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SECOND ORDER DIFFERENTIABILITY OF CONVEX FUNCTIONS
IN BANACH SPACES

JONATHAN M. BORWEIN AND DOMINIKUS NOLL

ABSTRACT. We present a second order differentiability theory for convex func-
tions on Banach spaces.

1. INTRODUCTION

The classical theorem of Alexandrov states that a convex function on R” is
almost everywhere second order differentiable. This was first proved by Buse-
mann and Feller [12] for functions on R? and later was extended by Alexandrov
[2] to R”. More recent proofs were obtained by Mignot [26], Bangert [6], and
Rockafellar [36]. '

Around 1975, Aronszajn [3] and Christensen [13] among others proved ver-
sions of Rademacher’s theorem on almost everywhere differentiability of Lip-
schitz operators which apply in separable infinite dimensional Banach spaces.
While these results typically do not extend beyond the separable case, it was
only in 1990 when Preiss [35] proved the remarkable fact that every real val-
ued Lipschitz function on'a not necessarily separable Banach space which is an
Asplund space is still at least densely Fréchet differentiable.

Motivated by these infinite dimensional versions of Rademacher’s theorem,
the present work is to attack Alexandrov’s theorem in infinite dimensions. As
it turns out, the situation here is less promising than it is for Rademacher’s
theorem. For instance, Alexandrov’s theorem fails in the spaces /,, L,, 1 <
p < 2, and much to our surprise, even in nonseparable Hilbert spaces. This
leads us to focus on the case of separable Hilbert spaces. Here in fact, a positive
solution seems possible. As one of our central results here, we in fact obtain a
partial positive answer by proving a version of Alexandrov’s theorem for convex
integral functionals.

Seemingly, the third of the classical results of measure theoretic geometry, the
theorem of Sard, allows extensions to infinite dimensions only under compara-
tively strong hypotheses (see [1, 10]). In the light of our present ipvestigation,
this is explained to some extent by the fact that there is a strong link between
Alexandrov’s theorem and a version of Sard’s theorem for monotone operaiors
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on a Hilbert space. Roughly speaking, this tells that these theorems are equally
difficult to establish in infinite dimensions.

It turns out that an appropriate understanding of Alexandrov’s theorem in
Hilbert space hinges on using the theory of generalized second derivatives. In
finite dimensions, this has been exploited over recent years by Rockafellar [36,
37, 39]. Here we discuss the infinite dimensional theory, which bears some very
interesting features of its own. Similar to the case of finite dimensions, however,
its merits lie mainly in the fact that it allows for dualizing second order notions,
permitting finally to express them in first order terms for associated monotone
operators. In contrast with Hiriart-Urruty’s theory of approximate directional
second derivatives (cf. [21, 22-24]), generalized second differentiability in the
present sense is designed to reflect the global second order behaviour of a con-
vex function at a given point. This turns out to be extremally useful when
approaching Alexandrov’s theorem.

The structure of our paper is as follows. In §§2 and 3 we discuss differ-
ent notions of second order differentiability arising in infinite dimensions. We
single out the very one which allows for a reasonable second order theory. Sec-
tion 4 presenis a measure theoretic version of Alexandrov’s theorem. Section 5
presents some basic information on the Yosida approximates of a convex func-
tion, providing a C!-! type approximation for continuous convex functions in
Hilbert space. In §6 we discuss generalized second derivatives for convex func-
tions on a Hilbert space. QOur discussion is of interest also for functions on R".
In particular, we present an interesting class of examples of convex functions
on R? showing that the behaviour of the generalized second derivative may be
strikingly different from the pointwise second derivative. Moreover, generalized
second derivatives are shown to be useful for convex integral functionals.

Section 7 presents a way of dualising Lipschitz smoothness, which in tandem
with the duality results in §6 finally leads to the dual description of second order
differentiability. The latter then permits us to present the mentioned version of
Alexandrov’s theorem for convex integral functionals. Section & gives the link
between Alexandrov’s theorem and Sard’s theorem.

The terminology we use is covered by any textbook on convex functions. See,
for instance, Phelps’ lecture notes [34].

2. SECOND ORDER DIFFERENTIABILITY

What does it mean for a convex function f to be second order differentiable
at a point x ? Even in finite dimensions it is not clear a priori how this concept
should be introduced, in particular when the function f is not necessarily first
order differentiable at all points in a neighbourhood of x. Several notions
of second order differentiability have been considered, e.g., by Busemann and
Feller [12], Alexandrov [2], Mignot [26], Bangert [6], and Rockafellar [36].
As we shall indicate here, these all coincide in finite dimensions, but lead to
nonequivalent notions when extended to infinite dimensions. The main task is
then to decide which notions might be appropriate to obtain a reasonable infinite
dimensional second order differentiability theory. One way of doing this is by
testing whether for example a version of Alexandrov’s theorem is possible.

Perhaps the most natural way of introducing second order differentiability
is to consider the possibility of a second order Taylor’s expansion. This was
discussed by Alexandrov [2] and Bangert [6]. We adopt this point of view here.
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Definition 2.1. Let f be a continuous convex function defined on a normed
space E. Then f is said to be second order differentiable (resp. strongly second
order differentiable) at x € E if there exist a y* € 8 f(x) and a bounded linear
operater 1': E — E* such that f has a representation of the form

(2.1) S(x+1th) = fx)+ ey, B+ (E/20UTh, 1) + o(£?) (t—0),
for every h € E, respectively
(2.2) S +h)=f)+ ", by + 3(Th, by + O(IIhllz) (2]l — 0).

Remarks. (1) It follows from (2.1) that f(x+th) = f(x)+#{y*, hA)+0(f) ; hence
second differentiability of f at x implies first order Gateaux differentiability of
f at x,ie., y* =VOf(x). (See [34] for the notion of the Giteaux differential.)
Clearly, the quadratic term %(Th, k) as well is uniquely detérmined by the
Taylor expansions (2.1), resp. (2.2). Due to the convexity of £, this quadratic
form is positive semidefinite, and therefore defines a purely quadratic continuous
convex function

(2.3) ' a(h) = K(Th, h).

Replacing the operator T by its symmetrization (T + T*), where T*: E -
E* is the restriction of the adjoint of T, deﬁned by the identity (Th, k) =
(T*k, h), h,k € E, we may assume that in (2.3), T is a nonnegative and
symmetric (i.e., (Th, h) > 0 and T = T*) bounded linear operator. We use
the notation T = V2f(x), calling V2f(x) the Hessian of f at x.

(2} A convex function g: E — R is called purely quadratic if it admits a
representation of the form (2.3) with a bounded linear operator 7. Notice
that in a Banach space E this is equivalent to saying that the graph 8¢ of
the subdifferential of g is a closed linear subspace of E x E*. Indeed, the
representation (2.3) with symmetric 7 implies Vg = T, proving the linearity
of dq. Conversely, assuming d¢q closed and linear, we first observe that g is
quadratic in the sense that g(Ax) = A%2g(x) for all Ae R, x € E and, on the
other hand, that g is everywhere Géteaux differentiable, with V9q = T being
a closed graph (and therefore bounded) linear operator. But now the identity

(Tx, x) = tim ZE+X) —a(x) _ . (14 t)zq(x) q(x)

t—0 t !—»0

= 2¢(x)

gives the purely quadratic representation (2.3} of ¢. We will see in §6 that,
in a Hilbert space, it is possible to obtain a similar characterization even for
partlaﬂy defined purely quadratic convex functions (s1m11ar to the one obtained
in R" by Rockafellar [36]).

Let us now consider an equivalent way of describing second order differen-
tiability. Let f be a continuous convex function defined on a normed space E .
We define the second difference quotient of f at x € E relative to y* € 8 f(x)

as .
’ flx+eh)— f(x)—tly*, k
B ) = LEHI SR 0"
t#0, h € E. Notice that forany ¢ #0, A; . ,. , is a continuous convex and
nonnegative function of % defined on E. Now second order differentiability
has the following equivalent description in terms of As , ,-
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Proposition 2.1, The continuous convex function [ is second order differentiable
at x € E if and only if, for some y* € 3f(x), the second difference quotient
Af x,ye .5 COnverges pointwise everywhere (as t — 0) fo a continuous convex
purely quadratic function q of the form (2.3). The case of strong second order
differentiability of [ at x corresponds 10 Ay x y» ¢ CONVErging 1o 4 uniformly
on bounded sets. :

Remarks. (1) Again here it is implicit in the statement that ‘pointwise conver-
gence of Ay o (£ —0) for some y* € 8 f(x) implies y* = VY f(x).

(2) It is well known that in the case of a Banach space E, pointwise con-
vergence of a sequence of continuous convex functions forces this sequence to
be uniformly convergent on compact sets (Ascoli). As bounded sets are rela-
tively compact in finite dimensions, this immediately shows that both notions
of second order differentiability discussed so far coincide in that case. On the
other hand, this forcefully suggests that these concepts should be nonequivalent
in infinite dimensions. A corresponding example will be given at the end of §3.

Suppose the second difference quotient A, = A £,x,y*,t CONVETEES pointwise
everywhere to a limit function A, with dom(A) = E . We deduce immediately
that A is nonnegative, convex, and due to the formula

(2.4) AAR) = 2By () (A#0, t#0)

is quadratic (i.e., A(AR) = A2A(h)). Assuming, in addition, that E is a Ba-
nach space, we even know that A is continuous. But A need not be a purely
guadratic function of the form (2.3) as occurring in the definition of second
order differentiability. An example of this type may be obtained by considering
the convex (!) function (cf. [41, p. 152]) :

x i‘iiy—z+13(x2+ 2) (x,y) # (0, 0)
f(x,y):' yx2+y2 . y > :‘y ] ]

0, x=y=0,
which is directionally second order differentiable at (0, 0), but whose mixed
derivatives differ at (0, 0). This means that the corresponding limit function
A is not purely quadratic.

Yet, pointwise convergence of As x y«,, t0 2 limit function A is by itself
still meaningful. Namely, it tells us that f is directionally second order differ-
entiable at x,i.e., f]r is second order differentiable along any line L passing
through x . Indeed, we obtain a directional Taylor expansion of the form

FOx+th) = f(x)+ (VO f(x), h) + AR) + o) . (t—0)
forany he E.

It seems at first glance that pointwise convergence of Api=Ap 5y 102
quadratic A should yield a rather weak second order differentiability concept.
Yet it has a striking consequence on the first order behaviour of f at x. As-
suming in the sequel that E is a Banach space, we may invoke the following
«uniform boundedness principle for convex functions” to deduce that (As)o<<1
is uniformly bounded above on a neighbourhood of 0 in E. Namely, observ-
ing that, due to the convexity of f and the convergence of Afh) — A(h) (as
t — 0), the family (A{/2))o<<1 18 bounded for any fixed 2 € E, we may
define a lower semicontinuous convex and fully defined function ¢ by setting

$(h) = sup A(h). ' '

0<|t|<1
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Completeness of E then renders ¢ to be continuous, hence bounded above on
a neighbourhood of 0. So there exist 4 > 0 and ¢ > 0 with A,(k) < ¢ being
met for all 0 < |f| <1 and ||4|| < §. By the definition of A, this implies .

(2.5) fx+1th) = f(x)—ty*, by <ci?

for all |¢| <1 and ||#|| < J. This inequality is now recognized as the defining
condition for what is called Lipschitz smoothness of the function f at x, as
introduced by Fabian [16] (see also [9]). In particular, see [16], (2.5) implies
that f is Fréchet differentiable at x . Due to the importance of this observation,
we state this as

Proposition 2.2. Let f be a continuous convex function defined on a Banach
space E . Then every point of (directional) second order differentiability of f is
a Lipschitz-smooth point. In particular, [ is Fréchet differentiable at such x.

