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ABSTRACT. We discuss the problem of preservation of Baire category under
continuous and feebly open preimages. We obtain a solution by imposing a
completeness condition on the fibres f~!(y) of the function f under consid-
eration. Based on a theorem on the invariance of residuality under continuous
and nearly feebly open images, we also derive a result concerning the preserva-
tion of category under continuous and nearly feebly open preimages. We end
up with an open mapping theorem for functions f of this kind defined on a
Cech complete space.

INTRODUCTION

In this paper we consider the problem of preservation of Baire category under
continuous preimages. Let £, F be topological spaces and let f: E — F be
a continuous and feebly open surjection (i.e. int f(V') # & for nonempty open
V in E). Suppose F is a Baire space. Under what conditions is £ a Baire
space? Clearly a positive answer requires some additional information since
every space E may be collapsed to a point. A natural idea is to impose category
assumptions on the fibres [~ ! (y) of f. This has been done by Frolik (see [F,],
[HM]). He obtains a positive answer in the case where E is assumed to have a
countable pseudo-base and the fibres f - (y) are second category spaces apart
from a first category subset of F . Here we seek solutions to the problem which
avoid the countability assumption on the space E. We obtain such a solution
by imposing a somewhat stronger condition on the fibres [ : (), which we call
fibre-completeness, and which in particular includes the case where the fibres
f _l(y) of f are compact. We prove that Baire category is preserved under
continuous, feebly open and fibre-complete preimages.

In the second part of our paper we discuss the related problem of preserva-
tion of Baire category under continuous and nearly feebly open preimages (i.e.
int f(V) # @ for nonempty open V in E). We prove that if f: E — F is
a continuous and nearly feebly open surjection from a Cech complete space E
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to a completely regular space F, then for every dense Baire subspace G of F
the preimage f _I(G) is a dense Baire subspace of E .

PRELIMINARIES

Our terminology is based on the book [E]. In addition, the following notions
need special mentioning.

A function f: E — F is called (nearly) feebly continuous if for every open
subset V' of F, f_l(V) # <& implies intf_l(V) £ (resp. intf~Y(V) £2).
Dually, f is called (nearly) feebly open if for every nonempty open set U in
E the set int f(U) (resp. int f(U)) is nonempty.

Let E be a topological space. A pair (¢,7T) consisting of a tree T of height
N, and a mapping ¢ with domain 7 is called a web on E if the following
conditions are satisfied:

(i) {@(t):te T} is a zm-base for E;

(ii) for fixed t € T theset {p(s):t<,s€ T} is a m-base for ¢(t).
Recall that a family 8 of open subsets of a space E is called a 7-base for E
if every nonempty open U in E contains some nonempty V € 8.

1. FIBRE-COMPLETENESS

Let E,F be topological spaces and let f: E — F be a function. [ is
called fibre-complete if there exists a web (¢,7T) on E such that for every

y € F and every cofinal branch (z,) in T (i.e. 7, <, t, , forall n) having

p(t,)N f_l(y) # & for every n, the intersection ({¢(z,): n € N} is as well
nonempty.

Let us consider some examples illuminating our definition.

(1) Let E be a regular space and suppose that f: E — F has countably
compact or sequentially compact or pseudo-compact fibres. Then f is fibre-
complete. This follows easily by taking as 7 the tree consisting of all finite

sequences (U, ...,U,) of open subsets of E having U[ C U,_, and by setting
p(Uy,...,U)=U,.

(2) Let f: E — F, g: F — G be continuous fibre-complete functions.
Suppose [ is feebly open. Then go f is again fibre-complete. Indeed, suppose
the webs (¢, T), (v,S) are given for f, g respectively in accordance with the
definition of fibre-completeness. Let R be the tree of height X, consisting of all
finite sequences ((¢,,s,), ...,(t,,s,)), where ¢, <, - <1, <g-<g$,,
and with f(¢(¢,)) C w(s;) C f(e(t,_,)). Let R be ordered in the natural way,
and let x be defined by x((z,,s,),...,(t,,s,)) = @(t,). Then (x,R) isa web
on E which makes go f a fibre-complete function.

