is
presented: Using the 2D FFT, and a standard approximation of block Toeplitz matrices by block
circulants, the optimization of the likelihood function may be carried out in the frequency domain,
and the restoration may finally be obtained as the result of a Wiener filter with the dirty image as
input.

As the Kalman filter is slow even with limited memory, and evaluating the likelihood objective
is costly, 1t seems natural to investigate alternative strategies based on the following idea: Suppose
that we have a tool which, for a fixed blur ¢, allows for a fast inversion of (3). Using the latter as
a black box, blur identification could then be performed in some a posteriori procedure based on
objectives other than the likelihood function, or even by using the eye for judgment. This idea will
be further pursued in Sections 4 — 7.

A second type of methods used to solve the blind deconvolution problem which has first been
popularized in geophysics is designed for white noise input signals. In geophysical exploitation,
seismic data were interpreted as filtered versions of a white noise driving signal which needed to
be restored. In this situation, optimal deconvolution techniques may in fact be developed. Donoho
[7] compares several techniques like maximum Fisher information deconvolution, maximum curtosis
deconvolution (using cummulants), and minimum entropy deconvolution. If the unknown input
signal 1s a non Gaussian white noise, he is able to show that minimum entropy deconvolution is
asymptotically optimal. While these techniques, originally designed for deconvolving time series,
may in principle be generalized to the 2D imaging situation, there remain some obstacles due to
the fact that (7) the procedure is sensitive to noise and fails if the noise contribution is sizable, and
more seriously, (#7) the analysis in [7] is based on a white noise input signal, a hypothesis which is
not met in our situation.



A more recent approach (also using cummulants) is presented in (cf. [9, 10]). The authors
include the case of measurement noise, and they allow for more general types of input signals,
which are now required to be a discrete stationary and ergodic. They report that stationarity of the
input signal, which is clearly contradictory to the situation we face in image restoration, does not
play an important role in numerical experiments, though is essential for their convergence analysis.

While experiments reported in [10] are encouraging in the time series case, it may be doubted
that the approach (taken in [7, 9, 10] and many other approaches cited there) will work well in the
imaging context because of the following observation: The general idea is to design an inverse linear
filter 8 which annihilates the effect of ¢ up to scaling and phase shift. However, while the filter ¢
is typically local, its left inverse 6 in general is not, contrary to the situation for time series when
causal processes are considered. Therefore, when the support of 6 is large, we can hardly expect
the procedure to be efficient. A compromise might be to confine oneself to just estimating the
parameters ¢;;x¢, leaving the actual inversion to some of the more robust methods to be discussed
below.

4 Stabilizing inversion

Let us now address the problem of inverting the linear system (3) in the case where the system
parameters, ¢;;x¢ and the noise covariance C' = cov(e) are known. Notice that this is still an
unstable problem, as we are trying to solve a Fredholm integral equation of the first kind (1) with a
sampled and noisy right hand side. As is well known, the solution may be highly sensitive to even
small perturbations of the right hand side, and as a rule, the problem is ill-posed and needs being
stabilized.

A common way to achieve this is to consider a variational approach, that is to introduce a cost
functional Z(u), and to choose as a valid restoration the solution of the program

S T c-1ell?
(Poen) mlél.lmlze (it) + a|| eH (5)
subject to e=¢q*xu—v

Here Z(u) serves as a regularization term which keeps the possible restorations u from being highly

irregular, while |[|C~te||? = ||C'_1(q * U — v)“2 accounts for the model (3). The penalty parameter
a may be used to mediate between both criteria. Notice that the scheme (Ppen) could be used
for both the continuous (1) or the discretized model (2), (3), but in both cases, the dirty signal v
should be understood as sampled at finitely many nodes z;;, so the terms C~'e and ¢ * u — v are
in discretized form.

Most objectives Z(u) found in practice are quadratic functionals: Z(u) = ||B~u||%, including
in particular what might be called the default choices Z(u) = ||ul3, Z(u) = ||Vul|3, or Z(u) = ||Au||?
and their discretized versions. This preference 1s explained by the fact that for quadratic objectives
the necessary optimality conditions rsp. the Euler equation are linear, and restoration is obtained
as a linear inverse filter, at least when the positivity constraint u(z) > 0 is ignored. For instance,
the choice of the Laplacian Z(u) = ||Au||2 leads to the inverse Wiener filter proposed by Hunt [13]
as early as 1976, whose speed is further increased by a clever use of the FFT.

