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Nominal versus parametric robust
controller synthesis
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Structured versus full-order controllers
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Why robust control?

@ 1968 Kalman filter (LQG control) used in Apollo mission
@ Late 1970s failure of LQG-control
@ Early 1980s H..-problem posed (Zames, Helton, Tannenbaum)

@ 1989 Doyle, Glover, Khargonekar, Francis = unstructured
controllers

@ 2006 Apkarian, Noll = structured controllers

@ 2010 hinfstruct in Robust Control Toolbox (Apkarian, Noll,
Gahinet)

@ 2012 systune (Apkarian, Noll, Gahinet)
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New approach adopted by leading industry
e Airbus Transportation Aircraft
e Airbus Defence & Space (Rosetta mission)
e Dassault Aviation

e Boeing
e Sagem Used for teaching by academia
e CEA Robotics Caltech

MIT

Supelec

Supaero (ISEA)



Back to parametric robustness
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Imaginary Axis

variation in m2 (%)

root locus of K(s)G(s) Nichols plot of K(s)G(s)
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Observe :

@ First controller nominally stable, but not robustly stable over
parameter variation square (lower left). Step responses show
sustained oscillations (lower right).

@ Second controller stable over parameter square.

@ But how to synthesize such robustly stable controllers?



Synthesis as semi-infinite min-max program



Nominal Hy,-synthesis as semi-infinite minimization
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Parametric robust H.-synthesis as semi-infinite program
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Relaxations
DO we want outer or inner?



Outer relaxations
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Outer relaxations

min max max max | Tw.(A, kK, jw)x|2

£ 5(A)<1 welood] xl=1

A = full a-| O

e Over-estimation of true objective function

e Easier to compute, but ...

e |arger set of uncertainties = conservative

e Most widely known outer relaxations use p-upper bounds.



Inner relaxations
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e Ay C [-1,1]" = under-estimation of true objective function
e No stability/performance certificate on [—1,1]™, only on A4
e Ay typically finite, yet works on [—1,1]™. Certificate ?



Discussion: inner versus outer relaxation



Observe:

@ People concede that inner relaxations work better in practice,
but insist that outer relaxations are theoretically sounder, as
when work give robust stability certificate.

Disenchantment:

& Not true because outer relaxations do not come with a
guarantee of success.

& Without certificate, both approaches are at equal rights
theoretically, hence the better in practice wins.

QO Therefore inner relaxation wins.



In the same vein (still trying to make us believe that outer
approximations are better):

@ Cannot we just degrade our performance specification more and
more until it becomes possible to obtain a robustly stable
controller? And having obtained this certificate, is this then not an
advantage over the inner approximation 7

Disenchantment:

® No, this is not theoretically better, unless there is a guarantee that
the degradation of performance leads to the certificate. (No case
where this holds is known by the way).

& The fact that LMI people present certifcates obtained by degrading
does not mean anything. It just means they give in at an early stage
and accept a feeble result.

O Certificates obtained by degrading performance are useless anyway,
as performance is degraded. We can do better.
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Instability optimization



Spectral abscissa:

a(A) = max{Re X : A eigenvalue of A}
Stability:

A stable <— a(A) <0

Destabilize by bad parameter scenario:

* — A 5’ Lk
a (56?2?,);]’”04( (6,K%))

@ If & < 0 then stable for all § € [—1,1]™; otherwise bad
scenario.

@ 0 — a(A(d, k")) non-smooth and not locally Lipschitz



Spectral abscissa:

a(A) = max{Re X : A eigenvalue of A}
Stability:

A stable <— a(A) <0

Destabilize by bad parameter scenario:

a*= max_a(A+BA(l —DA)C)
oe[—1,1]m

@ If & < 0 then stable for all § € [—1,1]™; otherwise bad
scenario.

@ 0 — a(A(d, k")) non-smooth and not locally Lipschitz



Structured distance to instability:

d* = inf{||6]|oc : A+ BA(/ — DA)~1C unstable}
=sup{d: A+ BA(l — DA)~1C stable for all ||§]|oo < d}

e d* <1 = parametric robust stability over [—1,1]™
o Need global optimum

Not to confuse with unstructured distance to instability

B(A) = inf{a(E) : A+ E unstable}

(Trefethen, Kressner, Kanzow, Benner, ...) is too easy



Branch and bound



Global maximum

* = A(S
a 6€Fj§§]ma( (6))

Lower bound by local solver

= A(9)) < a”
o= 7y, A <a

Upper bound on box A

a*(A) = maxa (A(9))

dEA
Pruning test: Branching:
a*(A) < @« = A can be pruned If A not pruned, then halved

®
D



Crucial elements:
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Loop transform: Test a*(A) <1 <= «a* <1 for M,.

F1/2

K

Then use conservative p-upper bound (Fan, Tits, Doyle).

Can store partial stability on frequency bands for daughter
boxes (frequency axis sweep).

Need high performance local solver to get good a.



Some information about the dimension of problems



Experiments:

Technique States dgasnon uncertain repetitions CPU
variables parameters §
nominal Hoo 200 50 - - seconds
synthesis
nominal
multi-objective 200 20 ) ) seconds
parametric seconds to
robust Hoo 25 20 10 8 minutes
. decision L.
H Technique ‘ States variables & ‘ repetitions CcPU H
worst-case 35 11 6 seconds
Hoo
wor:;case 35 10 6 seconds
distance d™
to instability 70 14 39 seconds
. decision .
H Technique ‘ States variables § repetitions CPU H
branch & bound 35 1 6 seconds
Hoo to hours
branch 8; bound 35 12 6 seconds
« to hours
branch & bound seconds
d* 70 14 39 to hours




Existing tools used to check results:

1 method [ type appreciation bottleneck I
Integral Global Optimization probabilistic .
Zheng method global fast, reliable )
SOS tools lobal seless
Parillo g usete )
B works for is its own
Lasserre’s method global toy problems bottleneck
branch & bound lobal slow inefficient
Balak. & Boyd € lower bound
| .
wecgain computes h* not always dedicated
reliable
SMAC Toolbox * . .
ONERA computes d fast, reliable dedicated
die parametric conservative controllers often
syn robust K rvative not practical
hifoo nominal Hog R not all controller

structures




Conclusions for nominal H-synthesis:

@ Solved 2006: hinfstruct, systune
@ Solving LMIs, Riccati equations practically obsolete.
@ Hamiltonian linear algebra stunted to computing Hyo-norm.

@ Non-smooth optimization techniques prevail.



Conclusions for parametric robust H,-synthesis:

@ Solved 2015: = robust control toolbox
@ Non-smooth optimization techniques again key to success.

@ u-singular value upper bounds still needed for pruning test in
B&B.

Lower bounds by fast non-smooth solver.
DK-iteration (dksyn) outdated.

Inner approximation beats outer approximation.






