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Abstract. We discuss the general problem of when a perfect permanent summability
method A is uniquely determined among all other perfect permanent summability
methods by means of an appropriate space (¢ Ve cTJ of summability factor sequences.

As applications we obtain that the Cesdro convergence domains cc &> 1, are
o
uniquely determined among the convergence domains of all perfect permanent

methods by their Ca— !-summability factor sequences, while the Cesaro summability
domains Cc g1 %> 0, are uniquely determined among the summability domains of all
o

perfect permanent methods by their C a—summability factor sequences.

AMS Classification 40 D 15, 40 H 05

Introduction. Let A be a matrix summability method with convergence domain ¢ A° Let

CE denote the corresponding set of summability factor sequences. Not only is it of
theoretical interest, but also of practical relevance (cf. [7,10]) to ask whether ¢ 4 is

uniquely determined by its set of summability factors (,‘E. More precisely, given any
other matrix summability method B having the same set of summability factors
cg = L’E, is it true that A and B are equivalent, i.e. €4 = Cp ? The answer is in the
negative, in general, as may be seen from the following example. Let a,b be the

sequences defined by a, =n, bﬂ = n2. Using Mazur's construction (cf. [15, S. 48]),
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we find matrices A,B having cp=c+ lin{a,b}, cg=c+ lin(b}. Clearly g #Cyp s but
L‘E = cg =(xem 2”25‘,, converges}.

The problem being ill-posed in the general context, there is more hope when we
restrict our considerations to perfect methods. For instance, it follows from a general
result of Snyder and Wilansky (cf. [14, 7.2.7]) that if A is a matrix method having
sectional convergence (i.e. (¢, ), is an AK-space), then c is uniquely determined by

its set of summability factors cﬁ among all perfect methods. Unfortunately, sectional
convergence is quite a restrictive requirement to impose on the null-domain of a
matrix method. In [6] we therefore proved a stronger result, stating that for a perfect
matrix method A whose space of summability factors cj is separable in its intrinsic

BK-topology, the coincidence of the summability factors cg = CE implies ¢ A= CB for
any (not necessarily perfect) method B weaker than A. In other terms, ¢ A is minimal

with respect to its set of summability factors cg.
It is well-known that a BK-convergence domain ¢, has separable strong dual ¢ AI‘ So

its space of summability factors cﬁ is always separable when considered part of the

topological dual. But surprisingly enough, the assumption that cg be separable in its
own BK-topology is a stronger requirement. For instance, consider the Cesaro method
62 of the second order. This provides an example of a convergence domain with

non-separable factor space ¢ ﬁ. So even in this case our results from [6] do not
P C2

guarantee that cCB is determined by its summability factors among all perfect
2
methods.

The example of the Cesaro methods C & of order o > I suggests considering other
kinds of factor sequences. For instance, we shall prove here that ¢c may be
o

reconstructed from its set of Ca- 1—summability factors (o > I). In other terms,
replacing the space of summability factors CCB = (CC - cS) by the factor space
o o

(cc ~¢c s permits identifying the Cesaro method Cu among all perfect
o o-1
summability methods. The reason for this is easily found. While Ca does not have

sectional convergence, it has C_ j-summable sections (in the sense of [15]), so
( ca)ca, the dual of (co}ca, may be identified with (CCOL = CCCL-I S)’ hence this factor

space is again separable in its own BK-topology. The purpose of the present paper is to
study these aspects of factor sequence spaces in detail. Replacing the Cesaro
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summation matrices CaS by a general Toeplitz lower triangular matrix T with column

limits 1, we ask for conditions under which a perfect ¢ A is uniquely determined by
some factor space of the type (c 4 = Cp) among all perfect summability methods. In

particular, we obtain applications to the case of Cesaro methods C , mentioned above.

Preliminaries. Generally our terminology is based on the books [14, 15]. In the
following we briefly discuss some additional notions needed here, in particular the
concept of Toeplitz sections and Toeplitz sectional convergence. More details
concerning the latter notions may be found in [2, 4].

Let E,F be sequence spaces. We denote by (E -+ F) the space of all sequences
x €  having x-y € F for all y e E. Here x-y denotes the coordinatewise product of the
sequences x,y. In particular we have EB = (E - cS) and EY = (E - (f,’m)s).