An immediate consequence of Proposition 2.2 is that Gateaux differentiabil-
ity points which fail to be Fréchet differentiability points—and such are com-
mon in infinite dimensions—cannot be points of second order differentiability.
Even more, for such a point x there must a priori exist a line L through x
such that f], does not have a finite second derivative at x along L.

Proposition 2.2 also produces interesting counterexamples. For instance, the
norm ||+ ||; on /; is nowhere Fréchet differentiable (though Gateaux differen-
tiable at points x = {x,} with x, # 0 for all #), so f = || -|l; is certainly
nowhere second order differentiable in /; . In other terms, Alexandrov’s theo-
rem fails in /; . More generally, this is the case in any Banach space E which is
not a LS-space in the sense of [16]. In particular, the validity of Alexandrov s
theorem requires an Asplund space.

Notation. We write D2 for the set of points of second order differentiability,
and L, for the set of Lipschitz-smooth points of a function f. So D2 C Lf
by Proposition 2.2.

3. FIRST ORDER DIFFERENTIABILITY OF 8 f

A quite natural way of studying second order differentiability properties of a
convex function f is to look at the first order behaviour of its subdifferential
operator df. As 8f is generally not a single-valued operator, this requires dif-
ferentiability notions designed for set-valued operators. This approach has been
exploited in finite dimensions by Mignot [26] and independently by Bangert [6].
Again, there are several nonequivalent ways of extending these concepts to in-
finite dimensions.

Definition 3.1. Let f be a continuous convex function defined on a normed
space E. Then 8 f is said to be -

(1) weak-+= Gateaux differentiable (vesp. weak-x Fréchet differentiable) at x €
E if there exisis a bounded linear operator T: E — E* such that

hmt Y-y =Th

in the weak-x sense for any fixed 4 € E and all yf € df(x+th), y* € 8 f(x)
respectively [uniformly over all 2 € E, ||k < 1 and all yf € 8 f(x + th),

y* € df(x)l;
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(2) norm Gateaux differentiable (resp. norm Fréchet differentiable) at x if
(1) holds with the respective limits to be understood in the sense of the dual
norm.

Remarks. (1) Notice that in any of these four notions it is an implicit conse-
quence that 8 f(x) must consist of a single element y*,ie., y* = VI f(x).

(2} We use the temporary notation 7 = V8 f(x) for the operator T'. We
will see from Theorem 3.1 that V3 f(x) is nonnegative and symmetric. For a
direct proof of this see [6, Lemma 4.1].

(3) There are four immediate implications among these differentiability
concepts, with norm Fréchet differentiability being the strongest and weak-*
Gateaux differentiability being the weakest. As a consequence of Theorem 3.1
and Proposition 2.1, these all coincide in finite dimensions, but fail to do in
infinite dimensions.

Theorem 3.1. Let f be continuous convex and deﬁned on q Banach space E .
Then .

(1) Second order dzﬁ"erentmbzhty of f at x is equivalent to weak-+ Gateaux
differentiability of 8f at x.

(2) Strong second order differentiability-of f at x is equivalent to norm
Fréchet differentiability of 8f at x.

Moreover, in both cases, we have V2f{(x) =V f(x).

Proof. First consider statement (1). Assume f is second order differentiable
at x. As already noted, this implies Lipschitz smoothness of f at x, for E is
a Banach space. Due to [16, Propos1t10n 2.1(iii)] there exist ¢ > 0 and fh>0
such that

(3.1) e -l s e

forall |2 <1, 0<|f| <ty and all y} € df(x +th), y* = VFf(x). So the
difference quotient of 8/ is bounded. We have to show that it converges (as
t — 0) in the weak-+ sense.

Let v € E be fixed. Using (3.1) let ¢, — 0 be any null sequence such that
the limit ,

32) lim (517, — "), v) =t
exists. We show that there is only one possible such «. As
6 v~y e 710 (x + tyh) - Bf(X)) = 0A,, (h),
the subgradient inequality implies
{7 =), pv) <AL (h+ pu) — A (h) *
for any p € R. Passing to the limit on both sides therefore gives
(3.3) , pa < q(h+ pv) —q(h).

Using the fact that the limit function ¢ = 5( , + with symmetric T = V2 f (x)
is purely quadratic and hence differentiable, d1v1d1ng (3.3) by p > 0 and passing
to the limit p \, 0, we obtain the inequality o < ¢'(%, v). Using a negative p
then gives equality

(3.4) a=q'(h,v)=(Th,v).
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So fixing & and v, there is only one possible limit « in (3.2) for any sequence
t» — 0 and any choice of y; € 8 f(x +t,h). This proves weak-+ convergence
of the difference quotient. Moreover, (3.4) shows that

(Th, v) = =Hm{r='(8 f(x + th) — 0 /(x)), v},

so T = V8 f(x), with the latter therefore being symmetric. This shows, in
particular, the equality V2f(x) = V8 f(x).

Let us now assume conversely that the difference quotient of 8f at x con-
verges pointwise everywhere in the weak-+ sense to the limit 7 = V3 f(x). We
have to show that the second difference quotient Ay  ,. , converges pointwise
everywhere to a purely quadratic limit ¢. Moreover, we will find the repre-
sentation g(h) = 1(Th, h). This part of the proof is covered by the work of
Bangert [6]. Let us fix # € E. Then by [6, Lemma 4.8], f has a second order
Taylor expansion at x along the line x +R#, ie., '

fOx+th) = f(x)+ 1", by + (/2)f"(x; by +o() (1 0)

where f“(x; k) denotes the second derivative of ¢t — f(x+th) at £ =0. The
quoted reference also shows that

(3.5) s by = {Th, h).

This proves that, for any fixed %, the second difference quotient A;{(#) con-
verges to the purely quadratic g(k) = %(Th, hy (¢ — 0). But then we may
invoke (3.4) to deduce ¢’ = 7. This proves the final link, showing that T is
symmetric, thus completing the proof of part (1).

Let us now consider statement (2). First assume- A; — g uniformly on
bounded sets; with a purely quadratic ¢. Then part (1) of the proof shows
that the first difference quotient of 8 converges to 7 = V2f(x) = V3 f(x)
in the weak- > sense. We have to show that it actually converges in norm with
convergence being uniform over ||A|] < 1. By assumption, given any sequence
t, — 0, there exist &, — 0% such that

(3.6) A (k) = A, (R} ~ (g (k) — g(hp))] < en

for all n and all ||kl < 1, ||A#,]] < 1. Suppose now the statement is not
satisfied. Then there exist ¢ > 0 and a sequence £, — 0 such that, for certain
41l < 5, say, and y; €8 f(x + tuhy), we have

Find vectors |lv,|| < 1 such that

>¢ (where y* =V f(x)), n=1,2,....

} * *
=07, = ¥") ~ Thy
: ,

61 (205 -y)=Thi,u) >,
n

for n=1,2, . Now choose ,sn' according to (3.6), and find p, > 0 such
that p, — 0 and &,/p, — 0. Then we have |4, + pavs|l < 1 for n sufficiently
large, and hence (3.6) gives

(3.8) |As, (Bn + prn) — By, (Bn) — (@(hn + pn¥n) — a(B))] < €n,
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for n=1,2,.... Using (3.7), the subgradient inequality, and (3.8) we obtain

1
P&+ {Thy, patn} < <;—(y;: -y, pn'un> < Ay (B + povn) — Ay, (Bn)
n

< glhn + pnn) = q(hn) + &
Divided by p, > 0, letting # — oo, and using &,/p, — 0, we obtain
q(hn + pavn) = q(hn)
Pr
= lim sup ((Th,, , Und + ‘%"(Tv,, , 'u,,,)) ,

g+ limsup(Th,, v,} < limsup

where the latter uses the purely quadratic representation g(h) = %(Th , By of
g.As py — 0, we deduce &+ limsup{Th,, v,) <limsup(Th,, v), a contra-
diction. This proves one half of the argument.

The second half of the argument is again covered by Bangert s Lemma 4.8.
We only have to observe that his argument maintains the uniformity of the
convergence of the difference quotient of 8, translating it into the uniform
o-condition (2.2) in the Taylor expansion. 0O

Remarks. (1) For convex functions f on the real line, Theorem 3.1 is just the
classical result of Jessen (see [11, §2]). '
(2) As a consequence of Theorem 3.1, when combined with Proposition 2.1,
we obtain that all second order differentiability notions discussed so far coincide
in finite dimensions. Surprisingly, this fact has not been observed in [6, 26, 36].
(3) Theorem 3.1 indicates that basing second order differentiability on the
possibility of a second order Taylor expansion is justified for convex functions.
This strongly relies on convexity, as the function f(¢) =3 cos(1/t) shows.
We now provide examples showing that strong second order differentiability
and second order differentiability are nonequivalent in infinite dimensions.

Example 1. Let C be a closed convex set in Hilbert space H, and let P¢ :
H — C be the metric projection onto C, i.e., the nearest point mapping. Then
Pc is known to be the Fréchet derivative of a continuous convex function f
on H,ie., Po=VFf, where

(3.10) Sx)y = 5hxll® = 3llx — Pex||?

(see [18] for details). As Pc is a Lipschitz operator, it is almost everywhere-
Giteaux differentiable in the sense of Aronszajn [3] (see §4) when H is assumed
separable. Due to Theorem 3.1(1), this means that, on a separable H, f is
almost everywhere second order differentiable. However, even in a separable
Hilbert space, the set C may be chosen so that Pc is nowhere (norm) Fréchet
differentiable. By Theorem 3.1(2), f is then nowhere strorigly second order
differentiable. We take H = L2[0, 1], andlet C = {f € H:|f]| <1 ael}.
Then, according to [18, §5], Pc is nowhere Fréchet differentiable. This shows
that Alexandrov’s theorem fails even in separable Hilbert space when based on
strong second order differentiability. A similar example would be obtained by
taking H =/, C the positive cone in H (see [18, §5]).

Example 2 (Example 1 continued). The situation is even worse in nonseparable
Hilbert space. Here the set C may be chosen so that Pc is nowhere Géteaux
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differentiable. So here, by Theorem 3.1(1), f is nowhere second order differ-
entiable, i.e, D} = . Take H = H(I') with |[] > R, and let C be the
positive cone in H. Then P, is nowhere Gateaux differentiable. This shows
that there is no chance for a version of Alexandrov’s theorem in nonseparable
Hilbert space.

Example 3. A different type of counterexample is obtained by considering con-
vex functions f on i of the form

F) =Y fulxn),  x=(x),
n=1

with appropriate convex functions f;, defined on the real line. Here f is
Géteaux differentiable at x = (x,) if and only if f](x,) exists for every n.
A necessary condition for x € D} is the following: f)'(x,)} exists for every
n and the sequence is bounded. However, this is not sufficient to guarantee
x € D2, as shown in Example 2 in §6 by specifying the function f. Now one

may find f such that VFf = T : [, — L is even a Lipschitz operator having
no Fréchet differentiability point at all, while, by Aronszajn’s result [3], T is
almost everywhere Gateaux differentiable. An explicit example of such 7 is [3,
§3, Example I], with the corresponding convex [ being easily supplemented.

