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Abstract. We consider stabilization and performance optimization of non-linear con-
trolled systems, where the non-linearity satisfies a sector constraint asymptotically. This
leads to optimization of the closed loop peak-to-peak system norm subject to H∞-
performance constraints. Non-linear controlled systems tuned successfully by this novel
approach are locally exponentially stable and globally BIBO-stable.
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1. Introduction

The peak-gain, or peak-to-peak norm of a BIBO-stable linear time-invariant system G,
is the time-domain L∞ operator norm,

(1) ‖G‖pk_gn = sup{|G ∗ w|∞ : |w|∞ ≤ 1},

where the signal norm on L∞([0,∞),Rn) is |x|∞ = supt≥0 maxi=1,...,n |xi(t)|. In the SISO
case it is also known as the system L1-norm. As opposed to the more standard H2-
or H∞-norms, computation or optimization of ‖G‖pk_gn has found only mild attention
in the control literature, even though its importance e.g. for the rejection of persistent
perturbations was recognized [1, 2, 3, 4, 5, 6, 7]. One of the reasons of this disesteem is
probably the link of ‖ · ‖pk_gn with the H∞-norm ‖ · ‖∞, where in the chain

(2) m−1/2‖G‖∞ ≤ ‖G‖pk_gn ≤ (2n+ 1)p1/2‖G‖∞
the right-hand estimate holds for real-rational systems G with n poles and p inputs,
while the left-hand estimate is valid even for infinite dimensional well-posed BIBO-stable
systems with m outputs. This may have been interpreted in the sense that optimizing
‖G‖pk_gn offers nothing substantial over optimizing ‖G‖∞. In the present work we show
that optimizing ‖G‖pk_gn has genuine scope.

For the purpose of motivation, we consider a possibly infinite-dimensional Lur’e system,
where a tunable LTI (Linear Time-Invariant) block is in loop with a sector non-linearity.
By the Small Gain theorem closed-loop L2-stability is assured if one succeeds in tuning
the LTI-block to satisfy a suitable H∞-norm or frequency shape constraint. However,
this sufficient conditions may be difficult, or even impossible, to achieve if the sector
is too large. Here our new approach applies and replaces the large sector by a smaller
one, which the non-linearity satisfies only asymptotically. Application of a small gain
argument now requires working with the time-domain L∞-norm instead of the L2-norm.
In consequence, the LTI-block is now tuned to satisfy a constraint in the peak-to-peak
norm (1). If successful, the non-linear closed loop is BIBO stable. Due to the smaller
primal sector, this is often easier to achieve than the original H∞-constraint, and it is one
of the few remaining options for non-linear systems with different attraction regimes.
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This approach via asymptotic sectors may be combined with H∞-methods to guarantee
local exponential stability along with global BIBO-stability. This leads to a novel type of
mixed peak-gain/H∞-optimization program.

In order to demonstrate the potential of our method, we discuss feedback control of a
wave equation with a non-linear anti-damping boundary causing instability. This model
has been used to control slipstick vibrations in drilling systems [8, 9, 10, 11, 12]. Our
method allows to prove local exponential stability in tandem with global BIBO-stability
for scenarios, where this was previously impossible, the challenge being to achieve this
with finite-dimensional controllers of simple implementable structure. The second part
of the paper extends the concept of asymptotic constraints to MIMO non-linearities,
highlighting that applications are not limited to the SISO case.

The organization is as follows. In Section 2 we discuss the case of a sector non-linearity.
An algorithm based on mixed H∞/H∞- and peak-gain/H∞-programs is presented in Sec-
tion 2.2. In Section 2.3 we show how the aperture of the asymptotic sector may be
optimized, a feature which is not possible with standard sectors. Section 3 discusses the
application to the control of slipstick vibrations. Section 4 resumes theory and extends
the asymptotic concept to MIMO non-linearity along with illustrations and applications.
Properties of the peak-to-peak norm and implementation of the mixed programs are dis-
cussed in Section 5.

2. Mixed program for a Lur’e systems

For the purpose of motivation we consider a controlled Lur’e system with state x,
control input u, measured output y, disturbances w, and regulated outputs z:

Gnl :

ẋ = Ax+Bpp +Bww +Buu

q = Cqx +Dqu

p = φ(t, q)

z = Czx +Dzww +Dzuu

y = Cyx

(3)

where p(t) = φ(t, q(t)) is a non-linearity satisfying φ(t, 0) = 0, ∂φ
∂q

(t, 0) = 0 and a sector
constraint

(φ(t, q)− aq) · (φ(t, q)− bq) ≤ 0

for all t ≥ 0 and all q, abbreviated φ ∈ sect(a, b). Since a ≤ ∂φ
∂q

(t, 0) = 0 ≤ b, the
linearized system is

G :

ẋ = Ax +Bww +Buu

z = Czx+Dzww +Dzuu

y = Cyx

(4)

In nominal H∞-synthesis, we might interpret the non-linearity as a mere disturbance
and optimize a suitable closed-loop performance channel ‖Tzw(G,K)‖∞ over a class K ∈
K of structured controllers [13], with optimal H∞-controller K∗ ∈ K and gain γ∞ =
‖Tzw(G,K∗)‖∞.

Suppose this optimistic approach of representing the non-linearity by a disturbance w
(as in Fig. 1 right) is too unspecific and K∗ is not entirely satisfactory. Then we have
to target the sector non-linearity explicitly (as in Fig. 1 left). Putting c = (b + a)/2,
r = (b− a)/2, and ψ(t, q) = φ(t, q)− cq, we have ψ ∈ sect(−r, r). The non-linear system
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(3) is now equivalently written as

Gnl :

ẋ = Ax+ cBpCqx+Bpp+Buu

q = Cqx +Dqu

p = ψ(t, q)

y = Cyx

(5)

where the performance channel w → z is temporarily ignored for notational convenience.
We introduce Aψ = A+ cBpCq and

Gψ :

ẋ = Aψx+Bpp+Buu

q = Cqx +Dqu

y = Cyx

(6)

then (3) is equivalent to putting p → q of Gψ in loop with the centered non-linearity
ψ(·) = φ(·)− cI.

K u
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Figure 1. Lur’e system Gnl as loop between non-linearity φ and LTI sys-
tem G (left). Nominal H∞-synthesis with G and non-linearity interpreted
as disturbance w (right).

Closing the controller loop u = Ky in Gψ leads to the channel q = Tqp(Gψ, K)p.
Suppose now we succeed in tuning K] ∈ K such that (Gψ, K

]) is L2-stable and satisfies
the estimate ‖Tqp(Gψ, K

])‖∞ < r−1. Then by the small-gain theorem the non-linear loop
(Tqp(Gψ, K

]), ψ) is L2-stable, hence so is (Gnl, K
]). This is addressed by the structured

mixed H∞/H∞-optimization program
minimize ‖Tqp(Gψ, K)‖∞
subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞

K stabilizes G,Gψ

K ∈ K

(7)

which optimizes stability of the non-linear system Gnl under a constraint allowing a con-
trolled loss of performance in the linearized channel w → z, where K ∈ K ranges over
a class of structured controllers in the sense of [13]. This is also known as multi-disk
optimization [14]. The algorithmic solution proposed in that reference is implemented in
the systune package of [15], which we use to solve (7) algorithmically.
Proposition 1. Suppose the solution K] ∈ K of (7) satisfies ‖Tqp(Gψ, K

])‖∞ < r−1.
Then the loop (Gnl, K

]) is stable in the L2-sense. That is, for every w ∈ L2[0,∞) and ev-
ery x0 the solution of the non-homogenous Cauchy problem ẋcl = Acl(K

])xcl+Bpφ(Cqx)+
Bww, xcl(0) = x0 is in L2[0,∞). Moreover γ]∞ = ‖Tzw(G,K])‖∞ ≤ (1 + τ)γ∞. �

Remark 1. Note that (G,K) and (Gψ, K) have different closed loop system matrices.
The A-matrix of G is A, that of Gψ is Aψ, so we have a structured simultaneous stabi-
lization problem, which is known to be NP-hard for most structures.
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2.1. Asymptotic sector constraint. Apart from the fact that optimization in (7) is
over structured controllers K ∈ K , the method so far is standard. The situation changes
if the sector sect(a, b) is too large, so that tuning K to achieve ‖Tqp(Gψ, K)‖∞ < r−1

fails. Then we have to change strategy! What we propose in this work is to choose a
different sector, also noted sect(a, b) for simplicity, which the non-linearity φ now satisfies
only asymptotically, where Fig. 2 shows schematically what we have in mind.

Definition 1. (Asymptotic sector). A non-linearity p = φ(t, q) satisfies a sector con-
straint asymptotically, noted φ ∼ sect(a, b), if there exist M,L > 0 such that for every
t ≥ 0, (φ(t, q)− aq)(φ(t, q)− bq) ≤ 0 for |q| > M , and |φ(t, q)| ≤ L for |q| ≤M .

asymptotic true

M

asymptotic true

M

asymptotic true

M

asymptotic true

1

Figure 2. Schematic view of true and asymptotic sectors for general sector
non-linearity (upper left), positivity (upper right), saturation (lower left),
and dead time (lower right). Asymptotic sector constraints are satisfied for
large values |q| > M .