Throughout let T be a lower triangular matrix whose columns have limit /. Given
any sequence x € ®, we denote by

fn‘x = (tﬂfxf prany tﬂﬂxﬂ :0,0 ’) !

n € N, the T-sections of x. Here /"* denotes the nth row of T. In the case where T is the
summation matrix S we obtain the usual sections s"x = (xj pes X s 05 0 ....) of the
sequence x. An. FK-space E is said to have T-summable sections or T-sectional
convergenccl (TAK for short) if it contains @ and, for every x € E, the T-sections "x of
x converge to x in the sense of the topology of E. '
Y

Let E be a sequence space. We denote by E T (resp. E T) the space of all sequences
n
y € m such that Y 1,Xy; converges (resp. is bounded) for every x € E. Observe that
i=1

B ¥
E Fa (E - cT), E Lo (E - (¢ mJT) in our terminology used above. In the case where

T is the summation matrix S, we shall write again B,y instead of B.S”YS'
Let E be an FK-space with TAK. Then E', its topological dual, may be identified

with £ 1 using the bilinear form

n
(xy) = lim X t X

noe =1

Y
In the case where E is a BK-space, E T and E T are as well BK-spaces with the
norm || ”T defined by

n
(1 Wl = sup sup | Xt x.y.|.
T ki<l xeE neN 'i=1 ™ P
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Similarly, starting with the norm || ”T onE I and using (1), we obtain the norm
B
|l on E TBT. Notice that || || also has the representation
@) Iylly = sup [I"¥ll,
nel
where on the right hand side || || denotes the dual norm on E', the elements of ®

being identified with elements of E'. Indeed, (2) may be obtained from (1) by inter-
changing the sups.

The Main Theorem. This section presents our first central result, which is technical in
nature. Antecedents may be found in [1,6,8,13].

Theorem 1. Let E be a BK-space containing ®. Let T be a lower triangular matrix
Y
with column limits 1, and suppose E T s separable with || ”T Let F be a dense

subspace of E containing ®. Then the following statements are equivalent:

B
() FT =ET;
¥ ¥
2 FT = gT;

B ¥

3) FTcET;

(4) ® has the same null sequences with respect to the weak topologies o(®D,E) and
o(D,F);

(5) Whenever A is a lower triangular matrix, then F C ¢ % implies Ec ¢ A

p Bryry BrYrY
Proof. (1) implies (2). Indeed, F ¥ EBT gives F r'T’r _ E L T. Since the

Brygfyr ¥
equality H TTT _ g'T holds for every H (see [2] and [3]), we obtain (2). The fact

that (2) implies (3) is obvious. The hard implication is (3) to (4). (4) implies (5):
Observe that the coincidence of null sequences implies the coincidence of Cauchy
sequences. Now F c ¢, means that the sequence (a") of rows of A is Cauchy in
o(®,F), hence is Cauchy with respect to o(®,E), giving E c ¢ 4. (5) implies (1). Since

the inclusion E o cCF r is clear, we check the reverse inclusion. Let @ € F 4 and
choose for A the matrix whose nth row is "a. Then we have F c c,, giving E C ¢ A

which is just the desired statement a € E Ly So proving that (3) implies (4) remains.
This requires six steps.
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L. Clearly F c E implies that o(®,E)-null sequences are as well o(®,F)-null. So we
have to prove the reverse implication. Observe that it suffices to show that every
o(®,F)-null sequence (y") is bounded in the dual norm || ||. For suppose this has been
established, [[y"|| < M, n € N, say. Fixing x € E and € > o, we find ¥ € F having
[|x - %|| < €/2M. This gives

[ay™ | < [Kx- 29" ] + (2™
< - 217+ (R

< g2 + €2,
for n large enough. So (y") is o(®,E)-null.

II. Suppose the o(®,F)-null sequence (y”) is not bounded with respect to the dual
norm, ||[y"*|| > 2", say. Since ® c F, the sequence (y") must be coordinatewise null. We
therefore find strictly increasing sequences (k j)’ (n }.) of indices satisfying

n.
(@ y7 has length at most kj.

n. k. n. ;
® Iyl -sily )2 2

Jj=12,...Here s’ x denotes the usual rth section (xI e X,,0,0, ...) of x.
Indeed, suppose k ] kj and n ] e nj have been defined according to (a) and (b).

n,

Since ||s J-y"I +0 (n-«), wefind n,, , > n, satisfying (b). Since y o € @ has
J#L T

finite length < kj 4] » Statement (a) is as well satisfied.

