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We consider nonlinear optimization programs with matrix inequality constraints, also known as
nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method
which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition
and a suitable implicit function theorem are used to prove local linear convergence without the need
to drive the penalty parameter to 0.
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1. Introduction

We consider mathematical optimization programs of the form
minimize f(x), x € R"

. ()
subjectto G(x) <0

where f : R"” — Risa C? function, G : R" — S™ a C? operator into the space S of m x m
symmetric matrices, and where < 0 means negative semidefinite. The constraint G(x) < 0 is
referred to as a matrix inequality, or as a nonlinear semidefinite constraint. We study augmented
Lagrangian methods to solve (1) and develop a suitable local convergence theory.

Nonlinear programs (1) with matrix inequality constraints have been intensely studied since
the 1990s. They arise in many applications in automatic control, finance and design engineer-
ing. Semidefinite programming (SDP) is a prominent special case of (1) which comes with
a linear objective f(x) = c¢'x and a linear matrix inequality G(x) = Ay + 21‘1:1 Aixi <0
in the constraint [1].

During the early 1990s, interior point methods were considered the only true way to
solve (1), but other methods entered the scene from the late 1990s on, including nonsmooth
and eigenvalue optimization [2-15] sequential SDP [16-19] and augmented Lagrangian
methods.
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The use of augmented Lagrangians for (1) was proposed by Ben—Tal and Zibulevski in
refs. [20,21]. Mosheyev and Zibulevski [22] studied several augmented Lagrangian mod-
els, and Kocvara and Stingl [23-25] developed the platforms PENNON and PENBMI to
solve linear and bilinear semidefinite programs. Other approaches based on the augmented
Lagrangian method are [26,27], [28-30] and [42—46]. In the present paper we obtain a local
convergence theory for the methods [20,21,23-25].

The augmented Lagrangian models proposed in [20,21] are based on the idea of a spectral
penalty function. Consider a convex C? function ¢ : R — R U {400} with the following
properties

(¢1) ¢ is strictly convex, increasing and of class C? on dom(¢), which is open and contains
(—o00, 0].

(¢2) ¢(0) =0.

(¢3) ¢'(0) = 1.

(¢4) t¢'(t) = O(1) as t - —o0.

(¢s) 29" (t) = O(1) ast — —oc.

Typical examples are

1, 1 1
t+§t’ 12—5 — =1, t<1
=9 | ; Lo s =11 )
~7 log(—2t) — 3’ t < —3 400, else
Now define a matrix function ® : S” — S™ associated with ¢ by setting
®(X) = ®(Qdiag A(X) Q1) = Qdiagp (L(X)Q", 3)

where X = Q diag L(X) Q" isa spectral decomposition of X € §”, with A(X) € R™ the
vector of eigenvalues of X in decreasing order, and where ¢ (A) = (¢ (11), ..., ¢ (Ay)) for
A=A, ..., Ap) € R™. Observe that the operator ® is independent of the choice of the
orthonormal basis Q(X) = [¢1(X), ..., g (X)] of eigenvectors of X, and may also be written
as®(X) = > 1L ¢ (i (X))qi (X)gi (X )T. Operators of this form are called symmetric and have
been studied e.g. in [31,32]. Since ¢ (x) = x" gives ®(X) = X", ® is analytic for analytic ¢.
It can also be shown that & is of class C? whenever ¢ is of class C2, see [33]. Given a penalty
parameter p > 0 we define ®,(X) = p ®(p~' X) and introduce the augmented Lagrangian
function

F(x,U,p)=fx)+U e d,(G(x)), (€]

where U € S with U > 0 is a Lagrange multiplier estimate. For fixed U > 0 and p > 0 we
now consider the unconstrained optimization program

min F(x, U, p) (5)
xeR”

which we also call the rangent program. The augmented Lagrangian method is then defined
as follows.
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Augmented Lagrangian Algorithm

FixO<y<1,0<t<1

1. Choose initial iterate x; and initial Lagrange multiplier estimate U; > 0.
Fix penalty p; > 0.
2. Given the current iterate x;, Lagrange multiplier estimate U; > 0 and
penalty p; > 0, solve the tangent program
min,cgrn F(x, Ug, pi)
possibly using x; as a starting point for the inner iteration. The solution
18 Xk41-
3. Update the Lagrange multiplier estimate by setting
U1 = @), (G (xx11)) Uk
4. Update the penalty parameter by setting

Dik» i oGt Uk, pr) < 10 (e, Uk—1, pr—1)
Pi+1 =

YDk, else
5. Increase counter k, and go back to step 2.