So far we found that among the four differentiability notions for the sub-
differential operator 8 f presented in Definition 3.1, weak-+ Gateaux differen-
tiability and norm Fréchet differentiability have counterparts stated in terms of
the second order difference quotient of f, or what is the same, in terms of
a second order Taylor expansion. This does not seem to be the case for the
remaining two notions. There is an important case, however, in which second
order differentiability of f at x may be upgraded to yield the stronger norm
Gateaux differentiability of @ f at x . This was already observed by Aronszajn
[3, Lemma 2.1] in the case of a Lipschitz operator. We include the argument
here for the sake of completeness.

Proposition 3.2. Let E be a separable reflexive Banach space, and let f be
a continuous convex function on E. Suppose [ is second order differentiable
at x € E and 0 f is single-valued and directionally absolutely continuous in
a neighbourhood of x along any line passing through x. Then 8f is norm
Gateaux differentiable at x .

Proof. Due to the fact that E* is a space with the Radon Nikodym property,
the result is essentially contained in [15, pp. 106, 107]. We sketch the idea for
the sake of completeness. .

By the assumption, 7 = 8 f is absolutely continuous in a neighbourhood of
x along any line L =x + RA. So V.T(x + th) exists for almost all 7, when
V1 denotes the differential along the line L. Therefore, for any fixed v € E,
we have the identity

4 1
(3.11) {T(x+th)-T(x), v} =[ %(T(x+rh), v)d'r:f Vel(x+th)dz,
0 Jo
t € R. E being reflexive, this shows that

(3.12) T(x + th) — T(x) = f VLT + th) de
Vi
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holds in the sense of the Pettis integral for 1 € R. But E being separable,
(3.12) is actually true in the sense of a Bochner integral. This proves norm
convergence of 1/{(T(x + th) — T(x)) (as ¢t — 0) for any fixed hc E. 0O

Example 4. Consider again the situation in Example l,with H=15, C=1
the positive cone in H. Then Pc is nowhere Fréchet differentiable, but is
Gateaux differentiable at points x with x, # 0 for all n, with convergence of
the difference quotient being understood in the sense of the norm by Proposition
3.2. Tt is easy to see that 1/1(Pc(x + th) — Pc (x)) also converges uniformly
over all ||4]| <1 in the weak sense. This shows that 8f = P may be both
norm Géteaux and weak- = Fréchet differentiable, without being norm Fréchet
differentiable.

We conclude this section with the following mild extension of a result by
Fabian [16, Proposition 3.1].

Proposition 3.3. Let E be a reflexive Banach space. Suppose there exists a norm
|+ I| on E which is Lipschitz-smooth at all points x # 0. Then either
(1) the dual norm || - ||* on E* is nowhere second order differentiable, or
(i) E is isomorphic with a Hilbert space.

Proof. Suppose the dual norm | - ||* is second order differentiable at some
x* satisfying ||x*|* = 1. Let x = VF||.|*(x*) € E. By assumption, | - ||
is Lipschitz smooth at x with V7| . l(x} = x*. By [16, Proposition 2.2},
the dual unit ball B* is therefore Lipschitz exposed at x* by x. But now
we are prepared to follow almost verbally the argument presented in the proof
of [16, Proposition 3.1]. Notice that the concept of second order Gateaux
differentiability, as used in [16], may with ease be replaced by our more general
notion here. In fact, the existence of a first derivative at all points in a certain
neighbourhood of x is not needed to give the argument. [I

Remarks. (1) As a consequence of Proposition 3.3, we see that Alexandrov’s
theorem fails in any /, (1 < p < 2). Indeed, the dual [y =1, hasby ¢ >2 an
everywhere Lipschitz smooth norm. |- ||, . -
(2) Proposition 3.3 tells that, in a sense, a Banach space E and its dual
E* may not at the same time be expected to be appropriate for second order
differentiability, unless E is isomorphic with some Hilbert space. Moreover, in
the case of a Hilbert space, we know from Example 2 that separability is needed
to give a reasonable theory. :

4. SECOND ORDER DIFFERENTIABILITY AND MEASURE THEORY

In his 1975 paper [3], Aronszajn proved an infinite dimensional version of the
classical Rademacher theorem on almost everywhere differentiability of Lips-
chitz operators 7: R* — R™. To this end he defines a class of exceptional
sets—henceforth referred to as the Aronszajn class of exceptional sets or Aron-
szajn null sets—which plays the role of the Lebesgue null sets in the infinite
dimensional setting. Introducing such a class of exceptional sets becomes nec-
essary due to the well-known fact that no Lebesgue measure exists on an infinite
dimensional Banach space. The Aronszajn exceptional class A, which may be
defined on any separable Banach space E , has the following properties:

(1) It is invariant under translations, i.e., 4+ x € A whenever 4 € A .
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(2) Countable unions of sets of A are again in A,
(3) No nonempty open set belongs to A,
(4) A coincides with the Lebesgue null sets when E is finite dimensional.

Independently, Christensen [13] proved an infinite dimensional version of Rade-
macher’s theorem, which is based on a larger class H of exceptional sets satis-
fying (1)-(4), the Haar null sets. This class can be defined on any Banach space.
A third class G of exceptional sets satisfying (1)-(4), the Gaussian null sets,
was discussed by Phelps [33]. Notice that AC G c H.

In the light of these results, it is natural to ask whether, similarly, an in-
finite dimensional version of Alexandrov’s theorem might be proved with the
Lebesgue null sets replaced by any of these exceptional classes. As it turns out,
this is not the case. Indeed, due to the fact that, by Proposition 2.2, second or-
der differentiability implies (first order) Fréchet differentiability, any such result
would automatically produce an almost everywhere type result for (first order)
Fréchet differentiability of convex functions. And even these weaker types of
results are known to fail. Let us consider some examples.

Example 1 (see Preiss [35, Remark 6. 1]). Let E be a separable Banach space,
and let 4 be a finite Borel measure on E. As 4 is regular, there exists an
increasing sequence C,, n = 1,2,..., of compact convex sets such that
BENUnZ Ca) = 0. Now let f, = d(+, C,) be the distance to the convex Cy,
which is a continuous convex function. Then f = Y127 f, is continuous
convex and fails to be Fréchet differentiable at the points of | J;7, C,. This fol-
lows with some calculation from the fact that each Ju is Fréchet differentiable
outside C, but, due to intC, = & , fails to be Fréchet differentiable at points
x € Cy. So the set D} of points of second order differentiability of f is a
p-null set. Choosing for x4 any Gaussian measure (see [33] for this notion), we
derive that E \D} is not a Gaussian null set, for this would require E\D} to be
null with respect to all Gaussian measures on E. As a consequence of Phelps
[33], E\D} therefore also fails to be an Aronszajn null set. It follows that an
almost everywhere version of Alexandrov’s theorem based on the exceptional
classes of Aronszajn or Gaussian null sets is not valid in any separable Banach
space.

Notice that this construction does not tell us, whether still such a result might
be possible for the larger exceptional class of Haar null sets. Let us therefore
consider the following.

Example 2. Consider the space ¢y of null sequences. Let C be the positive cone
in ¢, and let f = d(-, C} be the distance from C . Then f is continuous
and convex. As C has no interior points, f fails to be Fréchet differentiable
at points x € C. In particular, no x € C may be a point of second order
differentiability of f. But notice that C is not a Haar null set in ¢p. Indeed,
suppose it were. Then, by definition (cf. [13]), there exists a finite, hence regular,
Borel measure u# # 0 on ¢y such that C + x is a u-null set for any translate
C + x of C. But notice that any compact set X in ¢y is contained in some
translate C + x of C, so consequently, any compact X has to be p-null.
Indeed, recall that K is contained in a set Veaw:|yal <xn,n=1,2, .
for a certain x € ¢y, s0 K C C—x. But #(K) =0 for any compact X means
# = 0. This contradiction shows that, in ¢;, no measure theoretic version
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of Alexandrov’s theorem based on the exceptional class of Haar null sets is
possible.

Choosing for C any closed convex set with empty interior and not a Haar
null set would work equally well here. Unfortunately, we do not have an explicit
example of a set C' of this type in separable Hilbert space /. In particular,
the positive cone in /» does not work, for it is Haar null. Yet, it is quite
unconceivable that no set C . of this type should exist in /,, which makes it
at least very unlikely that in /, a measure theoretic version of Alexandrov’s
theorem based on the Haar null sets might be possible.

Example 3. We show that in contrast with the situation in ¢, the positive cone
C = [} is Haar null in /, for all 1 < p < co. Fix an independent sequence of
integrable functions f, : [0, 1] — [0, 1] such that

mify=0r=1-1/n,  m{fy=1/n"r}=1/n
(m = Lebesgue measure). Define a Borel measure 4 on I, by

#(A)y=m{r € [0, 11: (f(1));2, € 4}.

We check that p is a probability measure on /, by showing that (f,(f)) € I,
for almost all ¢. Indeed, by Levi’s theorem we have

1 o oo 1 o0 i _1;»i 00 1
[ﬂgm(zw’m:;jo m(r)wd::;(m) 2= <

proving ]f;[f < oo a.e. Hence u(l,) =
Let us show that u(x — C) =0 for every translate x — C of ~C. lemg
= (x,) € C, we have

m{t: fu(t) < x, forall n} = ﬁm{t DS < xy}
n=1
1

xh<l/n

w(x —C)

Clearly 6 =0 if P:ngd,'n 1/n=o00. But p < oo implies

1 )
00 = ZES x£52x§<oo,
xp>lfn xE>1/n n=1

a contradiction. This proves u(x—C)=0for xe C. Forx ¢ C, u(x—C)=0
is clear. Hence the negative cone —C is Haar null in /,, and consequently 50
is C. Notice that C is not Gaussian null, and hence not Aronszajn null, for
C . contains a Hilbert cube {cf. [33, 3]). 4

The discussion so far suggests that there is little hope for measure theoretic
arguments, in the spirit of Aronszjan’s approach, being helpful in second order
theory. Yet, the situation is not so disastrous after all, at least not when we ask
for the mere existence of points of second order differentiability.

Theorem 4.1. Let E be a separable Banach space, and let f be a continuous
convex function on E. Suppose the set L, of Lipschitz smooth points of f
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is not an Aronszajn null set. Then also the set D} of points of second order
differentiability of f is not Aronszajn null. In particular, D} # @ in this case.

Proof. By the definition of the Aronszajn exceptional class A (cf. [3]), there
exists a dense sequence {e,} in E such that the set L r of Lipschitz smooth
points of f is not in the class A{e,}. According to [3, Corollary I, 1], we may
assume that {e,} is closed under taking rational linear combinations.

Let k,m,n €N, and let 4; ,, , be the set of all x € E such that either
(i) one of the limits

Mxs ey, e) = %213 HOf(x +ten) — B f(x), ),
(4.1) S ems e) =i f(x + tem) — 8 f(x), €),
F'x;s entem, )= lim U f(x + tlen + em)) — D f(X), ex)
fails to exist, or (ii) they all exist, but

(4.2) Slxsen,e)+ f'(x5 em, ex) # (X5 €n + em, ).

