
Computing the structured distance to
instability

Dominikus Noll

Université de Toulouse

Joint work with:

Pierre Apkarian (ONERA)

Laleh Ravanbod (IMT)

Minh Ngoc Dao (UBC)

Nominal versus parametric robust
controller synthesis

K (κ) K (κ)

δ

y u

zi wi z w

minimize ∥Twizi (κ)∥∞
subject to K (κ) stabilizing

κ ∈ Rn

minimize max
δ∈[−1,1]m

∥Twz(κ, δ)∥∞
subject to K (κ) stab. δ ∈ [−1, 1]m

κ ∈ Rn

P P

Structured versus full-order controllers

Pierre%Apkarian:%hFp://pierre.apkarian.free.fr%

Design)of)Structured)Controller)Is)Hard)!))

4

•  Even%NPShard%
•  Choosing%a%good%structure%oYen%yields%a%good%design%
•  Tuning%controller%blocks%separately%is%:me%consuming%and%not%op:mal%
%%

Components%with%
assigned%role%

Why robust control?

1968 Kalman filter (LQG control) used in Apollo mission

Late 1970s failure of LQG-control

Early 1980s H∞-problem posed (Zames, Helton, Tannenbaum)

1989 Doyle, Glover, Khargonekar, Francis =⇒ unstructured
controllers

2006 Apkarian, Noll =⇒ structured controllers

2010 hinfstruct in Robust Control Toolbox (Apkarian, Noll,
Gahinet)

2012 systune (Apkarian, Noll, Gahinet)

Pierre%Apkarian:%hFp://pierre.apkarian.free.fr%

Systune:)a)Wealth)of)Tuning)Goals)

P(s)%

Tuning%Goals%
%

8

New approach adopted by leading industry

• Airbus Transportation Aircraft

• Airbus Defence & Space (Rosetta mission)

• Dassault Aviation
• Boeing

• Sagem

• CEA Robotics

Used for teaching by academia

• Caltech

• MIT
• Supelec

• Supaero (ISEA)

Back to parametric robustness

K (κ)

δ

y u

z w

minimize max
δ∈[−1,1]m

∥Twz(κ, δ)∥∞
subject to K (κ) stab. δ ∈ [−1, 1]m

κ ∈ Rn

P

m1ẍ1 = −kx1 + kx2 − f ẋ1 + f ẋ2 + u
m2ẍ2 = kx1 − kx2 + f ẋ1 − f ẋ2

k = knom + δk · 30%knom m2 = mnom
2 + δm230%mnom

2 .

P. Apkarian, D. Noll / Systems & Control Letters 55 (2006) 971 –981 977

-4 -2 0 2 4
-4

-2

0

2

4
root locus of K(s)G(s)

Real Axis

Im
ag

in
ar

y
A

xi
s

-540 -360 -180 0 180
-100

-50

0

50

100

 6 dB 3 dB 1 dB 0.5 dB 0.25 dB 0 dB
 1 dB
 3 dB 6 dB 12 dB 20 dB
 40 dB
 60 dB
 80 dB
 100 dB

Nichols plot of K(s)G(s)

Open-Loop Phase (deg)

O
pe

nL
oo

p
G

ai
n

(d
B

)

-100 -50 0 50 100
-100

-50

0

50

100

variation in k (%)

va
ria

tio
n

in
 m

2
(%

)

stability domain

0 5 10 15 20
0

0.5

1

1.5

2
step response

 y
=x

2
(m

)

 time (sec.)

Fig. 2. Analysis of standard H∞ controller.

Descent step generator S(x, g) for !1 ◦ F .

Input: current x and aggregate subgradient G!.
Output: x+ := S(x, g), (G!)+.
Fix 0 < " < 1

2 , 0 < # < 1.
1. Initialize r = 1 and choose k and orthonormal basis Q

of the first k eigenvalues of F(x).
2. For given r > 0, solve min‖x−y‖⇤ r f̂G(x)(y), solution

is x̂. Find Ĝ = "̂G! + QŶQT

where the supremum f̂G(x)(x̂) is attained.
3. If f̂ (x̂) − f (x)⇤"(f̂G(x)(x̂) − f (x)) then put x̂ on

store and go to step 5. Otherwise
4. Update G(x) by updating aggregate subgradient G!

as (G!)+ = "̂G! + QŶQT. Go back to step 2.
5. Check whether f (x̂) − f (x) < #(f̂ (x̂) − f (x)). If

this is the case accept x+ = x̂. Otherwise
replace r by r/2 and go back to step 2.