2. THE FEEBLY OPEN CASE

In this section we obtain the mentioned result concerning the preservation of
Baire category under continuous feebly open preimages.
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Theorem 1. Let E, F be topological spaces and let f: E — F be a feebly open
and fibre-complete function such that
(%) for every nonempty open set U in LE land every nonempty open
set V cint f(U), theset Unintf (V) is nonempty.
Suppose that F is a Baire space. Then so is E .

Proof. Our proof uses the Banach-Mazur game characterization of Baire cat-
egory. Recall that in the Banach-Mazur game players I and II alternatively
choose nonempty open sets V,,V,,V,,... with ¥, C V,. Player II is said
to win the game if the V; have some point on common, otherwise player I is
winning. Formally, the game may be described by means of strategies for the
players, as for instance done in [T]. Here we use the variant of the game where
both players have a complete knowledge of all the previous moves at every stage.
With these preparations we may now recall that a space E is Baire if and only
if for every strategy = for player I there exists a strategy © for player II such
that II playing with © wins against I playing with =.

Let (p,T) be given on E in accordance with the definition of fibre-
completeness. Let = be a strategy for player I on the space E. We have
to find a strategy © for player II such that II playing with © wins against I
playing with =. We define a strategy = for player I on the space F using
induction.

First Z'(&) has to be defined. Let U, = E(9); then U, is a nonempty
open set in E. Using condition (i) of a web, we find some ¢, € T having
@ # ¢(t,) C U,. Now define Z'(@) = int f(p(t,)) = V.

Now let ¥, be a nonempty open subset of };,. We have to define Z'( Vo V1) -
By condition (x) the set U, = ¢(f,) N intf”l(Vl) is nonempty. Let U, =
Z(U,,U,); then U, is a nonempty open subset of ¢(t,), hence there exists
t, € T with t, <, t, such that @ # ¢(t,) C U,. Now define Z'(V,V]) =
int f(p(t,)) = V.

Proceeding in this way we complete the definition of ='. Suppose this has
been done. Since F is a Baire space, there exists a strategy ©' for player II on
F such that II with ® wins against I with ='. Let VoV, V,, ... represent
the corresponding play, i.e. V, = =(Q), v, = @'(VO), v, = E'(VO, V), V=
@'(VO, V,,V,), etc. By the construction of =’ there exist sequences (¢,,) and
(U,) having

(1) @# p(ty) C Uy by <gplyiys

(2) Uy, =plty) nint [ (Vyy, ) # 95

(3) Uy, ==(U,y, ..., Uy ).
We define a strategy © for player Il on E by setting (U, ... , U, ) = Uy, -
Then U,,U,, ... represents the game of Il with © against I with Z. We claim
that © is winning, from which the result follows.

Let y € ({V,: n > 0}. This implies (/)(le)ﬂf_l(y) £ & forevery k, so by
the choice of (¢,T) the intersection ({¢(t,,): k > 0} is nonempty, and this
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clearly implies (\{U,: n > 0} # @, hence © does in fact win against Z. This
ends our proof. O

Corollary. Let E,F be topological spaces and let f: E — F be a feebly open
mapping such that either

(1) f is injective and feebly continuous, or
(2) f is fibre-complete, and for every open set V in F the set int f _I(V)
is dense in f_l(V).
Suppose that F is a Baire space. Then so is E .

Proof. 1t suffices to check condition (x) in both cases. But this is easy to see
in either case. 0O

Remarks. (1) The first part of the statement of the corollary gives a positive
solution to a problem posed by Neubrunn [Ne]. We mention that in [PS] this
problem has also been solved under more restrictive conditions using a com-
pletely different technique.

(2) Condition (%) as well as condition (2) in the corollary are both slightly
stronger statements than mere feeble continuity. We do not know, however,
whether feeble continuity alone is sufficient to obtain the conclusion of Theo-
rem 1.

3. THE NEARLY FEEBLY OPEN CASE

One may ask whether feebly openness of the function f in Theorem 1 and
its corollary may be replaced by near feebly openness. This is not the case even
when [ is supposed to be a continuous and nearly open bijection. Indeed,
consider the following example. Let F' be a normed Baire space and let £ be
the set F endowed with a finer normed topology such that E is of the first
category in itself. Then the identity mapping i: E — F 1is a continuous and
nearly open (see [K, p. 24]) bijection such that i~! does not preserve category.

