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Abstract

Feedback controllers with specific structure arise frequently in applications because they

are easily apprehended by design engineers and facilitate on-board implementations and re-

tuning. This work is dedicated to H∞-synthesis with structured controllers. In this context,

straightforward application of traditional synthesis techniques fails, which explains why only

a few ad-hoc methods have been developed over the years. In response, we propose a more

systematic way to design H∞-optimal controllers with fixed structure using local optimiza-

tion techniques. Our approach addresses in principle all those controller structures which

can be built into mathematical programming contraints. We apply non-smooth optimiza-

tion techniques to compute locally optimal solutions, and provide practical tests for descent

and optimality. In the experimental part we apply our technique to H∞ loop-shaping PID

controllers for MIMO systems and demonstrate its use for PID control of a chemical process.

Keywords: Nonsmooth optimization, H∞ synthesis, structured controllers, PID, NP -hard prob-
lems.

Notation

Let R
n×m be the space of n×m matrices, equipped with the corresponding scalar product 〈X, Y 〉 =

Tr(XT Y ), where XT is the transpose of the matrix X, Tr (X) its trace. For complex matrices
XH stands for its conjugate transpose. For Hermitian or symmetric matrices, X ≻ Y means that
X − Y is positive definite, X � Y that X − Y is positive semi-definite. We use the symbol λ1

to denote the maximum eigenvalue of a symmetric or Hermitian matrix. Given an operator T ,
T ∗ is used to denote its adjoint operator on the appropriate space. The notation vec applied to a
matrix stands for the usual column-wise vectorization of a matrix. The operator diag applied to a
matrix produces a vector whose entries are the diagonal elements of the matrix. We use concepts
from nonsmooth analysis covered by [13]. For a locally Lipschitz function f : R

n → R, ∂f(x)
denotes its Clarke subdifferential at x.
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1 Introduction

Considerable efforts have been made over the past two decades to develop new and powerful
control methodologies. H∞ synthesis [14] is certainly the most prominent outcome of this search.
In spite of its theoretical success, it turns out that structured controllers such as PID, lead-lag,
observed-based, and others, are still preferred in industrial control. The reason is that controllers
designed with modern control techniques are usually of high order, difficult to implement and
often impossible to re-tune in case of model changes. But those are precisely the properties which
make structured controllers so popular for practitioners. Easy to implement and to understand,
and easy to re-tune whenever performance or stability specifications change. The trade-off may
be roughly described as high performance combined with low flexibility versus lower performance
combined with high flexibility. The question we ask here is how the performance properties of
structured controllers may be improved.

Structured control design is generally a difficult problem. Even the simple static output feed-
back stabilization problem is known to be NP-hard [37]. Due to their importance for practice, a
number of innovative techniques and heuristics for structured control have been proposed in the
literature. Some authors use branch-and-bound techniques to construct globally optimal solution
to the design problem [5]. In the same vein, Wong and Bigras [38] propose evolutionary optimiza-
tion to reduce the computational overhead, while still aiming at globally optimal solutions. These
approaches are certainly of interest for small problems, but quickly succumb when problems get
sizable.

A fairly disparate set of heuristic techniques for structured control design was developed in the
realm of linear matrix inequalities (LMIs) [11]. Alternating projection techniques were proposed
in [19] for static controller and for the more specific structured control design problem in [15].
In the same vein, coordinate descent schemes were proposed in [18, 23, 20]. In [21], the authors
suggest using a BMI formulation for solving a variety of problems including structured control.
These techniques may be useful in practice, but they bear the risk of missing a local solution,
because convergence to a local minimum is rarely ensured. Iterative solving of SDPs based on
successive linearizations is yet another idea, but often leads to prohibitive running times. In [6], 2
hours cputime were necessary to compute a decentralized PID controller for a 2 × 2 process on a
Pentium II 333 MHz computer. Even longer cputimes are reported in [17] for medium size PID
design problems.

A relatively rich literature addresses specific controller structures such as decentralized or
PIDs. In [27], Miyamoto and Vinnicombe discuss a coordinate scheme for H∞ loop-shaping with
decentralized constraints. In [36], again in the loop shaping context, the authors adopt a truncation
procedure to reduce a full-order controller to a PID controller. Those are heuristic procedures,
because closed-loop performance is not necessarily inherited by the final controller. In [33], Saeki
addresses sufficient conditions under which PID synthesis reduces to solving LMIs.