The mechanism is as follows. It is understood that solving the unconstrained program (5)
is considerably easier than solving (1). We expect the sequence x; to converge to a local
minimum % of (1), while U, converges to an associated Lagrange multiplier U > 0. The
so-called first-order multiplier update rule Ug11 = ®/,(G (xx+1)) Ug in step 3 is used to improve
the quality of the multiplier estimate before the next sweep. Axiom (¢;) gives ¢’ > 0, so that
the operator @, is strictly monotone, which means that Uy > 0 as soon as Uy > 0, and even
Ui+1 > 0 as soon as Uy > 0.

In step 4 the penalty parameter py is decreased when x4 does not make sufficient progress
toward feasibility as compared to x;. This progress is measured by a suitable primal-dual
progress measure o, defined as

o, U, p) = U - @ (G NUII = U - U"|.

In fact, driving p; — 0 would ultimately force feasibility, but the rationale of the augmented
Lagrangian scheme is that x; may converge to x without forcing p; — 0. The objective of
our local convergence analysis here is to show under what conditions this is possible, and that
a linear rate of convergence can be obtained.

The matrix inequality constrained case has several challenges. Notice for instance that
in contrast with the classical Hestenes—Powell-Rockafellar augmented Lagrangian [34-37],
technical complications arise due to the fact that (¢, p) — p¢ (p~'t) has a singularity at (0, 0).
This difficulty leads to the concept of wedge convergence in section 7, Definitions 2 and 3,
which plays a central role in our convergence analysis.

Yet another technical difficulty arises from the fact that we have to use the sufficient second-
order no-gap optimality condition (11); cf. [38]. As we show by way of an example, it is not
appropriate to use the old form of the second-order sufficient optimality condition (13) for
matrix inequality constrained programs.

The structure of the paper is as follows. In sections 2—4 we recall useful facts from matrix
constrained programming, covered essentially by [38]. Sections 5 and 7 prepare our case for
the study of the analytic source function ¢ (t) = (1 — t)~! — 1. The main result is presented in
section 6. Sections 8 and 9 are crucial and present technical results which combine the concept
of wedge convergence with the second-order nogap optimality condition. The implicit function
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theorem is applied in section 10 under a special form given in Lemma 1. The central part of
the proof, where the different threads are put together, is in section 11. We conclude with an
example in section 12, showing that the nogap optimality condition is of the essence, and that
the complications arising from it can not be avoided.

Our contribution is complementary to papers where global convergence proofs for aug-
mented Lagrangians have been presented. For instance, [20] considers convergence of the
present method in the convex case, [39] discusses and compares an even larger class of aug-
mented Lagrangian models. Local convergence theory for the classical augmented Lagrangian
method may be found in ref. [37], while local theory for classical programs based on smooth
generating functions ¢ is presented in ref. [40].

Notation. The space of m x m symmetric matrices S” is equipped with the scalar product
Tr(XY) = X e Y.Thenegative coneinS” isS” = {X € S : X < 0}. For asymmetric expres-
sion X = A + AT we shall sometimes write X = A + * in order to facilitate the presentation.
In the algorithm, x, U, p mean the current iterates, x*, U™, p™ the next iterates, x—, U™, p~
those from the previous sweep. Notions from matrix inequality constrained mathematical
programming are covered by [38].

2. First-order optimality condition

Let X be a local minimum of program (1) such that Robinson’s constraint qualification
[38, p. 72] is satisfied. Let U > 0 be a Lagrange multiplier associated with x, then the
Karush—Kuhn-Tucker conditions are

@& +GX)U=0G(x) <0,U>=0G(x)elU =0. (6)

Here the adjoint operator G’(x)* is defined as follows. Let G;(x) = dG(x)/dx; € S™,
i=1,...,n,thenG'x)'Y =(Gi(x)eY,...,G,(x) oY) € R", see [38,41].