Although the results of §2 do not carry over to the nearly feebly open case,
there is a positive result on the preservation of Baire category under continuous
and nearly feebly open preimages which holds in a more special situation.

Theorem 2. Let E be a Cech complete space and let F be completely regular.
Let f: E — F be a continuous and nearly feebly open surjection. Suppose that
G is a dense Baire subspace of F. Then f _I(G) is a dense Baire subspace of
E.

The proof of this result is mainly based on the following Proposition, which
is of interest in itself.

Proposition. Let E be a Cech complete space and let F be completely regular.
Let f: E — F be a continuous dense and nearly feebly open function. Then f
maps residual subsets of E onto residual subsets of F .

Proof. (1) Observe that it suffices to prove that f(E) is a residual subset of F .
For suppose this has been shown. Let G be a dense G-set in E. Then G is
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itself Cech complete and clearly [ |G: G — F is continuous, dense and nearly
feebly open. So the above weaker statement implies that f(G) is residual in
F . Hence we are led to prove that f(F) is residual in F .

(2) Next observe that it suffices to consider the case where f is a surjection
and prove that f(E) contains a dense Cech complete subspace G. Indeed, if
this statement has been established, then we consider f: E — f(E), which is
a continuous and nearly feebly open surjection. Our statement just mentioned
implies that f(E) contains a dense Cech complete subspace G. But G is an
absolute G;,ie. G isa G-setin F (see [F,]), and this gives the result. So
we may assume that f is a surjection and prove the existence of a dense Cech
complete subspace G of F.

(3) Observe that the open subsets V' of E having f(V) C int f(V) form a
n-base for E . Indeed, if U is a nonempty open set in E , then

V=Unf '(int 7(0))

is a nonempty open subset of U with the mentioned property.

(4) Since E is Cech complete, it admits a complete sequence (4,) of open
coverings. Here ‘complete’ means that every filter § on E satisfying 4 NF # &
for all n has a cluster point (see [F]). Now let &, be the family of all
open sets V' in E which are contained in some element of & and satisfy
f(V)cint f(V). Then G, isa m-base as a consequence of (3). Moreover, the
sequence (&) is again complete in the above sense.

Using induction over n and transfinite induction at every stage, we may select
subfamilies 20, of the &, , respectively, such that the following conditions are
satisfied:

(1) for W, W' e , W#W', wehave int f(W)nint f(W') =T
(2) the sets G, = U{int f(W): W e 20, } are dense in F;
(3) forevery W €90, | there exists W' €20, having W C W'.

Since F is a Baire space, the set G =(){G,: n € N} is dense in F'. We prove
that G is Cech complete. Let

Dn:{Gﬂint—f_(va): We, };

then (D,) is a nested sequence of relatively open coverings of G. It remains
to check that (D,) is complete. So let § be a filter on G with §ND, # D for
all n. We have to prove that § has a cluster point in G.

Let O, € D, be elements of §, O, = Gnint f(W). Clearly the sequence

(0,) must be decreasing, i.e. O,,, C O,, and hence by (3) above, the same

must be true for the sequence (W,). But note that each W, is contained
in an element of 4, . Using this and condition (3), we conclude that the
set K = ({W,: n € N} is compact and nonempty and possesses (W) as a
neighborhood base. Since f(W),) C int f(W)), we deduce that the compact set
f(K) in F has (int(f(W )) as a neighborhood base in F . But notice that

- n

{int f(W,): n € N} C G by the construction of the 20, , so f(K) is a subset
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of G which has (0,) as a neighborhood base. Clearly this implies that § has
a cluster point in f(K), for otherwise we could find, using the compactness
of f(K), an open neighborhood U of f(K) missing an element of F. Since
some O, must be contained in U and, on the other hand, all O, meet all the
elements of §, this is impossible. This completes the proof. 0O

Let us now give the proof of Theorem 2. Let U be a nonempty open subset
of E. We have to show that f "'(G) N U is of the second category in U.
By observation (3) in the proof of the above proposition, we may assume that
f(U) c intf(U). Assume that f~'(G)N U is of the first category in U .
Choose a residual subset R of U having f _I(G) N R = . But notice that
fIU: U — int f(U) is a continuous dense and nearly feebly open mapping from
a Cech complete space to a completely regular space. Therefore [ (R) is residual
in int f(U). But f(R)NG =@, so GNint f(U) must be a first category subset

of int f(U), and this contradicts the fact that G is a dense Baire subspace of
F . This completes our argument.