In a recent interesting work, Rotkowitz and Lall [32] fully characterize a class of problems for
which structured controller design can be solved using convex programming. They introduce the
concept of quadratic invariance and show that for problems having this property, optimal struc-
tured controllers may be efficiently synthesized. In a different but related work [39], the authors
identify various control structures that are amenable to convex optimization by an appropriate
choice of coprime factors in the Youla-Kucera parametrization [10]. A similar analysis is made
by Scherer in [34] both for structured controller design and multi-objective H∞ control. Unfor-
tunately, these concepts and tools only apply to very particular problem classes and controller
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patterns and do not easily lend themselves to generalization when finer controller structures are
required.

Tw→z(K) :=

G

K

yu

w z

Figure 1: standard interconnection

In our opinion local optimization is the approach best suited for these difficult design problems.
It should whenever possible be used in tandem with heuristic methods, as those may be useful to
compute good initial points for the optimization. We mention that early approaches to structured
design based on tailored optimization techniques can be traced back to the work of Mäkilä and
Toivonen [25] for parametric LQ problems, or Polak and Wardi [31] for problems with frequency
domain singular value inequalities. In the latter reference, many design problems are recognized as
nondifferentiable, and in consequence, techniques from nonsmooth analysis are employed. More
recently, we have used nonsmooth analysis to fully caracterize the subdifferential properties of
closed-loop mappings of the form ‖.‖∞ ◦ Tw→z acting on the controller space, where Tw→z(K)
denotes the closed-loop transfer function from w to z at a given controller K, figure 1. These
results are used to develop nonsmooth descent algorithms for various design problems [3, 1, 4].
Here we extend our results to structured controller design and elaborate the case of MIMO PID
controllers. We then demonstrate how the proposed technique can be used in the context of
PID loop-shaping as introduced in [26, 17]. We conclude with an application to chemical process
control.

2 Nonsmooth H∞ design technique

Consider a plant P in state-space form

P (s) :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , (1)

where x ∈ R
n is the state vector of P , u ∈ R

m2 the vector of control inputs, w ∈ R
m1 the vector of

exogenous inputs, y ∈ R
p2 the vector of measurements and z ∈ R

p1 the controlled or performance
vector. Without loss, it is assumed throughout that D22 = 0.

The focus is on H∞ synthesis with structured controllers, which consists in designing a dynamic
output feedback controller K(s) with feedback law u = K(s)y for the plant in (1) having the
following properties:

• Controller structure: K(s) has a prescribed structure.
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• Internal stability: K(s) stabilizes the original plant P (s) in closed-loop.

• Performance: Among all stabilizing controllers with that structure, K(s) minimizes the
H∞ norm ‖Tw→z(K)‖∞. Here Tw→z(K) denotes the closed-loop transfer function from w to
z.

2.1 Subdifferential of the H∞ map

For the time being we leave apart structural constraints and assume that K(s) has the frequency
domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK is
included. A further simplification is obtained if we assume that preliminary dynamic augmentation
of the plant P (s) has been performed:

A →

[
A 0
0 0k

]

, B1 →

[
B1

0

]

, etc.

so that manipulations will involve a static matrix

K :=

[
AK BK

CK DK

]

. (3)

With this proviso, the following closed-loop notations will be useful:
[
A(K) B(K)
C(K) D(K)

]

:=

[
A B1

C1 D11

]

+

[
B2

D12

]

K [C2 D21 ] . (4)

Owing to its special composite structure, the function f = ‖.‖∞ ◦ Tw→z, which maps the set
D ⊂ R

(m2+k)×(p2+k) of stabilizing controllers into R
+, is Clarke subdifferentiable [28, 3, 2]. Its

Clarke subdifferential can be described as follows. Introduce the set of active frequencies at a
given K

Ω(K) := {ω ∈ [0, +∞] : σ (Tw→z(K, jω)) = f(K)}. (5)

We assume throughout that Ω(K) is a finite set and we refer the reader to [8] for a justification
of this hypothesis. We shall also need the notation:

[
Tw→z(K, s) G12(K, s)
G21(K, s) ⋆

]

:=

[
C(K)
C2

]

(sI −A(K))−1 [B(K) B2 ] +

[
D(K) D12

D21 ⋆

]

. (6)

This leads to the following result

Theorem 2.1 Assume the controller K(s) stabilizes P (s) in (1), that is, K ∈ D. With the nota-
tions (5) and (6), let Qω be a matrix whose columns form an orthonormal basis of the eigenspace of
Tw→z(K, jω)Tw→z(K, jω)H associated with the largest eigenvalue λ1

(
Tw→z(K, jω)Tw→z(K, jω)H

)
=

σ(Tw→z(K, jω))2. Then, the Clarke subdifferential of the mapping f at K ∈ D is the compact and
convex set ∂f(K) = {ΦY : Y ∈ S(K)}, where