. n. k. n. i .
Let W=yl - ;—I_y J,j=12,... Then we have [|u’|| > 2/ and at the same time

W0 (j - =) with respect to o(®,F).

III. We select a subsequence from the sequence (u’ ). We claim the existence of strictly
increasing sequences (rj), (mj) of indices satisfying

r. m,
(c) t!.u j+1 = 0, =12
m; m.
st a b st g -2 , .
d |7 2 Au - X 7‘1’“ [ = 2 for allr?rj and all 3\.{, 1 S:ﬁmj having
i=1 i=l

A <2, j=12,..
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Suppose r ] r and m ] mj. have been defined in accordance with (c) and (d).

By the definition of the vectors u' we first find an index m, > m. such that
Y {0 s |

rr Wiy
t/.u 7t = 6. Now we observe that
rm‘+1 ; il
lim sup | ¢ 5: Ay - Z Aulf =o,
r=e0 |7Ll-|£I = i=
I1€i<m

since T has column limits /. The uniformity of the limit over the region |A;| </
=1l .. ,mj may be proved using a compactness argument. But this provides an index
J A e r in accordance with condition (d).

IV. For each j we choose an index r(j) € {’}4” rj} such that

”I-"(J) )

m, r o m
u || = max (|| u|: P <r£rj}.

. m.
Now let By H[lrrm ||, J= aju J, j = 12,... Observe that by condition (d),

((Ij) isan { j-sequence. Let co{zi) be the space of all sequences of the form

_ s i
z= :'E‘I 7“1'2 , (li)e ¢,

where summation is understood in the pointwise sense. Analogously we define the

: . Yy
space fm(zl}. We claim that fw(zl} c cole ) r'T
R
First observe that x € cO(z’) T is true if and only if
(i) ((x2)) e t,
() -2y = o), (r-e rp<rsr)

are satisfied. To see this we consider the equality {rj_ 3 F < rj)

Soms T s le 5 i
*) Lo = t lax U o+ tAoxu )’ .
r i I.‘—“j s=?_i-}+1 22 i Tl . . S=r}-_1+1 rs j ij S

Boundedness of the left hand side for arbitrary z € ¢ o(zi) yields condition (i) when we
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first insert indices r = rj. Here we use the fact that

r.

: o . 1 @ F mom
> XM = (xgu ") =({xu )+ {xt-u " "-u')
s=r. ,+1
i-1
holds with the estimate
m. m, .
[Kxd b uw )] < g 22 (using (d))

Condition (ii) then results when we evaluate the second term on the right hand side of
(*) for an arbitrary choice of (li} €c,.

;Y
Having proved the description of the vectors x € caf'zI ) r in terms of the conditions
(i), (ii), it readily follows that the right hand side of (*) also remains bounded when
inserting on the left side arbitrary vectors z € fm(zl). This proves the claimed inclusion

L
((Z)ce () r'T

V. We next prove the existence of a null sequence {7\.5} such that z = E)LEZ! is not an

Y ; ¥ ; i YrY
element of £ T. Indeed, if we had co(z‘,l cE T, then by the above :‘.’m(zl) c co(zI) r'T

T

Y7y
i B

. This, however, is impossible, as we shall see now. In fact, we show
3 ; ¥ Y
that fm(zl )=( and [ ( Z') isclosed in E T. This contradicts the separability of E T.

We define a linear operator ¢: E’w(zi) — { by setting
0z) = (SAZ) = (), ze L)

Clearly ¢ is a linear bijection. We prove that it is continuous. Let z = le.z‘ be fixed.
We have

.om. g J m. L j-1 m.
iyl = P = W00 5 a8 au™
i=

i=1 *

i ] m; Tog jod m,

<17 T dau Y+ 1S Ao U
i=1 i=1
: r:: Jj-1 m.
I - )7S Ao |
j=1

< 2osup |12l + sup Mo |-2-277T (using (c)(c) and (d))

r i
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< 2-Jally + 122- |-
We thus obtain the estimate
A, = lo@ll, < 4zl
proving the continuity of ¢.

