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Rates of Convergence for Best Entropy Estimates
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Abstract

Maximum entropy spectral density estimation is a technique for reconstructing an
unknown density function from a set of observed data by maximizing a given measure
of entropy of the estimate. It is widely used in the analysis of stationary time series,
and is successfully applied in various areas of physical sciences and engineering. We
obtain convergence rates for the corresponding moment matching programs based on
the Fisher information measure and we discuss the stability of this best entropy device
in the presence of noise.

1 Introduction

A common problem in various areas of physical sciences consists in trying to estimate an
unknown density function Z(t) > 0 by measuring some of its moments

by = Lak{i)i(t)di, BB (L1)

Typically, the by might be known Fourier coefficients or known Hausdorff moments of the
unknown function #(t), in which case the weight functions a(t) are trigonometric resp.
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algebraic polynomials, i.e., ax(t) = exp{ikt} on T = [—m, =], resp. ax(t) = t*, T any
interval, and similarly for their multidimensional analogues.

Given only a finite number of moments or Fourier coefficients, this estimation problem
is clearly underdetermined. One methodology for selecting an estimate among the functions
z(t) satisfying (1.1) is to choose it to maximize some given measure of entropy H(z). This
approach, known as masimum entropy density estimation, has been widely and success-
. fully used in such divers areas as astronomy, crystallography, speech and image processing,
geophysics, and others. For a survey see [18, 19, 20, 25, 26, 32, 33, 38, 39, 20], and also
(1, 4, 5, 17, 23, 36, 37, 41]. As an application of particular interest, let us consider the
analysis of a stationary time series.

Let 21,...,2, be a realization of an unknown complex valued stationary time series
(Xt)iez with mean 0, that is,

E'(Xi) = 0, E|X,|2 < 00,
v(h) := Cov(Xeyn, Xi) = E(Xi42X?) independent of ¢,

where () is the autocovariance function of the process (Xt), and where * denotes complex
conjugation. The sample autocovariance function

n—h
4(h) = %E(zﬁh—i)(zg—i)', Rl g (1.2)

i=1

(z the sample mean), is used to estimate the values 7(0),...,7(n —1). (Here, for practical
purposes, only the estimates A < n/4 are considered reliable). In order to forecast and
control the observed phenomenon, it is necessary to supplement in some reasonable way the
values of the autocovariance function at times h where it may not be obtained directly from
the sample. In contrast with the widely used techniques of modelling the unknown process
(Xt) using autoregressive, moving average, or mixed ARMA processes, see [12], spectral
density estimation is based on the following nonparametric methodology.

Let us regard the unknown process (X;) as a stochastic integral over an orthogonal
increment process (Z,). This means there exists a spectral distribution function F(t),
F(—m) =0, F nondecreasing and right-continuous, such that

+(h) =/ exp{iht} dF (1), Rl 3 (1.3)
Usually, dF(t) = f(t)dt for a spectral density f(t) = 0, which in the engineering literature
is often referred to as the power spectrum of the process (X;), usually under normalization,
that is after replacing covariances with correlations. Instead of modelling 4(-) directly,
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spectral density estimation tries to exhibit a spectral density function f(t) > 0 on [, 7]
under the constraints

amy:[iaﬂmﬂﬂnm, R e, (1.4)

and this is precisely a problem of type (1.1). Maximum entropy spectral density estimation
now chooses the estimate f(t) > 0 satisfying the constraints (1.4) which maximizes a given
measure of entropy H(f).

There have been various debates over the correct choice or rather the relative merits
of the different entropy measures H(z), which are typically integral functionals of the form

Hﬂ=~Mﬂ=£ﬂﬂm&. (1.5)

The classical choices are the Boltzmann-Shannon and the Burg entropy, defined respectively
by

zlogz ,z>0

A gt O

—logz ,z>0
PO S (1.6)

the debate between the two being controversial (see e.g. [27, 25, 13]). Various other entropy
measures have been used, see [1, 17, 22, 23, 41] and [37, 8, 9]. In [8, 9], we have studied
extended entropy/information models of the form

1) = ~H(e) = [ olelt), ')t (L7)

which attempt to control derivative values of the unknown densities. This includes in
particular the Fisher information, whose integrand is

- JJorz >0
#(z,2') = { 0 Jorz=2"=0 (1.8)
+00 ,else

The use of the Fisher information for the inference problems of type (1.1) was proposed in
[37] and so far is mainly motivated by practical aspects. The integrand (1.8) has a smoothing
effect (see Appendix I in [8]) which in practice is often desired. Numerical results [9, 10]
indicate that the Fisher information often performs better than the Burg entropy. Parallel
to these more practical aspects, the present paper is intended to give a foundation for the
Fisher best entropy estimation from a more stochastic point of view.
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Various information theoretic and probabilistic reasons for selecting the Boltzmann-
Shannon entropy are known (see [25, 26]), and they are generally based on a principle of
uncertainity. Similarly, the use of the Burg entropy may be justified by means of a statistical
uncertainity principle, which has a particularly nice interpretation in time seris analysis.
In fact, among all mean zero stationary time series (Y;) with autocovariance function 7y ()
satisfying yv(h) = 4(h), A = 0,...,n — 1, or rather, with spectral density fy satisfying
(1.4), the variational problem based on the Burg entropy selects the process (¥;) which is
the least predictable in the sense that the corresponding one-step mean square prediction
error

o 1 ¥
Emﬂ—mﬁzzrexp{g / logfv(t)dt} (1.9)

(Kolmogoroff’s formula) is maximal. It is known (see [12, 30]), that for a real-valued
process (X;), this least predictable process (Y;) is precisely the stationary autoregressive
process AR(n) with parameters determined by the Yule-Walker equations yy (k) = 4(k),
h =0,...,n—1. In other words, the quite sophisticated Burg estimation principle leads to
a technically simple and appealing formulation. The latter fact may be used to show that
the Burg estimator has nice asymptotic statistical properties, at least in a special subclass
of underlying processes (X;); see for instance [12, Theorem 8.1.1] or [16]. Here we present
a parallel result for the Fisher estimates, which are shown to converge in probability for a
fairly general class of underlying stationary processes (X;); (cf. Theorem 4.1).