We show that 4 ,, , is in the exceptional class A{e;, e, , €,}. By definition,
this means that we have to show that for any x € E,

(4.3) A m aN{x+S)

is a Lebesgue null set in the three-dimensional linear manifold x + S, where
S = lin{ey, ey, e,} . But observe that Alexandrov’s theorem is true in S + x,
so the set of points y € § + x such that f|S + x fails to be second order
differentiable at y (in S+ x) is Lebesgue null in S + x . Now notice that any
Y € g, m,n 0 (x +5) certainly is a point where f|S + x fails to be second
order differentiable in § + x. Here, in (4.1), we make use of the fact that,
for any e, e’ € §, we have (0f(x),e) = (8sf(x), ¢}, {0f(x +1e'), e) =
(Bsf(x +te'), e), with 85 standing for the subdifferential operator in S + x .
So the set (4.3) is Lebesgue null in S+ x, proving Ay . » € A{ex, ém, en}.
Letting A ={J; ,, , 4k, m,» therefore definesa set A4 in the exceptional class
A{e,} (cf.[3, Proposition I, 1]). Since Ly & A{e,}, we must have B = L,\A ¢
A{e,}. In particular, this set is nonempty. We now show that f is second
order differentiable at the points x € B. This establishes the statement of the
theorem. '
By the definition of the sets Ay ,, ,, the difference quotients

(4.4) oS (x + ten) ~ BF(X), en), n=1,2,...,

are convergent (as ¢ — 0) . Invoking Bangert’s result [3, Lemma 4.8], we deduce
that, for any », the second order difference quotient A;(e,) = As .« ,(en) of
f at x converges in direction e, (as ¢t — 0), with y* = V¥ f(x). In other
terms the family A; is pointwise convergent on the dense set {e,}. On the other
hand, x is known to be a point of Lipschitz smoothness of f, so according
to the argument leading to Proposition 2.2, (4,) is uniformly bounded above
(0 < |t] £ 1) on some neighbourhood of 0, i.e.,

(4.5) Ah) < c
for some ¢ >0,s0me § >0,all 0<|f|<1 andall ||h|<4.
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We deduce from (4.5) that the family 4, is equi-Lipschitzin a neighbourhood
of 0, i.e., we have an estimate of the form

(4.6) (k) — AK)| < Clii = K|

for some C > 0,all 0 < i <1, and all ||a]| < 6/2, k|l £ 6/2.. Indeed,
it follows from (4.5) and the subgradient inequality that, for any ||A]} < d/2,
vl <6/2, 0<|t{<1,and yf € dA(h) , we have the estimate -

(4.7) wr, vy SA(h+v) - Adh) < ¢,

proving the uniform estimate NeA ()} < 2¢/é =1 C. But then, for any [|A] <
8/2, kl<é/2, 0<i<t, the mean value theorem provides a vector h; on
the segment [k, k] such that

Ah) — Adk) = (0A (R, h — k) < Cllh = kl}

proving (4.6). ,

Now pointwise convergence of A, on the dense set {ex} combined with
the equi-Lipschitz condition (4.6) readily implies pointwise convergence every-
where. Indeed, let e € E, |lell < 4/2 be fixed. Then, for [le.] < 6/2, we
have

1A (€) — Asle)] < [Ae) — Arlen)] + |A(en) — Aslen)] + 1As(en) — As(e)]
< Clie - enll + 18s(en) — Aslen)] + Clle = enll

Fixing & > 0, we first find {len]| < §/2 such that 2Clle — eqll < e/2. Then we
choose fp > 0 in such a way that

tAt(en) - As(en)|.< 8/2

for all 0 < |¢}, Is] < to. This proves pointwise convergence of {A;) on lle| <
§/2, and by formula (2.4), implies pointwise convergence everywhere. Let us
denote the corresponding limit by ¢g. It remains to check that g is purely
quadratic. This is done by looking again at the first order difference quotient
of 8f.

Notice that, due to the Lipschitz smoothness of f at x, we have an estimate
of the form o

(4.9) 710 £ (x + tew) — BF(X), em)] < Cllenll liem]

forsome C >0, tp>0,alln, me N and all 0 < 7| < fo {(cf. [16, Prpposiﬁbn
2.1(iii)]). Therefore the formula

(4.10) {(Ten, em) = F_f}g(f—‘(af(x + teg) — f(X)) »-€m)

(4.8)

defines a bounded linear operator T : E — E*. Indeed, (4.10) first defines
a linear T: [{e.}] — [en})” = E%, which by (4.9) has norm [|T]| < C on
[{ex}1, and so by continuity extends to-a bounded linear operator on E . Notice
that, in (4.10), linearity in the e,-coordinate follows since x ¢ A, whence the
phenomenon (4.2) is not allowed to occur. But now it remains to observe that,
for neN, .

Adey) — glen) = 3(Ten, en) s t— 0.

The {e,} being dense, this proves the purely quadratic representation g(h) =
NTh, k), so the proof is complete. 0 - S
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Remarks. (1) It might be somewhat surprising that the finite dimensional ver-
sion of Alexandrov’s theorem is needed to obtain this result. However, the same
is true in Aronszajn’s approach, where the classical Rademacher theorem has
to be invoked to prove the infinite dimensional version. Notice that in our case
the one-dimensional version of Alexandrov’s theorem would be sufficient if we
wished to prove only convergence of the second difference quotient. Proving
the limit ¢ to be purely quadratic requires a more sophisticated reasoning.

(2) Notice that Theorem 4.1 does not guarantee the existence of points of
second order differentiability. Even in separable Hilbert space we do not know
whether Ly ¢ A in general. Clearly, if we had Ly € A, Theorem 4.1 would
not provide any information. _ :

(3) On the other hand, we do not know of any example where the set Ly of
Lipschitz smooth points is Haar null. Observe that the construction in Example
1 giving p{Ls) = 0 does not mean that L, is Haar null, for this would require
x + Ly to be a p-null set for every translate x + Ly of Ly. We conjecture
that the following is true in separable Hilbert space: Ly ¢ A. In§7 we will
substantiate this for convex integral functionals f of the form

1x) = [ 9lt@), putdo),

x € L2,(Q), with ¢ : R"xQ - R measurable and convex in the first coordinate.
We end this section with the following way of stating Theorem 4.1.

Corollary 4.2. For any continuous convex function f on a separable Banach
space E, the set Lf\D} of Lipschitz smooth points which fail to be points-of
second order differentiability is an Aronszajn null set. . :

This way of stating the result is interesting insofar as it badly fails in non-
separable Hilbert space. Indeed, let us consider '

Example 4. Let T be uncountable, H = L(T), and let C be the positive cone
in-H. Let Pc be the projection onto . C, with f -denoting the continuous
convex function (3.10) having V¥ f = Pc. Then f is‘nowhere second order
differentiable, yet.is everywhere Lipschitz smooth. So here we have L f\Djr =
H , which strongly contrasts Corollary 4.2. Notice that Lipschitz smoothness of
# follows via [16, Proposition 2.1(iii)] when we recall that Pc is nonexpansive.

Remark. Observe that there is no chance for a category analogue of Alexan-
drov’s theorem. Even for a convex function f on the real line, the set Ly may
be of the first category. For an example see [16, §2, Example].

5. SMOOTH APPROXIMATION OF CONVEX FUNCTIONS

It is well known that a convex function in R” may be approximated uni-
formly on bounded sets by convex Coofunctions. Recently, Vanderwerff [42]
proved that a corresponding result does not hold in infinite dimensions, by
constructing a norm on separable Hilbert space which cannot be approximated
uniformly on bounded sets by even nonconvex C2-functions having uniformly
continuous second derivatives. It seems to be an open question whether a uni-
form C? approximation for convex functions on bounded sets in Hilbert space
is possible, but the quoted result strongly suggests that uniform appreximation
by convex C'-!-functions is the best we can hope for (see also [29]). Here
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the Hessian V2f(x) of f at x is nondegenerate, it is known that the conjugate
function f* is second order differentiable at y = V. (x), its Hessian V2 f* (»)
at y being the inverse of V2f(x), ie., -

(6.2) ' Vif(x) = (Vi ()L, .
Naturally, to prove this, we consider the second difference quotients of f and
S*. These are again conjugates, i.e., we have '

(63) (Af,x,y,t)*=Af*,y,x,t;

where y € 8f(x), x € f*(y). Now A f,x,y,: Converges pointwise everywhere
to the purely quadratic limit function g(4) = 1 (V2 f(x)k, k). ‘We may then
deduce that the conjugate A}, x,y,t CONVErges pointwise everywhere to the limit
q* (see Proposition 6.3), hence, by (6.3), f* is second order differentiable at
¥, with the identity (6.2) showing up. As it turns out, however, this argument
relies strongly on the fact that 2 f(x), orrather g, is nondegenerate, Yet, hav-
ing the duality relation (6.3) at our disposal, we would like to maintain some
duality of type (6.2) even when V2 S(x) is degenerate. The function g then
being degenerate, we would still expect convergence of the conjugate second or-
der difference quotient A;. y,x,+ 10 the conjugate limit g*, which in this case
would be a purely quadratic function defined on a lower dimensional subspace
of R”, the corresponding generalized Hessian then being a pseudo-inverse of
V2f(x). Unfortunately, this generalized duality (6.2) is not valid in all cases
(Example 1). The reason for the failure is that the Young-Fenchel conjugation
@ — ¢* is not continuous with respect to pointwise convergence, i.e., pointwise
convergence of a sequence (¢,) does not necessarily imply pointwise conver-
gence of the conjugate sequence (#%). This led Wijsman [43] to introduce a
notion of convergence for convex functions which has the property of forc-
ing the Young-Fenchel conjugation ¢ — ¢* to be continuous. This is widely
known as epiconvergence. Tt was extended to the case of infinite dimensions by
Mosco [28], where it is known as Mosco convergence. In order to maintain a
duality-type relation (6.2) for second derivatives, we are therefore led to study
second order differentiability concepts based on Mosco convergence rather than
pointwise convergence of the second difference quotients. In finite dimensions,
a programme of building a generalized second derivative based on epiconver-
gence has been initiated by Rockafellar (36, 37, 39]. Here we focus mainly on
the case of infinite dimensions.

A function ¢ € T, o(H), where Ty(H) denotes the cone of proper lower.
semicontinuous convex functions on the Hilbert space H » will be called purely
quadratic if there exists a closed symmetric and positive linear operator T , with
domain D(T) = D(q), such that g has a representation -of the form '

(6.4) q(h) = H(Th, h), h € D(q).

As in finite dimensions (cf. [36]), it can be shown that a function g € I'y(H) is
purely quadratic if and only if the graph 8¢ of its subdifferential operator is a
closed linear subspace of H x H . Indeed, the necessity of this condition being
clear from (6.4), let us assume that 8q is a closed linear subspace of H x H .
Then 94¢(0) is a closed linear subspace of H. Hence, for every x'c D(g) we
find a unique vector Tx € 8¢(0)L such that R o

84q(x) = Tx + 8¢(0).
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Hence T is linear on D(g) with valuesin 8¢(0)* . Closedness of aq implies
closedness of T. To check the identity (6.4), we use the fact that ¢ is quadratlc
on D(g). As Th € 8q(h), we have :

(Th, ph) < q(h+ ph) — q(h) = (2p + pz)q(h)

for every p eR. Dividing by positive (resp. negative) p, and then passing to
the limit' p — 0, we obtain the desired representation (6.4). In particular, T
is positive. Finally, to check the symmetry of T, we use (6.4) to write .

(Th, v) < £ (qlh + tv) — q(h)) = L(Th, v) + (Tv, by + (T, v))

for all #,v € D(g). As t — 0, this proves the symmetry of T, and hence
shows T to be uniquely determmed by ¢q.

Let us now briefly discuss the notion of Mosco convergence for functions in
I'o(H). Instead of stating the definition as presented in [4, §3; 5 or 40], we
prefer to give the following equivalent, but for our purposes more workable,
description. For a proof of the equivalence see [4, 3.0].