As is well-known, complementarity G(x) L U in (6) implies that U and G(¥) commute,
and may therefore be diagonalized simultaneously. Assuming without loss that G (x) and U
are already diagonal matrices, we have

G(x) = diag[gi, ..., &, On—s], U =diag[Os, 541, ..., in] (N

where g; <0 and u; > 0. Strict complementarity is satisfied as soon as it; > 0 for
j=s+1,...,m.

3. Second-order optimality condition

Let us now consider the second order sufficient optimality condition as proposed in [38,41].
The Lagrangian of (1) is

Lx,U)= f(x)+U eG(x). )
Following [41 formula (37)], the critical cone at (X, U)is
CX)={heR":Ue[G'(X)h] =0,G' (X)h € T(S™, G(¥))},

where T'(S™, G) is the tangent cone to S™ at G € S™. This tangent cone is

T(S",G)={ZeS":E"ZE <0},
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where E'is am x (m — s) matrix whose columns form an orthonormal basis of the null space
of G; cf. [38, p. 474]. Due to (7), the null space of G = G(x) is spanned by the m — s unit

vectors €41, - . . , €. That means, if we partition the matrix Z as
Zy Zn S s
Z=| -+ , Zn €S, Zy eSS, )
Zy, Iy

then T(S™, G) = {Z € S" : Zy» = 0}. Therefore, the critical cone may be written as
Cx)={heR":U e[G'(¥)h] =0, [G'(X)h]xn =< 0}.
Naturally, the first of these two conditions may also be written as
U o [G'(X)h] = U ¢ [G'(¥)h]n = 0.

Strict complementarity, it; > 0 fori =s + 1, ..., m, in tandem with [G’(X)h], < 0 implies
[G'(x)h]2; = 0. In other words, under strict complementarity the critical cone is the linear
subspace

C(x)=1{h eR":[G'(X)h]p, = 0}. 10)

Let us now present the so-called no-gap second-order sufficient optimality condition. It
reads

h'[Lo(k, U) 4+ H(x, U)h > 0forevery h € C(x), h # 0, (11)

where L (X, U) is the Hessian of the Lagrangian (8), and where H.(x, U) is a term reflecting

curvature information of the feasible domain at x. According to [41, formula (40)], this term
is of the form

[H(E, U)]ij = —2U ¢ (G:(H)[G(®)]'G; (%)),

or in a compact notation

— T —
H(E,U) = -2 (a(;ff)) U ®[G®)]" (@) ,

0x

where MT denotes the pseudo inverse of a matrix M, ® the Kronecker product, and where
dG(x)/dx denotes the n> x m matrix [vec G, (x), ..., vec G, (x)]. Consequently, we obtain
for the curvature term

hTHE O)h =Y hihj (—20 ¢ G;(1)G(¥)'G;(¥))

i,j=1

20 e | 3 hih;Gi(HGH'G;(®)

i,j=1

—20 o | D hGi(OGED Y h,;G,()
i=1

= =
= 20U o [G'(X)h]G @) [G'(X)h].

Due to the special structure (7), (9), we may develop this expression further, which yields

hTHE, Uh = —2diag(itss 1, - - - » i) ® [G'(¥)h]],diag <g1_1 . gi> [G'(X)h]n. (12)
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As can be seen, this term is > 0, which means that the no-gap condition (11) is weaker than
the ‘classical’ second-order sufficient condition:

h'Le(x,U)h >0 forall h e C(x)\ {0}. (13)

In fact, as we shall see in section 12, this condition, which is still used by many authors to extend
results from classical nonlinear programming to matrix inequality constrained programming
in a straightforward way, is too strong to be realistic. Results based on (13) are therefore of
little interest.

