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Abstract

We discuss closed-loop stabilization of linear time-invariant dynamical systems, a problems which fre-
quently arises in controller synthesis, either as a stand-alone task, or to initialize algorithms for H∞

synthesis or related problems. Classical stabilization methods based on Lyapunov or Riccati equations
appear to be inefficient for large systems. Recently, non-smooth optimization methods like gradient sam-
pling [19] have been successfully used to minimize the spectral abscissa of the closed-loop state matrix
(the largest real part of its eigenvalues) to solve the stabilization problem. These methods have to ad-
dress the non-smooth and even non-Lipschitz character of the spectral abscissa function. In this work,
we develop an alternative non-smooth technique for solving similar problems, with the option to incor-
porate second-order elements to speed-up convergence to local minima. Using several case studies, the
proposed technique is compared to more conventional approaches including direct search methods and
techniques where the spectral abscissa minimization problem is recast as a traditional smooth non-linear
mathematical programming problem.

1 Introduction and notations

Internal stability is certainly the most fundamental design specification in linear control. Necessary and
sufficient conditions for output feedback stabilizability are still not known [6]. From an algorithmic point
of view, the problem is clearly in the class NP and conjectured to be NP-hard (see [7]). Output feedback
stabilizability can be checked via more general decidability algorithms, like the Tarski and Seidenberg
reduction methods [1], but the computational cost is exponential in the problem size and becomes rapidly
prohibitive as the number of controller parameters increases.

Internal stability could also be expressed in terms of a bilinear matrix inequality (BMI), but this
leads to similar problems. Solving BMIs globally is algorithmically difficult, and introducing Lyapunov
variables to symmetrize the problem further increases the number of decision parameters and often leads
to numerical ill-conditioning.

A less ambitious line is to address internal stability as a local optimization problem. Recent approaches
using non-smooth optimization techniques are [19, 11] for stabilization, and [3, 4, 5, 8] for H∞ synthesis.
In [11] for instance the authors propose to optimize the spectral abscissa of the closed-loop matrix via
specific non-smooth techniques until a strictly negative value is obtained. If the method converges to a
local minimum with positive value, indicating failure to solve the control problem, the method has to be
restarted from a different initial guess. Our present contribution is also a local optimization technique,
but our method to generate descent steps is new. In particular, in contrast with [11], our approach is
deterministic. We believe that while local optimization techniques do not provide the strong certificates
of global techniques, they offer better chances in practice to solve the stability problem.

The paper is organized as follows. In section 2 we recall differentiability properties of the spectral
abscissa and discuss strategies to minimize it. In section 3 we compute sub-gradients of the closed-
loop spectral abscissa, and specify to cases of practical interest with structured controllers like PID or
others. The computation of descents steps is explained in section 4. It leads to the presentation of the
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algorithm and its second order variant in section 5. Finally, section 6 presents numerical experiments on
miscellaneous automatic control applications, with some examples involving structured controllers. For
some of them, the final spectral properties of the state matrix are analyzed. Our method is compared
to other design methods based on a) continuous smooth optimization, b) direct search algorithm, and c)
probabilistic elements. In particular, two Matlab Optimization Toolbox functions are tested.

Matrix notations

In the following (Rn×n, 〈·, ·〉) is the Hilbert space of real n × n matrices with inner product 〈M,N〉 =
tr MTN . The induced Hilbert space norm is the Frobenius norm and noted ‖·‖. Sn is the linear subspace
of n× n real symmetric matrices.

For M ∈ Rn×n, M � 0 means that M ∈ Sn is positive semi-definite. The n eigenvalues of M ∈ Rn×n

(repeated with multiplicity) are denoted λ1(M), . . . , λn(M) and ordered lexicographically, that is by
decreasing real part first, and next by decreasing imaginary part in case of equal real parts. When the
eigenvalues of M are considered without their multiplicities, they are denoted µ1(M), . . . , µq(M) and
ordered in the same manner as (λi(M)), with respective multiplicities n1, . . . , nq in the characteristic
polynomial pM (λ) = det (M − λIn) (algebraic multiplicities, with n1 + · · · + nq = n). We say that
an eigenvalue µj(M) is semisimple if its algebraic multiplicity nj coincides with the dimension of the
associated eigenspace (geometric multiplicity, denoted by pj ; 1 ≤ pj ≤ nj in the general case). Otherwise,
µj(M) is said defective.

In the sequel, α(M) denotes the spectral abscissa of M , defined as

α(M) = max
1≤j≤q

Re (µj (M)) .

Any eigenvalue of M whose real part attains α(M) is said to be active. The set of all active eigenvalues
of M is denoted A(M) = {µj (M) | Re (µj (M)) = α(M)}, the corresponding active indices sets are

I(M) = {i ∈ N | 1 ≤ i ≤ n and λi(M) ∈ A(M)} ,

and without multiplicity

J (M) = {j ∈ N | 1 ≤ j ≤ q and µj(M) ∈ A(M)} .

Plant and controller notations

The open-loop system we wish to stabilize is a continuous linear time-invariant plant, described by the
state-space equations

P (s) :

[

ẋ
y

]

=

[

A B
C 0

] [

x
u

]

(1)

where A ∈ Rn×n, B ∈ Rn×mand C ∈ Rp×n. We assume without loss of generality that there is no direct
transmission between u and y. We consider static or dynamic output feedback control laws of the form
u = K(s)y in order to stabilize (1) internally, that is, to place all the eigenvalues of the closed-loop state
matrix in the open left half-plane. We suppose that the controller order k ∈ N is fixed.

In the case of a static feedback (k = 0), the controller is denoted by K ∈ Rm×p. For dynamic
controllers defined by the state-space equations

K(s) :

[

ẋK

u

]

=

[

AK BK

CK DK

] [

xK

y

]

(2)

we use the following standard substitutions in order to reduce to the static feedback case:

K →
[

AK BK

CK DK

]

, A→
[

A 0
0 0k

]

, B →
[

0 B
Ik 0

]

, C →
[

0 Ik
C 0

]

,

k → 0, n→ n+ k, m→ m+ k, p→ m+ p.
(3)

The affine mapping K 7→ A+BKC is denoted as Ac.
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2 Minimizing the spectral abscissa

We start by writing the stabilization problem as an unconstrained optimization program

min
K∈K

α(A+BKC) (4)

where the search space K is either the whole controller space Rm×p, or a subset of Rm×p in those cases
where a stabilizing controller with a fixed structure is sought.

