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1. B- and B,-spaces. A T, topological space E is called a B,-space (B-space) if
every continuous, nearly open bijection (surjection) f from E onto an arbitrary T,
space F is open. Here f: E — F is called nearly open if for every x € E and every
neighbourhood U of x the set cl(f(U)) is a neighbourhood of f(x).

The notions of B- and B,-spaces in the above sense have first been used by T.
Husain in the categories of locally convex vector spaces ([Hu,]) and topological
groups ([Hu,]). They have been chosen in reminiscence of V. Ptdk’s open mapping
theorems ([P], [K&]). We have adopted Husain’s definition for the topological
case. References concerning the classical theory of B- and B,-spaces and groups
are [P], [K6], [AEK]. [Hu,], [Ba;], [Pe], [Gr], [Su], ete. In a purely topological
context, B,-spaces have been considered in [We], [BP], although the term *B,-space’
has not been used there. Further references are [Wi], [St], [N;].

Every T, locally compact space is a B-space and every B-space is a B,-space.
In [We], Weston proved that every completely metrizable space is a B,-space. In
[BP] this has been generalized to Cech complete spaces. In [N,] we have further
generalized this to obtain.

Proposition 1. Every T, semi-regular topological space E containing a dense
Cech complete subspace is a B,-space. In particular, this is true for monotonically
Cech complete spaces.

In [N,] we have given a direct proof. Proposition 1 may also be deduced from
Byczkowski and Pols’ result [BP] if we use the following

Lemma. Let E be a T, semi-regular space and let F be a T, space. Let f1 E - F
be a continuous, nearly open bijection and suppose there exists a dense subset D
of E such that f| D: D — f(D) is open. Then f is open.

Proof. Let x € E and a neighbourhood U of x be fixed. Choose a regular-open
neighbourhood V of x contained in U. We prove int cl(f(V})) = f(U). Let z €
eint cl(f(V)), z = f(y). Let W be a neighbourhood of y with f(W)< int cl(f(V)).
It is sufficient to prove W < V. So let we W and let O be a regular-open neigh-
bourhood of w contained in W. Proving that O n V %= ( remains.
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Since O, V are regular-open in E, On D, Vn D are regular-open in D, hence
f(0 n D), f(Vn D) are regular-open in f(D). But note that int c(f(0)) n f(D) and
int cl{f(V)) n f(D) are as well regular-open in f(D) and this implies int cl(f(0)) N
nf(D) = f(0) n f(D), int cl(f(V))nf(D)=f(V) A f(D). Since O = W implies
int cl{f(0)) < int cl(f(V)) we obtain the desired result 0NV + 0. [

In [ N3] we have investigated an interesting class of B-spaces.

Proposition 2. Every Lindeldf P-space is a B-space. [1
Using the lemma above, one may obtain the following result. Here ‘locally Lindelof”
means that every point has a base of nzighbourhoods consisting of Lindel6f subspaces.

Proposition 3. Every T, semi-regular locally Lindeldf space E containing a dense
set of P-points is a B,-space.

Proof. Let f: E — F be a continuous, nearly open bijection onto the T space F.
We may assume that F is semi-regular. Let D denote the set of P-points in E. We
prove that f | D: D — f(D) is open. First note that every point of f(D) is a P-point
in F. Indeed, let G,, n = 1,2, ... be open sets containing y = f(x), x € D. Choose
open sets V,, n = 1,2,... in E having x ¢V, intcl(f(V,)) = G,. Then V.=, V,
is a neighbourhood of x having int cl(f(V)) = G, n = 1,2, ....

Let x e D and a Lindelof neighbourhood U of x be fixed. We claim that cl(f{U)) n
A f(D) = f(U) 0 f(D). Assume the contrary and let zecl(f(U))Nf(U), z = f(y)s
ye D, Let & denote the filter of neighbourhoods of z, then {f(U)NO:0ed} is an
open cover of f(U), hence there exist 0, € #,n = 1,2, ... having f(U) = U, f(U)\ Oy,
a contradiction since we have (), 0,€®. O

It follows from our lemma that every T, semi-regular space E containing a dense
B,-subspace is itself a B,-space. The corresponding result for B-spaces is not valid.
In § 7 we shall present an example of a completely regular space E containing a dense
Lindelof P-subspace which is not a B-space. '