YT

Let H denote the closure of €w(z‘ )in E '. Then ¢ extends to a continuous linear

N 2 i ; _ i
mapping &: H — { . As E " is a BK-space, the z e H are still of the form z = Ell.z , SO

&(z) = (Xf) € (. Hence by the definition of fw(z‘) we have z € Jf’m(zI ), proving that .‘fm(zi)
¥
is closed in E T‘ Now the open mapping theorem proves that ¢ is an isomorphism, i.e.
: Y
fm(z’J = (. So finally E T hasa subspace isomorphic with ( , the desired contradiction.
. . ; i T
VI. Let {?Li)‘ be a null sequence chosen in accordance with V., i.e. z = Eliz ¢ E".We

end our proof by showing that ze F T, which contradicts our assumption (3).
Fix xe Fand r e N, rj_l r-hd g rj . Then we have

% j-ZI g A " rz A "
L = t Aoxu o+ Pk bam 2
o i £=Is:r!._‘,+1r‘91 g S=rj~1+1rs;jxs oy

Here the first term on the right hand side converges (r - «, Ti1 <rs rj) in view of
(Rjaj) e { and the estimate

r.
i m m. m.

. m. mn.
| S taw = fu ] < [ Y]+ [Kefu tu D
T o
=Ti-1

-i-2

m;
< [ |+ lxl-277 = ofl).

The second term on the right hand side converges as well in view of l}. “+ 0 (r =
Lig ST < rj) and because of the estimate

r m. . :
I = r N4
|s:r21”r,sxsajus | = Kxd2Y] < Il I < el
j.

which is based on the definition of the o This yields z € F T and hence ends our
proof. o
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Wilansky property. In this section we shall be concerned with the problem presented in
the exposition - first on a more abstract level. We start by recalling a definition from
[1]. An FK-space E containing ® is said to have the Wilansky property (W) if every
dense FK-subspace F of E satisfying FP = EP must coincide with E, ie. F = E.

This property was first considered by G. Bennett [1] and W. Stadler [13], and later
on was intensively studied in [6,7,8,9,10]. See also [12] for a related reference. Since
we are dealing with Toeplitz duality here, let us consider the following extended
version of the Wilansky property. An FK-space E containing @ is said to have the

By B
Wilansky property ( BT-W), if every dense FK-subspace F of E satisfying F a &

= F
must coincide with E. So according to this terminology, (W) is now (B-W).

The intention of this definition is well-understood in the light of our basic problem.
Indeed, a space E having the Wilansky property ( BT—W) is minimal with respect to its
T-summability factor sequences (E - CT), hence in particular is a candidate for being
uniquely determined by these in an appropriate sense.

We are going to exhibit a nice class of spaces having the Wilansky property (BT-W),
later on giving rise to the applications we have in mind. First, however, we need a
preparation,

In [1, §4], Bennett also considered the y-dual version of the Wilansky property (W),
profferring the name (y-W). When we transfer this concept to the Toeplitz sectional
context, we obtain the properties (’;'T-WJ, defined in the obvious way. But Bennett left
open the question whether (y-W) is actually stronger than (W). It turns out that this is
not the case, i.e. (y-W) is only a reformulation of (W), and we shall make use of this
fact later on. We have the following

Proposition 2. The Wilansky properties ( BT-W) and ('YT-W) are equivalent for any
FK-space E. In particular this is the case for the Wilansky properties (3-W) and (y-W).

Proof. Let E be an FK-space having property (y,-W). Let F be a dense linear
I8

br_ PBr

subspace of E satisfying F © = E ~. As we already mentioned in the proof of

i Y-
Theorem 1, this equality implies the equaliy F fxpg T, s0 ('YT—W) yields F = E,
proving that E has property (ﬁT-W). Conversely, assume that E has the Wilansky

Y Y-
property (BT-W). Let F be a dense linear subspace of E satisfying F T_ E T. We wish

Br

B
4 . Let the

_ BT g : T Ty
to prove F © = E . The inclusion E * ¢ F ~ being clear, we fix a € F
[, € E' be defined by
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B 5 br r_Wr
then the sequence (fn) is pointwise bounded in view of a€ F ~ C F* =E ".Onthe
other hand, a € F ¥ means that (fn) pointwise converges on the dense linear subspace
F of E. The Banach-Steinhaus Theorem therefore asserts that (f,) converges on the

B
whole space E, which just means a € E T‘ Now property ( BT-W) applies and gives the
equality F = E. This ends the proof. o

Before stating our next central result, we need another definition. Let E be a
BK-space. We denote by R g Or just by R if no confusion may occur, the norm closed
linear hull of the projection functionals x — x, in E'. So if @ is considered part of E'

via the natural identification, we just have Rp = o,

Theorem 3. Let E be a BK-space containing ®. Suppose R has a topological

Y
complement in E' and E T separable. Then E has the Wilansky property (BT-W).