Closed-loop stability is satisfied as soon as α(A + BKC) < 0, so that the minimization process
can be stopped before convergence. In fact, minimization of the spectral abscissa below zero can be
interpreted as maximizing the asymptotic decay rate of the closed-loop system [9]. Convergence to a
local minimum is important only in those cases where the method fails to locate negative values α < 0.
If the process converges toward a local minimum K∗ with positive value α ≥ 0, we know at least that the
situation cannot be improved in a neighborhood of K∗, and that a restart away from the local minimum
is inevitable.

Program (4) is difficult to solve for two reasons. Firstly, the minimax formulation calls for nonsmooth
optimization techniques, but more severely, the spectral abscissa M 7→ α(M) as a function Rn×n → R

is not even locally Lipschitz everywhere. The variational properties of α have been analyzed by Burke
and Overton [14]. In [13] the authors show that if the active eigenvalues of M are all semisimple, α is
directionally differentiable at M and admits a Clarke subdifferential ∂α(M). This property fails in the
presence of a defective eigenvalue in the active set A(M) associated with a non-trivial Jordan block in
the Jordan form of M .

Despite the lack of Clarke sub-differentiability of the function α, we consider program (4) as practically
useful, if the following facts are taken into account:

• Starting our nonsmooth optimization from a closed-loop matrix A+BK0C with semisimple active
eigenvalues, we expect that iterates A + BKlC will remain semisimple. Non-derogatory Jordan
blocks will only occur at the limit point A + BK∗C. If a negative value α(A + BKlC) < 0 is
obtained, we can stop the procedure at this iterate, and the question of optimality is irrelevant.

• On the other hand, if iterates are not stabilizing, α(A+BKlC) ≥ 0 for all l, then we need to check
whether the limit point A+BK∗C is optimal or not. This requires a non-smooth stopping test. If
the limit point is locally optimal, we know that a restart of the method away from K∗ is inevitable.
On the other hand, if K∗ is a so-called dead point, that is, a limit point which is not locally optimal,
then we should not do a restart, but use non-smooth decent techniques and keep optimizing until
a local minimum is found.

Several strategies for addressing the nonsmoothness in (5) have been put forward: Burke, Lewis and
Overton have extended the idea of gradient bundle methods (see [18] for the convex case and [21] for the
Lipschitz continuous case) to certain non-Lipschitz functions, for which the gradient is defined, continuous
and computable almost everywhere. The resulting algorithm, called gradient sampling algorithm, is
presented in [11] (in the stabilization context) and analyzed in [10, 12] with convergence results. The
outcome of this research is a package HIFOO, which will be included in our tests, see Section 6. The search
direction in HIFOO depends on randomly sampled points which gives the algorithm a non-deterministic
aspect. In contrast, Apkarian and Noll propose a composite approach in [2], combining a direct search
method and a nonsmooth strategy for descent and stopping test. By construction, direct search algorithms
require a lot of functions evaluations, which is demanding if the number of controller decision variable is
large. In response, the present paper proposes an algorithm which uses exclusively non-smooth descent
steps, allowing to avoid the drawbacks of both approaches.

3 Sub-gradients of the spectral abscissa

3.1 Sub-gradients in state-space

In this section, we suppose that all active eigenvalues of the closed-loop state matrixAc(K) are semisimple,
with r = |J (K)| < q distinct active eigenvalues (or s = |I(K)| < n if counted with their multiplicity). We
have A(K) = {µ1 (Ac(K)) , . . . , µr (Ac(K))} = {λ1 (Ac(K)) , . . . , λs (Ac(K))}. The Jordan form J(K) of
Ac(K) is then partly diagonal, more precisely :
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J(K) = V (K)−1Ac(K)V (K) =











D(K)
Jr+1(K)

. . .

Jq(K)











• D(K) = diag [λ1 (Ac(K)) , . . . , λs (Ac(K))] is the diagonal part of active eigenvalues,

• Jj(K), for r < j ≤ q are nj × nj block-diagonal blocks, such as

Jj(K) =







Jj,1(K)
. . .

Jj,pj
(K)






, with Jj,k =













µj 1
. . .

. . .

. . . 1
µj













,

• V (K) = [v1 (Ac(K)) , . . . , vn (Ac(K))], where the first s columns are right eigenvectors of Ac(K)
associated with the active eigenvalues (the other columns are generalized right eigenvectors),

• V (K)−1 =







u1 (Ac(K))
H

...

un (Ac(K))
H






,where the first s rows are left eigenvectors of Ac(K) associated with

the active eigenvalues (the other rows are generalized left eigenvectors).

We define U(K) = V (K)−H , and for 1 ≤ j ≤ r, Vj(K) (resp. Uj(K)) the n× nj block from V (K) (resp.
from U(K)) composed of the right eigenvectors (resp. of the transpose conjugate of the left eigenvectors)
associated with µj .

The function α ◦Ac is Clarke regular at K, as a composition of the affine mapping Ac with α, which
is locally Lipschitz continuous at K(ref ?). Let µj ∈ A (Ac (K)) be an active eigenvalue of Ac(K), such
that µj = λi (Ac (K)) = · · · = λi+nj

(Ac (K)). Then the real matrix

φj(K) = Re
(

BTUjYjV
H
j CT

)

= Re
(

CVjYjU
H
j B

)H
=

(

Re
(

CVjYjU
H
j B

))T

is a Clarke subgradient of the composite function α ◦Ac at K, where Yj � 0 and Tr(Yj) = 1. Moreover,
the whole subdifferential ∂(α ◦Ac)(K) is described by matrices of the form

φ(K) =
∑

j∈J (Ac(K))

∑

Yj � 0
Tr(Yj) = 1

(

Re
(

CVjYjU
H
j B

))T
(5)

Notice that every pair of complex conjugate active eigenvalues µj and µk = µ̄j (k 6= j) share the
same closed-loop spectral abscissa subgradient φj = φk. The subdifferential is then kept unchanged
if the active set only contains the active eigenvalues, whose imaginary part is nonnegative: A(M) =
{µj (M) | Re (µj (M)) = α(M) and Im (µj (M)) ≥ 0}.

Remark: If the open-loop plant is not controllable, then every uncontrollable mode µl(A) persists in
the closed-loop (for all controllers K): there exists j such that µl(A) = µj(Ac(K)). Moreover, if this
eigenvalue is semisimple and active for α ◦ Ac, the associated subgradients are null, because UH

j B = 0.
The case of unobservable modes leads to the same conclusion, because CVj = 0. In this way, whenever an
uncontrollable or unobservable open-loop mode µl(A) becomes active for the closed-loop spectral abscissa,
we get 0 ∈ ∂(α ◦ Ac)(K) and then we have local optimality of K. Moreover, the optimality is global
because Re µl(A) is a lower bound for α ◦Ac.