Reference [12] studies the convex case f =f̂ and therefore uses
only the test in step 3 and the updating mechanism in step 4,
which improves the approximation f̂G(x) by modifying G(x).
The authors of [12] use an even more sophisticated update
of G! in cases where Ŷ is large, but this is not mandatory
in typical control applications. The test in step 5 is not used
in [12], where the authors keep r fixed. It becomes necessary
because f is nonconvex. Appropriate ways of choosing Q and
k in step 1 have been discussed in [20,19,3], so we do not
go into details here. Notice that steps 1–4 create output which
varies continuously with respect to a change of the data. What

makes our descent step generator discontinuous is step 5, where
r is updated and finally chosen within the set {2−k : k ≥ 1}.
This discrete element of the procedure destroys continuity, but
fortunately property (ii) is still satisfied. Typically, what may
happen is that for a given datum (x, g), the solution test in step
4 is passed for the first time at r =2−k , but for a nearby (x′, g′),
one needs one additional reduction, so that the r ′ = 2−k−1 may
be obtained. The situation is similar to what happens in the case
of a line search, when a step size t ∈ {2−k : k ≥ 1} is picked.
See [3] and in particular [23, pp. 223–224].

Finally, we need to extend the descent step generator to the
semi-infinite case f = !1,∞ ◦ F . We use the following ob-
servation. Computing f (x) provides the finite set of active
frequencies $(x). For a finite extension $ of $(x), that is
$(x) ⊂ $, let f$(y) := max%∈$!1(F (y, %)), then f$ ⇤f and
f$(x) = f$(x)(x) = f (x). Each f$ is a maximum eigenvalue
function !1 ◦ F$, where F$ is block diagonal with the finitely
many F(·, %), % ∈ $ as blocks. So f$ admits a descent step
generator S$(·, ·) by the above construction. We finally have
the following

Descent step generator for f = !1,∞ ◦ F .

Fix 0 < & < 1.
1. Compute f (x) and detect active frequencies $(x).
2. Select an extended set of frequencies $e(x), for

instance by setting a threshold &f (x) < f (x), and
taking a griding $e(x) of
the zone of those % where &f (x) < f (x, %)⇤f (x).

3. Generate descent step S$e(x)(x, g) and return it.

P. Apkarian, D. Noll / Systems & Control Letters 55 (2006) 971 –981 979

10-2 10-1 100 101 102 103 104
-3

-2.5

-2

-1.5

-1

-0.5

0

 frequency rad./s.

 F
D

I f
un

ct
io

n

Fig. 4. Final FDI curve. ‘*’ Selected frequencies in extended set.

-4 -2 0 2 4
-4

-2

0

2

4

root locus of K(s)G(s)

Real Axis

Im
ag

in
ar

y
A

xi
s

-360 -270 -180 -90 0 90 180

-50

0

50

100

 6 dB 3 dB
 1 dB 0.5 dB 0.25 dB 0 dB

 1 dB
 3 dB
 6 dB
 12 dB
 20 dB

 40 dB
 60 dB

Nichols plot of K(s)G(s)

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B

)

-100 -50 0 50 100
-100

-50

0

50

100

variation in k (%)

va
ria

tio
n

in
 m

2
(%

)

stability domain

0 5 10 15 20
0

0.5

1

1.5

2
step response

 y
=x

2
(m

)

 time (sec.)

Fig. 5. Analysis of final robust controller.

with uncertainty channel:

[
w!k

w!m2

]
=

["k 0

0 "m2

] [
z!k

z!m2

]
. (22)

The problem is solved using a classical mixed-sensitivity for-
mulation [25, pp. 130–141]

min
K(s)

∥∥∥∥
#

G#

∥∥∥∥
∞

where # := (I − KG)−1. (23)

Observe :

First controller nominally stable, but not robustly stable over
parameter variation square (lower left). Step responses show
sustained oscillations (lower right).

Second controller stable over parameter square.

But how to synthesize such robustly stable controllers?

Synthesis as semi-infinite min-max program

K

P
wz

y u

Nominal H∞-synthesis as semi-infinite minimization

min
κ

∥Twz(κ)∥∞

min
κ

max
ω∈[0,∞]

σ (Twz(κ, jω))

min
κ

max
ω∈[0,∞]

max
∥x∥2=1

∥Twz(κ, jω)x∥2

convex ,
non-convex, but computable
by Hamiltonian algorithm ,

local optimization due to
structured K = K (κ)

K

P

δ

wz

y u

Parametric robust H∞-synthesis as semi-infinite program

min
κ

max
δ∈[−1,1]m

∥Twz(δ, κ)∥∞

min
κ

max
δ∈[−1,1]m

max
ω∈[0,∞]

σ (Twz(δ, κ, jω))

min
κ

max
δ∈[−1,1]m

max
ω∈[0,∞]

max
∥x∥2=1

∥Twz(δ, κ, jω)x∥2

non-convex, not computable /
local optimization, K = K (κ)

Relaxations
Do we want outer or inner?