Let ax(t) from now on represent algebraic or trigonometric polynomials. The mathe-
matical model for the best entropy density estimation problem is the following:

minimize [I(z)=—H(z) = j; é(z(t), z'(t)) dt
(Pn) subject to z >0,z € A(T),
f{;;g(i).*.l:[t]tsi.’lf:b.= for k=0,...,n,
T

where A(T') denotes the space of absolutely continuous functions on T' = [to, t1]-

There are a variety of questions on the deterministic models (P,), whose answers should
have some impact on the choice of the underlying entropy measures, and our present results
emphasize some of the advantages of the Fisher information (1.8). Firstly, one would
certainly expect the existence and uniqueness of a solution z, for (P,). Secondly, one
should have convergence z, — Z of the estimates to the unknown true density Z as the
number of known moments increases. For the Boltzmann-Shannon and Burg entropies,
these problems have been discussed in a series of papers by J.M. Borwein and A.S. Lewis
(3, 4, 5, 6, 7], and also in [1, 17, 21, 22, 28, 28, 11, 41). In [3] and [41], general convex
objectives ¢(z) have been discussed.
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Besides the more practical questions concerning a numerically tractable formulation -
see [6, 2, 28, 1, 21, 23] and the surveys [38, 39, 40, 20] or [18] for the Boltzmann-Shannon
and Burg cases, and [37, 8, 9, 10] for the Fisher case - one of the main questions on
the probabilistic models (F,) is about stochastic convergence x, — Z# of the estimates
Ty, possibly including rates of convergence. In the case of a stationary time series, the
estimates 4(0),...,%(n — 1) are usually asymptotically normally distributed with mean
7(0),...,7(n—1) and known covariance matrix, and one would like to know the asymptotic
distribution of the estimates z,, or the asymptotic error ||z, — Z||oo. In contrast with the
Burg case where the dependence of the estimate z, on the Fourier coefficients b = §(k) is
linear and therefore relatively easy to analyse, the Fisher estimation causes more technical
problems. We obtain a weak consistency type result giving stochastic convergence of the
estimates (Theorem 4.1) for a fairly general class of underlying processes (X;).

Another interesting aspect of the models (P,) is the phenomenon of noisy data b,
which is often addressed in applied literature. In practice, this often leads to relaxations of
the model (P,) involving penalty techniques (see [18] for a discussion), or to models with
tolerance. Here we shall consider the following relazed moment matching programs

iz uﬂ=emn=f¢umﬁmna
T
(Pn.) subject to z >0,z € A(T),
"An:c ™ b"" S €,

where A, : A(T) — C**' denotes the operator A,z = ( Jpaemiici, Faie); and ¥ =
(bo, ..., bs), and where || - || is some fixed norm on C**'. Denoting the unique solution of
(Pre) by Zne, we will show that in the case of the Fisher information measure (1.8), an
asymptotic estimate of the form

2n.e = Zlloo ~ O(e'/?) (n — o0) (1.10)

can be obtained (Theorem 3.9(b)). Similarly, if (Pyc,s) and (P,,,c) denote the above program
(Pn,e) with different data 5" resp. c*, tolerance € > 0 and with ||b” — ¢"||o < ¢, then the
corresponding optimal solutions .4 and z, . satisfy an asymptotic estimate of the form

Zneh = Zreclloo ~ O(/?) (n — o0) (1.11)

(Theorem 3.9(c)), which indicates in particular that a moderate distortion of the data by
should not lead to a drastic change of the estimates z,. This kind of sensitivity analysis
will hopefully give some insight into the question of robustness of the estimation programs
(P,) in the presence of noise.

The structure of the paper is as follows. In Section 2 we recall some of the results
in [8] needed to analyse the Fisher best entropy estimation program (P,). Section 3 is
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devoted to the analysis of the deterministic programs (P.) and (P,.). Here we obtain rates
of convergence for the solutions z, and z, «» including the asymptotic estimates (1.10),
(1.11). Section 4 then presents the main probabilistic result, which combines a Central

Limit Theorem for stationary processes and the deterministic estimates obtained in Section
3.

2 Duality

In this Section we recall the relevant duality results for the Fisher moment matching pro-
grams (P,) and (P, ) from [8]. The first program has been dealt with in full detail in [8],
while the relevant changes for dealing with (Pn,c) are indicated in Section 6 of that paper.
Throughout the following, I(-) will always denote the Fisher information (1.8).

The basic idea for analysing program (Pae) is to view it as an infinite dimensional
convex optimization problem and apply convex duality methods. This resembles techniques
used in convex optimal control problems, see for instance [24, 34, 35]. For this, we define a
Lagrangian function

L(z,y,e9,0p) = I(2,9) + (v, — y) + (A, Auz — 5" — &) + p([le]| — €) (2.1)

=Ayf+Lv(z’—y)+i)\.—(£a.‘$—bi—ﬁi)+P(HE||—E),

i=0

where z € A(T), y € £,(T), e = (&) € R™*, v € A(T), X € R™, p > 0, and where [ is
assumed to take on the value +oo if either y2/z is not integrable or if [le]] > €. The program
(Pr,c) may then be given the equivalent formulation

(‘P“&) iIlf sup L(xsy)e;vajv)a)v

THE 42

and the associated dual program is

(P sup inf L(z,y,e;v,A,p).
' wh,p Tie
Indeed, with the dummy variables y, e, an optimal solution z for the original program (Pre)
gives rise to an optimal solution z,y, e for the Lagrangian form of (P,) satisfying y = 2!,
while conversely an optimal solution z,y,e for the latter program means y = ' and z
optimal for the original (P,.). We then have the following

Theorem 2.1 Suppose program (Pn) with the Fisher information measure is feasible.
Then it has a unique optimal solution Zne (with corresponding optimal Ty Ty, €M in the
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Lagrangian formulation). Dually, program (Py ) has e unique optimal solution v, ¢, A™, py.c,
and the values of both programs are identical. Moreover, T, is an entire function which
is stictly positive on [lo,t:]. It may be recovered from the dual optimal solution via the
(complementary slackness type) formulae

'}
1 zn,e

AnZae ="+, || = (2:2)