3.2 Subgradients and dynamic controllers

The problem of stabilizing the plant by a dynamic output feedback reduces formally to the static case,
with the substitutions (3). Nevertheless, the dynamic case is slightly more tricky, because the matrices
AK , BK , CK and DK have to define a minimal controller realization, both at the initialization stage and
at every subsequent iteration of the algorithm.

As an illustration, if the k-th order (non-minimal) realization of the initial controller is chosen with
the following structure (neither observable nor controllable)
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K(s) :

[

AK 0
0 DK

]

,

with α(AK) < α(A+BDKC), it is straightforward to show that the resulting closed-loop spectral abscissa
subgradients are convex linear combinations of matrices of the form

φj(K) =

[

0 0

0 Re
(

CVjYjU
H
j B

)T

]

where Vj (resp. UH
j ) are blocks of right (resp. left) eigenvectors associated with the active eigenvalues

of A + BDKC, and Yj � 0, Tr(Yj) = 1. As the successive search directions have the same structure
(see (12) in the following), this results in unchanged AK , BK , CK blocks among the new iterates. Put
differently, they all represent static controllers.

In order to initialize the descent algorithm with a minimal k-th order controller, and to maintain this
minimality for all subsequent iterates, we use an explicit parametrization of minimal, stable and balanced
systems [26, 15]. With this canonical structure, the number of free parameters for a k-th order controller
with p inputs and m outputs is k(m+ p) +mp.

3.3 Sub-gradients with structured controllers

Formulation (4) is general enough to handle state-space structured controllers, such as decentralized
or PID controllers, minimal realizations (see 3.2), and others. Let K : Rd −→ Rm×p be a smooth
parametrization of an open subset K ⊂ Rm×p, containing state-space realizations of a family of controllers
of a given structure. Then the stabilization problem can be written as

min
X∈Rd

α (Ac ◦K (X))

with d free decision variables. The Clarke subgradients ψ ∈ Rd of the composite function α ◦Ac ◦K are
derived from (5) with the chain rule (ref Clarke ?)

ψ(X) = J
vec(K)(X)T vec (φ (K (X)))

where J
vec(K)(X) ∈ Rmp×d is the Jacobian matrix of vec(K) : X ∈ Rd 7→ vec(K(X)) ∈ Rmp.

BLO donnent une regle en chaine pour la fonction alpha qui n’est pas basee sur la theorie de Clarke,
sachant que celle ne marche pas toujours pour alpha. C’est dans le but de demontrer une condition
d’optimalite. Il faudra chercher la ref.

4 Descent step and optimality function

In order to derive a descent step from the subdifferential ∂(α ◦ Ac)(K), we follow a first-order step
generation mechanism for minimax problems introduced by Polak in [27, 28]. It was described and
applied in the semi-infinite context of the H∞ synthesis in [3]. This descent scheme is based on the
minimization of a local and strictly convex first-order model θ(K), which serves both as a descent step
generator and as an optimality function.

In order to define θ(K), we first make the strong assumption that all the eigenvalues of the closed-loop
state matrix Ac(K) are semisimple. Then, with the notations from the introduction and in the previous
section, we define

θ(K) = min
H∈K

max
1≤j≤q

max
Yj � 0

Tr(Yj) = 1

Re (µj (Ac (K)))− α (Ac (K)) + 〈φj(K), H〉+ 1

2
δ ‖H‖2 (6)

where δ > 0 is fixed, and 〈φj(K), H〉 = Tr
(

Re
(

CVjYjU
H
j B

)

H
)

.
Using Fenchel duality for permuting the min and double max operators, we obtain the dual form of

(6), where the step H in the controller space vanishes

θ(K) = max
τj ≥ 0

∑

j τj = 1

max
Yj � 0

Tr(Yj) = 1

q
∑

j=1

τj [Re (µj (Ac (K)))− α (Ac (K))]− 1

2δ

∥

∥

∥

∥

∥

∥

q
∑

j=1

τjφj(K)

∥

∥

∥

∥

∥

∥

2

(7)
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and we get the minimizer H(K) of the primal formulation (6) from the solution

(

(

τ⋆
j (K)

)

1≤j≤q
,
(

Y ⋆
j (K)

)

1≤j≤q

)

of the dual expression (7) in the explicit form

H(K) = −1

δ

q
∑

j=1

τ⋆
j (K) Re

(

CVjY
⋆
j (K)UH

j B
)T
. (8)

We recall the following basic properties of θ and H from [27]:

1. θ(K) ≤ 0 for all K ∈ K, and θ(K) = 0 if and only if 0 ∈ ∂(α ◦Ac)(K).

2. When 0 6∈ ∂(α ◦ Ac)(K), then H(K) is a descent direction for the closed-loop spectral abscissa at
K. More precisely

d (α ◦Ac) (K;H(K)) ≤ θ(K)− 1

2
δ ‖H(K)‖2 ≤ θ(K)

for all K.

3. The function θ is continuous,

4. The operator K 7→ H(K) is continuous.

Therefore direction H(K) will be chosen as a search direction in a descent-type algorithm by combining
it with a line search. The continuity of H (·) ensures that every accumulation point K̄ in the sequence
of iterates satisfies the necessary optimality condition 0 ∈ ∂(α ◦Ac)(K̄) (see [3]). It is not clear whether
continuity in this sense is still satisfied when the hypothesis of semi-simplicity of the eigenvalues is
dropped. Notice that even for semisimple eigenvalues, continuity fails for the steepest descent direction,
defined as the solution of the program

min
‖H‖≤1

d(α ◦Ac)(K;H) = min
‖H‖≤1

max
j∈J (Ac(K))

max
Yj � 0

Tr(Yj) = 1

〈φj(K), H〉 .

This is why steepest descent steps for non-smooth functions may fail to converge. In our case this justifies
the recourse to the quadratic, first-order model θ as a descent function. Moreover, the properties 1. and
3. suggest a stopping test based on the value of θ(K), because as soon as θ(K) ≥ −εθ (for a small given
εθ > 0), the controller K is in a neighborhood of a stationary point.

5 Descent algorithms

5.1 Variant I (first-order type)

We discuss details of a descent-type algorithm for minimizing the closed-loop spectral abscissa, based on
the theoretical results from the previous section.

