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Sequence spaces with separable 7-duals 

By 

DOMINIKUS NOLL 

Introduction. Using the sliding hump technique, G. Bennett [2] and W. Stadler [9] 
independently obtained an affirmative answer to a problem posed by A. Wilansky, who 
asked whether c o was the only FK-space E densely containing (b whose fl-dual is (. 
Actually, their approaches give us much more information. Adopting a definition from 
[2], an FK-space E is said to have the Wilansky property (W) provided that every dense 
FK-subspace F of E satisfying F ~ = E r must coincide with E. The Bennett/Stadler result 
then tells that every BK-AK-space E whose dual E' is as well a BK-AK-space has the 
Wilansky property (W). 

In their papers [6, 7, 8], W. Stadler and the author have further investigated this circle 
of problems. We indicated that not only is the Wilansky property of a theoretical interest 
in sequence space theory, but also has nice applications in summability. From the 
summability point of view, however, it would be desirable to have criteria concerning the 
question when a convergence domain c A (with respect to an infinite matrix A) has the 
Wilansky property. Unfortunately, the Bennett/Stadler Theorem gives us poor informa- 
tion on that point, since the assumption of sectional convergence, which is a genuine part 
of the proofs given in [2] and [9], is quite restrictive when imposed on a null domain (Co)A 
of a matrix A. The purpose of this paper is to overcome this difficulty by building up a 
sliding hump argument, which no longer makes use of sectional convergence in E or E'. 
It turns out that the crucial assumption needed to make our argument work is that the 
7-dual space E ~ be separable in its intrinsic BK-topology. 

We obtain criteria for the presence of the Wilansky property in the frame of BK-AD- 
spaces. When applied to convergence domains c A, this tells that c A has the Wilansky 
property if A is a perfect triangular matrix and c~ is separable. In particular, this is the 
case for any triangular matrix A having sectional convergence, so applies to the Cesfiro 
methods Ca, 0 < c~ < 1, the permanent methods Mp of weighted means p, and various 
other matrix methods. We complete our paper by giving an example of a convergence 
domain c A, A a permanent lower triangular matrix with diagonal entries 4: 0, which lacks 
the Wilansky property (W). Since c A -~ c, this also proves that the Wilansky type proper- 
ties are not topological. 

Notations and preliminaries. Our terminology is mainly based on the books [10] and 
[11]. In the following we list some of the notions of special interest in our paper. 
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The sections of a sequence x ~ co are denoted by P,  x, n ~ N. We freely use the concepts 
of fl-, V- and f-dual i ty  as presented in [10]. When E is a BK-space containing ~, then E: 
is a quotient of E' under the natural mapping E' ~ E:  ([10, p. 105 f.]), and E: is also a 
BK-space. E ~, E ~ are known to be BK-spaces under the norms II I1~, I[ I1~ respectively, 
where 

= sup sup ~ x~y~ , 

and similarly II II~. We may iterate this procedure to obtain a norm II Ilpp on the fl-bidual 
E ##, starting with II II~ on E~,  and similarly for the ?-duals. It is important  to note here 
that, although E # c E '  via the natural identification, the topology generated by II lip is 
generally different from (and hence strictly finer than) the topology induced by the dual 
norm. In the present investigation the spaces E #, E ~ will always be considered with their 
intrinsic topologies coming from the norms 11 I[#, II II~- 

1. Separable v-duals. In this section we introduce a somewhat technical concept which 
turns out to be quite useful in our investigation to follow. 

Let (z") be a sequence of vectors from �9 such that there exists a strictly increasing 
sequence (k j) of indices having 

z ~ = (0 . . . . .  O, z{ ,  1 + 1 . . . . .  z { ;  O, 0 . . . .  ) ,  

j = 1, 2 , . . .  Then (z") will be called a block sequence. 
Let ( = (z") be a block sequence. We denote by c o (0 the space 

Co(() = {n~=l~nZn:(~n) GCo }, 
summation being understood in the coordinatewise sense. In the same sense we use the 
notation (~o (0. 