Non quadratic objectives are also encountered in practice, for instance the Boltzmann Shannon
entropy Z(u) = [, u(z)logu(z) dz, or cross-entropy functionals including more specific prior infor-

mation, the Burg entropy Z(u) = — [, logu(x) dz, or the Fisher’s information Z (u) = [, %%E dz.

T
Similarly, Csiszar’s class of statistical distances are used.



A general view for understanding the choice of Z(u) is provided by the principle of maximum
entropy in the mean MEM, as has recently been demonstrated in [16] (see also [17] for this). Let
us briefly present the idea.

Returning to the model (3), and assuming that the image and noise contributions are real-
izations of independent random processes, the joint distribution of u and e in (3) is of the form
dy'(u,e) = dpu(u)dv(e) for certain probability measures p and v. Here, v should reflect our prior
knowledge about what would be channel noise or measurement errors, responsible for the noise term
e(z), while p should incorporate our prior knowledge about the expected signal . The maximum
entropy on the mean approach is now to find the joint probability density p(u,e) which solves the
program

maximize H[p] = — // p(u,e)logp(u,e) du(u) dv(e)
(MEM) subject to FE, (q * (u) + e) =
/p(u,e) dp(u)dv(e) =1, p(u,e) > 0

where E,(-) denotes expectation with respect to the probability measure pdudv. Following [16]
(M EM) is equivalent to a finite dimensional convex program, which is used to calculate the restora-
tion:

P) min.imize F;_(u) + F(e)

subject to e=q*u— v
Here Fj; denotes the Fenchel conjugate of F,(w) = log [ exp (u, w) du(u), and similarly for F;. The
authors of [16] obtain the following result.

Proposition 4.1 Suppose (1) the prior probabilities pi, v are Gaussian with covariance matrices
B,C. Then the Fenchel conjugates are quadratic functionals F;(u) = Z(u) = 21B~1ul|?, and
F(e) = 1||C~e||?, and program (P) coincides with the penalty model (Ppen) with a = 1.

On the other hand, (2) if the prior v is Gaussian with covariance matriz C, but the prior u is
a Poisson measure of the form

0 k

N M
Ug; s
p= H H Hij, pij = exp(—uoij) Z kZ,J Ok
i=1j5=1 ’

k=0

then the Fenchel conjugate F;(u) coincides with the discrete form of the Boltzmann-Shannon entropy
resp. the cross entropy functional:

N M
* Uij
Fo = 70 = 303 (ws1og 5+ sy i)
ij

i=1j=1

and hence (P) is equivalent to the mazimum entropy resp. minimum cross entropy form of model
(Ppen) with a = 1.

The message of MEM is that any choice of a functional Z(u) sould be understood as incorporating
a priori information about the expected restoration u. For instance, choosing a Gaussian prior py
reflects the fact that the probability of high frequencies in the restored images is very low, meaning
that in a so restored image high impulses are avoided. On the other hand choosing a Poisson



distribution g means that we expect an image consisting of several high energy impulses, as found
for instance in spectroscopic images. In the same vein, prior knowledge about edges in an image
u(z) might be incorporated in the prior g, although, as a rule, this is more conveniently done by
an appropriate modeling of the cost functional Z (u).

Similarly, entropy type terms controlling the noise contribution have been proposed e.g. by
Frieden [8], which may now be understood as a different bias about the type of noise to be expected.
In any case, an important practical aspect of M EM) is that it provides a default choice (e = 1)
for the penalty constant in (5).

5 Tolerance model

There is yet another model which may replace the penalty objective from (5), and which we shall
call the tolerance approach. To obtain this, notice that the process ¢/ = C~'e is white noise with
zero mean and unit variance. Hence the strong law of large numbers gives the estimate

N M
IO (gxu—v)lF=CTell3=) ) i~ NM (6)

i=1j=1

and this suggests that a valid restoration u should satisfy (6). This leads us to consider the following
tolerance model, where we choose as a valid restoration the solution of

minimize I(u):/h(u(m),Vu(x))dx

(Pro1) Q
subject to  [[C~Y(g*u — v)||? < 72

(7)

Here (6) suggests the choice 7 = N M. Surprisingly, the following result shows that both approaches
(5) and (7) are essentially equivalent. The proof is by inspecting the necessary optimality conditions
for both programs (cf. [18]).