4. Constraint qualification

We need one more element, a generalization of the linear independence constraint qualification
(LICQ) from classical nonlinear programming. Let G=G(X) and let Ebe am x (m —s)
matrix whose m — s columns form an orthonormal basis of the null space of G, then we say
that the generalized LICQ condition holds if

W (ETG(X)EeW,...,ETG,(Xx)Ee W), S"* — R" isinjective. (14)
In the situation (7), condition LICQ is equivalent to the following:
Wi— (Gi(X)peW,...,G,(X)pe W), S§"° — R" Iisinjective. (15)

As in classical nonlinear programming, LICQ implies uniqueness of the Lagrange multiplier
U. Notice that (15) appears fairly restrictive at first sight, because it requires in particular that
n>(m—s)(m—s+ 1)/2. However, as we will see, this condition reduces to the classical
LICQ condition if the operator G is diagonal.

Indeed, suppose more generally that G : R" — S™ & --- @ S™ C S has a block diagonal
structure with b blocks, where m;| + - - - + m;, = m. Then multipliers U and partial derivatives
G j(x) have the same structure, and the linear independence condition can be restricted to that
space, i.e., (15) is required injective on the space of W € S™~* with this structure. In particular,
this means n > Z?:l(mj —s;)(mj —s; + 1)/2, where in each block j, we assume that s;
eigenvalues are < 0, the remaining m ; — s; eigenvalues are active at 0.

In the special case where G(x) is diagonal, we have m; = 1 and m = b. Assuming that
p constraints are active, we would have s; =--- =5, =0, 5,41 =--- =, = 1. Here the
LICQ condition coincides with the classical one, and the dimension condition simply reduces
to Y (mj —s;)(m; —s; +1)/2 = p < n, which is of course necessary if the p active
constraint gradients are to be linearly independent at x.

5. Analytic source function ¢ (t) = (1 —¢)"1 -1

In this section we will start analyzing the augmented Lagrangian model in the special case
of the source function ¢ (t) = (1 —t)~! — 1, which was proposed in [21,22] and later used
to develop the software tool PENNON [23,24]. In this case, analyticity of ¢ allows explicit
computations of the derivatives of the associated ®. Starting out with ®(X) = (I — X)~! — I,
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we consider
®,(G() = p@(p~'GW) = pU — p~'G) ™' = pl.

Expanding the C? operator G (x + d) = G(x) + G'(x)d + (1/2)G"(x)[d, d] + O(||d||?), we
have

D,(G(x +d) = P,(G(x)+ I — p 'Gx) G () — p~'Gx)™!
+ -p'Gx)™! [%G”(x)[d, d]} I —-p'Gx)™
+p MU = p GG ()T — pT'G(x) !
x [G'(x)d)(I — p~'G(x) ™" + O(d|P).
Therefore, the expansion of the penalty term U o ®,(G(x)) in (4) is
Ue @,,(G(x +d)=Ue <I>,,(G(x)) +[G'(x)d] e U*(x, U, p)
1
+5 {[G"(x)[d, d11 + 2p~'[G'(x)d]
x (I —p 'Ge)'[G' x)d]l} e Ut (x, U, p) + O(ld|),

where we put Ut (x,U, p) := (I — p G U - p7'Gx) 7L Using the standard
notations
G 3°G
@ g Gy = LW
8xi 8x,~8xj

Gi(x) = es”,
we derive the following formulas:

Fo(x, U, p) = f'(x) + G'(x)'U* (x, U, p)
=fX)+ G x)eUT(x,U,p),...,Gu(x) o UT(x,U, p)) (16)
and
Fu(x, U, p)j = @)+ Gj(x) e U (x, U, p) + 2p~(Gi(x)I — p~'G(x))"'G;(x)
+ G0 = p'Gx)'Gi(x) e Ut (x, U, p). (17
Notice that (16) gives the following formula
L(x,U*(x,U, p)) = Fu(x, U, p) (18)

whose analogue in the classical setting is well-known [37, p. 104ff]. It will be of use later.
The first-order update formula Ut = CD’p (G(x*))U takes the following explicit form