Suppose we have identified a new typically smaller sector with φ ∼ sect(a, b). (See
for instance Fig. 2 for some basic examples of asymptotic sector constraints). We center
the non-linearity, now with the new c = (b + a)/2, r = (b − a)/2, which leads to a new
ψ(t, p) = φ(t, p)−cp, now satisfying the sector constraint ψ ∼ sect(−r, r) asymptotically.
With Gψ taken with regard to the new ψ, the non-linearity (3) is still equivalent to this
modified loop (Gψ, ψ). Now we consider the mixed peak-gain/H∞-optimization program

minimize ‖Tpq(Gψ, K)‖pk_gn

subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞
K stabilizes G,Gψ

K ∈ K

(8)

where Tqp(Gψ, K) is the channel p → q of the modified Gψ in feedback with K. This
optimizes the peak-gain norm of p → q subject to a controlled loss of H∞-performance
in the channel w → z over the optimistic performance γ∞ achieved by K∗ ∈ K . The
algorithmic solution of this novel mixed synthesis program will be discussed in Section
5.2.

We now have the following consequence of the Small-Gain theorem (compare [16, 17]),
see also Theorem 3:

Theorem 1. Let K[ ∈ K be a solution of program (8) satisfying ‖Tpq(Gψ, K
[)‖pk_gn <

r−1. Then for every input w ∈ L∞[0,∞) and all initial conditions x0 the non-linear closed
loop ẋcl = Acl(K

[)xcl+Bpφ(Cqx)+Bww has trajectories in (L∞[0,∞), |·|∞), and is locally
exponentially stable. �
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2.2. Algorithm. The findings of the previous sections lead to the following strategy:

Algorithm: Mixed peak-gain/H∞-control of Lur’e system Gnl

1: Steady-state. Compute steady state of non-linear system Gnl, shift it to origin, and
obtain linearization G.

2: Nominal synthesis. Fix performance and robustness specifications and perform
nominal synthesis for G, interpreting non-linearity as a disturbance. Optimal K∗
gives lower bound γ∞ = ‖Twz(G,K∗)‖∞.

3: Sector. Using φ ∈ sect(a0, b0), let c0 = (b0+a0)/2, r0 = (b0−a0)/2, form ψ0 = φ−c0I,
and represent non-linear system Gnl as loop (Gψ0 , ψ0).

4: Complementary sector. Attempt closed-loop L2-stability by solving
minimize ‖Tqp(Gψ0 , K)‖∞
subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞

K ∈ K

If optimal solution K] ∈ K satisfies ‖Tpq(Gψ0 , K
])‖∞ < r−10 , quit successfully. Oth-

erwise continue with step 5.
5: Asymptotic sector. Find asymptotic sector φ ∼ sect(a, b). Form c = (b + a)/2,
r = (b− a)/2, and ψ = φ− cI. Represent Gnl as loop (Gψ, ψ).

6: Complementary asymptotic sector. Attempt closed-loop BIBO-stability in tan-
dem with local exponential stability by solving

minimize ‖Tqp(Gψ, K)‖pk_gn

subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞
K ∈ K

If optimal solution K[ satisfies ‖Tqp(Gψ, K
[)‖pk_gn < r−1 quit successfully.

Remark 2. By (2) we have ‖G‖∞ ≤ ‖G‖pk_gn even for infinite dimensional systems, so
that ‖Tpq(Gψ, K)‖pk_gn < 1 implies ‖Tpq(Gψ, K)‖∞ < 1. Therefore it makes no sense to
choose the asymptotic sector as a true sector. We need φ ∼ sect(a, b), but must have
φ 6∈ sect(a, b), as φ ∈ sect(a, b) would mean trying step 4 again, saddled with the even
harder constraint ‖Tpq(Gψ, K)‖pk_gn < 1.

2.3. Best asymptotic sector. Working with asymptotic sectors offers additional flexi-
bility over conventional sectors, which we now exploit. Consider step 6 of the algorithm.
Instead of choosing the asymptotic sector sect(a, b), which is the same as choosing c, r,
we could in the first place only choose c. With ψ(t, q) = φ(t, q)− cq, we solve program

(8′)
minimize ‖Tpq(Gφ−c, K)‖pk_gn

subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞
K ∈ K

where r is not yet determined. The optimal controller K(c) ∈ K now depends on c, and
as in step 6 of the algorithm, provides the value
(9) r(c) := 1/‖Tpq(Gφ−c, K(c))‖pk_gn.

This gives a curve r = r(c), and on putting a = c− r(c), b = c+ r(c), it remains to check
whether sect(a, b) is an asymptotic sector for φ.

An interesting case is when φ has a slope at infinity, i.e., when lim|x|→∞
φ(t,x)
x

= q∞
exists independently of t. Then every choice a < q∞ < b gives φ ∼ sect(a, b), so with (9)
we have to check whether
(10) c− r(c) < q∞ < c+ r(c).
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As soon as this holds, we have a posteriori found an asymptotic sector φ ∼ sect(a, b) as
a = c − r(c) and b = c + r(c). We can then also determine the parameters L,M in the
definition of an asymptotic sector. The smallerM , the closer the asymptotic sector comes
to a true sector.

Since the asymptotic sector is chosen in response to failure of the true sector sect(a0, b0),
we typically initialize the search for a, b by values c close to q∞, as this increases the chances
of program (8′) to succeed. This highlights why an asymptotic sector typically will not
satisfy 0 ∈ [a, b], whereas this is always satisfied for the true sector.

Remark 3. For every c the aperture 2r(c) of the candidate sector is maximized through
program (8) due to (9). Over the range of those c where (10) holds, the resulting curve
(c, r(c)) serves as a Pareto optimal front, from which we will pick our ultimate c. The
decision will not just be based on the size of the aperture of sect(a, b), it may also matter
how close sect(a, b) is to a true sector, how large the constant k = LM is, and ultimately,
how Gnl in loop with K(c) behaves in non-linear simulations. This method will be applied
to the slipstick study in Section 3.

3. Application: BIBO-stable control of slipstick vibrations

We consider control of a damped wave equation with instability caused by non-linear
boundary anti-damping dynamics,

xtt(ξ, t) = xξξ(ξ, t)− 2λxt(ξ, t), 0 < ξ < 1, t ≥ 0

Gnl : xξ(1, t) = −xt(1, t) + u(t)

αxtt(0, t) = xξ(0, t) + qxt(0, t) + φ(xt(0, t))

(11)

where (x, xt) is the state, u(t) the boundary control, and the measured outputs are

(12) y1(t) = xt(0, t), y2(t) = xt(1, t).

The non-linearity satisfies φ(0) = 0, φ′(0) = 0, so that the linearized system G in (4)
is obtained by dropping the term φ(xt). System Gnl has among others been used to
model slipstick vibrations in drilling systems, see [18] and the references given there.
The challenge is to control Gnl with a finite-dimensional controller u = Ky of simple,
implementable structure such that slipstick caused by the non-linear boundary friction
term φ(xt) can be avoided or at least mitigated.

In these applications λ ≥ 0, α ≥ 0, q ≥ 0 are typically positive, and the non-linearity
derives from a frictional force depending on the angular velocity of the drill

T (ω) = γ1ω +
(
γ2 + γ3e

−γ4|ω|
)

sign(ω),

exhibiting a sharp jump at ω = 0, which based on experimental evidence in comparable
situations [19], is slightly mollified around 0. With ω̄ > 0, the nominal angular speed of
the drill, step 1 of the algorithm leads to the centered non-linearity

φ(ω) = T (ω̄)− T (ω̄ + ω) + T ′(ω̄) · ω

as in (3), shown in Fig. 3 for two of the scenarios studied in [18]. This corresponds to
step 1 of the algorithm.
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Figure 3. Sector non-linearity φ in slipstick model with strong jump at
−ω for two scenarios labeled ’gray’ and ’blue’ in [18].

We continue to follow the pattern of the algorithm. By [18, sect. 3-4] the number of
unstable open-loop poles of G is np(q, α, λ) ∈ {0, 1, 2}, and several scenarios ’gray’, ’blue’,
’red’, ’magenta’ and ’green’ were analyzed. The blue scenario, on which we focus here,
has two unstable open-loop poles for the chosen λ, the numerical parameters gathered in
Table 1. Here the aperture of the sector sect(a0, b0) in Fig. 3 (right) is extremely large,
and step 4 of the algorithm fails even when a rather conservative τ is chosen. This is
where we use the asymptotic sector of step 5 of the algorithm.

Numerical values for slipstick study
q α λ ω γ1 γ2 γ3 γ4

gray 0.0019 0.7994 0.1957 3.7186 1.002e-4 11.0034 6.6020 2.4203
blue 0.9797 0.1828 0.5477 6.5044 1.002e-4 28.8697 17.3218 0.1537

Table 1

From [18, Lemma 4] we know that φ(ω) behaves asymptotically as φ(ω) ∼ a±+φ′(∞)ω
for ω → ±∞ with φ′(∞) = −0.9797. This means, every choice a < φ′(∞) < b gives rise
to an asymptotic sector φ ∼ sect(a, b). This can for instance be seen in Fig. 4. We now
have to give the details of step 6 of the algorithm.