For a given iterate Kl, we have to address first the practical computation of the maximizer of the
dual form (7) of θ(Kl). Without any additional hypothesis, it is a concave semidefinite program in τj and
Yj . The matrix variables come from the possible multiplicity of some eigenvalues of Ac(Kl). Fortunately,
this situation is unlikely to happen in a numerical framework, because the eigenvalues and eigenvectors
are computed within a given tolerance. Except in some academic examples (see for instance 6.1), or for
particular values of the controller, coalescence of eigenvalues will not be observed in practice. The SDP
then reduces to a concave quadratic maximization program:

θ(K) = max
τj ≥ 0

∑

j τj = 1

−α (Ac (K)) +

n
∑

j=1

τjRe (µj (Ac (K)))− 1

2δ

∥

∥

∥

∥

∥

∥

n
∑

j=1

τjφj(K)

∥

∥

∥

∥

∥

∥

2

(9)

where φj(K) = Re
(

Cvju
H
j B

)T
, with vj a right eigenvector associated with µj (Ac (K)), and uH

j the

corresponding left eigenvector (such that uH
j vj = 1).
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To go one step further, we reduce the dimension of the search space. There are n scalar variables τj
in (9), n the order of the open-loop plant, augmented by k, the order of the controller, in the case of a
dynamic controller. For a given ratio ρ ∈ [0, 1], we define the following enriched active eigenvalues set

Aρ(K) =

{

µj (Ac(K)) |α (Ac (K))− Re (µj (Ac(K))) ≤ ρ
[

α (Ac (K))− min
1≤i≤n

Re (µi (Ac(K)))

]}

where Jρ(K) = {j ∈ N | 1 ≤ j ≤ n and µj (Ac(K)) ∈ Aρ(K)} is the corresponding enriched active index
set. It is clear that ρ 7→ Aρ(K) is nondecreasing on [0, 1], and that A(K) = A0(K) ⊂ Aρ(K) ⊂ A1(K) =
spec (Ac(K)) for all ρ ∈ [0, 1]. Hence, we have locally

α (Ac (K)) = max
j∈Jρ(K)

Re (µj (Ac(K))) (10)

and by applying the descent function θ to this local formulation, we get finally the quadratic program

θ(K) = max
τj ≥ 0

∑

j τj = 1

−α (Ac (K)) +

|Jρ(K)|
∑

j=1

τjRe (µj (Ac (K)))− 1

2δ

∥

∥

∥

∥

∥

∥

|Jρ(K)|
∑

j=1

τjφj(K)

∥

∥

∥

∥

∥

∥

2

. (11)

The descent direction H(K) is obtained from the maximizer
(

τ⋆
j (K)

)

1≤j≤|Jρ(K)|
as

H(K) = −1

δ

|Jρ(K)|
∑

j=1

τ⋆
j (K) Re

(

Cvju
H
j B

)T
(12)

Notice that for ρ = 0 the QP in (11) reduces to the steepest descent finding problem

min
τj ≥ 0

∑

j τj = 1

∥

∥

∥

∥

∥

∥

|J (K)|
∑

j=1

τjφj(K)

∥

∥

∥

∥

∥

∥

= min
φ∈∂(α◦Ac)(K)

‖φ‖

while ρ = 1 reproduces (9). The parameter ρ offers some additional numerical flexibility.

Algorithm 1 First-order descent type algorithm for the closed-loop spectral abscissa

Set the parameters ρ ∈ [0, 1], δ > 0, K0 ∈ K, εθ, εα, εK > 0, β ∈]0, 1[.
Set the counter l ← 0.

1. Compute α (Ac (K0)), the enriched active index set Jρ(K0) and the corresponding subgradients
φj(K0).

2. Solve (11) for K = Kl and get the search direction H(Kl) from (12).
If θ(Kl) ≥ −εθthen stop.

3. Find a step length tl > 0 satisfying the Armijo line search condition

α (Ac (Kl + tlH(Kl))) ≤ α (Ac (Kl)) + βtld(α ◦Ac) (Kl;H(Kl))

4. Set Kl+1 ← Kl + tlH(Kl).
Compute α (Ac (Kl+1)), the enriched active index set Jρ(Kl+1) and the corresponding subgradients
φj(Kl+1).

5. If α (Ac (Kl))− α (Ac (Kl+1)) ≤ εα(1 + α (Ac (Kl))) and ‖Kl −Kl+1‖ ≤ εK (1 + ‖Kl‖)
then stop.
Otherwise set l ← l + 1 and go back to 2.

In step 3, the directional derivative is easily derived from the sub-gradients of the closed-loop spectral
abscissa, by observing that, for any H in the controller-space,

d(α ◦Ac) (Kl;H) = max
φ∈∂(α◦Ac)(Kl)

〈φ,H〉

= max
j∈J (Kl)

〈φj(Kl), H〉
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The second equality holds since ∂(α ◦ Ac)(Kl) = co {φj(Kl) | j ∈ J (Kl)}, and since the maximum of a
linear function over a polytope is necessarily attained on a vertex.

The additional stopping tests in step 5 allows the algorithm to stop when neither the controller nor
the spectral abscissa updates are satisfactory, whereas the stationarity criterion on the value of θ is not
met in step 2. The situation can occur if some of the active eigenvalues coalesce:

• In case of a multiple but semisimple eigenvalue, the Clarke subdifferential still exists (see 3.1), but
is underestimated in the algorithm because we made the hypothesis that active eigenvalues were
simple in order to reduce the SDP to a QP. More precisely in that case

∂(α ◦Ac)(Kl) = co
{

Re
(

CVjYjU
H
j B

)T | j ∈ J (Kl), Yj � 0 andTr(Yj) = 1
}

) co
{

Re
(

Cvju
H
j B

)T | j ∈ J (Kl)
}

• In case of a defective eigenvalue, the Clarke subdifferential no longer exists.

5.2 Variant II (second-order type)

The optimality function (6) does not specify the choice of the parameter δ. If second order information is
available, it may therefore be attractive to replace the matrix δI in (6) by the inverse of the corresponding
Hessian. Polak [28] extends the Newton method to min-max problems, but the corresponding dual
expression for θ(Kl) does no longer reduce to a quadratic program like (9). We propose a different line
here which is based on a heuristic argument. The quadratic term of θ is weighted by a scalar δ, which is
updated at each step using a second-order model of α ◦ Ac. We suggest a quasi-Newton method based
on the new optimality function θ̂ at iteration l ≥ 1:

θ̂(Kl) = min
H∈K

max
j∈Jρ(Kl)

max
Yj � 0

Tr(Yj) = 1

Re (µj (Ac (Kl)))− α (Ac (Kl)) + 〈φj(K), H〉+ 1

2
vec(H)TQlvec(H)

(13)
The matrix Ql is a positive-definite, symmetric mp×mp matrix, updated with the symmetric rank-two
BFGS update

Ql+1 = Ql +
yly

T
l

yT
l sl

− Qlsls
T
l Ql

sT
l Qlsl

(14)

where sl = vec(Kl+1 −Kl), and yl = vec(gl+1 − gl), with gl the subgradient of minimal norm in ∂(α ◦
Ac)(Kl), by analogy with the gradient for smooth functions.