In [N,] we have investigated another interesting class of B,-spaces. Let S be
a cofinal subset of @,. Let S* denote the set of f € w{ having f* = sup {f(n): n < w}e
¢ S. Give , the discrete topology and let wf and S* hLave the product topology.
Recall that S is called siationary if it intersects every closed cofinal subset of w;.
We have the following

Proposition 4. ([N,], [FK] for (1) <> (2)). Let S < w, be cofinal. Then the fol-
lowing statements are equivalent:
(1) S is stationary;
(2) S* is a Baire space;
(3) S* is a B,-space. [

This provides examples of metrizable B,-spaces which do not contain any dense
completely metrizable subspace, since clearly S* contains a dense completely
metrizable subspace if and only if S contains a closed cofinal subset.
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2. Order interpretation. We introduce an order relation = on the set of all T,
topologies on a fixed set E by postulating that t; = 7, is satisfied if and only if
id: (E, 7;) - (E, 7,) is continuous and nearly open. Then (E, t) is a B,-space if and
only if 7 is minimal among T}, topologies on E. Dually one may consider the = maxi-
mal topologies. It turns out that these can be internally characterized as follows.

< if and only if every dense subset

Proposition 5. t is maximal with respect to
of (E, t) is open. [

Open problem. Obtain an internal characterization of < minimal (ie. B,)
topologies.

Using the Kuratowski/Zorn lemma one easily proves that given any T, topology t
on E, there exists a < maximal topology 1, having 7 < 1,.

Open problem. Does a corresponding result hold for < minimality?

3. Category. Since T, minimal (= H minimal) topological spaces are clearly
B,-spaces, it follows from a result of Herrlich ([He]) that a B,-space need not be
a Baire space in general. One may ask, however, for a first category B,-space which
is completely regular. In [N;] we have provided an example of this type constructing
a first category Lindel6f P-space. On the other hand, all metrizable B,-spaces known
up to now are Baire spaces. In [ N3] we have obtained the following

Theorem 1. Every strongly zero-dimensional metrizable B,-space is Baire. []

Open problem. Is it true that every metrizable B,-space is a Baire space?

Note that theorem 1 may be used to prove that every suborderable metrizable
B,-space is a Baire space. Another partial positive answer is obtained for metrizable
topological groups in view of the following

Proposition 6. ([N, ]) Every topological group which is a B,-space (in the topo-
logical sense) is complete with respect to its two-sided uniformity. [

4. Products. The situation in the classical categories (see [K&], [Gr]) suggests
that the product of even two B,-spaces need not be a B,-space. In [N,] we have
obtained the expected counterexamples.

Proposition 7. Let S, T = w, be stationary sets. Then the following are equi-
valent:
(1) S n Tis stationary;

(2) S* x T* is a B-space. [
Clearly this provides the desired counterexamples for we may choose disjoint sta-
tionary subsets S, T of @, then S*, T* are B,-spaces, but S* x T* is not.

One may ask for a B,-space E whose square E x E is no longer a B,-space. Such
an example can be obtained from the following construction,
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Proposition 8. Let F be a strongly zero-dimensional metrizable Baire space
such that for some n =2 F" is no longer a Baire space. Suppose that F is a B,-space.
Then there exists r, 1 < r < n — 1 such that E = F" is a Bspace but E x E
is not.

Proof. The construction is based on theorem 1 and the fact that finite products of
strongly zero-dimensional metrizable spaces are strongly zero-dimensional and
metrizable. Regard F x F. If this is not a B,-space, then E = F.Otherwise F? is
a Baire space by theorem 1. Then regard F? x F2. If this is not B, then E = F 2,
Otherwise F* is a Baire space. etc. []

In [N;] we have obtained a space F as above using an example from [FK].

Though no general positive results concerning products of B,-spaces are to be
expected, there are positive results in special situations. Namely the classes of T;
minimal spaces, Cech complete spaces, Lindelof P-spaces are examples of productive,
countably productive, finitely productive classes of B,-spaces.

Open problem. Given a B,-space E and a compact T, space K, must E x K be a B,
space?