D e f i n i t i o n. A BK-space E containing �9 is called null for block sequences if for 
every block sequence ( = (z") in 4~ the relation Co (0 c E implies [] z" [[ ~ 0 (n ~ oo) in 
E. []  

Proposition 1. L e t  E be a BK-space containing ~b. Suppose that E ~ is separable. Then it 
is null for block sequences. 

P r o  of.  Let ( =  (z") be a block sequence having Co(( ) ~ E 7. We have to show 
II z" [1~ ~ 0 (n ~ oo). Clearly it suffices to show that inf { I1 z" 11 ~: n e N} = 0. Assume 
inf{llz"l l~:nEN} = : q  > O. 

Observe that c o (0 = E~ implies 

:oo (0  c Co (0  ~ ~ E~, ,  = E~.  

Indeed, only the first inclusion needs explanation here, but this follows in much the same 
way as the classical inclusion [~  c c8 ~. 
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Let us now derive the desired contradiction by showing that the subspace C ~~ (0 of 
E ~ is closed and isomorphic with E ~, which means that E ~ has a nonseparable sub- 
space. 

We define a mapping q~: y~o (~) ~ ~ by setting 

the series again being interpreted in the pointwise sense. Clearly qo is linear and bijective. 
We prove that it is continuous. Indeed, we have 

, n - 1  ~ i  z i  

i = 1  i = 1  7 

=t1-1 [Ink z - -  nk,_~Zll~<--__2t1-1 ]]Ztly, 

where z = ~ 3~, z", the sequence (k~) corresponding with (z ") as in the definition of a block 
n = l  

sequence, and where the last inequality is a consequence of the monotoni ty  of the norm 
[[ [[ ~. This actually proves the continuity of ~o. 

Let G denote the norm closed hull o f f  ~ (() in E ~. Then q~ extends to a continuous linear 
mapping ~: G ~ #~. Since E ~ is a K-space, the elements z of G may still be represented 
as z = 5~ 21 z i, and also from K-space reasons we deduce that c~ (z) = (21) holds in this case. 

i 
So (21) is in #~, proving z E C ~ ((), which consequently is closed in E ~. But now we may 
apply the open mapping theorem, and this tells us that ~o is an isomorphism, i.e. f~  (() 
_ f~.  []  

Re  m a r k  s. 1) Proposit ion 1 is not  valid for fl-duals E p. Indeed, the space cs is 
certainly a separable fi-dual of some BK-space E containing �9 (take for instance 
E = ~ �9 lin {e}), but it is not null for block sequences. Indeed, let z n = e 2" - e 2" + 1, then 
(z ") is a block sequence having c o ((z")) c cs, but [] z" [[ c~ = 1, n e N. 

2) The above example also shows that ~ (0 ~: Co (()~ in general. Indeed, we have 
c o ((z")) r = by in the above case, proving that c o ((z~)) pC = cs :~ f ~  ((z")). 

3) Notice that nullity for block sequences may be guaranteed by any condition ensur- 
ing that Co does not embed into the space under consideration. We refer to [5] for various 
conditions of this kind. 

2. The main result. In this section we present our main theorem. It is the outcome of 
a detailed analysis of the original proof given in [9], motivated by the necessity of avoiding 
the use of sectional convergence. See also [7] for a related argument. 