4. OPEN MAPPING THEOREM

In this final section we establish a second application of our proposition from
§3. We obtain a result on the generic openness of continuous nearly feebly
open functions on Cech complete spaces. Recall that a function f:E—F is
open at x € E if f(V) is a neighborhood of f(x) in F whenever V is a
neighborhood of x in E. Analogously, f is called nearly open at x € E if for
every neighborhood V of x in E, the set f(V') is a neighborhood of f(x)
in F.

Theorem 3. Let E be a Cech complete space and let F be a completely regular
space. Let f: E — F be a continuous nearly feebly open bijection. Then f is
feebly open. Moreover, f is open at every point x of near openness.

Proof. Let U be a nonempty open set in E and let V' be a nonempty open
subset of U having ¥V c U and f(V) C int f(V). We prove that int f(V) C
f(U), from which the first part of our statement follows.

Let z € int f(V), z = f(»). It suffices to prove y € V. So let W be an
open neighborhood of y. We have to prove VN W # & . By continuity we

may assume that f(W) C int f(V), so
O =int f(V)Nint f(W)

is a nonempty open set in F. Let V| = Vﬁf_l(O), W, = Wﬁf"(O). By
our proposition the sets f(V]) and f(W,) are both residual in O, hence they
intersect. Indeed, f|V|: V, — O and f|W,: W, — O are continuous dense and
nearly feebly open functions and hence the proposition applies. This ends the
first part of our proof.

Now suppose that x is a point of near openness of f. This means that

f(x) € int f(V) for every neighborhood V of x in E. But now the statement
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follows immediately from the first part of the proof, since x e ¥V c ¥V c U was
shown to imply int f(V)C f(U). O

Corollary 1. Let E be a completely metrizable space and let F be completely
regular. Suppose f: E — F is a continuous and nearly feebly open bijection.
Then f is open at the points of a dense Gg-subset of E.

Proof. In view of the second part of the statement of Theorem 3 it suffices to
show that f is nearly open at the points of a dense Gj-subset of E'. So let 4
denote the family of all open subsets U of E having diameter < 1/n with
respect to some fixed metric for E and satisfying f(U) c int f(U). Since
every U, is a m-base for E, the sets G, = (J4U, are open dense in E, so
G =({G,: ne N} isadense G, in E. Clearly f is nearly open at the points
of G . This ends the proof. 0O

In the following result, recall that a function f: F — F is called nearly
continuous at x € E if for every neighborhood U of f(x) in F, ) is
a neighborhood of x in E.

Corollary 2. Let E,F be Cech complete spaces and let [: E — F be a function
whose graph G(f) is either closed or a Gy-set in E x F . Suppose that for every

open set V in F the set int /' (V) is dense in f_l(V), ie.

STy =i ).
Then [ is feebly continuous; even more, for every open set V in F, int f _I(V)
is dense in f_l(V). Moreover, if x € E is a point of near continuity of f, then
f is in fact continuous at x .
Proof. Consider the mapping g: G(f) — E, (x, f(x)) — x. Clearly g is
a continuous bijection from a Cech complete space onto a completely regular
space. We claim that g is nearly feebly open.

Let W be a nonempty open set in G(f). Clearly W may be chosen to be

of the form

W=G6(/)nUxV),
where U is open in E and V is open in F. Observe that U ﬂf_l(V) #
@ . Since, by assumption, int f~ (V) is dense in f~!(V), we deduce that

Unint f~'(V) is nonempty. Now observe that g(W) = U mf_l(V), so Un
int f~'(V) is contained in g(W), proving that g is nearly feebly open.
Theorem 3 implies that g is feebly open. We may say even more; for every
nonempty open set W in G(f), the interior of g(W) is a dense subset of
g(W). Clearly this gives us the above feeble continuity statement on f claimed
in the corollary. Moreover, if x is a point of near continuity of f, then
(x, f(x)) turns out to be a point of near openness of g, so the second part of
the statement follows as well. O
Remark. Theorem 3 is closely related with our open mapping theorem [N,
Theorem 1], while its Corollary corresponds with [N, , Theorem 2].
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