The dual form of (13) is then the convex QP

θ̂(Kl) = max
τj ≥ 0

∑

j τj = 1

−α (Ac (K))+

|Jρ(Kl)|
∑

j=1

τjRe (µj (Ac (Kl)))−
1

2
vec





|Jρ(Kl)|
∑

j=1

τjφj(Kl)





T

Q−1
l vec





|Jρ(Kl)|
∑

j=1

τjφj(Kl)





(15)
and the vectorized descent direction derived from the optimal

(

τ⋆
j (Kl)

)

convex coefficients is:

vec
(

Ĥ(Kl)
)

= −Q−1
l

|Jρ(Kl)|
∑

j=1

τ⋆
j (Kl) vec (φj(Kl)) (16)

Notice that the quadratic subproblem (15) invokes the inverse of the BFGS update Ql. Inversion can
be avoided by directly updating Q−1

l at step 5, with the update formula

Q−1
l+1 = Q−1

l +
(sl −Q−1

l yl)s
T
l + sl(sl −Q−1

l yl)
T

sT
l ys

− yT
l (sl −Q−1

l yl)sls
T
l

(sT
l yl)2

=

(

I − sly
T
l

sT
l yl

)

Q−1
l

(

I − sly
T
l

sT
l yl

)T

+
sls

T
l

sT
l yl

8



Algorithm 2 Second-order descent type algorithm for the closed-loop spectral abscissa

Set the parameters ρ ∈ [0, 1], Q0 ≻ 0, K0 ∈ K, εθ, εα, εK > 0, β ∈]0, 1[.
Set the counter l ← 0.

1. Compute α (Ac (K0)), the enriched active index set Jρ(K0), the corresponding subgradients φj(K0),
and the subgradient of minimal norm g0 in ∂(α ◦Ac)(K0).

2. Solve (15) for K = Kl and get the search direction Ĥ(Kl) from (16).

If θ̂(Kl) ≥ −εθthen stop.

3. Find a step length tl > 0 satisfying the Armijo line search condition

α
(

Ac

(

Kl + tlĤ(Kl)
))

≤ α (Ac (Kl)) + βtld(α ◦Ac)
(

Kl; Ĥ(Kl)
)

(try tl = 1 first)

4. Set Kl+1 ← Kl + tlĤ(Kl).
Compute α (Ac (Kl+1)), the enriched active index set Jρ(Kl+1), the corresponding subgradients
φj(Kl+1), and the subgradient of minimal norm gl+1 in ∂(α ◦Ac)(Kl+1).

5. Compute Ql+1 with the BFGS update formula (14).

6. If α (Ac (Kl))− α (Ac (Kl+1)) ≤ εα(1 + α (Ac (Kl))) and ‖Kl −Kl+1‖ ≤ εK (1 + ‖Kl‖)
then stop.
Otherwise set l ← l + 1 and go back to 2.

6 Numerical examples

In this section we test our nonsmooth algorithm on a variety of stabilization problems in automatic control.
In every application, we look for a static output feedback (SOF) controller first, starting our algorithm
at DK = 0. Dynamic controllers with fixed order are obtained using the dynamic augmentations (3).
Finally, we will also show how to compute internally stabilizing controllers with fixed structure.

We use variant I of the descent algorithm in the following applications, with the default parameters
values (unless other specific values are pointed out):

ρ = 0.8, δ = 0.1, εθ = 10−5, εα = 10−6, εK = 10−6 and β = 0.9

We compare performance of our method with other minimization algorithms, namely multi-directional
search (MDS), two algorithms implemented in the Matlab Optimization Toolbox, and the gradient sam-
pling method of Overton et al. [11].

Multidirectional search (MDS) belongs to a larger family of direct search algorithms [29]. This
derivative-free method explores the controller space via successive geometric transformations of a sim-
plex (contraction, expansion and reflection). Its convergence to a local minimum is established for C1-
functions, but nonsmoothness can make it converge to a non-differentiable and non-optimal point [30],
called a dead point. In [2] we have shown how to combine MDS with non-smooth descent steps in order to
guarantee convergence. Here we use MDS with two stopping criteria: the first is based on the relative size

of the simplex: maxi‖vi−v0‖
max(1,‖v0‖)

< ε1 where vi are the vertices of the simplex, and v0 is the vertex of smallest

function value of the objective f . The second stopping test quantifies the function values variations over

the vi:
maxi f(vi)−f(v0)

max(1,|f(v0)|)
< ε2. Experiments were performed with ε1 = ε2 = 10−6.

Secondly, two Matlab Toolbox Optimization functions have been tested, one designed for general
constrained optimization (fmincon), the second suited for min-max problems (fminimax). Both functions
are essentially based on SQP algorithm with BFGS and line search and exact merit function (see [25]).
The finite constrained cast of (4) passed to fmincon is

min
t ∈ R

K ∈ K

t subject to Re (λi(A+BKC)) ≤ t for all 1 ≤ i ≤ n

Equivalently, the min-max formulation used for fminimax is

min
K∈K

max
1≤i≤n

Re (λi(A+BKC))

9



Clearly here we make the implicit assumption that all the eigenvalues are simple in order to work with
smooth constraints or maximum of smooth functions, which is required by SQP. Our testing will show
whether the toolbox functions run into difficulties in those cases where this hypothesis is violated.

Finally, we use the Matlab package HIFOO (version 1.0), provided at http://www.cs.nyu.edu/overton/software/hifoo/
As discussed in [20], the underlying algorithm consists in a succession of (at most) three optimization
phases: BFGS, local bundle (LB) and gradient sampling (GS). HIFOO is probabilistic and does not
return the same final controller even when started from the same initial guess. We noticed that for the
same reason the number of evaluations of the spectral abscissa could greatly change from one run to the
other, even when all the settings are unchanged. This probabilistic feature of HIFOO is inherent to the
multiple starting points strategy (by default, 3 random controllers, in addition to the user input), and
to the gradient sampling algorithm itself. The first stabilizing controller is obtained with the parameter
’+’, whereas the final one is with ’s’. The iteration number of each stage is given as BFGS+LB+GS.

