ON THE THEORY OF B- AND B,-SPACES IN GENERAL TOPOLOGY

D. NOLL, Stuttgart

(Received August 5, 1986)

1. B- and B_r -spaces. A T_2 topological space E is called a B_r -space (B-space) if every continuous, nearly open bijection (surjection) f from E onto an arbitrary T_2 space F is open. Here $f: E \to F$ is called nearly open if for every $x \in E$ and every neighbourhood U of x the set $\operatorname{cl}(f(U))$ is a neighbourhood of f(x).

The notions of B- and B_r -spaces in the above sense have first been used by T. Husain in the categories of locally convex vector spaces ($[Hu_1]$) and topological groups ($[Hu_2]$). They have been chosen in reminiscence of V. Pták's open mapping theorems ([P], $[K\ddot{o}]$). We have adopted Husain's definition for the topological case. References concerning the classical theory of B- and B_r -spaces and groups are [P], $[K\ddot{o}]$, [AEK], $[Hu_i]$, $[Ba_i]$, [Pe], [Gr], [Su], etc. In a purely topological context, B_r -spaces have been considered in [We], [BP], although the term ' B_r -space' has not been used there. Further references are [Wi], [St], $[N_i]$.

Every T_2 locally compact space is a B-space and every B-space is a B_r -space. In [We], Weston proved that every completely metrizable space is a B_r -space. In [BP] this has been generalized to Čech complete spaces. In $[N_1]$ we have further generalized this to obtain.

Proposition 1. Every T_2 semi-regular topological space E containing a dense Čech complete subspace is a B_r -space. In particular, this is true for monotonically Čech complete spaces.

In $[N_1]$ we have given a direct proof. Proposition 1 may also be deduced from Byczkowski and Pols' result [BP] if we use the following

Lemma. Let E be a T_2 semi-regular space and let F be a T_2 space. Let $f: E \to F$ be a continuous, nearly open bijection and suppose there exists a dense subset D of E such that $f \mid D: D \to f(D)$ is open. Then f is open.

Proof. Let $x \in E$ and a neighbourhood U of x be fixed. Choose a regular-open neighbourhood V of x contained in U. We prove int $\operatorname{cl}(f(V)) \subset f(U)$. Let $z \in \operatorname{int} \operatorname{cl}(f(V))$, z = f(y). Let W be a neighbourhood of y with $f(W) \subset \operatorname{int} \operatorname{cl}(f(V))$. It is sufficient to prove $W \subset \overline{V}$. So let $w \in W$ and let O be a regular-open neighbourhood of w contained in W. Proving that $O \cap V \neq \emptyset$ remains.

Since O, V are regular-open in E, $O \cap D$, $V \cap D$ are regular-open in D, hence $f(O \cap D)$, $f(V \cap D)$ are regular-open in f(D). But note that int $\operatorname{cl}(f(O)) \cap f(D)$ and int $\operatorname{cl}(f(V)) \cap f(D)$ are as well regular-open in f(D) and this implies int $\operatorname{cl}(f(O)) \cap f(D) = f(O) \cap f(D)$, int $\operatorname{cl}(f(V)) \cap f(D) = f(V) \cap f(D)$. Since $O \subset W$ implies int $\operatorname{cl}(f(O)) \subset \operatorname{int} \operatorname{cl}(f(V))$ we obtain the desired result $O \cap V \neq \emptyset$. \square

In $[N_3]$ we have investigated an interesting class of B-spaces.

Proposition 2. Every Lindelöf P-space is a B-space.

Using the lemma above, one may obtain the following result. Here 'locally Lindelöf' means that every point has a base of neighbourhoods consisting of Lindelöf subspaces.

Proposition 3. Every T_2 semi-regular locally Lindelöf space E containing a dense set of P-points is a B_r -space.