Theorem 1. Let  E be a BK-space containing q) whose fl-dual E ~ (resp. 7-dual E ~) is null 
for block sequences. Let  F be a dense subspace of  E containing q~ and and satisfying 
F p = E p (resp. F P c  E~). Then (~b, a(~,  F)) and (~, a(r E)) have the same convergent 
sequences. 
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P r o o f. Let  us first treat the non-bracke t  par t  of  the statement.  It suffices to prove that 
every null sequence (y") in (~b, ~(~,  F)) is [[ lie-bounded. Indeed, suppose this has been 
shown for a o-(~, F)-null  sequence (y"). Then  (y") is as well bounded  with respect to the 
dual n o r m  [[ l[, where ~ is now considered as a subspace of E'.  Let  us say 
][y"[] < M ,  n e N .  N o w  let x E E  and  e > 0 be fixed. Choose  x ~ ~ F  satisfying 
It x - x 1 ]l < e/2 M. Then  we have 

I<x,y">[ ~ I < x - x ~ , y " > ]  + I<xl, y">l 

_-< II x - x ~ II II y" II + I(x ~, y") l  

< e/2 + e/2 = 

for n > n o. 

Assume that  (y") is unbounded  in norm,  I1 Y" 11r > 2", say. N o w  observe that, in view of 
c F, the sequence (y") is coordinatewise null. This permits us to select strictly increas- 

ing sequences (k j) and (n~) of indices satisfying 

(1) Y"~ = Pk, Y"', j = 1, 2 . . . . .  

(2) 1[ Pk~ ~ Y"~ 1]~ <= 2 - i ,  j = 1, 2 , . . . .  

Indeed,  suppose k 1 . . . . .  kj and nl ,  . . . ,  nj have already been chosen with (1) and (2). Since 
(y") is coordinatewise null, we deduce that  Pkj Y" --~ 0 (n ~ oo) in n o r m  F[ r[p. This permits 
selecting nj+ 1 > nj satisfying condi t ion (2). But y"J+~ ~ (b, so certainly kj+ t > kj in accor-  
dance with (1) exists. 

Let us define the vectors v j = y",  - Pkj_~ Y ns, J = 1, 2 . . . .  and the scalars ej = l/]l v j F[~. 
Clearly (ej) is an f -sequence by (2) and  [[ y" IPp > 2". 

Let  z j = ejvJ, j = 1, 2 . . . . .  then (z j) is a block sequence with I[zJl[~ = 1, j = 1, 2, . . . .  
Since E ~ is assumed to be null for block sequences, we deduce that  Co((Z")) is not  

conta ined in E ~. So let us select a null sequence (2,) such that  z = ~ 2, z", the series being 
. = 1  

unders tood  in the coordinatewise sense, is not  an element of E p. We obtain  the desired 
contradic t ion by proving that  z e F p. So let x e F be fixed and let k ~ N.  Choose  j 
satisfying k j_ ~ < k < kj. Then  we have 

k J -  1 k~ 

Z x,z ,= Z Z. 
t = l  t = l  r = k z _ i + l  

k 

;~xrv~ + Z 2j~jxrvr 
r = k j - l + l  

Here the first term on the right side converges (k --* 0% k j_ 1 < k < k j) in view of the fact 
that  (c~j) c { and  

r=k~l+ l  XrV~ =[(X,  y ' ~ - -  rk, IY"')I  ~ I(  x, Y"')] + IIX[Ipp2 - i  = O(1). 
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But the second term converges as well in view of the fact that 2j --, 0 (k --, 0% 
k j_ 1 < k < k j) and the estimate 

r=kj ~1+1 CgXrV[ = I ( P k x  -- Pkj-~ X' ~jVJ)[ 

<= ][PkX-  Pkj i x [Ip~l[ ~jv~ll~ 
< 2 I[ x llp~, 

which uses the fact that the norm II II~p is monotone. Clearly this ends the proof of the 
non-bracket part of the statement. 

Let us now consider the bracket part. Here the above proof may be adapted with minor 
changes. Replacing II II~ by [t II 7, one has to show that every ~ (4~, F)-null-sequence (y") is 
[[ I[<bounded. This leads again to a sequence z = Z 2~ z 1 with z r E y. But the above 

argument shows z e F ~, hence the desired contradiction appears once more. This ends the 
proof  of Theorem 1. []  

Theorem I may be recast to obtain the following perhaps more convenient form, 
which in particular clarifies the relation of our argument to the proof given in [9]. 