As in Fig. 1 (right), we consider a nominal linear model, where the non-linearity is inter-
preted as a disturbance w. We optimize the closed-loop H∞-channel T(r,w)→(zu,zy)(G,K),
where a high pass filter Wu is used for the control signal, and a low-pass for tracking
of output y1, which corresponds to the rotational speed at the drill bit. The rationale
is that attenuating the disturbance w should reduce the effect of the non-linearity. This
leads to the nominalH∞-performance γ∞ = ‖T(r,w)→(zu,zy)(G,K∞)‖∞ for anH∞-controller
K∞ ∈ K . As proved in [18], exponential stabilizability and detectability of the linear
open loop guarantee that the linear closed loop T(r,w)→(zu,zy)(G,K∞) is not onlyH∞-stable,
but even exponentially stable, and as a consequence, BIBO-stable.

Since it is necessary to consider asymptotic sectors, we choose the parameter c, and
obtain the loop transformed system Gφ−c. This corresponds to representing the non-
linearity as a feedback loop as in Fig. 1 (left), and we now have to optimize the peak
gain norm of the closed-loop channel p → q in Gφ−c. This is the mixed peak-gain/H∞
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Figure 4. Asymptotic sectors for τ = 0.1 and c = −5.9, c = −2.79, with
r(c) computed via (13). Constraints are satisfied for large angular velocities.
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Figure 5. Program (13) was run for c ∈ [−6.2,−0.5] and τ = 0.1 (right),
τ = 1.0 (left). Upper row shows best achieved 1/r(c) as −o−, with r(c) ≈
−0.94 · c shown as −− for τ = 1.0 and −0.92 for τ = 0.1, depending
essentially linearly on c (magenta). Nominal H∞-norm is 3.03, and − ∗ −
shows result after optimization. Lower row shows slopes a (blue), b (red)
of asymptotic sectors with a < qas < b and b = c+ r(c), a = c− r(c).

program
minimize ‖Tqp(Gφ−c, K)‖pk_gn

subject to ‖T(r,w)→(zu,zy)(G,K)‖∞ ≤ (1 + τ)γ∞
K stabilizes G,Gφ−c
K ∈ K

(13)
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which leads to the optimal Kopt(c) ∈ K with value 1/r(c) = ‖Tqp(Gφ−c, Kopt(c))‖pk_gn.
Then we compute a = c − r(c), b = c + r(c), and if a < q∞ < b, then the non-linearity
is asymptotically in the sector, so that the non-linear closed loop is BIBO-stable. In our
experiment K designates 3rd order controllers, which due to ny = 2, np = 1 leads to 18
optimization variables. Fig. 5 shows these curves for two scenarios τ = 0.1 and τ = 1.0,
with c in the range c ∈ [−6.2,−0.5].
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Slipstick: Optimization of peak gain norm
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Slipstick: Optimization of peak gain norm
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Figure 6. Impulse response before and after optimization (8) for two cases
c = −1.29, τ = 0.1 and c = −1.21, τ = 1.0.

Remark 4. Application of our theory requires some preparation, as the system is now
infinite dimensional and of boundary control type. We have to clarify the meaning of the
impulse response ceAcltb representing the closed-loop channel w → z. Following [20, Sect.
3.3], [18, sect. 5], the linear wave equation and boundary feedback controller can after a
change of variables be represented as an abstract boundary control system

ẋ = A x, Px = u+ w

y = C x, z = C1x

u = Ky

where u = Ky is a finite-dimensional controller, and where A : D(A )→ Z, Z a separable
Hilbert space, u(t) ∈ Rp, P : D(P)→ Rp, D(A ) ⊂ D(P) ⊂ Z, D(A) = D(A )∩ker(P)
is dense and A = A |D(A) generates a C0-semi-group on Z. Moreover, there exists a
bounded operator B ∈ L(Rp, Z) such that Bu ∈ D(A ) for every u, A B ∈ L(Rp, Z), and
PBu = u for every u. In [18, Thm. 2] the case w = 0 was handled, and in order to
accommodate the Lur’e non-linearity, we have to make a slight extension. As [18, Thm. 2]
shows, a finite-dimensional H∞-stabilizing controller with minimal representation renders
the closed loop in this state-space representation exponentially stable. That means the
channel w → z is represented as ceAcltb, where b(ξ)w ∈ D(Acl) and Acl generates an
exponentially stable semi-group. Hence eAcltb is a classical solution, and since Acl is
exponentially stable, eAcltb ∈ L1 by the Datko-Pazy theorem [21, Thm. V.1.8]. This
implies ceAcltb ∈ L1. In consequence, the impulse response is convenient to optimize, even
though we expect a singularity at t = 0 (see e.g. Fig 6).

Remark 5. We recall that for linear systems BIBO-stability implies H∞-stability, and for
finite-dimensional LTI-systems the two are equivalent. There exist infinite dimensional
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Figure 7. c = −5.21, τ = 0.1. Initial value below steady state, causing
slipstick. Controller switched on at t = 10. Uncontrolled system shows
slipstick.
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Figure 8. c = −2.79, τ = 0.1. Initial value below steady state, causing
slipstick. Controller switched on at t = 10. Three types of disturbances.
Controller manages to free system from slipstick.

LTI-systems which are H∞-stable, but not BIBO stable. However, if the system is H∞-
stable and exponentially stabilizable and detectable, then it is exponential stable [22],
and that implies BIBO stability. The latter because if the growth rate of A is < 0, then
there exists a > 0 such that |ceAtb| ≤Me−at, which implies integrability of ceAtb.

Results. Experiments with different tolerances τ = 1.0 and τ = 0.1 were performed. In
each case the parameter c varied in the interval [−6.2,−0.5] and optimization led to an
asymptotic sector, see Fig. 5. Smaller values of c lead to larger aperture in the sectors.
Two scenarios were selected and underwent non-linear simulations with three types of
disturbances shown in Figs. 7 and 8. The resulting asymptotic sectors are shown in Fig.
4, and typical optimized impulse responses are shown in Fig. 6.

4. Extension to multi-dimensional non-linearity

In order to extend our algorithm to systems (3) with multi-dimensional non-linearity,
we consider a feedback loop between an LTI-system G and the non-linearity ∆:

v = Gw + f

w = ∆(v) + e
(14)

as shown in Fig. 9 (left). Well posedness of (14) in the L2-sense means that G,∆ are
L2-bounded causal operators on L2e, and that the map (v, w)→ (e, f) has a causal inverse
on L2e. The system is L2-stable if this inverse is bounded, i.e., if there exists a constant
c > 0 with

|v|22 + |w|22 ≤ c
(
|f |22 + |e|22

)
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for any solution of (14). Since we are interested in BIBO-stability, we also need the
corresponding notions in the time-domain L∞-sense.

Definition 2. The feedback connection (G,∆) is well-posed in the time-domain L∞ sense
if ∆ and G both map L∞e into L∞e, and if the map (v, w)→ (e, f) from (14) has a causal
inverse (e, f)→ (v, w) on the spaces L∞e × L∞e → L∞e × L∞e.

Definition 3. The L∞-well-posed feedback connection (G,∆) is BIBO-stable, if in the
setting of (14) there exist constants k1 > 0, k2 > 0, such that

|v|∞ + |w|∞ ≤ k1 (|e|∞ + |f |∞) + k2

for all e, f ∈ L∞([0,∞),Rn).

We now investigate ways in which the steps of the algorithm in Section 2.2 may be
extended to MIMO non-linearity (14).

4.1. Extending the mixed H∞/H∞-program. Extending step 4 to MIMO non-linearity
leads to Integral Quadratic Constraints (IQC), where ∆ and G in loop as in (14) satisfy
the quadratic constraints induced by a multiplier Π = Π∼:

(15)
〈[

u
∆(u)

]
,Π

[
u

∆(u)

]〉
T

≤ 0,

〈[
Gu
u

]
,Π

[
Gu
u

]〉
T

≥ 0

for every u ∈ L2e and every T ≥ 0. While [23] assures L2-stability of the loop if one
of the inequalities is satisfied strictly, the crucial question is how the IQC for G may be
verified algorithmically. In the literature these are traditionally transformed to LMIs,
but in synthesis lead to BMIs, which are known to encounter numerical difficulties. This
was recognized in [24, 25, 26], where non-differentiable optimization techniques in tandem
with Hamiltonian tests for function evaluations [27] were preferred instead. Recently this
line has been further perfected in [28, 29].