Proof. Let $f: E \to F$ be a continuous, nearly open bijection onto the T_2 space F. We may assume that F is semi-regular. Let D denote the set of P-points in E. We prove that $f \mid D: D \to f(D)$ is open. First note that every point of f(D) is a P-point in F. Indeed, let G_n , $n = 1, 2, \ldots$ be open sets containing y = f(x), $x \in D$. Choose open sets V_n , $n = 1, 2, \ldots$ in E having $x \in V_n$, int $\operatorname{cl}(f(V_n)) \subset G_n$. Then $V = \bigcap_n V_n$ is a neighbourhood of x having int $\operatorname{cl}(f(V)) \subset G_n$, $n = 1, 2, \ldots$

Let $x \in D$ and a Lindelöf neighbourhood U of x be fixed. We claim that $\operatorname{cl}(f(U)) \cap f(D) = f(U) \cap f(D)$. Assume the contrary and let $z \in \operatorname{cl}(f(U)) \setminus f(U)$, z = f(y), $y \in D$. Let Φ denote the filter of neighbourhoods of z, then $\{f(U) \setminus \overline{O} : O \in \Phi\}$ is an open cover of f(U), hence there exist $O_n \in \Phi$, $n = 1, 2, \ldots$ having $f(U) = \bigcup_n f(U) \setminus O_n$, a contradiction since we have $\bigcap_n O_n \in \Phi$. \square

It follows from our lemma that every T_2 semi-regular space E containing a dense B_r -subspace is itself a B_r -space. The corresponding result for E-spaces is not valid. In § 7 we shall present an example of a completely regular space E containing a dense Lindelöf E-subspace which is not a E-space.

In $[N_2]$ we have investigated another interesting class of B_r -spaces. Let S be a cofinal subset of ω_1 . Let S^* denote the set of $f \in \omega_1^{\omega}$ having $f^* = \sup\{f(n): n < \omega\} \in S$. Give ω_1 the discrete topology and let ω_1^{ω} and S^* have the product topology. Recall that S is called *stationary* if it intersects every closed cofinal subset of ω_1 . We have the following

Proposition 4. ([N₂], [FK] for (1) \Leftrightarrow (2)). Let $S \subset \omega_1$ be cofinal. Then the following statements are equivalent:

- (1) S is stationary;
- (2) S* is a Baire space;
- (3) S^* is a B_r -space. \square

This provides examples of metrizable B_r -spaces which do not contain any dense completely metrizable subspace, since clearly S^* contains a dense completely metrizable subspace if and only if S contains a closed cofinal subset.

2. Order interpretation. We introduce an order relation \leq on the set of all T_2 topologies on a fixed set E by postulating that $\tau_1 \leq \tau_2$ is satisfied if and only if id: $(E, \tau_2) \to (E, \tau_1)$ is continuous and nearly open. Then (E, τ) is a B_r -space if and only if τ is minimal among T_2 topologies on E . Dually one may consider the \leq maximal topologies. It turns out that these can be internally characterized as follows.
Proposition 5. τ is maximal with respect to \leq if and only if every dense subset of (E,τ) is open. \square

Open problem. Obtain an internal characterization of \leq minimal (i.e. B_r -) topologies.

Using the Kuratowski/Zorn lemma one easily proves that given any T_2 topology τ on E, there exists $a \leq \text{maximal topology } \tau_0$ having $\tau \subset \tau_0$.

Open problem. Does a corresponding result hold for \leq minimality?

3. Category. Since T_2 minimal (= H minimal) topological spaces are clearly B_r -spaces, it follows from a result of Herrlich ([He]) that a B_r -space need not be a Baire space in general. One may ask, however, for a first category B_r -space which is completely regular. In $[N_3]$ we have provided an example of this type constructing a first category Lindelöf P-space. On the other hand, all metrizable B_r -spaces known up to now are Baire spaces. In $[N_3]$ we have obtained the following

Theorem 1. Every strongly zero-dimensional metrizable B_r-space is Baire.

Open problem. Is it true that every metrizable B_r-space is a Baire space?

Note that theorem 1 may be used to prove that every suborderable metrizable B_r -space is a Baire space. Another partial positive answer is obtained for metrizable topological groups in view of the following

Proposition 6. ([N₂]) Every topological group which is a B_r -space (in the topological sense) is complete with respect to its two-sided uniformity. \square

4. Products. The situation in the classical categories (see [Kö], [Gr]) suggests that the product of even two B_r -spaces need not be a B_r -space. In [N₂] we have obtained the expected counterexamples.

Proposition 7. Let $S, T \subset \omega_1$ be stationary sets. Then the following are equivalent:

- (1) $S \cap T$ is stationary;
- (2) $S^* \times T^*$ is a B_r -space. \square

Clearly this provides the desired counterexamples for we may choose disjoint stationary subsets S, T of ω_1 , then S^* , T^* are B_r -spaces, but $S^* \times T^*$ is not.