Corollary 1. Le t  E be a BK-space containing ~b such that E ~ (resp. EO is null for  block 
sequences. Le t  F be a dense linear subspace o f  E containing ~b. Then the following state- 

ments are equivalent: 

(1) F ~ = E p (resp. F ~ = E~). 

(2) Whenever A is a lower triangular matrix having F c cA, then E c c A. 

P r o o f. The implication (1) ~ (2) is just a reformulation of Theorem 1. Conversely, 
assume (2) and let z e F ~. This means that the lower triangular matrix A, 

A ~ z1  z 2  

z 2 z 3 

has F c CA. SO E c Ca, proving z ~ E ~. Since equality of the /%duals always implies 
equality of the v-duals, the bracket part of the implication follows as well. [ ]  

R e m a r k. Let E = ~ | lin {e}, then E ~ = cs is separable, but the result of Corollary 1 
is not  true for E. This may be seen by using examples from [2] or [9], given to show that 

does not have the Wilansky property. 

Notice that, in various cases, Corollary 1 gives a criterion for the question when 
F ~ = E ~ implies F r = E ~. 

3. Wilansky property. We recall Bennett's definition given in [2]. An FK-space E is said 
to have the Wilansky property (W) if every dense FK-subspace F of E satisfying F p = E ' 
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must coincide with E, i.e. F = E. We are going to prove that a BK-space E whose 
//-dual E p is null for block sequences has the Wilansky property (W) provided that q~ is 
dense in E'. Since E' is in general not a sequence space, the latter phrase needs explana- 
tion. 

Given a BK-space E, we denote by R e, or just by R if no confusion may occur, the norm 
closed linear hull of the continuous linear functionals x ~ x,, n ~ N in E'. 

Theorem 2. Let E be a BK-space containing ~b such that E p is null for block sequences. 
Suppose R is complemented in E'. Then E has the Wilansky property (W). 

P r o o f. The assumption on R means that E '  = R | Q holds for some norm closed 
linear subspace Q of E'. 

Adopting the reasoning given in the proof of Theorem 2 in [2], it suffices to prove that 
every dense linear subspace F of E satisfying F p = E ~ is barrelled in E. So let F be of this 
type. We may assume that F contains �9 (see the reasoning in the proof  of Theorem 1 in 
[2]). Let U be a barrel in F. We have to check that U is a neighbourhood of 0. 

Let R-- be the annihilator of R calculated in the dual pairing (E", E ' ) .  Then 
R • c~ E = {0} in view of the fact that R separates the points of E. Notice that R • = Q', 
the dual being calculated with respect to the dual norm on Q. Let B be the dual unit ball 
in R • i.e. the polar of the unit ball from Q in the pairing (R  • Q). So B is a (R • Q)- 
compact, hence is a(E",E')-compact, the latter in view of the fact that 
a (E", E') I R• = a (R x, Q). 

Let V = U + B, then V spans F + R • so V ~ its polar calculated in (E", E') ,  is 
bounded with respect to the topology a(E', F + R • on E'. We claim that V ~ is actually 
bounded in the dual norm on E'. 

Let (y") be any sequence chosen from V ~ We have to prove that (y") is bounded in 
norm. Since E '  = R | Q, we find sequences (r n) in R, (q") in Q having y~ = r" + q". But 
notice that (q") is cr (Q, R • For  let ~9 E R l be fixed, then we have 

(~ ,  q") = (~ ,  q") + (r r" )  = (~,, y" )  = o (1). 

Since a (Q, R • = a (Q, Q') is the weak topology corresponding with the norm topology 
on Q, we deduce that (q") is bounded in norm. It therefore remains proving that (r") is also 
norm bounded. 