Ut=U-p'Gux")'Ud - p'Gxt) T (19)
Finally, we will also make use of the partial derivative F,y, which is readily obtained as
Fu(x,U, p)8U = (Gi(x) o (I — p~'Gx)7'8UU — p~'G(x) N, e R".  (20)

Using the notation Z,(x) = (I — p~'G(x))”! and the definition of the adjoint operator
G’'(x)*, we can write this more compactly as

Fuy(x,U, p)dU = G'(x)*[Z,(x)8UZ,(x)].
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6. Main theorem

Let x be a local minimum of (1) which is a KKT-point with unique associated Lagrange
multiplier matrix U. We consider the following hypotheses at x:

(H;) Strict complementarity (7).
(H,) The second-order sufficient no-gap optimality condition (11).
(H3) The generalized LICQ condition (15).

THEOREM. Let X be a local minimum of (1) with associated Lagrange multiplier U such that
hypotheses (Hy)—(H3) are satisfied. Then there exists a neighborhood N of U, a neighborhood
U of x, and p > 0 such that the following conditions are satisfied:

1. Whenever Uy € N and yp < p; < p, then the sequences Uy, py > 0 and x; generated
by the augmented Lagrangian algorithm are well-defined if xi 1 is the local minimum of
min,cre F(x, Ug, pr) in U. The sequence Uy stays in N, and xi, is the unique critical
point of (5) inU.

2. The sequence Uy converges to U with Q-linear speed, and xi converges to X with R-linear
speed.

3. The sequence py > 0 is constant from some index k; on.

The proof of this Theorem requires the preliminaries in sections 2—5, while the principal
arguments are covered by sections 7-11.

7. Preparations
In this section we consider technical notions needed for our convergence proof.

LEMMA 1. Let Q be an open subset of R* x R™ and let H : Q@ — R" be of class C*(Q) for
some k > 1. Let K* be a compact subset of R™ and suppose there exists a vector x* € R" with
{x*} x K* C Q such that H(x*,y) = 0 for every y € K*. Suppose H,(x*,y) is invertible
for every y € K*. Then there exists a neighborhood W of {x*} x K*, a neighborhood V of
K*, and a function x(-) : V. — R" of class C* such that H(x(y), y) = O foreveryy € V and
x(y) = x* for every y € K*. The function is unique in the sense that for every (x,y) € W,
H(x,y) =0ifandonly if y € V and x = x(y). Moreover,

X' () = —[He(x(y), VI Hy(x (), y).

This coincides with the usual implicit function theorem when the set K* = {y*} is a
singleton set.
The following technical notion will be helpful in our convergence proof.

DEFINITION 2. The sequence (xi, Ui, pr) € R" x S" x R is said to wedge-converge to
(x,U,0), noted (x, Uy, Pr) = x,0,0) if xp &> x, Uy —> U, pr — 0 in such a way
that (xy —x)/px — 0, (U — l_/)/pk — 0. Similarly, (x, pr) wedge converges to (x,0) in
R" x R if x; — x, and pp — 0 such that (x;, — x)/px — O.

The following concept will also be useful. It represents a different way to describe wedge
convergence.
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DEFINITION 3.  The set

—x U-U
W(e) = {(x,U,p): Ix = I <e, I I <e,0<p 56}
P p

is called a wedge neighborhood of (x, U, 0). Similarly, the set

llx — X[l

W/(e)z{(x,p): 56,0<p§e}

is a wedge neighborhood of (x, 0).

8. Lemmas with wedge convergence I

The results in this section exploit properties of the augmented Lagrangian function as it relates
to wedge convergence. We can think of this part as collecting prior information, which will
enable us later on (in section 11) to fix a parameter interval Z = [p, p].

LeEMMA 4. Assume hypotheses (H\)—(H3) are satisfied. Then there exist €, > 0 and K; > 0
such that

IFux, U, p)~' Il < K @n
forevery (x, U, p) € W(ey). Equivalently, there exists p > O such that

Fuo(x,U, p) = pl >0 (22)
forevery (x, U, p) € W(ey).