Proof. As a consequence of Proposition 2 we have to show that every dense FK-

subspace F of E satisfying FYT = EYT must coincide with E. Following the argument
in [1, Theorem 2], in order to do so, it suffices t0 show that any F of this kind is
barrelled as a subspace of E. Moreover, when checking this, we may assume, as a
consequence of the reasoning presented in the proof of Theorem 1 in [1], that F
contains @. So let F be of this type. Let U be a barrel in F. We have to show that U is
a neighbourhood of o with respect to the topology induced by E.

By assumption there exists a norm closed linear subspace Q of E' satisfying E' =
R & Q.Hence E" = R' @ Q' = Q' @ R'. Let B be the polar of the unit ball of O,
calculated in the dual pairing (R*,Q). Then B is compact with respect to
o(R*,Q) = 6(Q',Q), hence is as well compact with respect to o(E",E') in view of the
fact that o(E".E')|R* = o(R",Q).

Let V= U + B. Since the linear hull of V is F + R*, the polar V° of V calculated
with respect to the dual pairing (E",E'), is bounded in O(E".F+R"). We prove that Ve
is as well norm bounded in E'.

Let (;v") be a sequence in V°. Find sequences (rn) inRk, (q"} in Q having y" ="+
¢". Observe that (¢") is bounded for o(Q,R") = 6(Q,Q"). Indeed, for fixed ¢ R* we
have
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(wg™ = (ur + (ud™ = uy™ = o),

n- o, As U(Q,RL} = o(Q,Q') is the weak topology corresponding with the dual norm,
we deduce that ( qn) is also bounded with respect to the dual norm on Q. It therefore
remains to prove that {rn) is bounded in norm.

Recall that we have R = @ via identification. We therefore find a sequence (an in
@ having || - p"| < 1, n e N. As (") is bounded for o(E',F), we deduce that (p") is
bounded for of®,F). Applying Theorem 1, we find that o(®,F) and o(®@,E) have
the same null sequences, so they also have the same bounded sequences. Hence (pn) is
o(®,E)-bounded, proving that (r") is bounded in o(E',E). Using the Banach-Steinhaus
Theorem, we finally obtain the norm boundedness of ().

v° being bounded in norm, we deduce that v°° is a neighbourhood of o in E", so
V°AF isa neighbourhood of o in F. But v°° = V = U+ B, where the closure refers
to the topology O(E",E'). As B is o(E",E')-compact, V = U + B. Furthermore, V°° n F
= VnF = UnF inview of Bn F = {0}. Now observe that o(E"E')|F =
o(FE') = ofFF') and UcF.So Un F is the weak closure of U in F. But U was
chosen weakly closed in F, so we have finally established the equality

VO nF = U
which proves that U is a neighbourhood of 0 in F. 0

Remark. The statement of Theorem 3 does no longer hold true if R is only assumed
to have a quasi-complement in E', i.e. if there exists a closed linear subspace Q of E'
such that R n O = {0} and R + Q is dense in E'. For consider the example E = £ + g,
E' = ( ®q with T =S, where g is the space of quasi-periodic sequences, i.c. the
closure of the space of periodic sequences in £ . E does not have the Wilansky
property (B-W): Take any dense proper FK-subspace D of £, and let F = D + q. Then
we have F©' = EF = { Nevertheless, R is separable (it always is), hence has a
quasi-complement in { ®q' (cf. [11]). Moreover EY = { is separable here, so all
other assumptions from Theorem 3 are met. For details conceming the space g we
refer to reference [14A] of [14].

Applications. Let T be a lower triangular matrix with column limits /. An FK-space E
containing @ is said to have T-sectional boundedness, TAB for short, if for fixed x € E
the set {"x: ne N} of T-sections of x is bounded in E.