One may ask for a B_r -space E whose square $E \times E$ is no longer a B_r -space. Such an example can be obtained from the following construction.

Proposition 8. Let F be a strongly zero-dimensional metrizable Baire space such that for some $n \ge 2$ F^n is no longer a Baire space. Suppose that F is a B_r -space. Then there exists r, $1 \le r \le n-1$ such that $E=F^r$ is a B_r -space but $E \times E$ is not.

Proof. The construction is based on theorem 1 and the fact that finite products of strongly zero-dimensional metrizable spaces are strongly zero-dimensional and metrizable. Regard $F \times F$. If this is not a B_r -space, then E = F. Otherwise F^2 is a Baire space by theorem 1. Then regard $F^2 \times F^2$. If this is not B_r , then $E = F^2$. Otherwise F^4 is a Baire space, etc. \square

In $[N_3]$ we have obtained a space F as above using an example from [FK].

Though no general positive results concerning products of B_r -spaces are to be expected, there are positive results in special situations. Namely the classes of T_2 minimal spaces, Čech complete spaces, Lindelöf P-spaces are examples of productive, countably productive, finitely productive classes of B_r -spaces.

Open problem. Given a B_r -space E and a compact T_2 space K, must $E \times K$ be a B_r space?

5. Closed subspaces. From the situation in the classical categories (concerning the open mapping theory) one would expect that closed subspaces of B_r -spaces are again B_r . In fact, the corresponding statements are known to be valid in the categories of locally convex vector spaces ([Kö]), linear topological spaces ([AEK]) and Abelian topological groups. In the case of topological groups the answer is not known (see [Ba₂], [Gr]) although there are some positive partial results. In the topological case, the situation seems to be of a completely different nature for we have the

Proposition 9. Every T_2 semi-regular topological space E is the closed subspace of some B_r -space F.

Proof. Let $F = E \times \{1\} \cup E \times \{2\}$ and define a topology on F by imposing that $\{(x,1)\}$ is a neighbourhood of (x,1) for each $x \in E$ and U(x) is a neighbourhood of (x,2), whenever $x \in E$ and U is a neighbourhood of x in E, where U(x) denotes the set $\{(y,i): y \in U \setminus \{x\}, i = 1,2\} \cup \{(x,2)\}$. Then $E \times \{2\}$ is a closed subspace of F homeomorphic with E and $E \times \{1\}$ is an open dense and discrete subspace of F. Since F is semi-regular by construction, it is a B_r -space by proposition 1. \square

6. Sums of B_r -spaces. The class of B_r -spaces behaves very strange with respect to summation. First note that the sum of even two B_r -spaces need not be a B_r -space. Indeed, let S, T be disjoint stationary subsets of ω_1 , then S^* , T^* are B_r -spaces but $S^* + T^*$ is not B_r in view of the fact that S^* , T^* are disjoint dense subspace of ω_1^ω and hence the natural mapping $f: S^* + T^* \to \omega_1^\omega$ is a continuous nearly open bijection onto $f(S^* + T^*)$ which is not open.

On the other hand there are certain positive results on sums of B_r -spaces.

Proposition 10. ($[N_2]$) Given any B_r -space E, the sum E + E is a B_r -space. \square

In $[N_2]$ we have investigated summation with Čech complete summands and have obtained the following interesting

Theorem 2. Let E be a completely regular B_r -space. Then the following statements are equivalent:

- (1) E is a Baire space;
- (2) E + F is a B_r -space whenever F is Čech complete. \square

As a consequence of theorem 1 and theorem 2 we deduce that E + F is a B_r -space if E is a strongly zero-dimensional metrizable B_r -space and F is Čech complete. On the other hand, if E is a Lindelöf P-space of the first category, theorem 2 provides a Čech complete space F such that E + F is no longer a B_r -space.

Another positive result on sums is the following

Proposition 11. Given a B_r -space E and a T_2 locally compact space L, the sum E + L is a B_r -space.