ΦY = f(K)−1
∑

ω∈Ω(K)

ℜ
{
G21(K, jω) Tw→z(K, jω)HQωYω(Qω)HG12(K, jω)

}T
, (7)
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and S(K) is the spectraplex set

S(K) = {Y = (Yω)ω∈Ω(K) : Yω = (Yω)H � 0,
∑

ω∈Ω(K)

Tr Yω = 1}. (8)

Proof: The proof is based on the chain rule for the Clarke gradient of the composite mapping
f = ‖.‖∞ ◦ Tw→z and we refer the reader to [13] and [30, 3, 2] for a proof and further details.

In geometric terms, the subdifferential of f is a linear image of the spectraplex set S(K). We
shall see later that it reduces to a more familiar geometric set under additional assumptions on
the multiplicity of the singular values.

2.2 Structured controllers

Note that we have assumed so far that controllers have no specific structure. We now extend the
results in section 2.1 to structured controllers using chain rules.

Assume K defined in (3) depends smoothly on a free parameter κ ∈ R
q, that is, K = K(κ),

where K(·) is smooth. Then the subgradients with respect to κ of the mapping g = ‖.‖∞ ◦
Tw→z(.) ◦ K(.) at κ are obtained as K′(κ)∗∂f(K), where ∂f(K) is given in Theorem 2.1, K′(κ) is
the derivative of K() at κ, and where K′(κ)∗ is its adjoint. This is a direct application of the chain
rule in [13]. Note that the adjoint K′(κ)∗ acts on elements F ∈ R

(m2+k)×(p2+k) via

K′(κ)∗F =
[

Tr (∂K(κ)
∂κ1

T
F ), . . . , Tr (∂K(κ)

∂κq

T
F )

]T

.

We infer the following

Corollary 2.2 Assume the controller K(κ) stabilizes P (s) in (1), that is, K(κ) ∈ D. With the
notations of Theorem 2.1, the Clarke subdifferential of the mapping g = ‖.‖∞ ◦ Tw→z(.) ◦ K(.) at
κ ∈ R

q is the compact and convex set

∂g(κ) =

{[

Tr (∂K(κ)
∂κ1

T
ΦY ), . . . , Tr (∂K(κ)

∂κq

T
ΦY )

]T

: ΦY ∈ ∂f(K(κ))

}

. (9)

Using vectorization, the subgradients in (9) can be rewritten as

[
vec∂K(κ)

∂κ1
, . . . , vec∂K(κ)

∂κq

]T
vecΦY . (10)

An important special case in practice is when the maximum singular values σ(Tw→z(K(κ), jω))
have multiplicity one for every ω ∈ Ω(K(κ)). Then the subgradients ΦY reduce in vector form
to vecΦY = Ψ ξ where

∑

ω∈Ω(K(κ)) ξω = 1, ξω ≥ 0, ∀ω ∈ Ω(K(κ)) and matrix Ψ is constructed
columnwise as

Ψ :=
(

vecℜ
{
G21(K, jω) Tw→z(K, jω)HQω(Qω)HG12(K, jω)

}T
)

ω∈Ω(K(κ))
.

Combining this expression with (10), the subdifferential ∂g(κ) at κ admits a simpler representation
in the form of a linear image of a simplex

∂g(κ) =







[
vec∂K(κ)

∂κ1
, . . . , vec∂K(κ)

∂κq

]T
Ψ ξ :

∑

ω∈Ω(K(κ))

ξω = 1, ξω ≥ 0, ∀ω ∈ Ω(K(κ))






.
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2.3 PID controllers

If this section we specialize the above results to PID controllers. A common representation of
MIMO PID controllers is

K(s) = Kp +
Ki

s
+

Kds

1 + ǫs
, (11)

where Kp, Ki and Kd are the proportional, the integral and the derivative gains, respectively. The
PID gains Kp, Ki and Kd all belong to R

m2×m2 for a square plant with m2 inputs and outputs. ǫ is
a small scalar which determines how close the last term in (11) comes to a pure derivative action.
Using partial fraction expansion, an alternative representation can be obtained in the form

K(s) = DK +
Ri

s
+

Rd

s + τ
, (12)

with the correspondence

DK := Kp +
Kd

ǫ
, Ri := Ki, Rd := −

Kd

ǫ2
, τ :=

1

ǫ
.

Note that these two representations are in one-to-one correspondence via

Kd = −ǫ2Rd, Kp = DK + ǫRd, Ki = Ri, ǫ =
1

τ
.