Recall that R is the closed linear hull of ~, when the latter is considered a subspace of 
E '  via the natural identification of e" e �9 with the functional x --* x,. Consequently there 
exists a sequence (p") in �9 having 11 P" - r" II < I for all n. Since (r") is a (E', F)-bounded, 
we deduce that (p") is bounded in a (~, F). But now Theorem 1 comes into action. Since 
the topologies a (~, F) and cr (~b, E) have the same convergent sequences, they also have 
the same bounded sequences, so (p") is bounded in a(~b, E), and consequently (r") is 
a(E' ,  E)-bounded. But now the Banach-Steinhaus Theorem asserts that (r") is bounded 
in norm. This proves our claim. 

We have shown that V ~ is bounded in norm. Consequently, V ~176 is a norm neighbour- 
hood of 0 in E", and therefore V~176 F is a norm neighbourhood of 0 in F. But 
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V ~176 = V =  U + B, where the closure refers to the topology cr (E", E'). Since B is a(E", E')- 
compact, we deduce ~" = U + B, hence V ~176 c~ F -- /~ n F. The latter, however, is just the 
tr (F, E')-closure of U in F, and since U was chosen weakly closed, we finally have proved 
V ~176 n F = U. This ends the proof of Theorem 2. []  

R e m a r k. One might ask whether Theorem 2 remains valid for a BK-space E con- 
taining �9 whose/?-dual E ~ is null for block sequences and whose dual E' is separable. We 
give an example showing that this is not  the case. Let q denote the space of almost 
periodic sequences, i.e. the closure of the space p of periodic sequences in E ~ Then q has 
separable dual (see [1, pp. 68-72])  and its/?-dual is E. But E is also a v-dual, and, being 
separable, it is null for block sequences. Consequently, the space E = c o + q has separa- 
ble dual and its/?-dual ~ is null for block sequences. But E does not have the Wilansky 
property (see [7]). For  details concerning the space q we refer to reference [14A] of [10]. 

We end this paragraph with the v-duality version of Theorem 2. This gives a partial 
answer to the corresponding question posed by Bennett in [2, w 7]. 

Theorem 3. Let  E be a BK-space containing �9 whose 7-dual E ~ is null for  block sequences. 
Suppose that R~ is complemented in E'. Then E has the property (V - W), i.e. every dense 
FK-subspace F o f  E satisfying F ~ = E ~ (or just  F p c E 7) must coincide with E. 

P r o o f. The same as for Theorem 2, but the bracket part of Theorem 1 has to be used 
now.  [ ]  

4. Consequences. In this paragraph we present some applications of Theorem 2. We 
obtain conditions for BK-AB-  and BK-AD-spaces ensuring the validity of the Wilansky 
property (W). 

Proposition 2. Let  E be a BK-AB-space such that R is complemented in E'  with separable 
complement Q. Then E has the I4/~lansky property (W). 

P r o o f. The assumption on R and Q means that E '  = R �9 Q is itself separable. But 
notice that, as a consequence of a result of W. L. C. Sargent (see [10, 10.3.11]), the 7-dual 
E 7, and hence also the fl-dual E p, are closed subspaces of E'. This means that E ~ is null 
for block sequences since it does not contain any copy ofc  o. Indeed, c o c~ E ' would imply 
c o c~ E '  by the above observation. It is known, however, that a separable dual space does 
not contain any copy of c o (see [5]). 

We have checked the assumptions made in Theorem 2. The latter therefore applies and 
yields the result. [ ]  

Our  next result presents the announced criterion for the Wilansky property in the class 
of BK-AD-spaces.  We shall find it of importance again when dealing with perfect conver- 
gence domains. 

Proposition 3. Let  E be a BK-AD-space whose dual E'  = E y is as well a BK-AD-space. 
Suppose E p is separable. Then E has the Wilansky property. 
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P r o o f. First  notice that  AD implies that  E '  may be identified with E I. The AD 
condit ion on E s therefore means that  RE = E'. So the first part  of the assumptions from 
Theorem 2 is satisfied. 