In [29], the authors obtain a mixed H∞/H∞-program expanding on (8) for J-spectral
factorable multipliers Π(s) = Ψ∼(s)JΨ(s), where J = [Ip, 0; 0,−Im] and Ψ(s) is a L2-
bistable rational system. Defining processes

(16)
[
Ψ11u+ Ψ12∆(u)
Ψ21u+ Ψ22∆(u)

]
=:

[
ũ

∆̃(ũ)

]
,

[
Ψ11Gu+ Ψ12u
Ψ21Gu+ Ψ22u

]
=:

[
G̃ũ
ũ

]
,

L2-stability of the loop (G,∆) is equivalent to L2-stability of the loop (G̃, ∆̃). Assuming
that ∆ is square, it follows from [29, Thm. 5] that G̃ = (Ψ11G + Ψ12)(Ψ21G + Ψ22)

−1

is well-posed, and the IQC for G in (15) is transformed into ‖G̃‖∞ ≤ 1. Similarly, with
◦ denoting map or relation composition, ∆̃ = (Ψ22∆ + Ψ21) ◦ (Ψ12∆ + Ψ11)

−1, and due
to (15), left, this process is an L2 contraction, i.e., signals z1 = Ψ11u + Ψ12∆(u) and
z2 = Ψ21u+ Ψ22∆(u) satisfy

∫ T
0
|z2(t)|2dt ≤

∫ T
0
|z1(t)|2dt for all T > 0. What is not clear

is whether ∆̃ is a mapping, because the argument which worked for G̃ in [29] hinges on
linearity.

We now present an alternative way to obtain a mixed H∞/H∞-program, which gives
an explicit loop transformation and, as we shall see, is also applicable to positivity type
factorizations. Consider again IQC multipliers Π(s) factored as

(17) Π(jω) = Ψ(jω)∗PΨ(jω)

for a bistable LTI-system Ψ(s) and a static invertible P = P T . Such factorizations exist
for rational Π = Π∼ if Π has neither poles nor zeros on jR and allows no equalizing
vectors, i.e., no u ∈ H2, u 6= 0, with Πu ∈ H ⊥

2 ; cf. [30]. In particular, positive-
negative multipliers satisfying Π11(jω) � εI and Π22(jω) � −εI for some ε > 0 admit
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such factorizations [31]. There is no loss of generality in assuming that both IQCs in (15)
are satisfied strictly. Now define a new augmented interconnection (Ga,∆a) as

(18) Ga = Ψ

[
−I 2G
0 I

]
Ψ−1, ∆a = Ψ ◦

[
I 0

2∆ −I

]
◦Ψ−1,

then by [32, Thm. 2 (1)], L2-stability of (G,∆) is equivalent to L2-stability of (Ga,∆a).
Adopting Π11 � εI and Π22 � −εI for some ε > 0, it follows from [32, Thm. 2 (2)] that

∆a, Ga satisfy IQCs for the passivity multiplier Pa = [0, P ;P, 0] strictly, i.e.,∫ T

0

pa(t)
TGa(P

−1pa)(t)dt ≤ −ε
∫ T

0

pa(t)
Tpa(t)dt∫ T

0

pa(t)
TP∆a(pa)(t)dt ≥ ε

∫ T

0

pa(t)
Tpa(t)dt

(19)

for some ε > 0 and every T ≥ 0, where pa = (p, q)T .
The inequalities in (19) are now turned into bounded gain conditions using Möbius or

bilinear transformations. We introduce

(20) Ge := B ? GaP
−1 = (GaP

−1 − I)−1(GaP
−1 + I)

and

(21) ∆e = P ◦∆a ? B = (I + P ◦∆a)
−1 ◦ (I − P ◦∆a)

with

B :=

[
−I

√
2I

−
√

2I I

]
,

where ? is the Redheffer star product [33]. Here (I+P∆a)
−1 and (GaP

−1− I)−1 are well-
defined and stable due to (19) and the passivity theorem, hence ∆e, Ge are well-defined and
L2-stable. Indeed, (I+P ◦∆a)

−1 is the negative feedback loop between the upper block I
and the lower block P ◦∆a. Since P ◦∆a is strictly passive by (19) and I is passive, stability
follows from the passivity theorem [34]. A similar argument applies to (GaP

−1 − I)−1.
Owing to B ? B = I] = [0, I; I, 0], the unit of the star product, we get (stability) loop
invariance (Ga,∆a) ∼= (GaP

−1, P ◦∆a) ∼= (B ?GaP
−1, P ◦∆a ?B) = (Ge,∆e). This means

the passivity-type conditions (19) are equivalent to bounded-gain conditions∫ T

0

‖Ge(pe)(t)‖2dt ≤ (1− ε)
∫ T

0

‖pe(t)‖2dt∫ T

0

‖∆e(pe)(t)‖2dt ≤ (1− ε)
∫ T

0

‖pe(t)‖2dt ,
(22)

for some ε > 0 and every T ≥ 0, where pe = (p, q)T . See [35, pp. 215-16] for a proof,
which also applies to the non-linear case.

From ∆e = P ◦∆a ? B we have ∆e ? B = P ◦∆a ? B ? B = P ◦∆a ? I
] = P ◦∆a, hence

∆a = P−1 ◦∆e ? B. That gives
[
I 0

2∆ −I

]
= Ψ−1P−1 ◦∆e ? BΨ. Hence,

(23) ∆ =

[
I√
2
I√
2

]T
Ψ−1(P−1 ◦∆e ? B)Ψ

[
I√
2
I√
2

]
,

which gives the inverse operation to ∆ → ∆e in (21). What we have obtained is a
parametrization of all non-linearities ∆ derived from L2-contractions ∆e via the loop
transformation through Ψ(s), P , or equivalently, all non-linearities satisfying IQCs with
factorable multiplies Π = Ψ∗PΨ. For these ∆ the IQC-stability theorem can now be
reduced to the small gain theorem [34].
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Theorem 2. (IQC as H∞ constraint). Suppose (G,∆) is loop transformed to (Ge,∆e),
where ∆ satisfies the IQC with multiplier Π = Ψ∗PΨ factored with bistable Ψ(s) and
invertible P = P T . Then ‖Ge‖∞ < 1 implies L2-stability of the loop (G,∆). �

Applying the loop transformation (G,∆) ∼= (Ge,∆e) to the closed loop system Fl(G,K)
leads to (Fl(G,K),∆) ∼= (Fl(G,K)e,∆e). This allows us now to extend step 4 of the
algorithm to IQCs.

Corollary 1. Suppose the mixed H∞/H∞-synthesis program

minimize ‖Fl(G,K)e‖∞
subject to ‖Twz(G,K)‖∞ ≤ (1 + τ)γ∞

K ∈ K
(24)

admits an optimal solution K] ∈ K satisfying ‖Fl(G,K])e‖∞ < 1. Then K] stabilizes
the loop (G,∆) in the L2-sense, and linearized closed loop performance is degraded over
nominal performance γ∞ by no more than the factor 1 + τ . �

Remark 6. Program (24) is now a natural MIMO-extension of (7). It can be efficiently
solved by the method of [13, 14] available in the systune package of [15, 36, 14]. This
is numerically preferable to transforming IQCs to BMIs. With the recent extension of
non-smooth H∞-synthesis in [37, 38, 18] it becomes even possible to address (24) for
infinite-dimensional systems with infinite-dimensional multipliers Ψ(s).

Remark 7. An advantage of this construction is that when (G,∆) satisfies an IQC with
positivity multiplier as in (19), then going from (G,∆) to (Ga,∆a) can be skipped and
we build (Ge,∆e) directly without the augmentation (18).

For multipliers Π(s) with lower triangular factorizations both approaches (16) and the
augmentation G→ Ga → Ge lead to the same result. Suppose

(25) Π(jω) = ΨT (−jω)PΨ(jω), Ψ =

[
Ψ11 0
Ψ21 Ψ22

]
P =

[
I 0
0 −I

]
,

with Ψ11,Ψ
−1
11 ,Ψ21,Ψ22,Ψ

−1
22 stable. Then the transformed non-linear operator and LTI-

system

(26) ∆̃ = Ψ21Ψ
−1
11 + Ψ22 ◦∆ ◦Ψ−111 , G̃ = Ψ11G(Ψ22 + Ψ21G)−1,

give an equivalent loop (G,∆) ∼= (G̃, ∆̃), where the IQC is transformed to a Small-Gain
condition |∆̃(ṽ)|2 ≤ |ṽ|2, ‖G̃‖∞ < 1, now with ∆̃ and G̃ of the same dimension as ∆, G.
Since ‖Ge‖∞ < 1 is equivalent to ‖G̃‖∞ < 1 in the case (25), Theorem 2 implies:

Corollary 2. (Triangular transform). Suppose a non-linearity ∆ can be loop trans-
formed to a L2-contraction ∆̃ in (26) using a lower triangular factorization (25). Sup-
pose the transformed LTI-system G̃ = Ψ11G

(
I + Ψ−122 Ψ21G

)−1
Ψ−122 is stable and satisfies

‖G̃‖∞ < 1. Then the loop (G,∆) is stable in the L2-sense.