Outer relaxations

min
κ

max
δ∈[−1,1]m

max
ω∈[0,∞]

max
∥x∥2=1

∥Twz(δ, κ, jω)x∥2

min
κ

max
σ(∆)≤1

max
ω∈[0,∞]

max
∥x∥2=1

∥Twz(∆, κ, jω)x∥2

∆ =


δ1Ir1

δ2Ir2
. . .

δmIrm



Outer relaxations

min
κ

max
σ(∆)≤1

max
ω∈[0,∞]

max
∥x∥=1

∥Twz(∆, κ, jω)x∥2

∆ = full ∆ =

 . . .


• Over-estimation of true objective function

• Easier to compute, but ...

• Larger set of uncertainties =⇒ conservative

• Most widely known outer relaxations use µ-upper bounds.

Inner relaxations

min
κ

max
δ∈[−1,1]m

max
ω∈[0,∞]

max
∥x∥=1

∥Twz(δ, κ, jω)x∥2

min
κ

max
δ∈∆d

max
ω∈[0,∞]

max
∥x∥=1

∥Twz(δ, κ, jω)x∥2

• ∆d ⊂ [−1, 1]m =⇒ under-estimation of true objective function

• No stability/performance certificate on [−1, 1]m, only on ∆d

• ∆d typically finite, yet works on [−1, 1]m. Certificate ?

Discussion: inner versus outer relaxation

Observe:

People concede that inner relaxations work better in practice,
but insist that outer relaxations are theoretically sounder, as
when work give robust stability certificate.

Disenchantment:

♠ Not true because outer relaxations do not come with a
guarantee of success.

♠ Without certificate, both approaches are at equal rights
theoretically, hence the better in practice wins.

♡ Therefore inner relaxation wins.

In the same vein (still trying to make us believe that outer
approximations are better):

Cannot we just degrade our performance specification more and
more until it becomes possible to obtain a robustly stable
controller? And having obtained this certificate, is this then not an
advantage over the inner approximation ?

Disenchantment:

♠ No, this is not theoretically better, unless there is a guarantee that
the degradation of performance leads to the certificate. (No case
where this holds is known by the way).

♠ The fact that LMI people present certifcates obtained by degrading
does not mean anything. It just means they give in at an early stage
and accept a feeble result.

♡ Certificates obtained by degrading performance are useless anyway,
as performance is degraded. We can do better.

∆c ⊃ [−1, 1]m

conservative

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b

b

b

b

∆d ⊂ [−1, 1]m

all scenarios on grid
intractable and risky

∆a ⊂ [−1, 1]m

active scenarios
found dynamically

outer

inner

∆c ⊃ [−1, 1]m

conservative

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b

b

b

b

b

∆d ⊂ [−1, 1]m

all scenarios on grid
intractable and risky

∆a ⊂ [−1, 1]m

active scenarios
found dynamically

outer

inner

b

start

multi-scenario
synthesis

worst-case
alpha

stable ?

worst-case

H∞

yes

no

include bad
scenario

performance
acceptable ?

noyes

post
processing

distance to
instability

exit

local loop

global

b

min
κ

max
δ∈∆a

∥Twz(δ, κ)∥∞ start

multi-scenario
synthesis

worst-case
alpha

stable ?

worst-case

H∞

yes

no

include bad
scenario

performance
acceptable ?

noyes

post
processing

distance to
instability

exit

local loop

global

min
κ

max
δ∈∆a

∥Twz(δ, κ)∥∞

max
δ∈[−1,1]m

α (A(δ, κ∗))

max
δ∈[−1,1]m

∥Twz(δ, κ
∗)∥∞)

start

multi-scenario
synthesis

worst-case
alpha

stable ?

worst-case

H∞

yes

no

include bad
scenario

performance
acceptable ?

noyes

post
processing

distance to
instability

exit

local loop

global

min
κ

max
δ∈∆a

∥Twz(δ, κ)∥∞

max
δ∈[−1,1]m

α (A(δ, κ∗))

max
δ∈[−1,1]m

∥Twz(δ, κ
∗)∥∞)

check d ≤ 1

start

multi-scenario
synthesis

worst-case
alpha

stable ?

worst-case

H∞

yes

no

include bad
scenario

performance
acceptable ?

noyes

post
processing

distance to
instability

exit

local loop

global

Instability optimization

Spectral abscissa:

α(A) = max{Reλ : λ eigenvalue of A}

Stability:

A stable ⇐⇒ α(A) < 0

Destabilize by bad parameter scenario:

α∗ = max
δ∈[−1,1]m

α (A(δ, κ∗))

If α∗ < 0 then stable for all δ ∈ [−1, 1]m; otherwise bad
scenario.