Proposition 5.1 Suppose Z(u) be conver. For a fired T > 0 let u be the optimal solution of the
tolerance model (Pyo1), and suppose the inequality constraint is active at u. Then there exists a
choice o = a(r) for which u is also the optimal solution of the penalty model (Ppen) with penalty
constant a(1). Conversely, for a fired o > 0, let 4 denote the optimal solution of the corresponding
penalty type program (Pyen). Then with = 7(a) := ||[C™(gxu—v)||, @ also solves the corresponding
tolerance program (Pig).

We argue that the inequality constraint in (7) is always active in situations of practical rele-
vance. Indeed, for objectives Z(u) attaining their global minimum at the image without structure,
u?j = 1/(NM), u° could not be a feasible point for (Py), as ||C~! (g *u’ —v)|| < 7 is never satisfied

2

for the relevant choices of 7. Take for instance the case of a white noise e(z) with variance ¢*, and

observe that ¢ * u® = u%. Then the feasibility of u° in (7) would imply

1 1 olr

2
= w2 (77 ) < war

Var(v)

For the choice 7 = NM suggested by (5), this meant that the variance of the dirty image was
smaller than the noise variance, and therefore could be excluded.

Similar to what we have seen for the penalty approach in Section 4, the tolerance model comes
along with a default choice (r = NM). Moreover, the law of large numbers shows that for large



n=NM,aNM) ~ 1and 7(1) ® NM for the functions & = «(7) and 7 = 7(«) in Proposition
5.1.

6 Maximum entropy deblurring

The Boltzmann-Shannon entropy functional Z(u) = [ u(z)logu(z)dz, u(z) > 0 has been used to
stabilize various types of inverse problems (5) or (7) arising in power spectrum estimation, moment
problems, and also for deconvolution. Frieden [8] offers a theoretical justification for using entropy.
Bayesian arguments in the spirit of [6] indicate that any prior estimate ug(z), if available, should
be included among the model, leading to a minimum cross entropy functional

I(u):/ﬂu(m)log %dm.

In absence of any prior information, the default choice ug = 1 is always possible, but an attractive
alternative is to use the dirty image as a prior, as has been done e.g. in our experiments (see Figure
3 as compared to Figure 2).

The numerical treatment of the ME image restoration problem has been discussed by Frieden
[8], Skilling et al. [6], Haralick et al. [12], and in Noll [20, 18]. While ref. [6] proposes as descent
algorithm, the authors of [12] use a homotopy method based on a Lagrangian formulation. These
relatively complicated approaches reflect the need for a feasible point method for this type of
problems, where the objective Z(u) behaves like a barrier functions at u = 0, and SQP methods
are not applicable. Our own experiments reported in [20], which compare the cited methods with
a convex duality approach, indicate that the latter should be given the preference, as the convex
dual program is an unconstrained problem. As suggested by the barrier effect of Z(u), interior
point methods were also found to perform well for this kind of problem. See [21] for the polynomial
bound, and for further references.

An idea developed in Noll [18] is to combine the maximum entropy model with linear or
nonlinear filtering techniques. In fact, if the signal-to-noise level of the degraded image is low, the
image should be preprocessed with a linear noise suppression filter or a nonlinear median filter,
before ME inversion is performed. Clearly, prior filtering will introduce an additional blur into
the image, so these filters have to be chosen carefully. A theoretical justification for this combined
strategy is offered in [18]. In a practical restoration, an appropriate noise suppression filter is usually
found experimentally. The simulations reported in [20] suggest that using this combined procedure
is worthwhile for severely degraded images. Naturally, the same combined approach could be used
for other variational models as for instance those to be discussed below.

7 Restoring with minimum information

Working with the Boltzmann-Shannon entropy is perhaps not the final answer, as intuition tells us
that our objectives Z(u) should control derivative values of the unknown u(z). In fact, these are
measuring gray levels of neighboring pixels, and are therefore intimately related to inherent structure
of our image u(z) such as edges and sharp contrasts. The default choices for such objectives, often
used if no specific information is available, are the energy integral [ |Vu|*dz, or Hunt’s functional
[ |Au|?*dz. While the energy integral is appropriate for control type situations, where we wish to
find minimum energy solutions, it is known to produce unsatisfactory results in image restoration
problems.



An idea we propose here is to use a class of statistical distances, which in some sense may be
understood to measuring the distance of a possible restoration u(z) from a reference function ug(z).
Again, in absence of any apriori information, ug 1s chosen as the constant ug = 1. In the latter
case, these objectives are defined as

up(2) foru>0
h(u,p):{O foru=0,p=0 (8)

400 else

where u € R, p € R? and where ¢ is some convex function on R?. For instance, the choice
¥(t) = [t)?, with | - | the euclidean norm, leads to the Fisher information. In fact, in dimension
d = 1, we obtain the classical Fisher information measure for probability densities, while in higher
dimensions, the functional so obtained is the trace of the Fisher information matrix.