Proof: Indeed, with (25) the expression for Ge simplifies to

Ge =

[
0 Ψ11G (Ψ22 + Ψ21G)−1

Ψ21Ψ
−1
11 0

]
with G̃ in the upper right corner. Since Π11 = Ψ∗11Ψ11 − Ψ∗21Ψ21 � 0 by hypothesis, we
have ‖Ψ21Ψ

−1
11 ‖∞ < 1, hence ‖Ge‖∞ < 1 is equivalent to ‖G̃‖∞ < 1 as claimed. �
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This may also be seen from (16); see also Fig. 9. For upper triangular Ψ we obtain the
analogous result with

(27) ∆̃ = Ψ22∆ ◦ (Ψ12∆ + Ψ11)
−1, G̃ = (Ψ11G+ Ψ12)Ψ

−1
22 .

These results no longer require any reference to IQCs or multipliers.

4.2. Extending the mixed peak-gain/H∞-program. The one-dimensional peak-gain
norm [39] allows several extensions to MIMO systems, because we can replace the absolute
value |x|, x ∈ R, by any of the equivalent vector norms in Rn. If we define a signal norm
on L∞([0,∞),Rn) by

|x|∞,p = sup
t≥0
|x(t)|p

with |v|p the p-norm of v ∈ Rn, 1 ≤ p ≤ ∞, then with the notation adopted from [40] any
induced system norm

(28) ‖G‖(∞,p),(∞,q) = sup
x 6=0

|G ∗ x|∞,q
|x|∞,p

is a valid MIMO extension of ‖ · ‖pk_gn. The peak-gain norm, to which we give preference
here, is the special case ‖G‖pk_gn = ‖G‖(∞,∞),(∞,∞), but all norms (28) are equivalent.

Theorem 3. Suppose the non-linear operator in (14) satisfies |∆(t, x)|p ≤ |x|q for ev-
ery |x|q > M and |∆(t, x)|p ≤ L for every |x|q ≤ M . If the LTI-system G satisfies
‖G‖(∞,p),(∞,q) < 1, then the closed loop is BIBO-stable with |v|∞,q + |w|∞,p ≤ k1(|e|∞,p +
|f |∞,q) + k2 for all e, f ∈ L∞e.

Proof: Put ∆1(t, x) = ∆(t, x)χ{|x|q≤M}(x), ∆2(t, x) = ∆(t, x)χ{|x|q>M}(x), then we have
supt≥0 |∆1(t, v(t))|p ≤ L, while supt≥0 |∆2(t, v(t))|p ≤ supt≥0 |v(t)|q by hypothesis. Hence,
assuming |Gx|∞,q ≤ (1− δ)|x|∞,p for some 0 < δ < 1,

|v|∞,q ≤ |w′|∞,q + |f |∞,q
≤ |G∆1(v)|∞,q + |G∆2(v)|∞,q + |Ge|∞,q + |f |∞,q
≤ ‖G‖(∞,p)(∞,q) (|∆1(v)|∞,p + |∆2(v)|∞,p + |e|∞,p) + |f |∞,q
≤ (1− δ)L+ (1− δ)|v|∞,q + (1− δ)|e|∞,p + |f |∞,q

hence
δ|v|∞,q ≤ (1− δ)|e|∞,p + |f |∞,q + (1− δ)L.

On the other hand

|w|∞,p ≤ |∆1(v)|∞,p + |∆2(v)|∞,p + |e|∞,p ≤ L+ |v|∞,q + |e|∞,p.
Combining the two implies the estimate. �

For this result compare the more general [16], [17]. The above proof is standard and
included for convenience. This gives us now a clue how to extend asymptotic constraints
as encountered in Section 2.1 to MIMO non-linearities.

Definition 4. (Asymptotic L∞-contraction). A non-linear operator ∆ : [0,∞) ×
Rn → Rn is called an asymptotic L∞-contraction if there exist L,M > 0 such that
|∆(t, x)|∞ ≤ |x|∞ for all |x|∞ > M , t ≥ 0, and |∆(t, x)|∞ ≤ L for all |x|∞ ≤M, t ≥ 0.

Remark 8. The proof of Theorem 3 shows that an asymptotic L∞-contraction satisfies
|∆(t, x)|∞ ≤ |x|∞ + k for all x. Conversely, suppose we have |∆(t, x)|∞ ≤ |x|∞ + k for
all x. Then for every ε > 0 there exists M > 0 such that |∆(t, x)|∞ < (1 + ε)|x|∞ for all
|x|∞ > M . For suppose on the contrary that there exist xn with |xn|∞ →∞ such that for
some ε > 0 |∆(t, xn)|∞ ≥ (1+ ε)|xn|∞, then 1+ ε ≤ |∆(t, xn)|∞/|xn|∞ ≤ 1+k/|xn|∞ → 1,
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a contradiction. Since for the LTI-system we request the strict inequality ‖G‖pk_gn < 1,
both conditions for ∆ may be used indifferently in the small gain theorem.

Gw′

vf
∆

v′

ew
Ψ11 G Ψ

−1

22

Ψ
−1

22
Ψ21

w′

∆̃
Ψ11vΨ11f

-

uw
Ψ22e−Ψ21f

G̃

1

Figure 9. Loop-transformation (G,∆) to (G̃, ∆̃).

Corollary 3. (Triangular transform). Let (G,∆) be L∞ well-posed, and suppose ∆ can
be loop-transformed via a lower triangular L∞-bistable Ψ to an asymptotic L∞-contraction
∆̃. Suppose G̃ = Ψ11G(Ψ22 + Ψ21G)−1 is L∞ well-posed and satisfies ‖G̃‖pk_gn < 1. Then
the loop (14) is BIBO-stable.

Proof: This refers to (26) shown in Fig. 9, where (G,∆) is loop transformed to (G̃, ∆̃)

in such a way that BIBO-stability of (G,∆) is equivalent to BIBO-stability of (G̃, ∆̃).
But (G̃, ∆̃) is amenable to Theorem 3, hence ‖G̃‖pk_gn < 1 implies BIBO-stability of the
loop. �

We now extend program (8) to the MIMO-case. In the case of Fig. 1, we transform
the non-linearity ∆ to an asymptotic contraction ∆̃ via (26). Now consider a plant

P :

qz
y

 =

P11 0 P13

0 P22 P23

P31 P32 P33

pw
u

 , P1 =

[
P11 P13

P31 P33

]
, P2 =

[
P22 P23

P32 P33

]
then the extension of (8) has the form of the mixed program

(8′′)
minimize ‖Fl(P1, K)∼‖pk_gn

subject to ‖Fl(P2, K)‖∞ ≤ (1 + τ)γ∞
K ∈ K

where ∼ indicates that the loop transformation G̃ of Fig. 9 is applied to the controlled
system Fl(P1, K). The program is successful as soon as a structured LTI controller K∗ ∈
K is found which stabilizes P1 in the BIBO-sense, stabilizes P2 exponentially, and achieves
‖Fl(P1, K

∗)∼‖pk_gn < 1.

Remark 9. We could also use the general loop transformation (23). Suppose ∆ is ob-
tained from a | · |∞ contraction ∆e via (23), where ∆e ? B is L∞-well-posed. Then a
sufficient condition for BIBO-stability of the loop is L∞-well-posedness of Ge in (20) with
‖Ge‖pk_gn < 1, and this includes both cases (26), (27).

4.3. Asymptotic L∞-contractions. In this section, we collect a variety of examples of
MIMO non-linearities which may be assessed by way of asymptotic L∞-contractions.
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Example 1. Consider a non-linearity ∆(t, q) in loop (G,∆) as

G :
ẋ = Ax+Bp

q = Cx
p(t) = ∆(t, q(t)).

We say that ∆ is asymptotically polyhedral, if there exist polyhedral norms | · |� and
| · |4 on Rn and k > 0 such that |∆(t, q)|� ≤ |q|4 + k for all q ∈ Rn and all t ≥ 0. Now
polyhedral norms are of the form

|x|� = sup
i=1,...,m

∣∣∣∣∣
n∑
j=1

τijxj

∣∣∣∣∣ = |Tx|∞, |y|4 = sup
k=1,...,p

∣∣∣∣∣
n∑
j=1

σkjyj

∣∣∣∣∣ = |Sy|∞

for certain T ∈ Rm×n, S ∈ Rp×n with {x ∈ Rn : |Tx|∞ ≤ 1}, {y ∈ Rn : |Sy|∞ ≤ 1}
bounded. The latter means T, S are injective. Let T+, S+ be left inverses, T+Tp = p,
S+Sq = q. Then we have

|T∆(t, S+Sq)|∞ = |T∆(t, q)|∞ ≤ |Sq|∞ + k

so on introducing the new variables q1 = Sq, p1 = Tp, we have a new non-linearity
∆̃(t, ·) = T ◦∆(t, ·) ◦ S+ which satisfies |∆̃(t, q1)|∞ ≤ |q1|∞ + k for all q1 and t ≥ 0.

The non-linearity ∆ being in loop with G, we transform this to bring ∆̃ in loop with:

G̃ :
ẋ = Ax+BT+p1

q1 = SCx

This means the non-linear loop (G,∆) is BIBO-stable if ‖G̃‖pk_gn < 1. This is a special
case of the transform (26).