From (12) we obtain a linearly parameterized state-space representation of a MIMO PID controller

K =

[
AK BK

CK DK

]

=





0 0 Ri

0 −τI Rd

I I DK



 , AK ∈ R
2m2×2m2 . (13)

Since the state-space representation of the PID controller is affine in the parameters τ , Ri, Rd and
Dk, the same is true for its vectorized form and we can write

vec

[
AK BK

CK DK

]

= vec





0 0 0
0 0 0
I I 0



 + T

κ
︷ ︸︸ ︷





τ
vecRi

vecRd

vecDK







,

for a suitable matrix T ∈ R
(k+m2)(k+p2)×(3m2

2+1). The linear part of (13) can be expanded as





0
−I
0



 τI





0
I
0





T

+





I
0
0



 Ri





0
0
I





T

+





0
I
0



 Rd





0
0
I





T

+





0
0
I



DK





0
0
I





T

.

In consequence, using the Kronecker product to convert matrix products into vectors, we obtain
the transformation

T =









0
I
0



 ⊗





0
−I
0



 vecI





0
0
I



 ⊗





I
0
0









0
0
I



 ⊗





0
I
0









0
0
I



 ⊗





0
0
I







 .
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Finally, the subdifferential of the mapping g = ‖.‖∞ ◦ Tw→z(.) ◦K(.) at κ, where K(κ) describes a
MIMO PID controller (11) or (12) above, is the compact and convex set of subgradients

∂g(κ) =
{
T T vecΦY : ΦY ∈ ∂f(K(κ))

}
. (14)

For a decentralized MIMO PID controller, Ri, Rd and DK reduce to diagonal matrices. Intro-
ducing the linear transformation

J :=
[

e1 ⊗ e1 . . . em2
⊗ em2

]
,

where (ei)i=1,...,m2
is the canonical basis of R

m2 , it is easily verified that

vecM = J [M11, M22, . . . , Mm2m2
]T

for any square matrix M of size m2. This leads to







τ
vecRi

vecRd

vecDK







=

L
︷ ︸︸ ︷





1 0 0 0
0 J 0 0
0 0 J 0
0 0 0 J







κ
︷ ︸︸ ︷





τ
vec diag Ri

vec diag Rd

vec diag DK







with the new parameter vector κ as indicated above. Again by the chain rule for Clarke subdif-
ferentials, we obtain that the subdifferential of the mapping g = ‖.‖∞ ◦ Tw→z(.) ◦K(.) at κ, where
K(κ) describes a MIMO decentralized PID controller stabilizing (1), is the compact and convex
set of subgradients

∂g(κ) =
{
LT T T vecΦY : ΦY ∈ ∂f(K(κ))

}
.

We emphasize that the outlined procedure to determine subdifferentials of various types of
PID controllers is general and encompasses most controller structures. In particular, this includes
all structures K = K(κ) with a differentiable parametrization K(·). In addition, in some cases the
parameter κ ∈ R

q may be restricted to a contraint subset of R
q.

2.4 Setpoint filter design

Despite the improvement in performance achieved by our new technique, using PID feedback
alone may not sufficient to meet suitable time-domain constraints. Traditionally, this difficulty is
overcome by using a two-degree of freedom strategy including feedback and prefiltering or setpoint
filtering. Setpoint filters operate on the reference signals to improve responses properties such as
settling-time, overshoot and decouplings. In figure 2, a typical model following strategy is shown.
The setpoint filter F (s) is used in such a way that the responses of the feedback controlled plant
G(s) match as closely as possible those of a reference model Gref(s). Finding such a filter could
also be cast as an H∞ synthesis problem, where the transfer function from the reference signal r
to the tracking error e is minimized:

min
F (s)

‖Tr→e(F )‖∞ . (15)
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+

e−

r
F (s)

Gref (s)

K(s)
+

−
G(s)

Figure 2: setpoint filter design

To solve the setpoint filter design problem, we suggest once again the use of nonsmooth op-
timization methods. In order to illustrate the construction, consider the case of a two-input
two-outputs system. To achieve decoupling and good quality responses, the setpoint filter is
sought in the form [36],

F (s) =

[ 1
τ1s+1

a1s
b1s+1

a2s
b2s+1

1
τ2s+1

]

. (16)

Setting

κ1 = 1
τ1

, κ2 = 1
b1

, κ3 = a1

b1
,

κ4 = 1
τ2

, κ5 = 1
b2

, κ6 = a2

b2
,

a state-space representation of the filter is obtained as

F(κ) :=

[
AF BF

CF DF

]

=











−κ1 0 0 0 κ1 0
0 −κ2 0 0 0 −κ3

0 0 −κ4 0 0 κ4

0 0 0 −κ5 −κ6 0
1 κ2 0 0 0 κ3

0 0 1 κ5 κ6 0











.