Proposition 4. Let E be a BK-space with TAB. Suppose E has separabel dual E' and
R is complemented in E'. Then E has the Wilansky property ( BT- W).
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¥
Proof. Property TAB implies E L (see [2]). But Efisa quotient of E' under
the natural mapping f - (f(e"}). As E' is separable, this proves that E has separable
'YT—dual‘ Hence Theorem 3 applies and gives the result. o

Remark. Proposition 4 implies as a special case the following result: Every

BK-TAK-space E whose dual E' = E : EBT is as well a BK-TAK-space, has the
Wilansky property (BT-W). This is clear when we observe that TAK implies TAB (cf.
[2]), and that the TAK assumption on E' means R, = E'. So Proposition 4 in particular
answers a question of Prof. G. Goes, who suggested that the original Bennett/Stadler
result should carry over to the context of Toeplitz duality. It was pointed out to us by
Prof. Goes that a student of his, U. Béttcher, has also obtained a Toeplitz version of
the Bennett/Stadler result, using a different technique.

§
Proposition 5. Let E be a BK-AD-space. Suppose R is complemented in E' and E L

is separable. Then E has the Wilansky property ( [’)T-W).

B Y
Proof. Property AD implies E | = E | (cf. [2, p455]), hence E has separable
YT—dual. Thus the prerequisites for applying Theorem 3 are met. o

Remark. Also Proposition 5 generalizes the original Bennett/Stadler result. For TAK
implies AD, and TAK for E' = E T implies that the BT-dual is separable.

We shall now present our first result concerning the reconstructability of a space
from a corresponding space of factor sequences. In the case of B-duality, this was
already obtained in [1,13].

Theorem 6. Let E be a BK-TAK-space with separable BT-duaI. Suppose R is
complemented in E'. Then E is uniquely determined by its space of T-summability
factor sequences (E - cT) among all FK-AD-spaces. In other terms, every
FK-AD-space F having the same T-summability factors must coincide with E.

.. Br_ Br o Pr_
Proof. Let F be an FK-AD-space satisfying F © = E ~. Then we have F/ > F © =

EBT = ef (cf. [2]). Now we may apply the converse theorem for f-duals by Snyder/
Wilansky ([14, 7.2.7]), which yields F c E. Then we apply Proposition 5 above, and
this proves F = E. 0

Our unicity theorem is optimal in a certain sense. Namely we have the following

Proposition 7. Let E be a BK-AD-space which is uniquely determined by its
T-summability factor sequences among all FK-AD-spaces. Then E must have TAK.
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p Y
Proof. Following [2, p.455], we have E i E T, and this space is BK-TAB. Also,

yrf ¥
Theorem 4 of [2] implies that E T _gTT Setting F = [E T]AD in the notation

¥
used in [2], i.e. F is the closure of @ in E T, it follows that F has TAK since TAB and
Y f
AD together imply TAK. Using Proposition 1 of [2], it follows that F' = T L

Y- YrY-
ETT, This implies that E T'T s Bk-TAB by [2, Proposition 2]. Now let G = @ in

V¥ _ . I .
E . Then G is a BK-TAK-space containing E and satisfying G © = E *. For the

latter statement compare [14, 10.3.23]. But now we may apply our assumption on E,
which yields G = E. In particular this implies that E has TAK. o

Convergence domains. In this section we obtain applications of our abstract results in
the context of convergence and summability domains. In particular, we derive results
concerning the reconstructability of the Cesaro convergence domains and the Cesaro
summability domains from appropriate spaces of factor sequences.

Theorem 8. Let A be a perfect permanent lower triangular matrix with diagonal
entries # 0. Suppose (c e cT) is separable, and A has T-summable sections (i.e. (¢ b ) A
has TAK). Then c A is uniquely determined by its T-summability factor space among
the convergence domains of all perfect permanent methods.

Proof. It suffices to observe that E = (c 0) A fulfills the requirements of Theorem 6.
For if B is any perfect permanent method having the same set of summability fact[(})rs
(CB - cT), we set F = (co)B. thus obtaining an FK-AD-spacc F satisfying F ¥ = E T.
So applying Theorem 6 gives F = E, and hence Cp = Cy.

Checking the conditions from Theorem 6, we first notice that the BT{lual space

(co)A L = ((cO}A -+ CT) = fr:A - cT} is separable by assumption. Hence it remains to
show that R E coincides with E' here. But recall that E' may be identified with £ in the
usual way. In view of perfectness, this identification naturally maps the linear hull L of
the projection functionals x X, in E' onto the dense subspace @ of { Hence we
obtain the desired relation R E™ E.o

In particular, Theorem 8 tells that a convergence domain ¢ A having sectional
convergence is uniquely determined by its summability factors among all perfect
methods.