Example 2. The following is a concretization. We call ∆ differentiable at infinity if there
exists a matrix ∆∞ := ∆′(∞) ∈ Rn×n such that

lim
|x|→∞

|∆(t, x)−∆′(∞)x|
|x|

= 0

uniformly over t ≥ 0. Here we may choose arbitrary norms in numerator and denominator.
Consider the case where ∆′(∞) 6= 0 and choose regular matrices T, S ∈ Rn×n such that
T∆′(∞)S−1 = diag(1− ε, . . . , 1− ε, 0, . . . , 0) =: Jε, where the diagonal has rank(∆′(∞))
many entries 1− ε. Now choose the norms |y|� = |Ty|∞ and |x|4 = |Sx|∞, then

|∆(t, x)|�
|x|4

≤ |∆(t, x)−∆′(∞)x|�
|x|4

+
|∆′(∞)x|�
|x|4

= o(1) +
|T∆′(∞)S−1Sx|∞

|Sx|∞

≤ o(1) +
|||Jε|||∞|Sx|∞
|Sx|∞

≤ o(1) + 1− ε,

where |||Jε|||∞ = 1 − ε is the maximum row sum norm. Choosing M > 0 such that
|o(1)| < ε/2 for |x|4 > M , we arrive at |∆(t, x)|� ≤ (1 − ε/2)|x|4 + sup{|∆(t, x)|� :
|x|4 ≤ M} =: (1 − ε/2)|x|4 + k. This means every non-linearity which is differentiable
at infinity admits asymptotic L∞-constraints.

Remark 10. Suppose a non-linearity ∆ : [0,∞)×Rn → Rn satisfies |∆(t, q)|2 ≤ |q|2 + k
for some k ≥ 0 and all q ∈ Rn, t ≥ 0. Then in Theorem 3 we would prefer the system
norm ‖G‖(∞,2),(∞,2). Unfortunately, no computable expression is currently known for this
norm, so its optimization is presently impossible.
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Remark 11. For the case |∆(t, q)|2 ≤ |q|2+k we have the following makeshift alternative.
Choose approximations P1 ⊂ B(0, 1) ⊂ P2 by polytopes P1, P2, then ∆(P1) ⊂ P2 asymp-
totically, so we are in the situation of Example 1 and we may work with ‖ · ‖pk_gn. In the
case |∆(t, q)|2 ≤ (1 − ε)|q|2 + k we may even obtain this with P1 = P2 ⊂ {q : |q|2 ≤ 1}
and vertices on {q : |q|2 = 1}.

Example 3. MIMO sectors are defined via symmetric matrices A,B ∈ Sn satisfying
A ≺ B. A mapping φ : Rn → Rn with φ(0) = 0 is in the sector sect(A,B), noted
φ ∈ sect(A,B), if (φ(x)− Ax)T (φ(x)−Bx) ≤ 0 for all x ∈ Rn.

With the choice R = 1
2
(B −A) � 0 and C = 1

2
(B +A) we find that ψ(x) = φ(x)− Cx

satisfies ψ(x)Tψ(x) ≤ xTRTRx, so we get a norm bound |ψ(x)|2 ≤ |Rx|2, and if we define
∆ = ψ ◦R−1 = (φ− C) ◦R−1, then |∆(y)|2 ≤ |y|2. When we allow |∆(y)|2 ≤ |y|2 + k for
some k ≥ 0 and all y, this is a typical application of the two previous remarks, where we
would like to apply Theorem 3 with ‖ · ‖(∞,2),(∞,2).

Example 4. As a concretization [41, 42] consider a non-linearity φ generated by a convex
quadratic program:

(29) φ(x) = argmin{1
2
vTHv − vTx : Lv ≤ b}

where H � 0 and L ∈ Rm×n, b ≥ 0, b ∈ Rm are fixed, and optimization is over v ∈ Rn.
Using the Kuhn-Tucker conditions one verifies that φ satisfies the MIMO sector bound

φ(x)T (Hφ(x)− x) ≤ 0 for all x.

Then from the above ψ(x) = 2H1/2φ(H1/2x) − x is a | · |2-contraction. This means an
asymptotic quadratic constraint for φ would lead to ‖ · ‖(∞,2),(∞,2), which is, however, not
available for computations. A polyhedral approximation based on Remark 11 may be
used instead.

Example 5. (Continued). In the above case we can bring in ‖G‖pk_gn directly, because
the solution mapping of a convex quadratic program with perturbation of the linear
term or the constraints is known to be piecewise affine [42, 43], so it maps polyhedra to
polyhedra. This allows a construction as in Example 1.

Since H � 0, (29) is equivalent to projecting H−1x orthogonally on the polyhedron
{v : Lv ≤ b} with regard to the Euclidean norm |x|2H = xTHx. Let I ⊂ {1, . . . ,m},
J = {1, . . . ,m} \ I, so that F = {v ∈ Rn : LIv = bI , LJv ≤ bJ} is a face of the
polyhedron, then projection of x on F is obtained as

φ(x) = H−1
(
x− LTI (LIH

−1LTI )−1
[
LIH

−1x− bI
])

using generalized least squares. This shows that φ is piecewise affine.

Example 6. (Piecewise affine). A non-linearity φ on Rn is piecewise affine if there exist
finitely many non-overlapping polyhedra P1, . . . , PN with

⋃N
i=1 Pi = Rn such that φ|Pi is

affine, i.e. there exist an affine mapping Ai(x) = bi+Lix with Ai|Pi = φ|Pi. Here Li is the
linear part of Ai. For each polyhedron Pi choose a Motzkin decomposition Pi = Qi + Ci
with Qi a polytope and Ci a polyhedral cone. Let B4 = {x : |x|4 ≤ 1} be the unit ball
of a polyhedral norm, compute the polytopes Bi = B4 ∩Ci and B′i = Li(Bi). (Note that
Li(Ci) is a polyhedral cone, so if it is bounded, it reduces to {0}, in which case B′i = {0},
too. Therefore only unbounded Li(Ci) have to be considered). Finally let B′ be the
convex hull of

⋃N
i=1B

′
i, then B′ is a polytope containing 0. Let k1 = max{|b′|∞ : b′ ∈ B′}.

We claim that there exists a constant k > 0 such that for every x ∈ Rn, φ(x) ∈
|x|4B′+ kB∞. Indeed, let x ∈ Pi, x = y+ z with y ∈ Qi, z ∈ Ci. Then φ(x) = bi +Lix =
bi +Liy +Liz = bi +Liy + |z|4Li(z/|z|4) = bi +Liyi + |z|4b′ for some b′ ∈ B′i, using the
fact that z/|z|4 ∈ B4 ∩ Ci, hence Li(z/|z|4) ∈ Li(B4 ∩ Ci) = B′i.
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Now |z|4 = |x− y|4 ≤ |x|4 + |y|4, hence |z|4b′ = (|x|4 + |y|4)ρb′ for some ρ ∈ [0, 1],
and since 0 ∈ B′i, we have ρb′ = b′′ ∈ B′i. Then |z|4b′ = |y|4b′′ + |x|4b′′.

Altogether φ(x) = bi+Liy+|y|4b′′+|x|4b′′, and here the term bi+Liy+|y|4b′′ is bounded
independently of |x|4, because y ∈ Qi are bounded. We put k2 = maxi=1,...,N |bi|∞,
k3 = maxi=1,...,N maxy∈Qi

|Liy|∞ and k4 = maxi=1,...,N maxy∈Qi
|y|∞, then k = k2+k3+k1k4.

Now let B� = co(B′ ∪ (−B′)), then B� is a symmetric polytope, hence its Minkowski
functional is a polyhedral norm, | · |�, and we have shown |φ(x)|� ≤ |x|4 + k for all x.
The matrix T defining | · |� can be obtained from the polyhedral representation B′ = {x :
Tx ≤ 1}, which for moderate dimensions of x can be pre-computed. The matrix S is
obtained from |x|4 = |Sx|∞.

Example 7. We consider a numerical example with a non-linearity based on (29). The
parametric quadratic program

(P )q

minimize 1
2
x21 + 1

2
x22 − q1x1 − q2x2

subject to x1 − x2 ≤ 3
x1 + x2 ≥ 0
x1 ≥ 0
x2 ≥ −1

defines a non-linear operator φ : R2 → R2 via p = argmin(P )q. Here p = φ(q) is the
orthogonal projection of q on the polyhedron P = {x ∈ R2 : Lx ≤ b}, where LT =[

1 −1 −1 0
−1 −1 0 −1

]
, bT =

[
3 0 0 1

]
. For every face F of P the set F ′ = φ−1(F ) is

a polyhedron and each φ|F ′ : F ′ → P is affine. Here P has 8 faces, three vertices, four
facets, and P itself. The unbounded faces are F1 = {(2,−1)} + R+(1, 1) = Q1 + C1,
F2 = R+(0, 1) = C2, and P = Q+ 0+P , with 0+P = {x : Lx ≤ 0}. Now F ′1 = φ−1(F1) =
{(2,−1)}+R+(1, 1)+R+(1,−1) = Q1 +C ′1 and φ1 = φ|F ′1 = A1|F ′1 for the affine mapping

A1(x) = L1x + b1 =

[
1/2 1/2
1/2 1/2

] [
x1
x2

]
+

[
3/2
−3/2

]
. Similarly, F ′2 = φ−1(F2) = R+(−1, 0) +

R+(0, 1) = C ′2, and φ2 = φ|F ′2 = A2|F ′2 for the affine mapping L2x = A2(x) =
[
0 x2

]T ,
which is already linear. Clearly, φ−1(P ) = P and φ3 = φ|P = I|P = L3. Now consider the
box B∞ = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1}, then L1(B∞ ∩ F ′1) = [(0, 0), (1, 1)] is a segment.
Similarly L2(B∞ ∩ F ′2) = [(0, 0), (0, 1)]. Moreover, L3(B∞ ∩ 0+P ) = B∞ ∩ 0+P . The
convex hull of the union of these three polytopes is B′ = co{(0, 0), (0, 1), (1, 1)}. Hence
we have B = co(B′∪(−B′)) = co{(−1,−1), (0, 1), (1, 1), (0,−1)}. The construction shows
|φ(q)|� ≤ |q|∞ + k for every q, where |x|� = |Tx|∞ is the polyhedral norm generated by

B, obtained with T =

[
2 −1
0 1

]
.