Un,e = 3
DT i

Finally, the dual program (P ) has the equivalent formulation

mazimize — Z Aibi — €| Ml
i=0
1 n
(P;'t) subject to v’ + ng = ; Aja;,

v entire, v(tg) = v(t1) =0

where || - ||« is the dual norm of || - || on R™*,

Proof. The case ¢ = 0 was given in [8], Theorems 2.1, 3.2(1), Propositions 4.1, 5.5. Notice
here that the constraint qualification (CQF) used in [8] (and formulated in Example 3.1)
is automatically satisfied for ax(t) either algebraic or trigonometric polynomials. Indeed,
(CQF) then reduces to mere feasibility of the program (cf. [8],[29]). The relaxed program
(Pn,c) is now treated in the same way, with the necessary changes indicated in [8, Example
6.3]. m|

Concerning the convergence of the optimal solutions z, of (P,), we will need the fol-
lowing result from [8]:

Theorem 2.2 Let 2o, € C'(T) be strictly positive on T, and let by = [, axzo0 for k =

0,1,... be its moments. Let z,, resp. .. be the optimal solutions of the programs (P,) resp.
(Pne). Then

L ||z — =zl llz = 0, end ||z — Toolleo — 0 as n — oo,

2. There ezists a function 2o, € domlI(-) such that ||z}, ,— 2z, |l2 = 0, [|[Zne—Too,e]|c0 =

0 asn — oo.

Proof. Statement (1) is precisely Theorem 2.2 in [8]. As for statement (2), the argument
in the above reference shows that every minimizing sequence has a subsequence which
converges to some & € domI(-), and one has but to show that there is only one such limit
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&, which is then 7. The latter follows from the fact that the programs (P, ;) converge to
the limiting program

minimize [(z)
(Poo,e) subject to z >0, z € A(T)
|[Anz — ") <€ foralln=1,2,...

which has a feasible solution, z,, and therefore by the strict convexity type argument for
I(-) given in [8] has a unique optimal solution Z. Concerning the notion of convergence
of programs involved we refer to [6]. 0

The quoted results from [8] are mainly functional analytic in nature. Our present
impetus, however, is to determine the rates of convergence in (1) and (2) of Theorem 2.2,
and this requires techniques from approximation theory. As will be seen, we shall need some
additional assumptions on the unknown function z, such as a certain degree of smoothness
and, in the Fourier case, periodicity, which, as we indicate, are not needed in Theorem
2.2. This point is emphasized since it shows an at least theoretical advantage of the Fisher
information measure over other objectives like the Boltzmann-Shannon or Burg entropy
measures (1.6).

Some questions in Theorem 2.2 remain. For instance we would expect z,. to be close
to zn. An answer to this question will be provided in the next Section (Corollary 3.10).

Notation

We keep the notations (P,), (Py,) for the programs above. If the data vector b = (boy. .., 0n)
deserves special mentioning, we use the notation (Prep). Let z,,z,. be the optimal so-
lutions of (P,),(Py,), and Too,e the optimal solution of (Poo). Let zo be the unknown
density with moments

j a(t)ro(t)dt =b,  k=0,1,2,.... (2.3)
T

We will assume that z., is strictly positive on T = [to, 1], and that z., € C*(T') for some
k 2 3, while in the trigonometric case this condition will be replaced by z., € Cru(—m,7).
Also, we will need an extra assumption which, however, is natural in the light of the
applications we have in mind (see Section 4): z!(to) = =/, (¢;) = 0.

The corresponding solutions of the dual programs (Py), (Py:.) are v,, v, This means
that jv, = 2, /zn, tv,, = Ty /T, and that vy, (and similarly v, ) satisfy the Riccati
equation with boundary conditions

1 n
! e n - —
v, + = g Arag, vn(to) = va(t) =0,
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(see Theorem 2.1). Here A} are the Lagrange multipliers coming along with the dual
solutions. We also need }v, = z},/Zc0, Which by our assumption on z is of class C*' on
T, and similarly %vo‘M =izl f g€ A(T):

3 Convergence Rates

In this Section we obtain rates of convergence of the estimates z, to the unknown den-
sity z.,. Here our models are deterministic. To begin with, let us consider the following
approximation constants which depend completely on z.,(2):

F, =inf {”v;o + iu; - p"w v+ %vz =p= g,\kak, v entire, (3.1)
v(te) =v(t1) =0, X € ]R"'“}
and
F? =inf { [|vl + ivﬁo ol :v'+ %v’ =p= g Akag, ventire, (3.2)
olte) = v(t) = 0, . < M},
where M > 0 is a constant depending on z,, and the choice of the norm || - ||., which will

be specified later. Here for the trigonometric polynomials a, we intend A € C¥*!, and
P = 2 jkj<n Mk €xpikt, which by A_x = X is still real.

Lemma 3.1 Under the assumption . (to) = z.,(¢1) = 0, we have the following estimates:

(a) I(za) 2 I(zc0) — boFr;
(b) I(:I:,._() z I(Im) = boF,: — Me.

Proof. Let us prove statement (b). The proof for (a) is similar but easier. Pick A € R™*!
such that |[A|l. < M, and for some entire function v, v’ + v? = ¥ Aray, v(to) = v(t1) =
0, and such that the infimum in the definition of F); is attained, that is, ||vl, + }vZ —
3 Akarllo = Fr. Since zo, > 0, the latter gives the estimate

! 1 2 - -
~YosToo = FVo0To0 - Z: Ak@rZToo < Frzo. (3.3)

k=0
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On integrating (3.3) over T = [to,,], using (2.3), and ao = 1, we obtain

U ] 2 i
/ (_ Q%E_Lw% = z;ﬂzm) +> " Mibe < Flbo. (3.4)
T oo oo k=0

Due to the assumption 2/ (to) = z.,(t;) = 0, the first term on the left hand side of (3.4)
vanishes, an so, on adding €||A||. on both sides, and using (1.8), we obtain

I(Zoo) + ) Mibic + €| Alls < boF7 + | Alle < boF: + Me. (3.5)
k=0

But notice that the pair (v, )) is feasible for the dual program (Pg.) as presented in Theorem
2.1. Hence _

= Mebe — ||\l < max(P;,) = min(Py,) = I(zn),

k=0
and this in tandem with (3.5) implies statement (b). o
The following result will be needed for the estimates with noisy data.