Next  observe that  AD also implies E ~ = E ~ (see [10, 7.2.7]). So Proposi t ion  1 applies 
and shows that  E ~ is null for block sequences. Applying Theorem 2 finally gives the 
result. [ ]  

R e m a r k. It was shown in [2] and [9] that  every BK-AK-space E whose dual E '  = E p 
is as well a BK-AK-space is unique among those FK-AD-spaces F satisfying F p = E p. 
One may ask whether the corresponding result is also valid for a BK-AD-space E whose 
dual  E '  = E I is also BK-AD and whose fl-dual E p is separable. If  E is not  AK,  then the 
answer is in the negative, for there always exists a BK-AK-space F having the same fl-dual 
F ~ = E p. F is obta ined by taking the closure of ~b in E ~ (see [10, 10.3.23]). Clearly F is 
the largest FK-AD-space whose/?-dual  is E ~. One may conjecture that  E is the smallest 
space of this kind, and Propos i t ion  3 above tells that  E is certainly a minimal  space of 
this kind, i.e. every FK-AD-space G contained in E and satisfying G p = E p must have 
G = E. Moreover,  Propos i t ion  3 tells that  E is unique among BK-AD-spaces having 
BK-AD-dual and wi th /?-dual  J .  

5. Convergence domains. In this section we discuss the Wilansky proper ty  in the 
f ramework of convergence domains  c A. We assume throughout  that  A is a lower tr iangu- 
lar matr ix  with diagonal  entries @ 0 and with columns in c o. This means that  c A is a 
BK-space containing 05, in fact ~b c (Co) A. 

Our  first step is to clarify the size of the space R in c). 

Proposition 4. Let  A be a perfect lower triangular matrix with diagonal entries ~ 0 and 
with columns in c o. Then R = RcA has codimension one in c~4. 

P r o o f. Recall that  perfectness of A means that  4~ is dense in (Co) A, and consequently 
~b + lin {u} is dense in c A whenever u is a sequence in c A satisfying lira A u = 1. 

I t  is well-known that  the dual  c~ admits a representat ion as { | t12 via the formula 

( x , y  + tl) = ~ (Ax) ,y  i + r 1 �9 l imAx,  
i = l  

x e cA, y ~ •, t/~ G. Consequently,  each of the project ion functionals x ~ x,  is represented 
by some y" + ~/, in f | C. 

We prove that  the linear hull of the vectors yn, n E N is just  ~. Firs t  consider the vector 
z 1 = a~-) �9 e 1. Then we find 

@1, z 1) : 1, (ek, z 1) = 0 for k = 2 , 3 , . . . .  
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Therefore yl and z 1 agree on ~, and perfectness of A implies yl : z l .  So lin {yl} 
= lin {el}. 

Next define z 2 a~-~ �9 e 2 - = - a l l  1 a2~ a21 �9 e 1, then again 

@2, z 2 ) = 1 ,  (e k,z 2 ) = 0  for k 4  =2 

obtains, proving y 2 =  z 2 by the perfectness of A. Obviously, we have lin {ya, y2} 
= lin {e 1, e2}. 

Proceeding in this way, we see that the vectors yn all have length n and that 
lin {y~ . . . . .  y"} = {e 1 . . . . .  e"}. Therefore the linear hull of the y" is actually ~b. 

Let Q denote the linear hull of the yn + qn in ~ @ 112. So R = (~ via identification. Now 
it suffices to observe that Q + l in{1}  = Q + 112 is dense in # |  But clearly 
Q + C = �9 + C as a consequence of our above observation. Since ~b is dense in f, the 
proof  is complete. [ ]  

Combining Proposition 4 with Theorem 2 yields the following criterion for the pres- 
ence of the Wilansky property in the framework of convergence domains. 

Theorem 4. Let  A be a perfect lower triangular matrix with diagonal entries 4= 0 and with 
columns in c o. Suppose C~A is null for  block sequences. Then c A has the Wilansky property. 
In particular, this is the case when c~ is separable. 