A sequence {¢,) of functions in T'o(H) is Mosco convergent to the limit ¢ €
Fo( ) if and only if the following two conditions are satisfied:

(o) For any x € D(¢) there exists x, € D(¢pn), Xn — x (norm) such that

d(x) > limy oo Pnlxn) . .
(B) For any strictly increasing sequence n;, of indices and any sequence (xk)
with x; — x (weakly) we have ¢(x) <lim, ¢, (xz).

It is in the nature of Mosco convergence that it has an equivalent description
in terms of convergence of the graphs 8¢, of the subdifferential operators, see,

e.g., [4].

Definition 6.1. Let f be a continuous convex function on a Hilbert space H'.
Let x € H. Then f is said to have a generalized second derivative or to be
second order differentiable in the generalized sense at x relativeto y € 8 f(x) if
there exists a purely quadratic function ¢ € I'g(H) such that the second order
difference quotient Ay , , , converges to ¢ (as ¢ — 0) in the Mosco sense.
The closed symmetric and positive linear operator 7' corresponding with ¢ in
the representation (6.4) is called the generalized Hessian of f at x relative to
y €8 f(x).

Remarks. (1) Take f:R?> — R, f(&, n) = |¢|. Then f is not differentiable

t (0,0), 8f(0,0) = {{e, 0): |a| < 1}. Now for y = (a, 0), || < 1, the
second difference quotient Ay o , , converges both pointwise and in the Mosco,
sense to the limit ¢ with ¢(0,#n) = 0, ¢(&,n) = oo for & # 0. So the
existence of a generalized second derivative ¢ does not necessarily imply first
order differentiability. However, in general, it is easy to see that the existence
of ¢ implies that all subgradients agree on D(q), i.e., (¥, k) = {y;, #) for all
h € D(g) and all y; € 8 f(x). In particular, if the domain D(g) of g is dense,
this implies Gateaux differentiability of f at x.

--{2)-Our notion of a generalized second derivative differs slightly from Rock-
afellar’s [37, 391 since we consider two-sided limits and require the limit func-
tion g to be purely quadratic. More significantly, Rockafellar also considers
partially defined functions f, while we restrict out attention to the fully defined
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case. Clearly, new phenomena might be expected at boundary points x of the
effective domain dom f . It should be mentioned, however, that the second or-
der behaviour of f at such points may be reduced to the fully defined case, by
using a penalty-type approximation of f by fully defined functions fj), where

(6.5) fm=f0nl-l, neN

The approximation (6.5) has been used by various authors for similar purposes,
see [30, 31, 8, 19, 14, or 7].

(3} It is known that Mosco convergence and pointwise convergence are gen-
erally unrelated (see [4, 40] for examples). Here we show that the situation is
similar for pointwise and Mosco convergence of second difference quotients.
See also [32] for related examples.

Example 1. We construct a convex function f on R? with f{(0, 0) =0 which
is differentiable at (0, 0} with Vf(0, 0) = (0, 0) such that the following are
true: The second difference quotient at (0, 0) converges both pointwise, with
limit p, and in the Mosco sense, with limit ¢, but : '

(6.6) g(0,1)<p(0,1),  D(p)=D(g)={0} xR
Let £, =277, s, =12 =27 (for 1 <a <2 fixed). We define f such that
(6.7) FO, =2 =47, f(sn, ta) = 3t5= 347"

For n > 1 let ¢, be the plane spanned by the points (0, 2, 2, (Sn» tns 512),
(0, th+1» t,zl +1), and e_, the reflection of &, with the xz-plane. Also let
5, be the plane spanned by the points (sn, ¢, 182), (Sneis sl 12}, and
(Sn » tar1> 3t2,;), and let d_, be the reflection of 8, with the xz-plane. Let f
be defined by taking as its graph the upper envelope of all the planes &+, and
d+, . It is easy to check that the slopes of these planes are uniformly bounded,
so f is a globally defined convex function.

To check (6.6), notice that p(0, 1) = liMy—c0 f(t:(0, 1))/t = 1, while, by
condition (f) for Mosco convergence, (0, 1) < liMysoo f{Sn5 tn)/ (s2+12) =
{%O.}It f‘R?llows from Proposition 6.1(4) that D{q) # R?; hence D{q) = D(p} =

X B

Example 2. Let f:/, — R be a convex function of the form
(6.8) ) =Y fulx),  x=(u)eh,
n=1 :

where the f, are convex functions on the line. Suppose that x = (x,) € & i
a point such that each f, is second order differentiable at x,:. Then f has
generalized second derivative ¢ at x given by

1 oo
(6.9) TOEEDIFACHLS
. n=1 .
with D(q) the setof all 2 € /; for which (6.9) converges. This may be checked
either directly or using Proposition 6.4. Notice that D(q) = L if and only if
f(x,) is bounded. But even in this case, g need not be a limit in the pointwise
sense. To see this, let us specify (6.8) by taking f(§) = nefE| (% <a<l).
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Consider x = (n72) € I,. Then {6.9) gives ¢ = 0 as the generalized second
derivative at x. However, the second difference quotient fails to converge
pointwise to ¢. In fact, if A, — 0 pointwise, then f had to be Lipschitz
smooth at x by Proposition 2.2. We show that this is not the case.

Let 2 el,, then

Jx+h)~ fx)—(VFf(x), h) = 7% + bg| — 2 — hy)

(6.10) n=t

3 (~2nme - apmep,).
=244, <0
Assuming that f Lipschitz smooth at x = (n=%), we would find C > 0 and
9 >0 such that (6.10) is majorized by C||4||> for all 4 having 7| <6.

Let 6 > 0 be fixed. Define 4% € &, by 4% =0 for n < 52, 3 = —n!
for n > d~2. Then ||A%|? = §2. Inserting 4% in (6.10), and observing that
n~2 4+ 48 <0 for n>38-%, we obtain the term

Z (_2n—a—2 + 2n—a—l) = 52 62a+2,
n>4-2

which by o < 1 is certainly not of the form 0(62), § — 0. So f is not
Lipschitz smooth at x.

Notation. In the following we will use the notation x ¢ GD} if f has a gen-
eralized second derivative g at x satisfying D(q) = H. Also we recall the
notations D} for the set of points of second order differentiability of f (Defi-
nition 2.1), and L r for the set of Lipschitz smooth points of S (see §2).

Our first result gives conditions under which Mosco convergence of the second
difference quotient may be improved to pointwise convergence.

Proposition 6.1. Let f be a continuous convex function on a Hilbert space H .
Let x € H, y € 8f(x), and suppose the second difference quotient Af vyt
converges to the limit q € To(H) in the Mosco sense. Then

(1) A .y, (h) = 0o = q(h} for h & D(q).

(2) Suppose for some h € D(g) there exist Yt € 8 f(x + th) such that
(6.11) I e-mil < C '
Jor some C >0 and small t. Then Ar sy, h)—qh) (t—0).

(3) If f is Lipschitz smooth at ‘x , then As x,y,1 coOnverges pointwise every-
where to q. In other terms, L N GD} C D}.

(4) In finite dimensions, H = R", if D(q) = R", then Ay . , , converges
pointwise everywhere. In other words, D} = GD} in R*.

Proof. Statement (1) is clear from condition (B) of Mosco convergence, when
applied to the constant sequence /. Statement (3) follows from (2) using [16,
Proposition 2.1(iii}], which tells tha: for a Lipschitz smooth point x of f,
(6.11) is met uniformly over all ||4|] < 1. Statement (4) is the second half of
[37, Proposition 2.3). It might be obtained directly from (2), using an Ascoli-
type argument as in [4, Remarque 1.12, =].

Let us prove (2). Let & € D(q) satisfying (6.1 1) be fixed. By condition (8)
we have g(A) < lim, A,(%), where A, = A 7.x,y,¢+ S0 it remains to prove the

reverse estimate limy_,oA, (k) < g(k).
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Using condition {«) of Mosco convergence, we find 4, — k& (norm) such
that Hm A,(h;) < g(h). Choosing y, € d f(x + th} as in (6.11), we have

e~ y) € 7O f(x + th) — y) = DA (h);
hence the subgradient ineguality gives
(6.12) (W= 9) s b= By < Alhy) — Ay(R).

By (6.11), the left-hand side of (6.12) tends to 0; hence im A,(#) < HmA,(h) <
g(n) . This proves statement (2). 0O

Notice that Example 2 shows that (4} above fails in infinite dimensions.
Let us now ask for conditions under which conversely pointwise convergence
of A, entails Mosco convergence.

Proposition 6.2. Let f be a continuous convex function on a separable Hzlbert
space. - Let x € H, y € 8f(x), and suppose A r.x,y,t COnverges pointwise
everywhere to a limit p € To(H).
(1) If f is Lipschitz smooth at x, then also Ay  , ; — p in the Mosco sense.
(2) Any point of second order dzﬁérentmbzhty is also a pomt of generalized
second order differentiability. In particular, D% =L, N GD

Proof. Statement (2) is immediate from (1), since second order dlﬁ'erennabﬁlty
implies Lipschitz smoothness (cf. §2).

To prove statement (1), it suffices to show that A; = A, , , , has a Mosco
limit, say ¢ . For then Proposition 6.1(3) shows p = ¢. We prove that every
sequence #, — O has a subsequence #,, such that A,,,k converges to some limit
g in the Mosco sense. Then p = ¢ by Proposition 6.1(3). Let us fix ¢, — 0.

According to [4, Proposition 6.1], the cone T'y(H) isa compiete metric space
in its Mosco topology when endowed with the metric

(6.13)  d(, w)=1$1(0) - w(0) +Zz "minfl, [1g(hn) - Ty ().

n=0
Here {h,} is any fixed dense sequence in H, and ¢ =901 -2, w1 =
w03 - ||?, while Jg, J, are the resolvents (5.3) of parameter A = 1, ie.,
Jy=(id+8¢)~!, J, = (id+8w)~'. By the definition of the second difference
quotient we have (A1 (0) = (A %Il - |%)(0) = 0, so the first term in (6.13)
cancels for distances .d(A,,, A, ). Next observe that since each J; 1= J,, is
nonexpansive, we have (using (5.5))
(6.14) [EACHIIE PACHES A BTN
which proves that, for any j, the sequence (J;,{#,))32, is bounded. Using a di-
agonal procedure, we may therefore extract a subsequence f,, such that J, (h )
converges (k — oc) for j=1,2,.... By (6.13), this means d(A,,, , A‘n:) -0
as k,/ — 0. So {At,, } is Mosco Cauchy, and hence has a Mosco limit q
This completes ‘our argument | :

Let f be continuous convex on a separable Hilbert space H . As we are inter-
ested in the second order behaviour of f', we lose no information on perturbing
by a C2-function. Indeed, consider the perturbed function

(6.15) g=r+31- 1.
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In the case of second order differentiability (Definition 2.1}, it is immediate that
the properties of f and g are equally good. Concerning generalized second
order differentiability, the same is true, but we have to be more careful, Observe
that the second difference quotients of S/ and g are related by the identity

(6.16) Agx,xap, 0 =Ar o+ 3 - |17,

where y € 8f(x), x+y € dg(x). Based on conditions (o), (£}, we may
now check using (6.16) that Ar x,y,c — g in the Mosco sense if and only if
Ag xxtyt = qo=¢g+ %li - |I* in the Mosco sense, which proves our claim.