Now observe that instead of the | · |∞-unit ball B∞ we can choose a larger polytope
B4, which still satisfies Li(B4 ∩ F ′i ) ⊂ B′. Namely, we can take B4 = co(B∞ ∪

{(2, 0), (−2, 0)}). The polyhedral norm is |q|4 = |Sq|∞ with ST =

[
0 1/2 1/2
1 1/2 −1/2

]
.

By example 1, BIBO-stability of

G :
ẋ = Ax+Bp

q = Cx
p(t) = φ(q(t)).

can now be assessed via BIBO-stability of

G̃ :
ẋ = Ax+BT−1p1

q1 = SCx
p1(t) = Tφ(S+q1(t)),
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where T ◦ φ ◦ S+ is a | · |∞-contraction. A sufficient condition for BIBO-stability of the
loop is therefore ‖G̃‖pk_gn < 1.

We compare this to the sector characterization of the non-linearity φ from example 3.
With H = I2 we get φ(q)T (φ(q) − q) ≤ 0, hence ψ(q) = 2φ(q) − q is an L2-contraction.
This leads to

Ĝ :
ẋ = Ax+ 1

2
BCx+ 1

2
Bp̂

q̂ = Cx
p̂(t) = ψ(q̂(t)),

whence a sufficient condition for L2-stability is ‖Ĝ‖L∞ < 1, and this can also be obtained
from the circle criterion. Choosing

A =

[
−1 2

0.001 −3

]
, B =

[
2 −1
0 1

]
, C = ρ

[
1 0
1 1

]
we get two curves n1(ρ) = ‖G̃ρ‖pk_gn and n2(ρ) = ‖Ĝρ‖∞. We have n1(0.499) = 0.9988,
n2(0.499) = 1.2597, n1(0.434) = 0.8687, n2(0.434) = 0.9995, so in between these two
values the test ‖G̃‖pk_gn < 1 guarantees BIBO-stability, while the circle criterion fails to
prove L2-stability.

Example 8. Multi-dimensional saturation is not always suitably seized by the Euclidean
norm [44]. For signals x(t) ∈ Rn consider a convex polytope P of dimension n with the
origin in its interior, and let µP (x) = inf{µ ≥ 0 : x ∈ µP} be its gauge function. Then
a structured saturation operator is satP (x) = x for µP (x) ≤ 1, satP (x) = x/µP (x) for
µP (x) > 1. In other words, if x(t) ∈ P , then the signal is unaffected by saturation, but
if x(t) reaches the boundary of P , then along every ray ρx, ρ > 0, the magnitude of the
signal is frozen at the value it had attained when crossing the boundary of P , while the
direction of the signal is unchanged. This is now a special case of Example 1.

Example 9. A typical case is signal clipping, where y = σ(x) is given as yi = sign(xi)
if |xi| > 1, yi = xi otherwise. Here B′ = B∞. Indeed, consider for simplicity the
case n = 2. Then σ is piecewise affine with 9 different polytopes P1, . . . , P9, where
P9 = B∞, P1 = {(x1, x2) : −1 ≤ x1 ≤ 1, x2 ≥ 1}, P2 = {(x1, x2) : x1 ≥ 1, x2 ≥ 1},
P3 = {(x1, x2) : x1 ≥ 1,−1 ≤ x2 ≤ 1}, etc. We have A1(x) = (x1, 1), Q1 = [−1, 1)× {0},
C1 = {0} ×R+, A2(x) = (1, 1), Q2 = {(1, 1)}, C2 = R+ ×R+, C ′2 = {(0, 0)}, etc. So only
the four facets among the 9 faces of B∞ contribute to B′.

This immediately applies to systems like ẋ = σ(Ax+ b) or ẋ = σ(Ax+Bu) etc. as for
instance considered in [45].

Example 10. The authors of [46] consider non-linear systems ẋ =
∑N

i=1 µi(x, u) [Aix+Biu],
where µi(x, u) ≥ 0,

∑N
i=1 µi(x, u) = 1. This can be modeled by an operator p = φ(q) :=∑N

i=1 µi(q)qi with µi(q) a convex combination, so that |φ(q)|1 ≤ |q|∞, which is a polyhedral
non-linearity.

Example 11. (Attractors, limit cycles, chaotics). In [47] the authors generate MIMO
non-linearities ∆ by putting LTI-systems H in feedback with static non-linearities Φ. This
leads to attractors, limit cycles, chaotic behavior, and much else. Some of these may be
considered special cases of (27). The out-set is a dynamic system z = ∆(w):

H :
ẋ = Ax+Bp+Bw

q = Cx, z = x,
p = Φ(q) ∆ = (H,Φ)(30)

where Φ(0) = 0. If |Φ(q)|∞ ≤ r|q|∞ + k asymptotically, then by Theorem 3, BIBO-
stability of ∆ follows from ‖H‖pk_gn < r−1. In particular, if Φ has bounded range, then
we can choose r > 0 arbitrarily, hence ‖H‖pk_gn <∞ gives BIBO-stability of ∆.
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For instance, similar to [47, Example 4.6] we let Φ(q1, q2, q3) = (φ(q3), 0, 0) with φ(q) =
a tanh(kq) + ρq, B = C = I3, and

A =

−(β1 + β2 + β3) −(β1β2 + β1β3 + β2β3)/M −β1β2β3/M
M 0 0
0 1 0

 .
For M = a = k = 10, ρ = 0.3, β1 = 2, β2 = 3, β3 = 5, the non-linearity ∆ has three
steady states, the unstable 0, and two stable attractors (0, 0,±2.963) (Fig. 10 left). The
system is globally BIBO-stable, because φ has slope ρ at infinity, so integrating ρq3 into
the system H gives H0 in loop with a non-linearity Φ0 of bounded range. Then r = 1/3
gives ‖H0‖pk_gn = 2.0759 < 3 = r−1. The linearization of ∆ at 0 has system matrix
A + E1 with E1 =

[
0, 0, φ′(0); 0, 0, 0; 0, 0, 0

]
, which is unstable, but a stable linearization

can readily be obtained by linearizing about one of the attractors, e.g. x̄ = (0, 0, 2.963).
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A different case has a = −10, where the origin is an unstable steady state and an
attracting limit cycle occurs (Fig. 10 middle). Global BIBO-stability of the loop follows
again from ‖H‖pk_gn <∞, but a stable linearization now requires a modified LTI-system,
where the limit cycle is subtracted from H to get a stable steady state.

In those cases, where z = ∆(w) is BIBO-stable, we can consider it in loop with a
tunable LTI-system G as in Fig. 9. For unstable H we can still apply the results of
section 4.2 when H is stabilized by feedback with a tunable G, now considering Φ in loop
with Fl(H,G):

Proposition 2. Let z = ∆(w) in (30) be in upper feedback with an LTI-system G as in
(14). Suppose Φ satisfies an asymptotic constraint |Φ(q)|∞ ≤ r|q|∞+k. Then a sufficient
condition for global BIBO-stability of the loop (G,∆) is ‖Fl(H,G)‖pk_gn < r−1.

Example 12. (Attractors . . . continued). An interesting study in this line is Chua’s
circuit [48], see [47, 5.4], where

A =

−α α 0
1 −1 1
0 −β 0

 , B = C = I3,
Φ(q) = (φ(q1), 0, 0)
φ(q1) = α tanh(2q1) + αρq1

For α = 8.3, β = 16.5, ρ = 0.25 the double scroll attractor appears (Fig. 10 right). The
non-linearity has slope αρ at infinity. Therefore global BIBO-stability of ∆ = (H,Φ)
follows from stability of A+ E2, E2 =

[
αρ, 0, 0; 0, 0, 0; 0, 0, 0

]
.