This means there exists a matrix U such that

vecF(κ) = vecF(0) + Uκ, κ ∈ R
6 .

We immediately deduce the relevant subgradient formulas for program (15). With v := ‖.‖∞ ◦
Tr→e(.) ◦ F(.), the subdifferential of v at κ, where F(κ) is a setpoint filter, is the compact and
convex set of subgradients

∂v(κ) =
{
UT vecΦY : ΦY ∈ ∂ (‖.‖∞ ◦ Tr→e) (F(κ))

}
. (17)

The remaining expression for the subdifferential is directly obtained from Theorem 2.1.
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2.5 Nonsmooth descent method

In this section we briefly present our nonsmooth optimization technique for composite functions of
the H∞-norm. For a more detailed discussion we refer the reader to [3, 1]. We start by representing
the composite functions f = ‖ · ‖∞ ◦ Tw→z or more generally g = ‖ · ‖∞ ◦ Tw→z ◦ K(·) under the
form

g(κ) = max
ω∈[0,+∞]

g(κ, ω),

where each g(κ, ω) is a composite maximum singular value function

g(κ, ω) = σ (G(κ, jω)) .

Here G(κ, jω) = Tw→z (K(κ), jω). At a given parameter κ, we can compute the set Ω(κ) :=
Ω (K(κ)) of active frequencies, which is either finite, or coincides with [0, +∞] in those rare cases
where the closed-loop system is all-pass. Excluding this case, we assume Ω(κ) finite and construct
a finite extension Ωe(κ) by adding frequencies according to the strategy presented in [3, 1]. See
figure 3 for a typical choice.

Following the general trend of Polak [29], we now define the optimality function

θe(κ) := min
h∈Rq

max
ω∈Ωe(κ)

max
Yω�0,Tr(Yω)=1

−g(κ) + g(κ, ω) + hT φYω
+ 1

2
hT Qh, (18)

where for every fixed ω, φYω
is a subgradient of g(κ, ω) at κ obtained as

φYω
:=

[

Tr (∂K(κ)
∂κ1

T
ΦYω

), . . . , Tr (∂K(κ)
∂κq

T
ΦYω

)
]T

,

where

ΦYω
= g(κ, ω)−1ℜG21(K, jω) Tw→z(K, jω)HQωYω(Qω)HG12(K, jω) , Yω � 0, TrYω = 1.

The model of the objective function represented by θe is in principle of first order, but the
quadratic term hT Qh may in some cases be used to include second order information. In [3, 1] we
had worked with the basic choice Q = δI ≻ 0, but we shall propose a more sophisticated choice
here using BFGS updates.

Notice that independently of the choices of Q ≻ 0 and the finite extension Ωe(κ) of Ω(κ)
used, the optimality function has the following property: θe(κ) ≤ 0, and θe(κ) = 0 if and only
if 0 ∈ ∂g(κ), that is, κ is a critical point of g. In order to use θe to compute descent steps, it is
convenient to obtain a dual representation of θe. To do this we use Fenchel duality to swap the
max and min operators in (18). This means that we first replace the first inner supremum by a
supremum over a convex hull which does not alter the value of θe. Then, after swapping max and
min, the now inner infimum over h ∈ R

q becomes unconstrained and can be computed explicitely.
Namely, for fixed Yω and τω in the outer program, we obtain the solution of the form

h(Y, τ) = −Q−1




∑

ω∈Ωe(κ)

τωφYω



 . (19)

Substituting this back we obtain the dual expression

θe(κ) = max
τω≥0,

∑

ω∈Ωe(κ)

τω = 1
max

Yω�0,Tr(Yω)=1
τω (g(κ, ω)− g(κ)) (20)

9



−1
2




∑

ω∈Ωe(κ)

τωφYω





T

Q−1




∑

ω∈Ωe(κ)

τωφYω



 .

Notice that in its dual form, computing θe(κ) leads to a semidefinite program. Indeed, substituting
Zω = τωYω, program (20) becomes

θe(κ) = max
Zω�0,

∑

ω∈Ωe(κ)

Tr(Zω) = 1
Tr(Zω) (g(κ, ω)− g(κ)) − 1

2




∑

ω∈Ωe(κ)

φZω





T

Q−1




∑

ω∈Ωe(κ)

φZω



 .