The perturbation (6.15) makes duality much easier. Indeed, g* = f*OL)f-|2
isnow C'! and even Lipschitz smooth according to (5.1), (5.2),/(5.4). This gives
the following dual description of generalized second order differentiability.

Proposition 6.3. Let [ be a continuous convex Junction on a separable Hilbert
space. Let 'y € 8 f(x). Then the following are equivalent:

(1) f has generalized second derivative q at x with respect to y .

(2) g=f+1-1? has generalized second derivative do=qg+1|-* ar x
with respect to x +y € 8 g(x). :

(3) g* = /0L - |? is second order differentiable at x +y (with’
Vig*(x +y) =x). _

(4) VEg* is (first order ) norm Gateaux differentiable at x + V.

(5) Jp = (id+8 )L is (first order) norm Gateaux differentiable at x +y .

Proof. The equivalence of (1) and (2) was observed above.The equivalence of
(2) and (3) follows from the fact that Mosco convergence is invariant under
Young-Fenchel conjugation (cf. [4, 40), so that Mosco convergence of Ag » .1y
is equivalent to Mosco convergence of (Ag,x,xp,0)* =Age x4p.x.c. But g* is
Lipschitz smooth, so Propositions 6.1, 6.2 show that Mosco convergence and
pointwise convergence are equivalent for Age iy x.r.

The equivalence of (3) and (4) follows from the fact that second order differ-
entiability is equivalent to first order Gateaux differentiability of the derivative
by Proposition 4.3. Equivalence of (4) and (5) is immediate since Vg* =
id~Js (see (5.2)). O

As a consequence of Proposition 6.3, we may now check the representation
(6.9} of the generalized second derivative of a function (6.8). This may be
considered as a special case of the following.

Example 3 (Integral functionals). Let (Q, A, 4) be a measure space, and let
H=ILX(Q,A, 1. To apply our present theory, we need to assume that H
is separable, which is satisfied, e.g., when A is countably generated and y is
o-finite. Nowlet ¢ :R" x Q — R be a measurable function which is convex in
the first argument. Then

(6.17) =[x, Ddut)

defines a closed convex integral functional S on H. For convenience we as-
sume that f is finite everywhere and hence continuous. This requires a growth
condition on ¢ as for instance given in [38, §2]. See this reference for some
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Moreover, in these cases, qn — @0 = g+ 5|+ |> {n — o0) pointwise and in
the Mosco sense, with convergence being uniform on all bounded sets on which
[ is bounded when q is fully defined.

Proof. The equivalence of (1} and (2) was proved above. Mosco convergence of
gn 10 go is immediate from the fact that, dually, g; = g5 +||- I?/2n — g inthe
Mosco sense. As for pointwise convergence of g, to gp, observe that g, is the
Yosida approximate of ¢y with parameter », which converges pointwise to gop
by reasoning as in Lemma 5.1. Finally, in the case D(qo) = H , the statement
is just Theorem 5.2(1). O

Remark. Suppose we wish to calculate the generalized second derivative V2 f(x)
for apoint x € GD%. We consider g = f +4|1+|1? instead. We then approximate

g by taking one of its Yosida approximates g, = gOnl| - ||*>/2, and evaluate
V2g,(x,), where x, = x + (x + Vf(x))/n. This is justified, for g, — g
uniformly on bounded sets on which f is bounded, Vg.(x) — Vg(x) at dif-
ferentiability points of g, and even V2g,(x,) — V2g(x) for points x € GrDJZr
(resp. x € GDf,). We may proceed in this way even when x € GD} is not
clear. We then have x € GD} if and only if x, € D , n=1,2,..., with
IV2gu(xn)|| € C < co. In finite dimensions, this is therefore a test for second
order differentiability of f (resp. g) at x.

We end this section by giving a short proof of Alexandrov’s theorem in finite
dimensions.

Theorem 6.7 (Alexandrov’s theorem). Every convex function f on R* is almost
everywhere second order differentiable.

Proof. Let g = f+ %ﬂ -||>. By Rademacher’s theorem there exists a null set 4
such that T = Vg* is differentiable on R"\A. Then T'(4) is again a null set.
By Sard’s theorem (cf. {17, Corollary 3.2.5]) the set ‘

M = {T(z): VT (z) exists but is degenerate}

is null, hence sois N = MUT(A). By Proposition 6.3, f is second order differ-
entiable in the generalized sense at every x € R"\N . Let ¢ be the generalized
second derivative at x with respectto y,and gy = q+%i| 2. As x+y €A, g*
is second order differentiable at x +y with Hessian V2g*(x+y)= VT (x+y).
By definition of M, VT(x+y) is nondegenerate, so ¢3(h) = {(VT(x+y)h, h)
is nondegenerate, which means that ¢y, and hence ¢, is fully defined. By
Proposition 6.1(4), f is therefore second order differentiable at x. O

7. DUAL LIPSCHITZ SMOOTHNESS

The results obtained in §6 tell us two facts. First, a continuous convex func-
tion f on separable Hilbert space is second order differentiable at x if and
only if it has a generalized second derivative and if, in addition, it is Lipschitz
smooth at x. Second, the shift g = f + %H - ||# allows for a dual description
of generalized second order differentiability in terms of the function- g* which,
being C!-!, is almost everywhere second order differentiable by the result of
Aronszajn [3]. It is therefore natural to ask for a dual description of Lipschitz
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smoothness, which then, in tandem with the above, allows us to express second
order differentiability of f completely in terms of the dual data.

For sublinear functions ¢ = sup(C, -), Fabian {16, Proposition 2.2] presents
a dual version of Lipschitz smoothness in terms of a geometric condition.
Namely, ¢ is Lipschitz smooth at a point x (¢{x) =1, y = VF #(x)), if
and only if the convex set C is Lipschitz exposed at y € C by its tangent hy-
perplane 7, which is to say that the surface 0B of a Hilbert norm ball B may
be fitted in between 9C and its tangent hyperplane 7 at y. In other terms,
C CB,with B and C having common tangent hyperplane t at y. Here our
program is to obtain a dual description of Lipschitz smoothness of a general
convex function f, using g*, ver, Jp .

Proposition 7.1. Let f be q globally Lipschitz convex function on q separable
Hiibert space H. Then the Jollowing are equivalent:

(1} f is Lipschitz smooth at x (with y = V¥ f(x)).

(2) There exists ¢ > 0 such that Ar .y () < cl|h|? forall h € H and

t#£0,
(3) There exists a > 0 such that A x. (k) > alk|? forall k ¢ H and
] 120 y.x,
{4) The a;ual second difference quotient A . t=Ap y <1 Of f* is equico-
i, f*.,.x,
ercive, i.e.,
. Ap (k)
7.1 lim sup —L8\%7 _
(7.1  Welieo 1 K] *

Proof. (1) = (2) By the definition of Lipschitz smoothness, we find ¢ > 0 and
6 > 0 such that (with A= Ar oy Ar (k) < & for all 2] <1 and
0<|f§<d. For |t > 5, izl <1 we have

As ((h) = Sx+th)— f(x)—tly, b) L2 < 2L

Iz ' = =6
with L > 0 a global Lipschitz constant of J.80 Ay ((hy<c forall 1#0 and
2]l <1 with ¢ = max{e, 2L/8} . Clearly this gives the desired estimate (2).
(2) = (3) Using (6.3), we have (with Ap. = Ape yox1)

1
(7.2)  Ap (k) = St;p{(k, k) —Ar ()} > sxhlp{(k, h} —cllA|*} = nglkflz,
which is (3) with o = 1 /4c. '
The implication (3) = (4) being obvious, let us prove (4) = (1). By [186,
Proposition 2.1(iii)], we have to show that, for any fixed 4 e-H,
Af(x+th) -8 f(x)
t

(7.3) sup < 00

t#0

Let yoeof(x+th), y= V¥ f(x), and suppose 1= — ) - o (t—0).
Now (6.3) gives ,

(7.4) Ar (M) +Ap (7 — VI =y —)/t, h).

Dividing (7.4) by =1y, - )|l produces a bounded right-hand side, while by
equicoercivity the second term on the left-hand side tends to 0o . As both terms
on the left-hand side are positive, this is a contradiction. 0 :
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- Qur next step is to express Lipschitz smoothness of f in terms of the Lip-
schitz operator Vg*, resp. using (5.2), in terms of the proximity mapping Jy. .

Proposition 7.2. Suppose f is convex and globally Lipschitz on the separable
Hilbert space H . Then the following are equivalent: _

(1) f is Lipschitz smooth at x (with y = vEf(x)).

(2) There exists 0 < f <1 such that

(7.5) (Jpe(x+y+ith)y—=Jp(x+y), K}t < Blik|*
forall t#0 and k€ H.

Proof. First assume that f is Lipschitz smooth at x. By Proposition 7.1(2)
there exists & > O such that Ay, , . < &\« ||* forall £#0. Letting g =
F+ 4112, (6.16) implies Ag,x x4y, <cll- I[2 forall ¢+ 0, where ¢ =&+ 3.

Now the implication (2) — (3) of Proposition 7.1, which does not use the
global Lipschitz condition, implies the dual estimate

(7.6) Ag (k) = oflkl?,  keH,

for some o > 0, where Age ; = Age xiy,x,t- But observe that, on the other
hand, the identity Age (= As O3]« || shows that Ag. ., < 11l - )2, hence
0 <a<1in(7.6) (withequality o = 1 occurring precisely when As x , (=0,
which is to say that f is affine).
Let z = x +y, and let kK € H. Applying the mean value theorem to g*
along the ray z + R,k provides 7 = (¢, k) € (0, £} such that
(Ve*(z+1k)—Vg™(2), k)

(1.7) alk, k) < Age 1(k) = . ;

Using (5.2), this may be recast as
(7.8) (1 —tajt)k, k) > (Jp-{z + Tk) - Jp(2), kY7,

t>0, t=1(t,k). Let f=1-0a. As 1> T, (7.8) is the desired estimate
(7.5), with the proviso that we still have to check that 7 = (¢, k) ranges over
all positive reals when ¢ is allowed to vary over Ry

To do this let k # 0 be fixed. We consider the reat convex function y:{ —
g*(z + tk), which is C I for so is g*. There are two cases to be discussed.

First assume that y is not affine on any interval [0, o] with # > 0. Then
the mapping ¢ — (¢, k) is continuous and monotonically increasing on R .
Indeed, first we have to observe that ¢ — t(f, k) is a well-defined function.
This follows from our temporary assumption and the fact that 7 is C'. The
latter also implies continuity of (-, k). As for monotonicity, we observe that,
in the defining identity

(7.9) Y (a(t, k) = (1) — 7 (O)/!

for (-, k), the difference quotient on the right-hand side is monotone as a
function of ¢. Monotonicity of ' then shows the monotonicity of (-, k).
Notice that, a priori, the case s~ {y(s) — 7(0)) = t=1(yp(t) — y(0)) for 0<s<t
seems possible. However, due to convexity, this forces y to be affine on [0, ¢1,
the case which was excluded.