δ 7→ α (A(δ, κ∗)) non-smooth and not locally Lipschitz

Spectral abscissa:

α(A) = max{Reλ : λ eigenvalue of A}

Stability:

A stable ⇐⇒ α(A) < 0

Destabilize by bad parameter scenario:

α∗ = max
δ∈[−1,1]m

α
(
A+ B∆(I − D∆)−1C

)
If α∗ < 0 then stable for all δ ∈ [−1, 1]m; otherwise bad
scenario.

δ 7→ α (A(δ, κ∗)) non-smooth and not locally Lipschitz

Structured distance to instability:

d∗ = inf{∥δ∥∞ : A+ B∆(I − D∆)−1C unstable}

= sup{d : A+ B∆(I − D∆)−1C stable for all ∥δ∥∞ ≤ d}

• d∗ ≤ 1 =⇒ parametric robust stability over [−1, 1]m

• Need global optimum

Not to confuse with unstructured distance to instability

β(A) = inf{σ(E) : A+ E unstable}
(Trefethen, Kressner, Kanzow, Benner, ...) is too easy

Branch and bound

Global maximum

α∗ = max
δ∈[−1,1]m

α (A(δ))

Lower bound by local solver

α = max
δ∈[−1,1]m

α (A(δ)) ≤ α∗

Upper bound on box ∆

α∗(∆) = max
δ∈∆

α (A(δ))

Pruning test:

α∗(∆) ⩽ α =⇒ ∆ can be pruned

Branching:

If ∆ not pruned, then halved, /

Crucial elements:

M̃α

∆̃

Mα

K

∆ F− 1
2

−

+

K

F− 1
2

F 1/2 F 1/2

Loop transform: Test α∗(∆) ≤ 1 ⇐⇒ α∗ ≤ 1 for Mα.

Then use conservative µ-upper bound (Fan, Tits, Doyle).

Can store partial stability on frequency bands for daughter
boxes (frequency axis sweep).

Need high performance local solver to get good α.

Some information about the dimension of problems

Experiments:

Technique States
decision

variables κ
uncertain

parameters δ
repetitions CPU

nominal H∞
synthesis

200 50 - - seconds

nominal
multi-objective

200 20 - - seconds

parametric
robust H∞

25 20 10 8
seconds to
minutes

Technique States
decision

variables δ
repetitions CPU

worst-case
H∞

35 11 6 seconds

worst-case
α∗ 35 10 6 seconds

distance d∗

to instability
70 14 39 seconds

Technique States
decision

variables δ
repetitions CPU

branch & bound
H∞

35 11 6
seconds
to hours

branch & bound
α∗ 35 12 6

seconds
to hours

branch & bound
d∗ 70 14 39

seconds
to hours

Existing tools used to check results:

method type appreciation bottleneck

Integral Global Optimization
Zheng method

probabilistic
global

fast, reliable -

SOS tools
Parillo

global useless -

Lasserre’s method global
works for

toy problems
is its own
bottleneck

branch & bound
Balak. & Boyd

global slow
inefficient

lower bound

wcgain computes h∗
not always
reliable

dedicated

SMAC Toolbox
ONERA

computes d∗ fast, reliable dedicated

dksyn
parametric
robust K

conservative
controllers often
not practical

hifoo nominal H∞ -
not all controller

structures

Conclusions for nominal H∞-synthesis:

Solved 2006: hinfstruct, systune

Solving LMIs, Riccati equations practically obsolete.

Hamiltonian linear algebra stunted to computing H∞-norm.

Non-smooth optimization techniques prevail.

Conclusions for parametric robust H∞-synthesis:

Solved 2015: =⇒ robust control toolbox

Non-smooth optimization techniques again key to success.

µ-singular value upper bounds still needed for pruning test in
B&B.

Lower bounds by fast non-smooth solver.

DK-iteration (dksyn) outdated.

Inner approximation beats outer approximation.