As we have indicated before, final controllers are not necessarily local minimizers of α ◦ Ac. The
optimality is here of lower importance than in design problems with performance criteria. However, we
discuss the status of every termination case encountered in the following examples, depending on the
multiplicity of the active eigenvalues at the end, and on the dimension of the associated eigenspaces.

6.1 Academic test

We begin with an academic 2nd order SISO plant from the output feedback literature [24], cited in
[23], and representing a damped linear oscillator. The open-loop is marginally unstable, with two pure
imaginary modes (λ1 = i and λ2 = −i). The closed-loop state matrix is

Ac(K) = A+BKC =

[

0 1
−1 K

]

For K ∈ R \ [−2, 2] (resp. K ∈ ]−2, 2[), Ac(K) is diagonable with two real eigenvalues λ = K
2 ±
√
K2 − 4

(resp. two complex conjugate eigenvalues λ = K
2 ± i

√
4−K2), and then α ◦ Ac is Clarke regular. This

is not the case at K = −2 (resp. K = 2), where the eigenvalues of Ac(K) coalesce into the double root
λ = −1 (resp. λ = 1). For these two controller values, α ◦Ac looses Lipschitz continuity, and the Clarke
subdifferential is not defined.

Finally, we get α ◦ Ac(K) = K
2 +

√

[K2 − 4]+. The global minimum is attained at K = −2, for

which the θ based optimality certificate is unfortunately useless. Still for K /∈ {−2, 2}, the stabilization
algorithm provides a descent direction and allows to compute a descent step. We have tried various initial
controller values K0, taken on different pieces of the spectral abscissa curve.

For every given K0, the algorithm converges to the global minimum. As soon as the relative step
length and the relative spectral abscissa decrease are small enough, the algorithm stops.

case # 1 2 3 4

K0 -5 0 2 5
first α < 0 −2.09 · 10−1 −2.50 · 10−1 −2.50 · 10−1 −5.73 · 10−1

(iter.) (0) (1) (1) (3)
final α −1.00 −1.00 −1.00 −1.00
(iter.) (30) (17) (17) (17)

fun. evaluations 117 71 72 70
final θ −1.25 · 10−1 −1.25 · 10−1 −1.25 · 10−1 −1.25 · 10−1

final bundle size 1 1 1 1
final active set size 1 1 1 1

Table 1: Damped linear oscillator stabilization

Surprisingly, even from K0 = 2, our non-smooth stabilization algorithm converges to the global
minimum, even though Clarke subgradients are not well defined at the first iteration. Figure 1 clearly
shows the nonsmooth and even non-Lipschitz behavior of the closed-loop eigenvalues around at K = ±2.
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Figure 1: closed-loop eigenvalues variation around K = 0

Remark: ForK ∈ {−2, 2}, the double eigenvalue of Ac(K) is necessarily nonderogatory (for dimension
reasons). The spectral abscissa is then subdifferentially regular at Ac(−2) and Ac(2), and in this academic
example with exact and integer data, the corresponding subdifferential of α◦Ac can be obtained explicitly.
The Jordan decompositions are respectively

Ac(−2) =

[

0 1
−1 −2

]

=

[

1 1
−1 0

] [

−1 1
0 −1

] [

0 −1
1 1

]

Ac(2) =

[

0 1
−1 2

]

=

[

−1 1
−1 0

] [

1 1
0 1

] [

0 −1
1 −1

]

leading to the following regular subdifferentials

∂̂ (α ◦Ac) (−2) =

{

(

Re C

[

1 1
−1 0

] [

1
2 ϕ
0 1

2

] [

0 −1
1 1

]

B

)T

| ϕ ∈ C, Re ϕ ≥ 0

}

=

{

1

2
− ϕ | ϕ ∈ R+

}

=

[

−∞, 1
2

]

∂̂ (α ◦Ac) (2) =

{

(

Re C

[

−1 1
−1 0

] [

1
2 ϕ
0 1

2

] [

0 −1
1 −1

]

B

)T

| ϕ ∈ C, Re ϕ ≥ 0

}

=

{

1

2
+ ϕ | ϕ ∈ R+

}

=

[

1

2
,+∞

]

Even though the regular subdifferential could be used for characterizing the sharp local minimizers of
α◦Ac (see [19]), the detection of a Jordan block in Ac is a numerical challenge, because of the unstability
of the Jordan form.

6.1.1 Matlab optimization toolbox and direct search

The first series is run with the initial controller K0 = 0.

11



algorithm MDS fmincon fminimax hifoo

right-angled

first α < 0 −1.00 - −0.25 −0.25
(iter.) (1) (-) (1) (1+0+0)
final α −1.00 0 −9.95 · 10−1 −1.00
(iter.) (21) (198) (5) (8+2+5)

fun. evaluations 44 201 38 308

Table 2: Damped linear oscillator stabilization

fmincon could not converge after 200 function evaluations, and returned K = −1.84 · 1014. In this
second benchmark, we tried to initialize the algorithms with the problematic controller value K0 = 2.

hifoo finds the global minimum at the BFGS stage, tries in vain to improve it with local bundle and
gradient sampling iterations, but doesn’t give any local optimality certificate at the end (local optimality
measure is 1.5 · 10−1).

algorithm MDS fmincon fminimax hifoo

right-angled

first α < 0 −1.00 - - −1.49 · 10−8

(iter.) (2) (-) (-) (1)
final α −1.00 1.00 1.00 −1.00
(iter.) (21) (100) (100) (76+2+5)

fun. evaluations 44 201 201 1212

Table 3: Damped linear oscillator stabilization

fmincon and fminimax got stuck at K = 2, even after 200 function evaluations. MDS converged in
both cases to the minimizer K = −2, with fewer function evaluations than the nonsmooth algorithm: the
very small dimension of the search space is favorable to this direct search technique. In contrast, hifoo
needs many more spectral abscissa calls in order to complete the optimization, without any optimality
certificate, as above.

Remark: In the one-dimension case here, right-angled and regular simplices are intervals, the shape
of the simplex has no influence on the MDS algorithm.

6.2 Transport airplane

The linearized plant of 9th-order describes the longitudinal motion of a transport airplane at given flight
conditions [17, 22]. The open loop is unstable, with spectral abscissa α = 1.22 · 10−2, attained by a
simple, real mode: the composite function α ◦ Ac is then perfectly differentiable at K0 = DK0

= 0 (all
the other modes are stable, with real parts between −5.00 · 101 and −3.18 · 10−2).