Lemma 3.2 Under the assumption z! (to) = 2 (t) = 0, let ¢* = (coy--.,cn) be such that
lle* — b"|| < €. Let 2y be the solution of program (Pu..). Then

(c) I(znee) 2 I(z00) — boF? — 2M e

Proof. Choosing v, A as in the proof of Lemma 3.1, the same reasoning gives

I(ze) + > Aebi + €l A]la < BoF + Me. _ (3.6)

k=0

Now let by = ci + e for e = (e;) satisfying ||e|| < e. Then

E /\kek
k=0

and combining this with the estimate (3.6) gives

< Allllell < Me,

n
I(200) + Y Meck + €Al < BoF2 + 2Me.
k=0
Again, since (v, A) is feasible for (P}, ), we have

=Y e = ellMle < I(znee),

k=0
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and this implies estimate (c). o

The following result provides the error terms for the dual solutions v, and vy, with
respect to the norm ||-||2, and involving the constants F,, F*. On integrating these estimates,
we will finally be in the position to obtain || - ||~ norm error terms involving z,, Zp,..

Lemma 3.3 Let z,(to) = zl,(t1) = 0, and § := inf{z(t) : to <t < t,} > 0. Then we
have the estimates

(a) [[veo — vall3 < Bob~'Fy;
(5) |lveo = vn,ell3 < bob ' Fy + 2M67 e
Proof. We prove statement (b). The proof for (a) is similar but easier. Notice that z.

is feasible for program (P,,). Since z,, is the optimal solution for this program, we must
have

0<- (I(zn ¢+ HToo — Tne)) — I(2n, ;)) < 400 (3.7

for all t > 0. Since z, is strictly positive (Theorem 2.1), the integrand (1.8) is strictly
positive for the terms in (3.7) for ¢ > 0 small enough. Therefore we obtain the estimate

1[4 2, (20, — 2} )Ene + (2 — 2, ) %0 — 122 (Too — T
f .( 00 .) o ( n.e) o ,c( o0 “M) < 400, (38)

ficis
-t zn,g(zn,( + t(:w 6K zﬂ#))

Now due to the convexity of the Fisher information I(-), the integrand in (3.8) is monoton-
ically increasing in . Therefore the Monotone Convergence Theorem allows for passing to
the limit ¢ — 0% under the integral sign, and this implies

W (23] Eneal, —z2 2, 2P,
05/ : i N BTN (3.9)
to

Th, .

On rearranging (3.9) and subtracting /() on both sides we obtain

S/ Oxt n,e o — T2 1
I{th) = I(xoo) < / ( Sigeh Zz oo = %) (3.10)

-z Zneoo ~ TooTne ?
3m
z,,',xoo

1
= / Too vne_”m)
to

-3
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Hence by Lemma 3.1(b),
8|vne — Vooll2 € I(Zoo) — I(2n,e) < boFr + Me,

as desired. This proves statement (b). O

We have the following analoguous result which applies to the noisy data case and uses
Lemma 3.2.

Lemma 3.4 Let § = inf{z.(t) :to <t <t} > 0. Let ¢* € R™*! satisfy ||c* — b*|| < e. Let
Ty be the optimal solution of program (P, ..), with corresponding dual optimal solution
Unee. Then

(¢) Voo — Vnecll2 < Bob™1F7 + 2M§7 e,

Proof. Notice that program (P,..) is feasible since z,, is admitted. We may then go
through the same calculations as in the proof of Lemma 3.3, with v, now replaced by
Un,ee. Using estimate (c) in Lemma 3.2 finally gives the estimate

S||vnee = Vooll? < I(2o00) — I(zpee) < boFl + 2Me,

hence the result. a

Our next step is to get estimates for the *dual’ approximation constants F,, F* in terms
of the following more natural approximation constants E,, EX. With the same assumptions
on ., as used before, we define

E, = inf { [l(log zoo)” — plloo : 2 = Z Akay for some A € IR"“}, (3.11)
k=0
and
E} = inf {"(log Tw) =Pl 1P = Z Aray, for some ||A||. < N}, (3.12)
k=0

where N > 0 is a constant depending only on z, and the norm ||-|., which is to be specified
later. Again we intend p = EI*ISR Arexp{ikt} with A_;x = A} in C in the trigonometric case.
Also recall the constant M, which has the same meaning as before. With these definitions,
we have the following

Lemma 3.5 Let || - ||. be any of the p—norms, 1 < p < +oo. Let N,M be such that
6N < M. For the algebraic polynomials ay(t) = t*, there exist constants K > 0 and K* > 0
depending only on z., such that we have
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(ﬁ) F2n+2 S K- En;

(b) F;n-l-z S K*. E;'
Proof. Again we give an explicit proof in the case (b), while case (a) is similar but easier.
Pick an algebraic polynomial py = 3°7_, pxax of degree < n such that the infimum in (3.12)

is attained. In particular, ||p|l. < N. Let g be the primitive of po having q(to) = 0. Then
on integrating the estimate (3.12), we find ||(log Zeo)’ — ql|oo < (t1 —t0) Ey, since 2, (to) = 0.

But then
ty
f Po(s) ds
tg

Now let s(t) be the line segment satisfying s(to) = 0, s(t)) = g(t1), then |s'| < lg(t1)/ (8 —
t9)| < E%, hence

lg(t)| <

n ’ j " (oo = (log zu)")ds| < (81 — to) E".

[|(log zeo)” — (po — ||, <2E;.

Therefore, on setting p’ = ¢ —s, we get an algebraic polynomial of degree < n + 2 satisfying
P'(to) = p'(t1) = 0 and ||(log zs)" — p"|lec < 2E?, and with the choice of p(to) still free.
Now define () = exp{p(t)} with p(to) chosen so that z(to) = 2o(to), and let as usual
2u(t)= 2'(t)/z(t). Then we have

V(1) + o) = 260 + F 2,

and v(tp) = v(t;) = 0 by the above construction of p. The polynomial

n+2

2" 49 =) Mar=:r
k=0
is of degree < 2n + 2, and the pair (v, A) is therefore admitted in the definition of Fynia

Indeed, since v(to) = v(t1) = 0 is clear, we have but to check ||A|l. < M. This is established
in Lemma 3.6 below.