40 NOLL

Corollary 9. For 0 < o £ 1, the convergence domain of the Cesaro method C & is
uniquely determined by its set of summability factors (CC -+ cS) among the
o

convergence domains of all perfect permanent methods. For o. > 1, the convergence
domain of the Cesaro method Ca is uniquely determined by its set of

C

. }-summabifiry factor sequences (CC - € SJ among the convergence domains
a-]

o
of all perfect permanent methods.
Proof. Following [15, S. 104], the methods C,, 0 < o < I, have sectional
convergence. So in this case Theorem 8 above gives the result when we take T = S.
For o > 1, the methods Cu are known to have Ca_f—summable sections (cf. [5]).
Hence Theorem 8 applies again with the choice T = Ca-IS‘ o

Corollary 10. For oo > 0, the summability domain of the Cesaro method Ca is
uniquely determined by its Ca-summabifiiy factor sequences among the summability
domains of all perfect permanent methods.

Proof. Following [5], the summability domains E = o E have C -summable

sections, i.e. they are TAK-spaces in our present terminology, where T = CaS. Using
the argument from the proof of Theorem 8, we see that R, = E' holds as well, so
Proposition 6 applies and gives the result. o

We end this section with the following result concerning the minimality of a perfect
convergence domain ¢ A with respect to a corresponding space of T-summability factor
sequences (¢ i cT).

Theorem 11. Let A be a perfect permanent lower triangular matrix with diagonal
entries # 0. Suppose (c o cT) is separable. Then ¢ A is minimal with respect to its
T-summability factor sequences among the convergence domains of all permanent
methods.

Proof. We have to show that ¢ AT = cB:lr implies ¢ 4= Cp for every permanent
method B having ¢ B CCy This is a consequence of the fact that, by Proposition 5, E =
(c,)4 has the Wilansky property (BT'W}‘ Indeed, setting F = (c_)p provides a dense

p
FK-subspace of E satisfying F T ({cO}B - CT) = (CB -+ CT) = (CA = CT} =

p
((c)4 ~cp) = E | This implies F = E, hence cg = ¢.0
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Concluding remarks. Let T,R be lower triangular matrices with column limits /. One
may ask under what conditions the Wilansky property (BT-W) implies the Wilansky
property (BR-W) for a space E. This seems to be a difficult point. We have the
following partial answer.

Proposition 12. Let E be a BK-space containing ®. Suppose E has the Wilansky
Y-
property ( BR-W), and E 4 is separable. Then E has the Wilansky property ( BT-WJ.

p B
Proof. Let F be a dense FK-subspace of E satisfying F T _g T. Then Theorem 1

¥
applies in view of the separability of E T. Hence condition (5) from Theorem 1 is

Pr_ Pr

valid. Using the argument from the proof of Theorem 1, this implies F = = E ©. So

property (Bp-W) applies and gives F = E. o

This result naturally raises the following question. Given a BK-space E, under what

Y-
conditions does there exist a matrix T such that E 4 is separable. In particular, is it
possible to exhibit such T for every BK-AD-space? Or even more specially, can such T
always be provided in the case of a perfect convergence domain ¢ A?

Our present results do not tell us whether the Cesaro convergence domains o >

o

o > I, or the Cesaro summability domains cc g &> 0, have the Wilansky property
o

(B-W), since the corresponding B-dual spaces are not separable here. Actually, we do
not know even whether the Cesaro convergence domain cc and the Cesaro
2

summability domain Cc.g are spaces having the Wilansky property (W). It should be
1

expected, however, that they are, in particular, that the domains cc (and similarly
o

the o S) are uniquely determined by their summability factor sequences among all
o

perfect permanent convergence resp. summability domains. But certainly they are not
determined by their summability factor spaces among all spaces of the form E +
lin{e}, where E is any BK-AD-space. Indeed, by Proposition 7, the latter would imply
that the C had sectional convergence, which is not the case for o > I. Generalizing
this situation, we may state the following problem:

Let A be a perfect and permanent summability method such that ¢ A is uniquely
determined by (c 4 CT) among the convergence domains of all perfect permanent
methods. Must A have T-summable sections? In particular, if ¢, is uniquely
determined by (¢ 4 cS). must A have sectional convergence?
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