If some apriori guess ug is known, we may replace u by u/ug to obtain an objective measuring
in some sense the distance from u to ug and in the absence of any data, returns ug as the correct
answer. For simplicity, in the following, we shall restrict our discussion to the case ug = 1.

Among Csiszar’s call of statistical distances, the variational problem associated with Fisher’s
information is of particular interest and in dimension d = 1 has been discussed in [3]. Numerical
results have been obtained in [4] and [5]. In particular, the important case of trigonometric weight
functions was considered in [5], and a fast solver based on a heuristic was proposed and tested.

Using Fisher’s information in the context of inference problems was proposed by Silver [22] in
1992. Since then, numerical results have been obtained for power spectrum estimation of time series
and for moment problems [4], showing that the Fisher information often outperforms the maximum
entropy method. For a deconvolution problem, this is demonstrated by the experiments presented
here (see Section 8). These results strongly motivate the use of Fisher’s information for real life
deconvolution problems (1), (3) arising in image restoration.

While the numerical techniques presented in [4, 5] do not extend beyond the case of dimension
d = 1, a numerical approach for higher dimensions was proposed in Noll [19]. Based on duality
arguments, we showed how to transform the Fisher restoration program into an eigenvalue opti-
mization problem for a second order elliptic PDE. When discretized via finite elements or finite
differences, this problem could then be solved using semidefinite programming.

While the approach in [19] is technical, we presently show how a semidefinite program could be
derived directly from the primal Fisher program, though at the cost of a slightly larger complexity.

Consider the discretized Fisher program in dimension d, where €2 has been discretized by a
grid Qp of mesh size h > 0:

. " | Djul?
minimize e
Z "

i=1 t

Pro . 1 <
(Prol) subject to  wu; > 0, quz =1,
i=1
|Qu—v|<e

Here u = (u;) € R" denotes the unknown image sampled at the nodes z; of Q;, v = (v;) € R™
denotes the observed dirty image, possibly sampled on a subset of the grid Q5. Here Q : R* — R™
represents the discrete blurring operator, and for simplicity we have chosen the case of a white noise
with variance 62 > 0. In this case the default choice (6) gives ¢ = oy/n. The linear operators D;
mapping into R? stand for the discretized form of the gradient at position i. In dimension d = 1,



Dju = u;jy1 — u; when a forward difference is used, and in dimension d = 2, and with the standard
bijection i — (k, £), u; = ugs, D;i = Dys 18 Diou = (k41,6 — Uke, Uk r41 — Uke), Where again forward
differences are used.

Let us show how program (P;e1) may be transformed to a semidefinite program

minimize ¢’z
(SP) subject to  Fy + ZCL‘ZFZ >0,
i=1
where ¢,z € R” and the F; are symmetric matrices of size s x s. We shall see that the size of the
(SP) obtained from (P;q1) is 7 = O(n + m), s = O(n + m). This should be compared to the form
we obtained in [19] via duality, which gave the slightly better complexity » = O(m), s = O(n).

First observe how the discrete Fisher objective may be transformed to the semidefinite form.
Introduce dummy variables ¢;, i = 1,..., n, satisfying |D;u|?/u; < t;. Then minimizing the Fisher
objective is equivalent to minimizing ) ;. ¢; subject to the above constraints which taking into
account that u; > 0 may be transformed to a set of (d + 1) x (d + 1) matrix inequalities. For d = 1
this takes the form

ti Diu 4. 1 0 ) 0 -1 ) 0 1 .

Still in the case of dimension d = 1, define block diagonal matrices Fy, G; of size 2n=1)x2(n—1)
as follows:
Ci Dy

CZ' n—1 Dz’ n—1

) )

Cij = <687 8) » Dii= (_01 _11) y D1 = <(1] (1)) ,  D;; =0 otherwise.