As (-, k) is continuous and monotone, we deduce that, in (7.8), T ranges

over all values close to 0. As for large values 7, suppose there was an upper
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bound (¢, k)< T < o0,as t = oc. By (7.9), this would mean that y had an
asymptote with slope y'(7) as ¢ — co. But ¥ is increasing. So we must have
¥ (7) = ¥/(7) for v > 7, which means that y is affine on [7, oo). Hence we
have

(7.10) - Y=g (z+tk)=mt+b, t>7,

where m = (1), b = g*(z + 7k) — m%. We show that this is impossible.
Indeed, assume m > 0. Then we have

g(lfzk—rr[zk) >s p[<ﬁ%k, z+tk>~g*(z+tk}]

U
>3
(7.11) - [<__2m > 2m g k- z—bJ
| T \TERE® 2) * Rt K - m
= constant + sup mt = co,

>7

a contradiction. For m < 0 take g(k) to produce a similar contradiction. This
completes the argument in the first case. B

Now consider the case where y is affine on some interval [0, %], fo>0. As
(¢, k) may then be any value in (0, 7), there is no problem for the ¢ € [0, 1;].
For convenience, we may fix (¢, k) to equal ¢ on [0, £], with the previous
argument then applying on [y, co). This completes the proof of statement (2).

Conversely, suppose now that (7.5) is satisfied. Fix k € , Ikl = 1. Writing
again p(f) = g*(z+tk), z=x+y, the assumption reads as

(7.12) 1-('O-yO)/t<p, t#0,

where y'(t) = (Vg*(z +tk), k), and where we use (5.2). Let a=1—f. Then
(7.12) is y'(£) > ¥'(0) + at. Integrating gives

1@ =30 = [tz v+ e,

forallt > 0, s0 Ag- (k) > /2 for all T > 0. Hence condition (3) in Propo-
sition 7.1 is met, which proves that g (and so f) is Lipschitz smooth at x.
Notice that the implications (3) = (4) = ( 1) in 7.1 do not use the global
Lipschitz assumption, so they applyto g. O

Proposition 7.3. Suppose f is convex and globally Lipschitz on the separable
Hilbert space H. Then the following are equivalent:

(1) f is Lipschitz smooth at x (with y = V¥ f(x)).

(2) Thereexists 0< f <1 and 6 >0 such that

(7.13) re(x+y+k)—Jr(x+y), k) < BkI® forall |k||<6.
Proof. By Proposition 7.2, Lipschitz smoothness of f at-x implies that (7.13)
is met globally for all k € H. Conversely, we have to show that it is possible

to obtain the global estimate (7.5) by starting with the local version (7.13).
Let k € H having [k|| = 1 be fixed. With the notation.

V()= (Jplz+th), k),  z=x+y,
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statement (2) means v(t) — v(0) < Bt for [t < 5. Let 8§ <t < 3L, where L
is a global Lipschitz constant for f. Then : :
() —v(0) _ v{®) — v(8)t—90 + v(8) —v(0) o

t T t-6 t 3 t
7.14
8 (-6 8 =83y 3U-B)

Tt t A 3L 7
using (2) and the fact that v is nonexpansive. Finally, for ¢ > 3L, we have
v(t) —v(0) < 2L 2

i 3L 3
using that v is globally bounded by L, This shows that (7.5) is now satisfied
for all ¢ # 0 with B replaced by = max{f,1 - (1 — B)Y/3L, 2/3} < 1,
since the above estimates are met uniformly over all |kl|=1. O

As a consequence of Proposition 7.3, we obtained a localized condition (7.13)
which dually characterizes Lipschitz smoothness. This suggests asking for the
best constant f > 0 occurring in (7.13).

Definition 7.1. Let 7 : H — H be a monotone locally Lipschitz operator on a
Hilbert space H. Then . ~ ' S L

@R -T@, K
@13) DT, D=l S, WRE

is called the one-sided Lipschiiz constant of T at z€ H. :

Notice that we have b(T', z) < I(T', z), where (T, z) denotes the Lipschitz
constant of T at z,1.e., the infimum over all Lipschitz constants of T onsmall
neighbourhoods of z.

Definition 7.2. Let ¢: H — R be continuous and convex. Then

i Bz + k)= 8(z) = (V¥ $(2), K)
@.16) <o D=3 s W

is called the Lipschitz-smooth constant of ¢ at z. If ¢ fails to be Lipschitz
smooth at z, we write ¢(¢, z) = . '

In the case of a convex C!:! function $ , we may ask for the relation between
(¢, z) and b(VF¢, z). This is covered by the following . R

Lemma 7.4. Let ¢ be convex and C':'. Then '

(1) e, 2) < $b(VFP, 2).

(2) If ¢ is second order differentiable at z, then
(7.47) LR S eld) 2) < 16(vh¢, 2).
SN If ¢ is strongly second order differentiable at z, then equality holds in -
(7.17). : , - S _
Proof. First consider (1). Let g > b(VFé, z). We prove that - ¢ -is Lipschitz
smooth at z with constant /2. Let §>0 besuchthat .~ -

(7.18) . (VEg(z + tk) - vEd(z), k) < Bt
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for all [k =1 _and |f| < 8. Fixing [lk|| = 1, we let y(t) = ¢(z + tk). Then
(7 18) becomes ¥'(f) < y'(0)+ B¢, |t < 4. Integratmg Imphes y(#) — y(O) <
ty'(0) + B12/2, proving c(¢, z) < /2.
Concerning (2), observe that by the definition of the second dlﬁ‘erence quo-
tient, we obtain :

(7.19) : $HV2(2)k, k) < c(é, 2)

for all |jk]| = L. But V2¢(z) is a positive and symmetric operator, so (7.19)
implies (7.17). : :

. Finally, concerning (3),-let T = VF¢, and suppose V2¢(z) = VFT(z) is
a Fréchet derivative. Suppose we had ||V2¢(z)| + & < b(T, z) =: b for some
£>0. By (7. 15) there exist k, — 0 such that

(7.20) (b~ &)llkal?® < (T(z + kn) = T(2), ki) < 17z + k) = T 1Kl

for n=1,2,.... On the other hand, by the definition of the Fréchet deriva-
tive, we ha\(e

Tz + ko) = T(2)/Wnll = VET(2en el | = 0,
which, with (7.20), gives ||V2¢(z)]| <b-¢< |]V2¢(z)|§ a contradlctlon o

Using the constant b, we may give the following dual formula for the set L 7
of Lipschitz smooth points of the function f:

(721) Ly ={Vg*(z):b(id-Vg*, z) < 1} (g=f+3-1¥

‘ Uémg both b and ¢, we now obtain the following dual characterization of
second .order dlfferentlabzhty, which is one of our main steps towards Alexan-
drov’s theorem.

Theorem 7.5. Let f be a continuous convex function on a separable Hzlbert
space H . Then the following are equivalent:

(1) f is second order differentiable at x (wzth y=vF f(x)).r
(2) f; fEI - ||2 is second order dzﬂerentmble at x+y and c(f1, x+y) <

"(3) Jf‘ is Gateaux differentiable at x +y and b{(Jp, x + y) <1,

Proof. By Propositions 7.3 and 6.3(5), statements (1) and (3) are cqulvalent
for a globally Lipschitz function f, as (7.13) translates into b(Jy., x +y) < 1.
We now argue that the global Lipschitz assumption may be dropped. Invoking a
standard shlft here, we may assume w1thout 1oss that x =0 and y = VF f (0)
0.

Let f be L1psch1tz on some nelghbourhood B(O 5) of 0 with constant ne
N, say. Then, according to [20], f and its penalty approximate S =S0n|-|
of order n coincide on B(0, §), with 8/ and 8 fi5) being equal on. B(0, d),
too. As the data in (1) -and (3) above are clearly local, all we have to check
is that Jp. = Jiz,)- on a neighbourhood of x +y = 0. Using the definition
{5.3) of the resolvem parameter and the fact that Jp. is nonexpansive, it can
be shown that the desired neighbourhood is B(O 6/2). This proves that (1)
and (3) are equivalent.

Now observe that, according to {27}, Jy. is the Fréchet denvatwe of fl
Thus Jp. = Jyz- On 2 neighbourhood. of x +y = 0 implies that, up to.a
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constant, fi = (fi;)1 on the same neighbourhood. Therefore, by the reasoning
above, it suffices to prove the equivalence of (2) and (3) for a globally Lipschitz
function f, which we proceed to do.

Recall another fact from [27], namely g* + fi = || - |*, where as usual,
g = f+ 1| -|*. This implies

(7.22) - Age xay xot T Af xayy, e = 31+ IP

for the second difference quotients. Now Propositions 7.1 and 7.2 show that
b(Jse, x +y) < 1 is equivalent to Ag. ;> of - |> for some 0 < @ < §. By
(7.22), the latter is equivalent to ¢(f, x+y) < % . This completes the proof of
the theorem. 0O

Remark. As a consequence of Theorem 7.5, we now obtain the following suffi-
cient condition for the existence of points x € D} in a separable Hilbert space:

(7.23) I{(Jse, z9) <1 for some zp € H.

Indeed, if (7.23) is satisfied, then b(Jp,2) <1 ina neighbourhood of the
point zy. By Aronszajn’s result [3], we may pick a Giteaux differentiability
point of Jy. herein.

Example 1. Let C be a bounded closed convex set in the Hilbert space H.
Then f = sup{(C, -} is a sublinear function with f* = 8(C|+), the support
function of C. Now g* = (f + 4[|+ |®)* = f*0 4] -|* is of the form g*(x) =
x| — Lllx — Pcx||? , which proves Jp. = Pc in this case. So every projection
onto a bounded closed convex set C occurs as a mapping Jy. . It is known that
even in separable H, such Pc may fail to have Fréchet differentiability points
(cf. [18, §5]); hence it is not clear whether equality holds in (7.17). We show
that this need not be the case, by specifying the set C. '

Example 2. Let H =h, C =22l Bx], where an < B, (an), (Bn) € .
Then P. is Géateaux differentiable at points z = (z,) having z, # an, Pr.
Notice that either [|[VEPc(z)|| = 1, namely if a, < z, < B, for some n, or
VOP:(2) =0, if z, €[an, Bx] forall n. On the other hand, we can obtain a
formula for b(Pc, z) at the Gateaux differentiability points z of P-. Clearly
b(Pc, z) =1 if a, < z, < B, for some 1. So let us assume z, & [an , Br] for
all n. Then we have
_ o Pn—0n T— Pn—an

(7.24) b(Pc, z) = max (nlggc P Jim 5=z, |
In particular, this shows that b(P¢, z) =1 is possible while V¢Pc(z) =0, so
we see that equality in (7.17) may fail even with the largeést possible gap of 1.

We next use Theorem 7.5(3) to prove the following infinite dimensional ver-
sion of Alexandrov’s theorem. For a related result see [29a].
Theorem 7.6. Every continuous convex function f:l =R of the form f(x)=
S0 | Julxn) is densely second order differentiable. Even more, D} is not an
Aronszajn null set.
Proof. We assume that f(0) = 0, and that f is Lipschitz smooth at 0 with

VF £(0) = 0. Moreover, it suffices to prove the result under the additional
assumption that f is globally Lipschitz. ' :
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Because of the special form of f, the operator Jro is of the form z-—
(J7:(zn)), with each J, := Jpu = (id+8£)~! being a monotone and nonex-
pansive function on the real line. Observe that, due to our special arrangements,
the J, are nondecreasing.

Based on Theorem 7.5(3), it will be sufficient to find differentiability points
z of Jp. satisfying b(Js., z) < 1. Now, for any # and v ¢ R, let g,(v) be
the largest slope of J, at v, i.e., 0,(v) = max{c;}(v), o7 (v)}, where
(7.25) o} (v) = sup In(2) = Jn(v) , o, (v) = sup V) = Jn(y) J"(y).