Suppose now this has been shown. The definition of F; ;o then implies

i 1 1 1
Frnta < v + 705 = tlleo = 10 + 305 = (v + 30 |- (3.13)

Consider the positive function y, = z5, and let y(t) = exp{ 3p(8)}, so that y = z'/2, Then
the last term in (3.13) equals ||(¥"/yoo) — (¥"/¥)|loos 50 We are led to find an estimate for
this expression. Now observe that

y" v’
oo L e

7 y(ymy y"ym)" < 267lysy = ¥"Yoolloo (3.14)
0 =5}
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for n large enough. Indeed, we have z > 2o,/2 from some index n depending on z, on,
since the polynomial py approximates (log zo,)", an so, by the choice of p(to), z = exp{p}
approximates T, as n — oco. By the definition of yo,y this also gives y > Yoof2. We
continue

vy — ¥"Voolloo < Nyt lloolly = Yeolloo + l[¥oolloolI¥oo — ¥"lloo- (3.15)

Here the first term ||¥ — Yoollco may be estimated as follows. We know that 2|[logy —
108 Yoolloo = || 1og z — 10g Zooloo < (t1 — to)?E =: K1 E; by twice integrating (3.12). Now
we use Lemma 4.4(b) in [4], which gives an estimate of || exp{f} — exp{g}|| in terms of
[If = glleo- This gives

ly — yoolloo < Kz exp{E;}E; < 2K2E;

for n large enough, since E* — 0. Therefore, it remains to estimate the term ||yz, — ¥l
in (3.15). Here we use the formula f* = f((log f)" — (log £)?), which implies

"

1" =l < loslleoll (108 8)” = (108 3e0)leo + Ieollel(1083)? = (108 Yoo)?lon
+1og )" — (10§ 9)lolly = voollo-

Here the term ||(logy)" — (logy)™|lcc is bounded by a constant K3 > 0 depending on Zc,
since by the argument already used above, the function (log )" approximates (log )" as
n — oo since E; — 0, and hence (logy)” approximates (log yo)". On integrating, one gets
the same observation for (logy)? and (logyeo)?. On the other hand, the term involving
l¥ = Yoolloo has already been estimated above. Hence |ly” — yzollo = O(Ey), and the proof
is complete. a

Lemma 3.8 Let || - || and the constants M, N, 6N < M be as above. Let p = Y hoo PrGE
with ||pll« < N, and let r = 222 \kay be the polynomial r = 2p” + p. Then ||A|l. < M.

Proof. Let p? = Y1 4? usax, then ||A]l. < 2l|pll. + [lull., hence it suffices to show that
[lell« € 4N, for then ||All. < 6N < M.

Fix p = (ps) satisfying ||p|l. < N. Consider the infinite matrix A(p) whose nth row is
2__.0:&_ 2.0“—1 29»-2 Pn /2
n'(n-1)-1"(n-2)-2""""" (n/2)?

20 2P0 2pn-2 2p(nt1)/2
Tt e ek dd.
n ‘(n—l)'l‘(n—2).2, 1{“"'1)/2’(11—1)/2,0’0‘ forno

0,0,... for neven

Then i = A(p)- p for the sequence p of coefficients of p?, if both p and p are now considered
as infinite sequences. Therefore we are left to prove that A(p) has operator norm < 4||p||. <
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4N for any of the norms || - ||. involved. One readily checks that ||A(p)|lco,c0 < 2||p]lco and

lA(P)lla < 2llella. For 1 < p < oo, we obtain ||A(p)llpp < 2lellpll{3}I < 4llolly, as
desired (1/p + 1/p’ = 1). This proves the claim. o

Our next step is to prove an analogue of Lemma 3.5 for the trigonometric case.

Lemma 3.7 Let||-||. be any of the p—norms, 1 < p < co. Let N, M be constants such that
6N < M. For the trigonometric polynomials ay(t) = exp{ikt}, and with o, € C} (—7,7)
Jor some k > 3, there exist constants L, L* depending only on z.,(t) such that

(a) FQMSL'Eni
() F}, < L*- E;.

Proof. We prove statement (b). Choose a trigonometric polynomial py of degree < n such
that E is attained. Let po = ), ceexp{ikt}, with |[{cc}ll. < N as in (3.12). Let
P1 = po — Co, which is real since ¢; is real. Then ||p; — (log Too)”|lec < 2E7, since

2n|co| = |f (Po — (log 20)") | < 27lpo — (l0g )" ||o0 = 27 E5. (3.16)

Let p be the trigonometric polynomial satisfying p” = p; and p(—=) = logze(—7).
Then we have ||(log o)’ — Pllc < 87E? and |logze — pllec < 16%E;. Indeed, let
9(t) = Liycn TeexP{ikt} = %0 + Focpucn 7 exp{ikt} be the primitive of py satisfying
q(—7) = (logzs)'(—7) = 0, then ||g — (log 2o )|l < 47 E} on integrating. But now an
estimate similar to (3.16) gives |y| < 4xE}, so with p’ = ¢ — 7, we get the estimate
llp' — (log zeo)'llcc < 8w E} as desired. Integrating and using p(—7) = logz.(—7) then

implies ||p — log Zoo||ee < 1672E7 — 0.

As in the proof of Lemma 3.5, we define z = exp{p}, v = 2z'/z, and let r be the
trigonometric polynomial r = 2p"” 4 p? =: Y iu; Miai of degree < 2n. Then (v, )) is
admitted in the definition of F, (trigonometric case) as soon as we prove that for p” =
Lo<ikign Ck exp{ikt} with |[{ci}||l. < N, the coefficients A of r(t) satisfy ||All. < M. This is
now checked with an argument similar to the one given in Lemma 3.6, and it uses 6N < M.

We leave the details to the reader.