6.2.1 Nonsmooth optimization algorithm

Our nonsmooth algorithm solves the SOF stabilization problem after one iteration only, whether the
initial subdifferential, reduced to a singleton, was enlarged or not. But if we let the algorithm run until
reaching one of the stopping test described in algorithm 1, the final closed-loop depends on the bundle
enrichment. The first three columns in table 4 show some termination information for no enlargement
or for a very small enlargements of the subdifferential (indicated as 0 %, 0.1 % and 1 % enlargement).
The low value of the optimality function θ indicates that no minimum is reached and that the algorithm
got stuck near a dead point for α ◦Ac. This is suggested by the graphical representation of α ◦Ac versus
small variations δK of the final gain around the final controller, along a chosen direction (see figure 2 for
the 0.1 % enlargement case). This is further confirmed by inspection of closed-loop modes: two complex
conjugate eigenvalues with small imaginary parts are active (λ1 = −1.43 ·10−1+1.15 ·10−4i and λ2 = λ̄1)
and they are very near from coalescence into a defective (but nonderogatory) real eigenvalue.
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case # 1 2 3 4

subdiff. enlargement 0 % 0.1 % 1 % 2 %
first α < 0 −7.07 · 10−2 −1.07 · 10−2 −1.18 · 10−2 −1.05 · 10−2

(iter.) (1) (1) (1) (1)
final α −1.15 · 10−1 −1.43 · 10−1 −1.30 · 10−1 −4.45 · 10−1

(iter.) (20) (27) (16) (9)
fun. evaluations 96 121 63 43

final θ −1.54 · 102 −1.30 · 101 −3.10 · 10−1 −5.60 · 10−17

final bundle size 1 2 4 4
final active set size 1 1 1 2

Table 4: Transport airplane stabilization
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Figure 2: closed-loop eigenvalues variation around final K along H = [1, 0, 0, 0, 0] (0.1 % enlargement)

The fourth case is more favorable. The inclusion of more subgradients into the bundle generates some
better descent directions for α ◦Ac and allows longer descent steps. The final value of θ is close to zero,
indicating local optimality.

There are three active eigenvalues on the last iteration: two of them are complex conjugate (λ1 =
−4.45 · 10−1 + 4.40 · 10−3i and λ2 = λ̄1), the other one is real (λ3 = −4.45 · 10−1). We notice that
these three modes come directly from the plant, and are not controllable. This is confirmed by the
associated closed-loop subgradients, φ1 = φ2 ≈ 0 and φ3 ≈ 0, driving to a singleton subdifferential
∂(α ◦ Ac)(K9) = {0}. The final point is then smooth, in spite of multiple eigenvalue activity, and the
uncontrollability of the active modes gives a global optimality certificate. As an illustration, see figure 3.
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Figure 3: closed-loop eigenvalues variation around final K along H = [1, 0, 0, 0, 0] (2 % enlargement)

6.2.2 Matlab optimization toolbox and direct search

The multidirectional search (MDS) algorithm was initialized with K0 = 0 and applied with two different
shapes of simplices in the controller space. Two of the Matlab optimization toolbox functions were tried:
fmincon and fminimax.

algorithm MDS MDS fmincon fminimax hifoo

right-angled regular

first α < 0 −1.09 · 10−1 −1.04 · 10−2 −4.45 · 10−1 −1.13 · 10−2 −2.62 · 10−2

(iter.) (3) (7) (13) (1) (1+0+0)
final α −4.21 · 10−1 −1.57 · 10−1 −4.45 · 10−1 −4.45 · 10−1 −2.31 · 10−1

(iter.) (36) (37) (13) (25) (396+3+2)
fun. evaluations 366 376 32 131 1140

Table 5: Transport airplane stabilization

MDS becomes very greedy in function evaluations, as the controller size increases in this example.
Moreover, the global minimum is not found, either because of an unsuccessful local minimum, or a dead
point.

Both Matlab functions return the global minimum, after very few iterations for fmincon.
hifoo terminates far from the global minimum, because slow convergence occurs: a large amount of

BFGS iterations (99) is reached for each of the four starting controllers (K0 = 0 and three perturbed
K0). The final optimality measure is 5.28 · 10−4.

6.3 VTOL helicopter

This model with four states, one measurement and two control variables, describes the longitudinal motion
of a VTOL (Vertical Take-Off and Landing) helicopter, at given flight conditions. The open-loop spectral
abscissa is α = 2.76 · 10−1, attained by two complex conjugate eigenvalues. All the open-loop eigenvalues
are simple.
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6.3.1 Nonsmooth optimization algorithms (variants I and II)

Alg. Variant I II (with BFGS)

first α < 0 −6.16 · 10−2 −6.16 · 10−2

(iter.) (1) (1)
final α −2.39 · 10−1 −2.47 · 10−1

(iter.) (216) (26)
fun. evaluations 796 90

final θ −9.77 · 10−6 −1.70 · 10−6

final bundle size 2 2
final active set size 1 2

Table 6: VTOL helicopter stabilization

Using our method, the closed-loop becomes stable after the first iteration already, and the spectral
abscissa decreases slowly until satisfaction of the local optimality stopping test. This slow convergence
strongly calls for variant II of our nonsmooth descent algorithm, which finds a lower closed-loop spectral
abscissa within much less iterations. For both cases, the value close to 0 of θ indicates local optimality.

The final closed-loop spectrum at convergence obtained by algorithm variant I is

Λ =
{

−2.39 · 10−1 ± 5.76 · 10−1i,−2.39 · 10−1,−7.91 · 101
}

,

and the bundle subgradients associated with µ1 = −2.39 · 10−1 + 5.76 · 10−1i and with µ3 = −2.39 · 10−1

are, respectively,

φ1 = φ2 =

[

−1.26 · 10−1

+2.92 · 10−2

]

, φ3 =

[

+6.26 · 10−2

−1.55 · 10−2

]

.

Convergence analysis is favorable for our algorithm, because the nonsmoothness comes from multiple ac-
tive eigenvalues for the closed-loop spectral abscissa, each of them being simple: the Clarke subdifferential
is then well defined and the value of θ(K) is reliable as an optimality criterion.

A plot in the neighborhood of the convergence point of variant I (see figure 4) clearly shows the
nonsmoothness at optimality.