> zZ—-v y<v [ 4
Let us fix a positive sequence (o) € &, a, < 1. By Lemma 7.7, there exists
some & > 0 such that, for every n € N, there exists a subset B, of [0, a,] of
positive Lebesgue measure such that

{7.26) on(v)<I-d<1 forallveB,, 7
n-1,2,....Let B=TI;2, B, C . It follows from (7.26) that
(7.27) b(Jr,2z)<1-4§

for all z € B. Now we define Borel measures H4n on the line by
1n(X) = m(X N B,)/m(B,) (m = Lebesgue measure)

and let z be the product measure of the u, . As (an) € b, u is a Borel proba-
bility measure on /, having u(B) = 1. But observe that Un < m forevery n.
This proves that u < v for every Gaussian measure v on l, constructed on
the canonical basis of /, (cf. [33] for this). In particular, u(A) = 0 for every
Gaussian null set A, and hence, by the result in [33], for every Aronszajn null
set 4. By Aronszajn’s result [3], the operator J 1+ 18 Géteaux differentiable
outside an Aronszajn null set 4. As u(A4) = 0, we must have u(B\A4) > 0,
hence B\A # @. Choosing z € B\A4 provides a differentiability point of J e
satisfying (7.27). This completes the proof. 0O

So it remains to find § > 0 and the sets B,. This is don'e in the following:

Lemma 7.7. There exists & > 0 such that for every n € N, the set B,=1{ve
[0, @y): 04(v) < 1—6 < 1} has positive Lebesgue measure.

Proof. Notice that by assumption, f is Lipschitz smooth at 0. As J(0) =0,
Proposition 7.3 shows b(J;.,0) < 1. Hence there exists 0 < ¢ < 1 so that
{(Jr(k), k) < cl|k|? forall ||k|| <1, say. This implies

(7.28) JJ(wy<c-w, lw| <1, n=1,2,....

Choose d > 0 with & < $(1 —¢). We show that J is as desired. Assume the
contrary. Then, for some 7, :

(7.29) 0,(v) >1—-4J for almost all v € [0, ay,].

Observe that by the global Lipschitz assumption on f, each J, has bounded
range, hence its difference quotient decays at infinity. Therefore, the suprema
in (7.25) are attained.

Let v be a differentiability point of J, . Suppose first that an(v) = Jj(v) >
1 — ¢, Then we select x(v) > v such that ‘

(7.30) Jo(w) > (1 - 8)(w ~v) + Jo(v), w e [v, x(v)].
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In this case let us define I(v) = [v, x(v)] and call I(v) an interval of the first
kind. Next consider the case where 0,(v) > J,(v) . There are two possibilities.

“First assume o,(v) = o;7(v) > 1 — . Then let z(v) be the largest possible
value > v such that the supremum o, (v) is attained at z(v) . Here we define
I{v) = [v, z(v)], calling I(v) an interval of the seécond kind. Finally, in the
case op(v) = o5 (v) > 1-38, a;(v) > o (v), let y(v) the smallest possible
value < v such that the supremum o (v) is attained at y(v). Here set I(v) =
[y(v), v] and call I(v) an interval of the third kind.

Observe that the intervals I{(v) cover [0, a,] up to a null set because of
(7.29) and the fact that J, is a.e. differentiable.

Let & = $(1—c—2d)-ay > 0. There exist finitely many intervals I(vy), ...,
I(v,) covering [0, @] upto asct of measure < &. As these intervals may have
some overlap, we need to collect some facts about the T(v).

First observe that two intervals [v, z(v)] and [w, z(w)] of the second kind
cannot overlap. For suppose v < w < z(v). Then according to the definition
of z(v), the value J,(w) cannot lie strictly above the line joining J,(v) and
Ju(z(v)). Suppose J,(w) lies on the line. Then necessarily o,(w) = g.(v),
and hence z(w) = z(v). If J,(w) lies strictly below the line joining J,(v) and
Ju(z(v)), we see that ‘ ’

(Tn(2(0)) — Ju())/(2(0) = w) > (Ja(x) = Tn(w))/(x = w)

for all x > z{v). In other terms, these X do not contribute to the supremum
o; (w), hence z{w) < z(v) . This proves that the intervals of the second kind
do not overlap. A similar reasoning shows that neither may the intervals of the
third kind have an overlap. _ ;

Let us arrange the I(v;) in blocks T(vj,_ 1), .-, I(v), i =1, 2, ..., k,
of pairwise overlapping intervals, but with a gap between I(v;,) and I(v [y
Let

[u(i) s 'U(i)] = I(Ufi—1+l)U"'UI(vjf) .
be the interval covered by the ith block. Then the gaps have length & =
£+ _ o with T2F_ & < & by assumption.

Let L denote the line with slope 1—J emanating from the origin. We show
that for all points w € [0, @,], :
(7.31) To(w) + 8oy, + &> (1 - dw.

In other terms, the graph of the function J, is above the line L up to an error
< oy, + &. We prove (7.31) by proceeding in positive direction from interval
to interval. '

First consider the interval [0, #{D], ie., the first possible gap of length &;.
Clearly, as J, = 0, we have : S .

(7.32) C Jw) e > (1-0w

for all w €[0, uD]. f

Now consider the first interval I(v;) ‘of the first block. Let [ (1) =le,e'l,
e = u(l) . By (7.32), the value J,(e) is above the line L up to the érror &y. As
the line of the first interval joining J.(e) and Ju(e') has slope >1-4, the
right endpoint e' of I(v;) satisfies’ Ja(e!) + & > (1 — 8)e' . What about the
points within I(v;)? If I{vi) is an interval of the first kind, then by (7.30),
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the points within 7(v;) have the same behaviour as e and el. If I(v) is
an interval of the third kind, there is no problem either, for by the definition
of I{v,), the graph of the function J» on I(v;) must then be entirely above
the line joining J,(e) and Jn{e'). So for I{v;) of the first or third kind, the
relation (7.32) is valid for all w e I (v1). In particular (7.32) holds for the
left endpoint.of the second interval 7/ {v2) of the first block, so that the process
may be continued. Finally, if (v1) happens to be an interval of the second
kind, I{vi) = [e, z(e)], then the graph of J, is below the line joining J, (e)
and Jy(z{e)). So here we have to estimate by what amount this may happen.
Now using the facts that J, is nonexpansive and that the line joining Jule)
and J,(z(e)) hasslope > 1—4, we find that, for every w € [e, z(e)],

(7.33) Tn(w) 2 (1 - 00w — ) + Jy(e) - 8(z(e) — w),

which means that J,(w) lies below the line with maximum possible error
d(z(e) — e) = 6|I(vy)|. In this case, by adding this error, we obtain

(7.34) Jn(w) + S| I(v1)| + & > (1 — Hw

forall w e I(vy), replacing (7.32). In particular, (7.34) pertains to the left-hand
endpoint of the interval I(v,), so that the process may be continued.
Proceeding in this way, we see that we have to add an error & |(v;)| whenever
an interval I(v;) of the second kind occurs, and an error ¢ whenever a gap
between blocks occurs. On the other hand, intervals of the first or third kind
do not cause any trouble, Finally, we see that the total error is - '

I+ Y e < Sy 4 e,
J i

where the first summation is over the intervals of the second kind, and the
second summation is over the gaps. Notice here that the intervals of the second
kind are mutually disjoint and contained in [0, a,]. This establishes formula
(7.31). ' '

Combining (7.31), (7.28) and choosing w = a,, we obtain that ¢ >
(1 — ¢ ~ 2d)ay, , which contradicts the choice of &. Hence the proof of the
lemma is complete. 0O

Using Lemma 7.7, the proof of Theorem 7.6 may now be modified to prove
a version of Alexandrov’s theorem for integral functionals. '

Corollary 7.8. Let f be an integral functional of the form (6.17) with ¢ RxQ —
R, and such that L>(Q) is separable. Then D} is dense in L2(Q).

Proof. Indeed, here Jy. is of the form z — J.(z(+)), with
Jo = (id+8¢(-, 7))L

Fixing a strictly positive o € LY Q) (u is a-ﬁniie), we apply the lemma to see
that, for every 1€ Q,

B, ={0 S U < of7) : J{(v) exists and o,(v) < 1 — §}
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has positive measure, with d > 0 chosen as above. Observing that 7 — B; isa
measurable multifunction, we invoke the Kuratowski/Ryll-Narczewski selection
theorem to fix a measurable selection t — z(z). This provides an element
z € L¥Q) having b(Jp,z) < 1 -8 < 1. We have only to observe that
Jy. is Gateaux differentiable at z. Now recall that J,. = VE £, where f; =
fO4-|>. Hence f; is again an integral functional, namely

Ailz) = ]Q $1(2(1), ©) (),

where V¢i(-, 1) = J;. Butthen z ¢ GD}l by Proposition 6.3, and as f; is
everywhere Lipschitz smooth, z € Djzr] by Proposition 6.1(3), which proves the
result. O

Remarks. (1) With some effort it is possible to prove existence D} # @ for
multidimensional integral functionals. This requires an # dimensional version
of Lemma 7.7. We do not give the details of the result here.

(2) Observe that the proof of Theorem 7.6 applies to any f=3%, fn defined
on a space [, p > 2, while the result fails in Iy, 1 < g <2, by Proposition
3.3 . . .

8. SARD’S THEOREM

Let us explain one connection between Alexandrov’s theorem and the theo-
rem of Sard. Recall that a version of Sard’s theorem tells that, for a Lipschitz
operator T :R* — R”, the set of singular values of T

(8.1) {T(z) : VOT(z) exists, but rank V9T (z) < n} |

is a Lebesgue null set (see [26; 17, 3.2.5]). There are several ways of introducing
the notion of singular resp. regular points in infinite dimensions:

Let T : H — H bea (locally) Lipschitz operator. Then z € H is called a reg-
ular point (resp. a generalized regular point) of T if T is Gateaux differentiable
at z and '

(T(z+k)—T(z), k)|

(8.2) 0<ﬁ§€1|155 T >0 for some d > 0;
respectively
(8.3) "Iiciﬁfl (VeT(z)k, k)| > 0.

Clearly, in finite dimensions, both conditions (8.2), (8.3) are equivalent to saying
that rank VCT(z) is maximal, so we get the classical notion of regular points.

Interpreting our results obtained in §7 for the operator Vg* = Jy (where
g=f+1ll-|? as usual), we obtain the identities

(i) Ly = {Js(z): (8.2) holds for Jy at z};

(ii) D} = {Jy(2): z is regular for Jy};

(ili) GD} = {Js(z): z is generalized regular for Jr}.

Indeed, (i) is just rewriting (7.21), (ii) is Theorem 7.5, while (iii) comes
from Proposition 6.3. By identity (ii), the failure of Alexandrov’s theorem,




DIFFERENTIABILITY OF CONVEX FUNCTIONS 79

ie., D} = @ for some f, would imply the failure of Sard’s theorem for the
operator Jy in the sense that the singular values of J + are all of H . A similar
interpretation applies to GD} = &. Concerning (i), observe that by Fabian’s
result [16], L, is always a dense set in H , so we at least have a weak version
of Sard’s theorem, saying that the set of values J. #(z) such that (8.2) fails for z
is small in the sense that its complement Z, s is dense. We conjecture, however,
that this set is even smaller in the sense that Ly (and therefore D}) is not an
Aronszajn null set.

We mention that, typically, infinite dimensional versions of Sard’s theorem
as for instance the Sard-Smale theorem, need strong assumptions which seem
to be violated in natural situations (see [1, 10]).
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