Proof. 1) It suffices to prove that F,.(x, U, p) = pI > 0 on a wedge neighborhood of
(x,U,0). Assume on the contrary that there exist x; — x, Uy — U, pr — 0 such that
(xx — x)/px = 0, (Ui — U)/pk — Obutd,jFxx(xk, Uk, pr)dr < & — 0 for certain unit vec-
tors d. Passing to a subsequence if necessary, we may assume that d; — d for a unit vector d,
and that dkT Fyx(xx, Uk, pr)dy converges to a quantity —@ with ¢ > 0. A priori, we could have
¥ = 400, but we will see in a moment that this possibility can be ruled out.

2) Now observe that with (17), writing Z; := Z,, (x;) = (I — p,le(xk))‘l, we obtain

d Fo(xp, Up, pdy = dif £/ () dy + U @ Zi[G” (xi0)[dx, di]1Zx
+2p. Uy @ Zi[G' (x)di 1 Zi (G (x1)di 1 Zi

= d Ly(xx, ZLUpZy)dy + 2p; ' Uy @ Zi[G' (xi)di1 Zi[G' (xi)di 1 Zy..
(23)

Let us show that the term dkT L. (---)dy on the right-hand side of (23) converges to
d" L (x,U)d. This follows as soon as we show that Z; U, Z; converges to U. To prove
this, consider a spectral decomposition G(x;) = QxGQ/, where G, = diag(gt, ..., gk).
Then Z, = (I — p; 'G(xx))~" = 0Dy Q] , where the diagonal matrix Dy = (I — p; 'Gy)™!
has diagonal entries py/(px — gf‘). Selecting a convergent subsequence Q; — Q, we have
Zry = Qi Dy QkT — Qdiag(0;, I,,_;)Q T, because (gf‘ — gi)/pr — 0 by wedge convergence,
and g, =0fori=s+1,...,m, while g; <0 for i =1,...,s. Here Q is an orthogo-
nal matrix which gives a spectral decomposition of G(x). According to (7), this means
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G(x) = 0GOT =G = = diag(g, ..., &m). Since U and G (x) commute, Q also diagonalizes
U, ie., with (7) we have QU Q" = U. Therefore, with Uy = Q] U, Qi we have Z U, Z; =
0« (DU D) Q] — Qdiag(0,, 1,,_,)Udiag(0;, I,,_)Q" = QUQT = U as claimed. The
result being the same for any convergent subsequence Q; — Q, the conclusion is that
2 Uy Zy — U.

3) Let us now look at the second term on the right-hand side of (23), which is nonnegative.
Since the first term dkT L(- - - )dy on the right-hand side of (23) converges to d ' L, (%, U)
d € R, non-negativity of the second term on the right-hand side of (23) implies that the limit
—u of dk F,x(- - -)dy on the left-hand side of (23) must be finite. In consequence, the limit of
the second term on the right-hand side of (23) is also finite and > 0.

This term is of the form 2p,: By >0 with B = Uk — 71G(xk)) Uk o Ut (xy,
Uk, pr), where we have for ease of notatlon put Wk = G’ (x)dy. Since 2 pk x converges by
what was seen above, and since p, ' — 400, it follows that E; — 0.

Now as we have seen, U™ (xi, Ui, pr) = ZiUiZy — U, and WAZ Wk — W
Z¥ = \lldlag[Oy, I, 19U, where ¥ := G’ (x)d, Z = diag([Oy, I,,,—s]. Therefore, we have
Er — Uy e Wy W,y = 0. Since Uzz > 0 by strict complementarity and Uy Wy = 0, we
deduce Wy, = [G'(X)d ]2 = 0. In other words, d € C(x) is a critical direction (10).