2 2.5 3 3.5 4
10.51111.51212.5

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

K
1

closed−loop spectral abscissa
around variant I local minimum

K
2

α(
A

+
B

[K
1;

K
2]

C
)

Figure 4: closed-loop spectral abscissa around optimal K of variant I algorithm
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6.3.2 Matlab optimization toolbox and direct search

algorithm MDS MDS fmincon fminimax hifoo

right-angled regular

first α < 0 −1.23 · 10−1 −9.95 · 10−2 −2.47 · 10−1 −5.09 · 10−2 −6.16 · 10−2

(iter.) (1) (1) (36) (1) (1+0+0)
final α −1.35 · 10−1 −2.47 · 10−1 −2.47 · 10−1 −2.47 · 10−1 −2.46 · 10−1

(iter.) (15) (58) (36) (36) (116+0+0)
fun. evaluations 63 235 73 73 216

Table 7: VTOL helicopter stabilization

The same closed-loop spectral abscissa is found by MDS (with regular simplex shape), the Matlab
routines, which are very efficient in this example, and by hifoo (with final local optimality measure
9.87 · 10−4). Notice that iterates of fmincon become feasible only at the last iteration, a classical feature
of SQP algorithms.

6.4 High order model

Our last example taken from [23] is of rather high order (55 states), with two controlled inputs and
two measured outputs. The state-space data describe a modified Boeing B-767 at flutter condition (see
[16]). The open-loop is unstable, but the only active eigenvalues of A for the spectral abscissa are
µ1 = 1.015 · 10−1 and µ̄1, with multiplicity one.

6.4.1 Nonsmooth optimization algorithm

We use algorithm variants I and II, with all gains of the initial controller set to 0.

Alg. Variant I II (with BFGS)

first α < 0 −2.37 · 10−2 −2.36 · 10−2

(iter.) (1) (1)
final α −7.99 · 10−2 −3.50 · 10−2

(iter.) (99) (29)
fun. evaluations 387 111

final θ −8.00 · 10−4 −8.70 · 10−6

final bundle size 29 29
final active set size 1 1

Table 8: B-767 airplane stabilization

The two versions of our algorithm stabilize the plant after only one iteration. If the optimization is
continued, variant II gives fast convergence to a local minimum (certified by the small value of θ). Variant
I is slower here.

An inspection of the largest real part eigenvalues of Ac(K) from the variant I final controller shows
that one pair of complex conjugate eigenvalues is active (λ1 = −7.992 · 10−2 +4.912 · 10−1i and λ2 = λ̄1);
another pair is very close (λ3 = −7.996 · 10−2 + 4.892 · 10−1i and λ4 = λ̄3). The associated subgradients
are nearly opposite matrices

φ1 = φ2 =

[

−2.83 · 102 −5.56 · 101

1.18 · 106 2.11 · 105

]

, φ3 = φ4 =

[

2.82 · 102 5.54 · 101

−1.19 · 106 −2.12 · 105

]

which explains the small final value of the optimality function θ.
Deeper analysis shows that the eigenvectors v1and v3 (resp. v2 and v4) are close from collinearity,

indicating the neighboring coalescence of λ1 and λ3 (resp. λ2and λ4) into a defective eigenvalue.
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algorithm MDS MDS fmincon fminimax hifoo

right-angled regular

first α < 0 −3.59 · 10−3 −2.35 · 10−2 −2.47 · 10−2 −2.36 · 10−2 −2.34 · 10−2

(iter.) (2) (13) (3) (1) (1+0+0)
final α −3.23 · 10−2 −3.54 · 10−2 −3.44 · 10−2 −5.24 · 10−2 −3.62 · 10−2

(iter.) (60) (100) (9) (15) (132+3+15)
fun. evaluations 485 805 21 31 1858

Table 9: B-767 airplane stabilization

6.4.2 Matlab optimization toolbox and direct search

6.4.3 PID controllers

As our algorithm can handle controller structure (see 3.3), it offers an interesting framework for PID
controller design, particularly attractive for MIMO plants where very few generic tuning techniques are
available. In this example, we seek a 2 input, 2 output stabilizing PID controller with the following
transfer matrix:

K(s) = KP +
1

s
KI +

s

1 + εs
KD

where KP , KI , KD ∈ R2×2 and ε > 0. The algorithm is initialized with KP = KI = KD = 0 and
ε = 10−2. The resulting closed-loop is unstable (α(Ac(K)) = 1.015 · 10−1). The algorithm (variant I)
stops after 22 iterations, and returns the following values:

KP =

[

1.91 · 10−2 5.03 · 10−6

1.52 · 10−3 3.50 · 10−5

]

, KI =

[

1.61 · 10−1 1.56 · 10−4

7.88 · 10−2 −1.02 · 10−3

]

,

KD =

[

−1.97 · 10−8 −6.92 · 10−7

−1.88 · 10−9 −4.45 · 10−7

]

, ε = 10−2

The final closed-loop spectral abscissa is −2.97 · 10−3. Notice that the derivative coefficients are nearly
0, while ε is unchanged.

6.4.4 Dynamic controllers

k 1 2 3 4 5
(contr. order)

first α < 0 −2.15 · 10−2 −2.46 · 10−2 −3.49 · 10−3 −9.40 · 10−5 −1.44 · 10−4

(iter.) (2) (1) (11) (11) (1)
final α −5.91 · 10−2 −1.76 · 10−1 −3.88 · 10−3 −2.98 · 10−3 −5.70 · 10−4

(iter.) (53) (98) (25) (25) (10)
fun. evaluations 264 536 147 143 67

Table 10: B-767 airplane stabilization by dynamic output feedback

Stabilizing dynamic controllers were obtained with the minimal, stable and balanced parametrization
in section 3.2, combined with algorithm variant I. By testing several initial guesses K, we noticed that
the algorithm converged to local minimizers that were not stabilizing. In these cases a restart with a
different initial K0 became inevitable.
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6.5 Conclusion

Formulated as an optimization program, fixed-order output feedback stabilization has been solved for
several case studies from the literature. The proposed nonsmooth algorithm addresses the nonsmooth-
ness of the spectral abscissa and generates successive descent steps. Even if the theoretical assumption
of semisimple active eigenvalues may seem restrictive, the experimental results show that our framework
is generic enough to handle realistic stabilization problems. The two proposed variants are determinis-
tic and numerically efficient, often with much less spectral abscissa evaluations than MDS or HIFOO.
Surprisingly, we noticed that the smooth optimization tools from the Matlab optimization toolbox offer
good alternatives, except in the academic test example.
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