5. Closed subspaces. From the situation in the classical categories (concerning
the open mapping theory) one would expect that closed subspaces of B,-spaces
are again B,. In fact, the corresponding statements are known to be valid in the cate-
gories of locally convex vector spaces ([K&]), linear topological spaces ([AEK])
and Abelian topological groups. In the case of topological groups the answer is not
known (see [Ba,], [Gr]) although there are some positive partial results. In the
topological case, the situation seems to be of a completely different nature for we
have the

Proposition 9. Every T, semi-regular topological space E is the closed subspace
of some B,-space F.

Proof. Let F = E x {1} U E x {2} and define a topology on F by imposing
that {(x, 1)} is a neighbourhood of (x, 1) for each x € E and U(x) is a neighbourhood
of (x, 2), whenever x € E and U is a neighbourhood of x in E, where U(x) denotes
the set {(y,i): ye UN{x}, i = 1,2} U{(x,2)}. Then E x {2} is a closed subspace
of F homeomorphic with E and E x {1} is an open dense and discrete subspace of F.
Since F is semi-regular by construction, it is a B,-space by proposition 1. [

6. Sums of B,-spaces. The class of B,-spaces behaves very strange with respect
to summation. First note that the sum of even two B,-spaces need not be a B,-space.
Indeed, let S, T be disjoint stationary subsets of w;, then S*, T* are B,-spaces but
S* 4+ T* is not B, in view of the fact that S*, T* are disjoint dense subspace of o?
and hence the natural mapping f: S* + T* — f is a continuous nearly open bijec-
tion onto f(S* + T*) which is not open. :

On the other hand there are certain positive results on sums of B,-spaces.
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Proposition 10. ([N,]) Given any B,-space E, the sum E + E is a Bspace. []

In [N,] we have investigated summation with Cech complete summands and have
obtained the following interesting

Theorem 2. Let E be a completely regular B,-space. Then the following statements
are equivalent:
(1) E is a Baire space;
(2) E + F is a B-space whenever F is Cech complete. [

As a consequence of theorem 1 and theorem 2 we deduce that E + F is a B,-space
if E is a strongly zero-dimensional metrizable B,-space and F is Cech complete.
On the other hand, if E is a Lindel5f P-space of the first category, theorem 2 provides
a Cech complete space F such that E + F is no longer a B,-space.

Ancther positive result on sums is the following

Proposition 11. Given a B,space E and a T, locally compact space L, the sum
E + Lis a B,~space.

Proof. Let f: E + L— F be a continuous, nearly open bijection onto the T,
space F. Since f| E: E — f(E), f| L: L— f(L) are as well nearly open, we have
E =~ f(E), L= f(L). It remains to prove that f(E) is closed in F. But this follows
from the fact that f(L) is open in its T, extension int cl(f(L)) and sois openin F. [

7. B-spaces. It has been an open question for a long time whether there exist
B,-complete locally convex vector spaces which are not B-complete. Finally, an
example of this type has been found by Valdivia ([ V]). In the category of topological
groups the corresponding counterexample was constructed in [Su]. Now in the
purely topological case the situation is different. While the class of B,-spaces is
considerably large, B-spaces seem to be of a rather special type. In fact, even com-
pletely metrizable spaces need not be B-spaces. An example may be found in [BP].

Example. A T, minimal space need not be a B-space. Indeed, let E denote the T,
minimial space constructed in [I-Ic], whose point set is Ry U R; U R,, where R, =
=R\QnIx {0}, Ry =QnIx {i}, i =1,2. Define f:E—1 by e, B =,
then fis a continuous, nearly open sutjection which is not open.

Concerning sums of B-spaces we have the following

Proposition 12. ([N;]). Let E be a completely regular B-space. Then the fol-
lowing statements are equivalent:
(1) E + Lis a B-space whenever Lis T, locally compact;
(2) E + K is a B-space whenever K is T, compact;
(3) E + BE is a B-space;
(4) E is locally compact. [

Let E be a non-discrete Lindel6f P-space. Then E is a B-space but E + BE is not
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since E is not locally compact. On the other hand, E + E is clearly a B-space since
it is Lindeldf P. This proves that the lemma from § 1 is not valid for surjective map-
pings f resp. the class of B-spaces is not closed with respect to taking T, extensions.
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