(21)
The latter program is converted to an LMI problem using a Schur complement argument. As a
byproduct we see that θe(κ) ≤ 0 and that θe(κ) = 0 implies κ is critical that is, 0 ∈ ∂g(κ).

What is important is that the direction h(Y, τ) = h(Z) in (19) is a descent direction of g at κ
in the sense that the directional derivative satisfies the decrease condition

g′ (κ; h(Z)) ≤ θe(κ) − 1
2




∑

ω∈Ωe(κ)

φZω



 Q−1




∑

ω∈Ωe(κ)

φZω



 ,

where Z is the dual optimal solution. See [1, Lemma 4.3] for a proof. In conclusion, we obtain
the following algorithmic scheme:

Nonsmooth descent method for minκ g(κ)

Parameters 0 < α < 1, 0 < β < 1, 0 < δ ≪ 1.
1. Initilization. Find a structured closed-loop stabilizing controller K(κ).
2. Active frequencies. Compute g(κ) using the algorithm of [9] in its refined

version [8] and obtain set of active frequencies Ω(κ).
3. Add frequencies. Build finite extension Ωe(κ) of Ω(κ) as proposed in [3, 1],

and choose Q � δI.
4. Step computation. Compute θe(κ) by the dual SDP (20) and thereby

obtain direction h(Z) in (19). If θe(κ) = 0 stop. Otherwise:
5. Line search. Find largest t = βk such that g(κ + th(Z)) < g(κ) − αtθe(κ)

and such that K(κ + th(Z)) remains stabilizing.
6. Step. Replace κ by κ + th(Z) and go back to step 2.

Notice that the line search in step 5 is successful because t−1 (g(κ + th(Z)) − g(κ)) → g′(κ; h(Z))
as t → 0+, and because θe(κ) < 0 and 0 < α < 1. Choosing t under the form t = βk with the
largest possible k comes down to doing a backtracking line search, which safeguards against taking
too small steps.

The final elements to be provided is computation of the matrix Q−1. Since Q is supposed to
carry second order information on the objective function, it may seem appropriate to do a BFGS
update

Q+ = Q +
yyT

yTs
−

QssT Q

sT QS
,

10



where s = κ+ − κ and y = φ+ − φ, where φ is the subgradient of minimal norm in ∂g(κ), g+ the
subgradient of minimal norm in ∂g(κ+). Here the notation x+ and x stands for current and past
iterates, respectively. Since the inverse Q−1 is required, an alternative is to use the inverse BFGS
update. Here we maintain the matrix P ≈ Q−1 in step 4 of the algorithm through

P+ = P +
(s − Py)sT + s(s − Py)T

sT y
−

yT (s − Py)ssT

(sT y)2
.

As is well-known, P ≻ 0 is guaranteed as long as sT y > 0. If this fails, or if P 6≻ 0 for numerical
reasons, we modify P+ or restart the procedure.

Note that computing minimal norm elements φ ∈ ∂g(κ) amounts to computing minimal norm
elements in the LMI set (9) and therefore reduces to an LMI problem. Finally, we emphasize the
important fact that when singular values σ (G(κ, jω)) are simple on Ωe(κ), which is the rule in
practice, we have Zω = Tr Zω so that SDP (21) simplifies to a much faster convex QP. A fact that
can also be exploited for computing minimal norm elements.

cut

active frequencies

extended set

ω ω

σ (Tw→z(K))σ (Tw→z(K))

Figure 3: selection of frequencies: 1)lhs active only, 2)rhs active and secondary peaks

3 Nonsmooth loop-shaping design

In this section we recall some key facts from the loop-shaping design technique introduced by
McFarlane and Glover [26], and we discuss how it can be merged with our nonsmooth framework
to arrive at a new practical PID loop-shaping design method.

3.1 Loop-shaping design

Loop-shaping design is an efficient and practical technique which has been applied successfully to a
variety of difficult design problems, see [12, 16, 24] to cite a few. It proceeds as presented in figure
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4: 1) the open-loop plant G is altered by pre- and post-compensators W1 and W2, respectively, to
achieve desired open-loop shapes. Roughly speaking, the shaped plant W2GW1 should have large
gains at low frequencies for performance and small gains at high frequencies for noise attenuation.
Also, the roll-off rate should not be too large in the mid-frequency range. 2) an H∞ synthesis is
performed to minimize the objective

‖T(w1,w2)→(z1,z2)(K)‖∞ := ‖

[
K
I

]