(0;; = Kronecker symbol). Then (9) translates into the semidefinite inequality

n—1 n
i=1 i=1

A similar pattern is obtained in dimension d = 2, with Cj; and D;; now of size 3 x 3, and Ej, éij
ofsize 3(n — N—-M+1)x3(n—N—-M+1),if n = NM, and the discretization (3) is used.

with

Treating the constraint |Qu — v| < ¢ is standard. Writing w = Qu — v, it becomes w”w < €2,
which is equivalent to the (m + 1) x (m + 1) matrix inequality

I w 21 0 - O e,
()= (87 8)+2m(G 7 )20
j=1 J
(e; = ith unit vector). On substituting w = Qu— v back, we obtain the semidefinite type inequality

eI —w - 0 i
<_UT . )+Zui<qr 3)20 (10)

i=1



where @ = (¢;;), and ¢; is the ith column of ). Writing (10) as Fo+ S u;G; > 0, we finally get
the following inequality ranging in the (SP) derived from (Ppen):

n—1 n
ZtiFi + ZUiGi >0
i=1 i=1
where Fj, G; are block diagonal of the form

FZ' Gl t
P = Fy o G = Gi Y with H = K=

1) K tn

Uy

which ford = lisof size 2(n — 1)+ m+ 14+ 2n=4n+m— 1.

Notice that the sparsity pattern of Gi in (10) is not block diagonal. Also recall that the
multipliers 7 arising in the convex programming duality for (SP) (see e.g. [24]) have the same
block diagonal structure as the constraint matrices F;, G;. It is then clear that the blocks GZ
are the only ones causing a fill-in of a relevant size in their corresponding multiplier block Z. In
toto, the multipliers Z have O(n 4+ m?) nonzero entries, which represents the problem size we face
when solving (SP). An interesting feature is that the block structure of G;, and therefore of the
corresponding Z is independent of the problem dimension d.

8 Experiments

Our experiments displayed in Figures 1 to 8 show a deconvolution problem in dimension d = 1,
where we compared the Fisher based restoration with other types of objectives. For medium size
problems up to several hundred variables, the dual approach of [19] and the primal model presented
here work equally well. A third possibility for solving (P;o1), then consists in transforming it via
the substitution u(z) = p(x)?. This leads to a nonconvex problem with a particularly nice convex
objective (see [19]), and solving via sequential quadratic programming produces quite satisfactory
results.

The purpose of the present experiments is to emphasize the merits of the Fisher objectives as
compared to other functionals used in the field. While Figure 1 shows the problem setting, Figure
2 compares the Fisher restoration with maximum entropy. The latter obviously has difficulties, but
as seen 1n Figure 3 catches up a little with Fisher if a minimum cross entropy functional is used,
with the dirty signal used as a prior.

Figure 4 shows a restoration based on Burg’s entropy, which is not competitive here. Figure
5 gives the result using the energy functional Z(u) = [ |Vu|?dz, which as expected is too smooth.
The drawbacks of the energy functional in the context of image restoration being known, various
remedies have been proposed. An idea in the spirit of Geman et al. [11] is to combine restoration
with edge detection, which in the particularly simple case of dimension d = 1 could be done by
minimizing a functional of the form

n—1 n—1
Flu,a) = ai(uigr —w)* +C Y (1 - ay)
i=1 i=1

subject to the constraint |Qu — v| < e. Here the binary variables a; € {0, 1} serve as switches for
the terms (u;41 — u;)? penalizing a strong oscillation at i. The state a; = 1 corresponds to the

Un
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switch being on, so that (u;41 — ui)2 is fully penalized. The state a; = 0 corresponds to the switch
being turned off, which is meant to indicate an edge at position 7, in which case a large jump at
position ¢ should no longer be penalized. Switching off is payed for through the second term, with
C any constant ruling the trade-off between the two terms.

Similar models have been tested by several authors, who use simulated annealing type ap-
proaches to calculate solutions, with the expected poor results when images get larger. It appears
to be a misconception to introduce integer variables into a problem which is continuous in nature,
and we propose to replace switches by dimmers, which even allows to retain a convex program. In
dimension d = 1, a quick shot would be to use an objective of the form

n—1 ( . . .)2 n—1
f(w,¢) = Z%JFCZ(@ —1)
i=1 ¢ i=1

under the same constraint aa above, where the dimmers ¢; € [1, 00) replace the switches used before.
Here ¢; = 1 means that a gap at position ¢ is fully penalized, while larger values of ¢;, gradually
releasing penalization through the term (u;4+1 — u;)?, indicate a higher probability for a structural
gap at position ¢. Figure 6 shows a restoration obtained by this approach, with the stars displaying
the states of the dimmer variables ¢;.

Figure 7 shows a restoration obtained by Hunt’s filter, while Figure 8 shows how badly a naive
inversion ignoring noise and using nonnegative least squares may fail.
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