P r o o f. For  the first part of the statement see Theorem 2. The second part follows by 
observing that C~A = (Co) ~ is also a 7-dual in view of the fact that (Co) A has AD. [] 

Corollary 2. Let  A be a lower triangular matrix with diagonal entries :# 0 and with 
columns in c o. Suppose (Co) A is an AK-space. Then c A has the Wilansky property. 

P r o o f. This is immediate from Theorem 4 since A K  means (Co)~ = (Co)~4, and the 
latter space is known to be separable. []  

As a consequence of Corollary 2 we deduce that c A has the Wilansky property when 
A is a Ces/tro method C~, 0 < c~ < 1, a permanent method of weighted means, a H61der 
method H~, 0 < e < I or a discrete Riesz method of index 0 < c~ < 1 (see [11]). We just 
mention that the Wilansky property for C1 has already been established in [8], and for 
the methods of weighted means in [6]. In both cases the original Bennett/Stadler result 
was used. 

We do not know whether the Cesfiro methods C~, c~ > 1 have the Wilansky property. 
Theorem 4 cannot be applied in this case since the fl-dual spaces CPc~ are not separable for 

> 1. Also we do not know whether the summability domain Ccl s of the CesAro method 
C 1 has the Wilansky property. 

6. Concluding remarks. We present an example of a convergence domain c A with respect 
to a lower triangular matrix with diagonal entries 4= 0 such that c A does not have the 
Wilansky property (W) and such that c A ~ c. This proves in particular that the Wilansky 
property is not topological. 

Archlv der Mathematlk 54 6 
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Let x denote the sequence having x, = n 2. Since x is unbounded, there exists a perma- 
nent lower triangular matrix A with diagonal entries + 0 whose convergence domain c a 

is just c + lin {x} (see [11, S. 48]). We show that c A does not have the Wilansky 
property (W). 

Observe that c~ = {y~co:  (nZYn)~CS}. Therefore, the dense BK-subspace F = by  

+ lin {x} of c A satisfies F p = CPA, but clearly F 4: c A, proving that c A does not have the 
Wilansky property (W). Note that c A fulfills all the requirements of Theorem 4 except 
perfectness, which is therefore seen to be crucial in Theorem 4. 

The above construction may be modified to obtain the following amusing result. Let 
x be a sequence which is not convergent. Then c + fin {x} has the Wilansky property 
(W) if and only if x is bounded. Indeed, the necessity of this condition follows from the 
above reasoning, while its sufficiency has been established in [7] (one may also use 
Proposition 2). 

One may ask for properties of the Wilansky type involving other kinds of duality. 
For  instance, from a practical point of view, Toeplitz fi-duality is of interest, for there 
exist various BK-spaces - in particular convergence domains - which have Toeplitz 
sectional convergence, but lack ordinary sectional convergence (see [3] and [4] for 
these concepts). This is the case e.g. for Cc2 and Cci s ,  which both have Ct-sectional 
convergence, and whose duals consequently can be identified with the factor spaces 
(Cc2 ~ Cc, s) and (Cc, s ~ Cc~s) correspondingly. It turns out that Cc~ and Cc~s in fact 
have the ( t ic ,  - W) property, the notation being adopted from [2, w More generally, 
the following generalization of Theorem 2 is valid. Given a BK-space E containing ~b 
such that R e is complemented in E '  and such that the Toeplitz y-dual space E ~T 
with respect to a certain Toeplitz matrix T is separable. Then E has the (fir - W) prop- 
erty, which means that every dense FK-subspace F of E satisfying F ar = E pT must 
coincide with E. This provides a positive answer to a question of Prof. G. Goes, who 
asked whether the Bennett/Stadler result carries over to the case of Toeplitz sectional 
convergence. We have been informed by Prof. Goes that a student of his, U. B6ttcher, has 
as well obtained a positive answer to his question using a different technique. 
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