(I − W2GW1)
−1 [ G I ] ‖∞ (22)

which yields a controller K. The final controller is then implemented in the form W1KW2 and
has no specific structure. Notice that the H∞ norm in (22) is greater than one for the optimal
controller K. Put differently, ε := 1/γ is bounded above by unity. The scalar ε is therefore an
indicator of success of the procedure. Usually values greater than 0.2 or 0.3 are deemed acceptable
in the sense that the controller K does not significantly alter the desired loop shape W2GW1

[26]. Moreover, in this situation, the closed-loop system will be robust against coprime factor
uncertainties [26]. A smaller ε, on the contrary, tell us that the desired loop shape is incompatible
with robustness requirements, and the pre- and post-compensators must be modified to reflect less
ambitious performance requirements. A central element of the design technique is therefore to
select appropriate compensators for the trade-off between performance and robustness. In practice
this is generally accomplished by trials-and-errors.

z2 z1

w2 w1

W2 W1G

K

Figure 4: Loop-shaping H∞ design

3.2 PID Loop-shaping design

For loop-shaping design with a PID controller we have adopted the strategy introduced in [17].
In this approach the controller K is sought in the form K = W−1

1 KPID, assuming that the pre-
compensator W1 is invertible and KPID is a PID controller. The synthesis problem is then of the
form

min
KPID stabilizing

‖

[
W−1

1 KPID

I

]

(I − W2GKPID)−1 [ W2GW1 I ] ‖∞ . (23)

Note that this scheme retains all the benefits of the H∞ loop-shaping design technique of section
3.1. As before ε := 1/γ, where γ is the optimal H∞ cost in (23), will serve to diagnose whether
performance and robustness requirements have been achieved. The final controller is obtained as

12



the series connection of the post-compensator W2 and the PID controller in the form KPIDW2.
An immediate consequence is that the final controller has better noise attenuation in the high
frequency range than a pure PID controller, whenever W2 is strictly proper. To sum up, we
have to solve program (23), see also figure 5, for a PID controller structure and the nonsmooth
technique and tools discussed in sections 2 will be used to that purpose.

z1

W1

W−1
1

Kpid

w1

z2

w2

GW2

Figure 5: PID loop-shaping H∞ design

4 Application to a separating tower

In this section, we consider the application of the nonsmooth technique to the control design for
a chemical process from the literature [17]. It consists of a 24-tray tower for separating methanol
and water. The transfer function for controlling the temperature on the 4th and 17th trays is
given as

[
t17
t4

]

=

[
−2.2e−s

7s+1
1.3e−0.3s

7s+1
−2.8e−1.8s

9.5s+1
4.3e−0.35s

9.2s+1

] [
u1

u2

]

. (24)

Settling times of about 10 seconds are desired for the closed-loop process in response to step inputs,
as well as good decoupling between the temperatures t17 and t4. A good robustness margin is also
required to account for process model uncertainties. The latter will be assessed using the coprime
factor uncertainty margin ε as defined in section 3. The actual plant in (24) is approximated by
a rational model using 2nd-order Pade approximation of the delays. This leads to a 12th-order
model. Pre- and post-compensators are taken from [17]:

W1(s) =

[
5s+2

s+0.001
0

0 5s+2
s+0.001

]

, W2(s) =

[
10

s+10
0

0 10
s+10

]

.

The standard form of figure 5 incorporating the compensators is therefore of 18th-order. For
comparison, we have synthesized an unstructured full-order controller, whose associated step re-
sponses and singular value frequency responses are displayed in figures 6 and 7, respectively. For
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full order the robustness was found to be ε := 1
γ

= 0.361. This is very satisfactory in terms of
stability and gives good agreement with the prescribed open-loop shapes. This is confirmed by the
fast and well-damped step responses in figure 6. We also observe short term couplings between t17
and t4, an unpleasant behavior which we try to reduce later when dealing with PID controllers.
For future use, we keep in mind that the the optimal γ = 2.77 achieved at this stage is globally
optimal if controller structural constraints are disregarded.

In reference [17] a state-space BMI formulation is used to characterize PID solutions of the
H∞ synthesis problem in (23). The proposed algorithmic strategy is a coordinate descent scheme,
which alternates between minimizing over Lyapunov variables and over PID controller parameters.
Such techniques are often referred to as D-K or V -K iterations, see [18] and references therein.
Unfortunately, coordinate descent does not come with any convergence guarantee [22] and break-
down is often observed in practice. In our case, reference [17] reported 38 minutes of cputime to
obtain the following solution with such a technique:

ǫ = 0.060, Kp =

[
2.4719 −1.2098
−1.1667 −2.4766

]

, Ki =

[
0.4657 −0.31
−0.2329 −0.487

]

Kd =

[
0.0534 −0.0072
−0.015 −0.0434

]

.