Suppose the result has been shown. Then Fj, < ||v}, + 3v2, — (v' + 3v?)]l, and the
proof now proceeds completely as in Lemma 3.5. (]

We shall now obtain explicit estimates for the constants E,, E; depending on the norms
| - lls- Clearly here the most interesting case for the programs (P, ..) is when || - || denotes
the supremum norm, because this captures the worst case deviation ||b” — ¢"||co.
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Proposition 3.8 Let ax(t) = exp{ikt} on T = [—=,x]. Let 2o € CE (—7,7) for some
k > 3. Suppose z., is strictly positive on T and satisfies zl,(—7) = zl (7) = 0. Let
= (coy..-,¢n) be fized. Then

(a) For k > 3 we have ||(log ze)' — (log z,.)'||3 < Kin~*+2,

(b) For k > 3 we have ||(log zoo) — (log zs¢)'||2 < Kz(n_*"’z + e),

(c) Fork>3, ||-|ls = || o, and with ||b" —c*||; < € we have ||(log To)' — (log Taeo)'||2 <
K3(n~%+2 + ¢),
(&) For k23, |-l = |-l 1 < < 0o and with [I* =y < € (1p+1/¢/ = 1), we

have ||(log o)’ — (108 Tnec) |2 < Ka(n~5+2 +¢),

(e) Fork>4, ||l = |-l and with ||b* — *||o < €, we have ||(10g Too)’' — (10g Tn,e.c) |2 <
Ks(logn -n~*+3 4 E),

for certain constants K, Ky, K3, K4, K5 depending completely on ..

Proof. Let us first prove statement (a). Lemma 3.3(a) implies ||vee — 4|2 = ||(log oo )’ —
(log z,)'||3 < L1 F, < LaE,(n), where r(n) = n/2 for n even and r(n) = (n —1)/2 for n odd,
and with Ly, L, depending on zo,. By Jackson’s Theorem ([14]), (log 2oo)” € CEo(—m,7)
implies E, = O(r—**?), and since r(n) = O(n), we get ||(log z.o)’ — (log z,.)'||2 = O(n~*+?),

proving statement (a).

Notice that estimate (b) follows from (c), since program (Py) is (Pre,c) With ¢ = b™.
Let us now prove statement (c). Here we have to specify the constants M, N for the case
[l -l =1l - llco- We take N = 2||(log Teo)”|lz and M = 6N. Then we find E, = EX with this
choice of N. Indeed, let p = EN(“ M exp{ikt} be a trigonometric polynomlal for which
the infimum in the definition of E, is attained. Then

f p-exp{—ikt}| < f |(p - (log zo)")| + } f (log Too)” exp{—ikt}|(3.17)
27|lp — (log o)l + 27ex],

21‘I’|/\k|

IA

where the ¢; are the Fourier coefficients of (log zs)"”. Then |Ao| < E,, since ¢g = 0.
Furthermore, since |cx| < ||(log Zeo)”||2, we have [Ay| < E, + N < 2N, since E, — 0 by the
differentiability assumption on 2, proving |[{Ax}|l+ = [[{A}leo £ N as desired. Hence the
claim E, = E;.

Now Lemma 3.4(c) and Lemma 3.5(b) imply ||ves — vne.l|2 < La(Fs +€) < Ls(E7 ) +
€) = Ls(E,(n) + €) for certain Ly, Ls depending on 2., and using the assumption that
16" — c*|| = ||b® — c*|l, < €. Here r(n) has the same meaning as in the first part of the
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proof. As above the Jackson Theorem provides the estimate E7,) = Eyn) = O(n~*+2),

and therefore ||(10g Zoo)' — (108 Zn )|z < Le(n~*+? + e)m, which completes the proof of
statement (c).

The proof of statement (d) being similar, let us now consider statement (e) with the
norm ||« ||a = || - |l. This is the most interesting case giving || - || = || - ||oo- In this situation
we need the stronger assumption k > 4. We have to specify N, M. Let

N := 4||(log Zeo)"||2 + [| (108 Zeo) oo

and M = 6N. As before, we know from Lemma 3.4 that ||ve — vnccl2 < K(F; + ¢€),
with K depending on z, and further, Fy < K'Ef,, by Lemma 3.5(b). Hence in view of
r(n) = O(n), it suffices to show that E: = O(logn - n~*+3),

Let sn(t) = 3 o<|ui<n ck exp{ikt} be the nth partial sum of the Fourier-series of (log zo)™.
Then we have K

l|(log o) — $nlleo < K" - logn - n™2 — 0
(see [14, p. 104/105]). We consider its primitive Sa(t) = Yo + Locpsicn & exp{ikt} =
2iki<n Tk €xp{ikt}, where we choose 7o such that Sn(—7) = (log s)"(—7). Then integrat-
ing gives

l(log 2eo)” = Sulleo < 27 K" -logn - n_k+8:
and the coefficients + of S, satisfy

[[{7eHh < |yl + %ﬂ{ck}lla < ol + 2ll(log zeo ) 2- (3.18)

It remains to estimate |yo|. We have (log Zeo)"(—7) = Y0 + Xocu<n — 5 hence we find

< " %k
ol < |[(log Zeo)"|leo + E 7
0<|k|<n
T
< |[(log Zeo)"[loo + Tgll{ck}lla
< |I(log Zes)"|leo + 2[|(log Zeo) ™Iz

using Parseval’s identity. This readily implies |[{7x}/: < N. The proof is complete. 8]

Theorem 3.9 Let z € C;er{T) with k > 3 be strictly positive on T = [—w, 7] and satisfy
z! (—7) =2/ (7) = 0. Let b" = (by,...,bn) be the first n+1 Fourier coefficients of Too, and
let ¢ = (co, . ..,Ca) be any vector satisfying |bx—ci| < € fork =0,1,...,n. Let To, T and
Znee be the optimal solutions of the moment matching programs (P,), (Pa.) and (Pnec)
respectively. Then we have the estimates
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(a) Fork 23, |20 — Zp|leo = O(n-k/2+1),
(b) Fork 23, |20 — Tnelloo = O((n~*+2 + e)?),

(c) For k>4, |2 = Tneclloo = O((logn - n=*+3 4 €)'/?).