Proof. Let $f: E + L \to F$ be a continuous, nearly open bijection onto the T_2 space F. Since $f \mid E: E \to f(E)$, $f \mid L: L \to f(L)$ are as well nearly open, we have $E \simeq f(E)$, $L \simeq f(L)$. It remains to prove that f(E) is closed in F. But this follows from the fact that f(L) is open in its T_2 extension int $\operatorname{cl}(f(L))$ and so is open in F. \square

7. B-spaces. It has been an open question for a long time whether there exist B_r -complete locally convex vector spaces which are not B-complete. Finally, an example of this type has been found by Valdivia ([V]). In the category of topological groups the corresponding counterexample was constructed in [Su]. Now in the purely topological case the situation is different. While the class of B_r -spaces is considerably large, B-spaces seem to be of a rather special type. In fact, even completely metrizable spaces need not be B-spaces. An example may be found in [BP].

Example. A T_2 minimal space need not be a B-space. Indeed, let E denote the T_2 minimal space constructed in [He], whose point set is $R_0 \cup R_1 \cup R_2$, where $R_0 = \mathbb{R} \setminus \mathbb{Q} \cap I \times \{0\}$, $R_i = \mathbb{Q} \cap I \times \{i\}$, i = 1, 2. Define $f: E \to I$ by f(x, i) = x, then f is a continuous, nearly open surjection which is not open.

Concerning sums of B-spaces we have the following

Proposition 12. ($[N_3]$). Let E be a completely regular B-space. Then the following statements are equivalent:

- (1) E + Lis a B-space whenever Lis T_2 locally compact;
- (2) E + K is a B-space whenever K is T_2 compact;
- (3) $E + \beta E$ is a B-space;
- (4) E is locally compact.

Let E be a non-discrete Lindelöf P-space. Then E is a B-space but $E + \beta E$ is not

since E is not locally compact. On the other hand, E + E is clearly a B-space since it is Lindelöf P. This proves that the lemma from § 1 is not valid for surjective mappings f resp. the class of B-spaces is not closed with respect to taking T_2 extensions.

Bibliography

- [AEK] N. Adasch, B. Ernst, D. Keim: Topological vector spaces LNM 639.
- [Ba₁] J. W. Baker: Inversion theorems and compactness. JLMS 47 (1976), 409ff.
- [Ba2] J. W. Baker: On a generalized open mapping theorem. MA 172 (1976), 217ff.
- [BP] T. Byczkowski, R. Pol.: On the closed and open mapping theorems. Bull. Acad. Pol. Sci. 24 (1976), 723-726.
- [FK] W. G. Fleissner, K. Kunen: Barely Baire spaces. FM CI (1978), 229-240.
- [Gr] D. L. Grant: Topological groups which satisfy an open mapping theorem. PJM 68 (1977), 411-423.
- [He] H. Herrlich: Nicht alle T₂ minimalen R\u00e4ume sind von zweiter Kategorie. MZ 91 (1966), 15.
- [Hu₁] T. Husain: The open mapping and closed graph theorem in topological vector spaces. Braunschweig 1965.
- [Hu₂] T. Husain: Introduction to topological groups. Philadelphia 1966.
- [Kö] G. Köthe: Topological vector spaces II. New York 1979.
- [N₁] D. Noll: Open mapping theorems in topological spaces. CMJ 35 (110), 1985.
- [N₂] D. Noll: Sums and products of B_r-spaces. PJM 123, 1, 1986.
- $[N_3]$ D. Noll: Baire category and B_r -spaces. PAMS 101, 671 ff, 1987.
- [Pe] B. J. Pettis: On continuity and openness of homomorphisms in topological groups. Ann. of Math. 52 (1957), 293-308.
- [P] V. Pták: Completeness and the open mapping theorem. Bull. Soc. Math. France 86, 41-74, 1958.
- [St] J. D. Stein: The open mapping theorem for spaces with unique segments. PJM 40 (2), 1972, 459-462.
- [Su] L. J. Sulley: A note on B- and B_r-complete topological Abelian groups. Proc. Camb. Phil. Soc. 66 (1969), 275.
- [We] J. D. Weston: On the comparison of topologies. JLMS 32 (1957), 342-354.
- [Wi] M. Wilhelm: Criteria for the openness of relations. FM CXIV ('81), 219ff.

Author's address: Universität Stuttgart, Mathematisches Institut B, Pfaffenwaldring, 7000 Stuttgart 80, BRD.