The corresponding robustness margin is ε = 1/4.02 = 0.249. Time domain and frequency re-
sponses are shown in figures 8 and 9, respectively. Using the tools from section 2.5, we now show
that this PID controller is not a local minimum of program (23). Our local optimality certificate
θ evaluated at the PID controller above takes a negative value θ = −0.119, revealing failure of
the D-K iteration scheme to reach local optimality. This also indicates that further progress can
be achieved by running our nonsmooth method initialized at the point of failure. Ultimately the
following PID controller is obtained

ǫ = 0.1527, Kp =

[
2.6047 −0.6543
−1.1253 −2.3226

]

, Ki =

[
0.8527 −0.2591
0.0701 −0.9362

]

Kd =

[
0.7414 −0.2551
−1.5610 −0.0331

]

.

This represents 38% improvement of the robustness margin over the value ε = 1/2.91 = 0.343.
Better time responses are also observed, see figure 10. The optimal PID controller also exhibits
higher gains in the low and medium frequency ranges, figure 11. On the other hand, it can be
seen in figure 10 that step responses of t17 and t4 are strongly coupled, which is undesirable in this
application. To reduce the coupling we added a setpoint filter using the model reference approach
discussed in section 2.4, with the filter structure in (16). The reference model was selected as

Gref(s) :=

[
1

s+1
0

0 1
s+1

]

Solving program (15) using our nonsmooth technique produced the following setpoint filter:

F (s) =

[
1.045

s+1.045
−0.3428s
s+2.25

−0.3666s
s+0.6147

3.675
s+3.675

]

.

Step responses with PID controller in tandem with the setpoint filter are presented in figure 12.
In a second experiment, we do not use the result in [17] and initialize the algorithm from

scratch, by first computing a stabilizing PID controller, using an extension of our method to
minimize the spectral abscissa [7]. Note that with a different initial seed, there is no reason why
we would reach the same local solution. And indeed, a new local minimum is reached:

ǫ = 0.3780, Kp =

[
2.4798 −0.5153
−0.8850 −2.1737

]

, Ki =

[
0.7428 −0.1873
−0.0455 −0.7698

]

Kd =

[
0.2640 −0.2347
−2.1424 0.0723

]

.
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The robustness margin is now ε = 1/3.05 = 0.3279, which is only marginally worse than the
previously synthesized PID controller and again improves the solution given in [17] by 24%. Time-
and frequency-domain evaluations are given in figures 13 and 14. As before, a setpoint filter was
computed using the reference model

Gref(s) :=

[
0.25

s2+0.4s+0.25
0

0 1
s+1

]

.

The setpoint filter is described as

F (s) =

[
0.7333

s+0.7333
35.81s

s+297.7
−0.5452s
s+0.31

215.1
s+215.1

]

.

and step responses are given in figure 15.

As one might expect for a local optimization technique, our experiment underlines that different
local solutions are generally obtained when different initial guesses are used. Such guesses may be
obtained by heuristic techniques developed in PID synthesis. If many local optima are observed,
using semi-global techniques may be indicated. Such methods try to improve on a given set of
local solutions [35].

A strong point of our method is that it practically always finds local optimal solutions, as
theoretically expected. Also, the running times are very fast. In fact, in our test we never
exceed a minute cputime. This is in strong contrast with state-space sequential LMI or BMI
approaches, which require substantial numerical efforts. In those cases where a local minimum
is not satisfactory, we have to do restarts with different initial seeds, to explore whether further
improvements is possible. How this can be organized in general will be investigated in the future.
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Figure 6: time-domain simulations of H∞
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Figure 8: time-domain simulations of PID
controller in [17]
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Figure 9: frequency response of PID con-
troller in [17]
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Figure 10: time-domain simulations of 1st
PID controller
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Figure 12: time-domain simulations of 1st PID controller with setpoint filter
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Figure 13: time-domain simulations of 2nd
PID controller
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Figure 14: frequency response of 2nd PID
controller
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Figure 15: time-domain simulations of 2nd PID controller with setpoint filter

5 Conclusion

We have presented and discussed a nonsmooth optimization technique for the synthesis of finely
structured controllers with an H∞ objective. Our approach is general and encompasses most
controller structures of practical interest. The proposed technique is endowed by an easily tractable
convergence certificate, which may either serve to validate a given controller, or to drive the
iterative descent method to termination. A specialization to loop-shaping design with MIMO PID
controllers is also introduced. Application to a process system indicates that the technique is a
practical and effective numerical tool in structured controller design.
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