A common feature of these examples is that the sector non-linearity invites attempting
L2-stability, which however fails due to the persistence of more than one attractor in
feedback. This is where global L∞-stability is still in business.
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Example 13. (Attractors . . . continued). We study this phenomenon in more detail
through a feedback design example. Consider the MIMO Lur’e system

H :
ẋ = Ax+Bp+Buu

q = Cx, y = Cyx,
p = Φ(q)(31)

with Φ : R3 → R3 the MIMO static non-linearity

Φ(q) :=


q21

a1+q21
(tanh(c1q1) + ρ1q1))

q22
a2+q22

(tanh(c1q2) + ρ2q1))
q23

a3+q23
(tanh(c3q3) + ρ3q3))

 ,

with a1 = 0.1, a2 = 0.2, a3 = 0.3, ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.3, c1 = 2, c2 = 3 and c3 = 4.
State-space data are given as

A :=

−2 8.8 0
1 −1 1
0 −15 0

 , B :=

5 0 0
0 0.1 0
0 0 0.3

 , C := I3 ,

Bu :=

1
1
1

 Cy :=
[
1 1 1

]
.

The uncontrolled linear dynamics show 2 unstable oscillating modes 0.1422 ± 3.0189i.
Simulations of the uncontrolled non-linear system are shown in Fig. 11 (upper line) with
a double-scroll regime close to the origin, and an escaping unstable spiral regime away
from 0. Here we regard ∆ = (H,Φ) as mapping initial conditions x(0) to state x.

Now we investigate whether the system may be stabilized by feedback u = Ky in the
L∞-sense, using the techniques in sections 4.1 and 4.2. As can be seen each component
Φi belongs to the asymptotic sector sect(0, ρi + ε) for any ε > 0. Using section 4.2, we
infer that the closed-loop system is L∞-stable whenever ‖Fl(H̃,K)‖pk_gn < r−1, where
r := max {ρ1/2, ρ2/2, ρ3/2} and H̃ is obtained from H by centering the non-linearity. The
latter amounts to shifting the A-matrix to A+BΓC with Γ := diag (ρ1/2, ρ2/2, ρ3/2).

Running program (8) over the class K of PID controllers leads to

K∗(s) := −0.796 +
0.000352

s
+

0.097

940s+ 1
,

with the result ‖Fl(H̃,K∗)‖pk_gn = 5.34 < r−1 = 6.67, affirming BIBO stability. Closed-
loop simulations in Fig. 11 bottom show co-existence of 3 stable equilibrium points at
the origin (right) and away from the origin (bottom left) with state-space coordinates
(±2.98,∓0.0420,∓2.94,∓237.94, 0).

Note that in this study step 4 of the algorithm fails, because Φi ∈ sect(0, 1.17) tightly
for every i. Therefore, to get a global L2-stability certificate it would have been required to
determine a PID controller for which the H∞ norm of the corresponding centered system
was less than 1/r0 = 1.71, and this value was not achievable in program (7).

5. Peak-to-peak norm

5.1. Estimate. It is well-known [40, 1, 35, 39, 49] that for real-rational systems G the
peak-gain or peak-to-peak norm is

(32) ‖G‖pk_gn = max
i=1,...,m

p∑
j=1

(
|g0ij|1 + |dij|

)
,
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Figure 11. Non-linearity ∆ = (H,Φ) with unstable H(s) shows 2-double
scroll (top left) or diverging spiral (top right) for different initial values
’•’. Peak-gain optimization with a PID controller gives BIBO-stability of
(K,∆) = ((K,H),Φ) with convergence to 3 stable equilibrium points (bot-
tom left and right). ’•’.

where gij(t) = cie
Atbj + dijδ(t) = g0ij(t) + dijδ(t) with g0ij ∈ L1. A special case is the

well-known expression

|||A|||∞ = max
i=1,...,m

p∑
k=1

|aik| = max
i=1,...,m

|rowi(A)|1

of the maximum row-sum-norm of A ∈ Rm×p, i.e., the induced `∞-`∞ matrix norm.
Formula (32) holds also for infinite dimensional BIBO-stable systems and may be jus-

tified e.g. by the approach [50, 51], which considers BIBO-stable systems as all those
LTI-systems G, where G(s) is the Laplace transform of a matrix-valued Radon measure
of bounded variation. While [50] handles the SISO case, where the norm is referred to as
theM-norm ‖µ‖M = supφ∈D(R+),‖φ‖∞≤1

∫
R+ φdµ, one easily generalizes this to the MIMO

case and obtains the formula

‖G‖pk_gn = sup
i=1,...,m

p∑
k=1

‖µik‖M,

which contains (32) as a special case. In particular, it was possible to apply it in the
slipstick study, because the impulse response was an element of L1.

Estimate (2) is mentioned in [1] with non-specified constants, and the SISO case p =
m = 1 is proved in [49, Thm.] for discrete SISO systems, and in [52, pp. 11-12] for
continuous SISO systems, where in the latter reference the idea of proof is attributed to
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I. Gohberg. The left hand estimate in (2) holds also for infinite dimensional systems,
e.g. those where G(s) is the Laplace transform of a Radon measure of bounded variation,
while the right hand estimate is true for finite-dimensional G. For strictly proper systems,
the estimate ‖G‖pk_gn ≤ 2np1/2‖G‖∞ is valid. Details on computing these estimates will
be published elsewhere.

5.2. Implementation. Stand alone computation of the peak-gain norm with high preci-
sion has been addressed in the literature [6, 5, 49, 40, 1, 2, 4]. For optimization, due
to non-smoothness of both norms in (8), we need to supply subgradients of closed-
loop integral functionals φij : K →

∫∞
0
|ci(K)eA(K)tbj(K)|dt, those for the H∞-norm

being well-known [13]. Putting f(K, t) = c(K)eA(K)tb(K) and F (K) =
∫∞
0
|f(K, t)|dt

for the generic terms, we need partial derivatives ∂f(K, t)/∂Kµν , where Kµν are the
controller gains, which depend in turn on the tunable parameters x over which we ul-
timately optimize. Since dependence Kµν(x) on x and f(K, t) on K is differentiable,
non-smoothness occurs only when the absolute value |f(·, t)| is formed, and ultimately
via the finite maximum over rows in (32). Subgradients g(K, t) ∈ ∂| · | ◦ f(K, t) are ob-
tained as gµν(K, t) = ∂f(K, t)/∂Kµνsignf(K, t) for f(K, t) 6= 0, while those (K, t) where
f(K, t) = 0 give the full set of subgradients gµν(K, t) ∈ ∂f(K, t)/∂Kµν · [−1, 1]. Partial
derivatives ∂f/∂Kµν are obtained via algorithmic differentiation [53]. Finally, subgradi-
ents G ∈ ∂F (K) of integral functionals are by regularity simply integrals of pointwise
subgradients Gµν(K) =

∫∞
0
∂f(K, t)/∂Kµνsignf(K, t)dt [54, 55, 56].

For mixed programs like (8) it is possible to use a progress function approach as in
[57, 58, 59, 60, 61, 62, 63, 64]. Here we rather follow the line [14, 65] suited for norm
functionals, where an iteratively re-weighted maximum of several norms is minimized;
cf. [66] for an overview, where in particular the concept of hard and soft constraints
is addressed. This approach is also used in the systune function [67, 36, 15] based on
[14], and has been used in our experiments. For convergence issues of bundle and bundle
trust-region techniques we refer to [68, 69].

According to the line in [14] program (8) is addressed by minimizing a maximum

min
x∈Rn

max
{
α‖Twz(G,K(x))‖∞, β‖Tpq(Gψ, K(x))‖pk_gn

}
,

where the weights α, β are updated iteratively until the constraint of (8) is satisfied, from
where on the objective is reduced. Here K(x) expresses dependence of K on the tunable
parameters x. The first term splits into a semi-infinite maximum

‖Twz(G,K(x))‖∞ = max
ω∈[0,∞]

σ(Twz(jω,G,K(x))),

whereas the second term, after time-domain discretization, becomes a finite maximum

‖Tpq(Gψ, K(x))‖pk_gn = max
i=1,...,m

p∑
j=1

(∑
t∈T

∣∣ci(x)eA(x)tbj(x)
∣∣+ |dij(x)|

)
,

with ci(x)eA(x)tbj(x) + dij(x)δ(t) the closed loop impulse response of the entry (i, j) of
the channel Tpq(Gψ, K(x)). For discretization we have used the method of [6], which is
readily extended to the MIMO case.

It is helpful to update the weights α, β in such a way that at the current iterate x the
two branches are at least nearly active. Selecting a set of active and near active frequencies
for the first objective is explained in [14, sect. 4.4], and we proceed analogously for the
second branch. This strategy to include near-active branches into local models has turned
out highly effective, as it avoids stalling at non-optimal points.
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6. Conclusion

We have presented a method for stabilization and performance optimization of non-
linear controlled systems, where the non-linearity satisfies a sector constraint asymptot-
ically. This leads to global closed-loop BIBO-stability in tandem with local exponential
stability in situations where global closed-loop L2-stability fails, either due to exceedingly
large sectors, or more principally, due to persistence of several attracting regimes in closed
loop. The new approach requires solving a mixed L1/H∞-synthesis program, and uses
properties of the L1- or peak-gain system norm.
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