Proof. Consider statement (a). Integrating estimate (a) in Proposition 3.8 implies || log z.,,—
log zalloo < Lyn™*/?*1. Now we apply Lemma 4.4(b) from [4], which gives an estimate of
|| exp f — exp glloo in terms of || f — g|lo. Namely, we obtain o0 = Zulloo < Lyn=*/2+1(1 4
exp{Lln'kﬁ'”} z Lln-k{Hl)"zW“m < Lon~k/241,

Statement (b) is a consequence of (b) in Proposition 3.8, while statement (c) will
follow from (e) in 3.8. We present the argument in the latter case, the first one being
similar. Integrating (e) in Proposition 3.8 gives the estimate ||log 2o, — log 2 ccfloe <
Ls((logn - n=*+3 4 )1/2) =: B. Now again we apply Lemma 4.4(b) in [4], which gives the
estimate ||Zoo — Zneclloc < B(1+ €7B/2)||200]|oo. Since 1+ e®B/2 is bounded, the right hand
side is O(B) = O((logn - n~*+3 4 €)'/?) as claimed. o

Remark. Notice that statements (b) and (c) in Theorem 3.9 are the asymptotic estimates
for the deterministic programs mentioned in the introduction. Namely, for |[5* — ¢"[|oo < €
we have

IZe0 = Zn,eelloo ~ O(fln) (3.19)
for large n. In particular, we get the following improvement of Theorem 2.2(2):

Corollary 3.10 Let z,, € C;“(—:rr, ™) for some k > 4, and suppose z., is strictly positive
with 20 (—7) = 2 (%) = 0. Let Toe. be the optimal solution of the limiting program

(P ,ec), where ||b* — ¢l < € for every n. Then

"300 e xm,(,c"m = O(Cln).

[m]

Naturally, £ > 3 would be sufficient here if we had [[6® — c™|l» < € for all n and some

1 < p < co. Equally, for b" = ¢, that is, for the limiting program (Py,), the assumption
k > 3 is sufficient.

We end this Section with a brief outline of how to prove the analogue of Proposition
3.8 and Theorem 3.9 for algebraic moments ax(t) = t*,
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Theorem 3.11 Let a;(t) = t'. Suppose zo, € C¥(T) —for some k > 3- is strictly positive
on T = [to,t1) and satisfies z! (to) = ! (t;) = 0. Let b = (bo,...,by) be its first n + 1
Hausdorff moments, and let ¢* = (co,...,cn) be a fized vector. Let z,,z,. and 2, .. be the
optimal solutions of the moment matching programs (P,),(Pa,) and (P,..) respectively.
Then

L Fork >3, ||t — Tn|leo = o(n—knﬂ);
8 For k23, 7 — zndlo = O((n™H2 + 1);

8. For k 2 4, |||« = ||+ |l and with ||b* — *|lc < €, we have ||Too — Tneelloo =
O((logn - n~*+3 4 €)1/2),

Proof. Similar to Proposition 3.8, the proof of statement (1) follows from Lemma 3.3(a) and
Lemma 3.5(a) when combined with Jackson’s Theorem governing the rate of convergence
for polynomial approximation (see for instance [15]).

Let us prove statement (3). We follow the pattern of Proposition 3.8(e). Let us normal-
ize T = [to,t;] = [—1,1]. On replacing the monomials a; by the Tchebysheff polynomials
T, on [—1,1], (cf. [15] for a definition), the results in Lemmas 3.3 and 3.5 are not affected,
since lin{aq, ...,a.} = lin{Ty,..., T, }.

Let s, = Y ¢ ,ckTi be the nth partial sum of the expansion of f := (log )" in
Tchebysheff polynomials. Then we have an estimate of the form

If = salleo < K -logn - n~*+3, (3.20)

Indeed, this may be seen from the fact that under the transform t = cos 8, s,(t) = 5,() is
just the nth partial sum of the Fourier series of f(#) = f(cos#). But f is of class C*~2 and
k > 4, hence [14, p. 106, Cor. 2.4.6] gives the claimed rate of convergence (3.20) for the
Fourier series 3, — f . Notice that the quoted result relies on Jackson’s Theorem and the
fact that the Dirichlet kernel grows logarithmically.

Observe next that |[{c;}]lz < V2E: < v2||f|l by [15, p. 131, Thm. 5(ii)]. Now
consider the primitive S, = Z::; di Ty of s,. The formula [ T, = Toy1/(2n+2)=Tn-1 /(20—
2) (see [15, p. 63]) shows that dy = ¢1/4+80, di = co—c2/2, di = (cx—1 — Cj41)/2k for k > 2,
with the choice of &y still free. Choosing the latter such that S,(—1) = (log zs)"(—1), we
obtain ||(log Zeo)” — Snlleo = O(logn - n=*+3), that is, E; = O(logn - n~*+3) if N is chosen
such that [{ds} < N. Now [[{de}ls < S5ll{ctHla < 7y/2/3|(og 2ec)"lo by the above,
so the choice N := w\/mu(log Zoo)"|lc and M = 6N will do. For the rest of the argument
we follow the pattern of Proposition 3.8 and Theorem 3.9, and this completes the proof of
statement (3). For statement (2) we follow the proof of Proposition 3.8, with the changes
as indicated above. o



160 D. Noll

Clearly a result analoguous to Corollary 3.10 may be obtained. Also, the analogues of
statements (c), (d) from Proposition 3.8 may be established in the algebraic moment case
using the same reasoning as above. Since the case || - || = || - |1 is the most interesting one,
we skip the results. Notice here that our arguments apply in much the same way to other
choices of norms || - ||,. One has but to prove a result like Lemma 3.6 in these situations.

Remarks. 1) In general, the smoother z, the faster E,, E} tend to 0. If z, is analytic,
then Ey, E; — 0 linearly, that is E; = O(p") for some 0 < p < 1. If 2 is an entire
function, convergence is even superlinear (cf. [31]).

2) Notice that as an alternative to our present approach, the question of noisy data
by may be formulated as a problem of sensitivity analysis of the finite dimensional convex
program

maximize — Arby — €| Al
P- k=0
(Fr) subject to A € R™+!
kE(\)=0

where k is defined as k()) = v(),t,), whenever v(),-) denotes the unique solution of the
initial value problem v’ + jv* = ¥~ A¢ay with v(to) = 0. The usual techniques of sensitivity
analysis are based on the implicit function theorem, and they would require some knowledge
about the Hessian of k() or rather, about the curvature of the level curve k(A) = 0. Due
to the complicated nature of the function k()), the latter shows that this approach is not
very promising.

3) In [3] J.M. Borwein and A.S. Lewis have obtained convergence results for the de-
terministic programs (P,) using the Boltzmann-Shannon entropy (1.6). By an appropriate
modification of their results, one could obtain estimates of the form O(e) for the corre-
sponding relaxed programs (Py), (Pa,.c), and with respect to the norm Il |lx (see Theorem
4.7in [3]). This is not very satisfactory, however, since a small deviation in || - |l1 -norm may
still cause a drastic change in supremum norm. Notice that the authors of [3] also obtain
convergence results in the supremum norm for their programs (P,) by a clever use of Lo,
distortion theorems (see [3]). For the programs (P,.), this technique seems to give only
errors of size O(ne) (instead of O(¢'/?) in the Fisher case). Numerical experiments for the
relaxed Boltzmann-Shannon programs (P,) suggest, however, that the solution is in fact
more robust with respect to moderate perturbations of the data. Increasing the tolerance ¢
in (Pn,c) usually leads to mollified solutions z, . which do not differ drastically from the ideal
solutions z,. Here, of course, numerically, a small tolerance e is always allowed implicitely
due to the presence of rounding errors.

4) We have not tried too carefully to limit the size of the constants occurring in the
estimates, since they depend on the unknown density z.,. In a Bayesian approach, however,
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where we might have some a priori information on z.,, one might wish to calculate explicit
numerical constants, and would then try to get more stringent estimates.

4 Stochastic Convergence Results

In this Section we obtain stochastic convergence results for the time series model as pre-
sented in the Introduction. Starting with a mean zero stationary time series (X), we use
4(-) given in (1.2) to estimate the autocovariance function (-). It is known that (1.2) is
biased, but its asymptotic distibution (as n — c0) has mean (k) e.g. under the structural
assumption that (X;) is a moving average process of the form

Xg = Z ijt_j. (4'1)

j==o0

Here (Z;) is an indepentent and identically distributed sequence with mean zero and variance
a? > 0, and 2 e oo [¥j] < 00 and EZ} = no* < oo (or alternatively Yoo ¥ili| < 00,
see [12, §7.2]). Under any of these hypotheses, one can say more: In fact, for any fixed
h, the random vector (4(0),... ,7(:‘;)) is asymptotically normally distributed with mean
(7[0), .-.,7(k)) and covariance matrix 1Vh, where Vi = (vi;) is given by the Bartlett

§,§=0,0,h
formula

vi = (1 =3@G) + D (v(R)r(k =i +5) + vk + )k —i)). (4.2)

k=—co

Now observe that the assumption } |#;| < co guarantees that ¥ |y(k)| < oo, which in
particular shows that (X;) has a spectral density z., satisfying z/ (—7) = z () = 0. It
also implies that the columns of the matrices V}, are uniformly bounded in ¢;-norm. Since
this property is preserved under conjugation with an orthogonal matrix, we derive that the
eigenvalues of the matrices V}, are uniformly bounded by some constant.

Theorem 4.1. Let (X,) be a mean zero moving average process (4.1) satisfying > vo ___ || <
co and EZ} = no® < oo (or alternatively, 3 1}|j| < 0o). Suppose the spectral density o
of (X;) is strictly positive on [—=, ] and of class C¥,, for some k > 4. Let h € N be fized. Let
bon = 4(0),...,bnn = ¥(h) be the first h + 1 values of the sample autocovariance function
(1.2) based on n observations Xi,...,X,. Now let zj p(n) denote the solution of program

(Phep(n)) based on the data b(n) = (bg_,.,.‘ . ,b;.',.). Then
”xoo - z.‘n,e,b(n)”oo = oP ((lOg h- h_k+3 + é)l‘m) n — oo (43)

in probability.
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Proof. As noticed above the random vector n'/2(%(0) — v(0),...,4(k) — 7(k)) converges in
distribution to a normal random vector ¥ with mean zero and covariance matrix Vj, given
by (4.2), see [12, Prop. 7.3.4]. This means

nll2g nll2e

P{nlﬁllb(n] _ b”m < n‘lfile} _] %,Vh(t) dty - dty, — 0, (4.4)

—nlf2¢ -nlf2¢

as n — 00, where ¢oy, denotes the density of the normal law with mean zero and covariance
matrix V4, and b is the vector of the first h+1 true autocovariances by = ¥(0),..., b, = y(h).
Clearly the right hand term in (4.4) converges to 1 as n — oo, and hence so does the left
hand term. Since by Theorem 3.9(c) we have ||zq, — Thepm)lloo < K((logh - h4+3 4 €)'/?)

for the events ||b(n) — b]| < €, and with a constant K > 0 depending only on z, the
claimed estimate (4.3) follows. a

It seems a realistic device that even for a long time observation zy,...,z, with large
n, we would limit the number A of Fourier coefficients used for the density estimation
program (P, um)) to a moderate size in order to have a managable numerical problem.
Nevertheless, one might wish to simultaneously increase the number hy of coefficients used
for the (Phpeb(n)) as the number n of observations increases. It is intuitively clear that n
should grow much faster than h, in order to eventually allow for an asymptotic estimate of
the form

200 = Zhnetimylloo ~ Op(€'/?), (n — o0).

‘Once this is established, one would in fact obtain stochastic CONVETZence ||Too—Thy e b(n) |loo 5
0 on choosing appropriate tolerances ¢, — 0+. We do not pursue this idea here since it
does not seem to have any practical relevance.

Conclusion

We have calculated convergence rates for the deterministic best entropy spectral density
estimation programs (F,) based on the Fisher information measure (1.8), which might
typically be applied in the analysis of stationary time series. Allowing for tolerances in
the moment matching problem, we have shown that the programs (P,) are stable under
moderate changes of the program data (Theorem 3.9(c), Theorem 3.11(c)) and therefore
may be expected to exhibit a reasonable robustness with regard to data corrupted by noise.

A large sample Theorem guarantees the same qualitative results for the stochastic programs
(Theorem 4.1).
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