Using this information we get back to the convergent term 2 p,jl Ex, which we write as

2p; "By = 2p; ' 2R 2,0k 7, 0 U

As before let Q; an orthogonal matrix which diagonalizes G(x;), G(xx) = Q1 Gy Qk
with G, = diag(g] — gm) Then Z; = (I — p; GO = 0k — pk_le) 1Qk Letus
introduce the matrices % = Q] ¥*Qy and Uy = Q] Ui Qk. We decompose according to (9):

Ik Ok ko7

Tk — RSTRE ) i = Uty U
I T A o7 A 57

12 2 12 2

and expand the term 2 p,:l Eyx as follows:

2p0 B =20 U = p GO TR - p G TR — p GO e Uy
=2p, ' U}y o (I = p ' GO U = p ' GOy W (T = p ' GOy
+ (= p GO VEU — p ' GoR W (I — p G
+2p U o (= p ' GoR Ul (0 = p GO B U = p ' Gy
+ I = p ' GOR VLU — p GBI (I — p ' GoTh
+2p; lUIkZT o (I - p'Goyy \1’11(1 - _le)1_1l“IJ12(I — GO
+ I = p' GO VLU — p GO (T — p'GoR)
+2p ' Uh o (1= p ' G Ul (= p GO Bl — pi' Gy
+ = p ' GOR VLU — pi GO LU — p ' GO
Now observe that Uy — U, so that 2p; 1Ull — 0 and 2p 1Ul"2 — 0. Therefore, the first

three terms of the above expression 2p,  Uf, @ (---), 2p ' UL, @ (--+) and 2p;. IU{‘ZT o(--)
all converge to 0, and it remains to discuss convergence of the fourth term 2p, 1U22 o (1),
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This term splits into two terms: 2p,” : l7£‘2 o (--+) = 1% 4 oy. The second of those is
on=2p; ' U%y o (1 = p ' GOy W — p ' GOy (I — pi ' Gy
=2p, (I = p ' GR UL = p' Gy @ WS — ' GOy Wi,

which is nonnegative, because ﬁé‘z — Uy > 0and I - pk_1 G;<)2_2l > 0 for G’;z close enough
to G2 = 0, a fact which follows from wedge convergence G (x;) = G (x). Passing to a sub-
sequence as k — 00, the term o} therefore converges to some value ¢ > 0. Again, 0 = +00
seems a priori possible, but we will be able to rule this out below.

4) Finally, the first of the terms in 2 pk_l Ué‘z o(---)is

n=2p; ' USy o (I — pr ' G O (I = p G (U — pr' Gy
= (I = p;'GR UL = pi'Goy « 20 pi (1 = pi ' GOy .

Now observe that (I — p,zl Gk)gzl — I under wedge convergence (xx, px) = (x, 0), so that
the term on the left of e in t; converges to Uy,. As for the term on the right of e, observe that

_ _ _ _ . 1 1
Py Ya - Dx le)lll = (pel — Gk)nl —> diag <—g—, ...,—g—) ,
1 s

which means that the term to the right of e converges to Z\IIITZ(—G()E)T)H\TIIZ. Conse-
quently, 7, — 2W (=G (%)") W, @ Uy = d"H (%, U)d, using (12). We have shown that
20 Bi =0+ — o +d H(E, U)d.

Altogether, in (23), passing to the limit in each of the terms, we have the following situation:

9 =d Ly, U)d+d HE, U +o

with ¥ > 0, 0 > 0. Since d # 0 is a critical directign by part _3), the second-order suffi-
cient no-gap optimality condition implies d " (L”(xX, U) + H(x, U))d > 0. This is clearly a
contradiction and therefore proves the result. |

Remark. The result could be summarized by saying that Fy, (x, U, p)~' remains bounded as
p — 0,x — X, U — U as long as convergence takes place in a controlled fashion, namely,
as long as (x, U, p) 2 (x,U, 0). This is what originally motivated the definition of wedge
convergence.

Recall the definition Z,(x) = (I — p~'G(x))~!. We have the following
LEMMA 5. Suppose (x, p) 5 (x,0), then Z,(x) — Z, where Z = diag(0y, 1,y—s)-

Proof. We prove that (x, p) — (%, 0) implies G(x) — G(x), which in turn gives g; (x) —
gi. In other words, (g;(x) — g;)/p — 0. This is a consequence of the fact that eigen-
value functions of symmetric matrices are locally Lipschitz: [A; (X) — A; X)| <K|X - X]|.
Since the operator G is locally Lipschitz, we deduce |1;(G(x)) — A;(G(X))| < K'||x —
X||, which is |g;(x) — gi| < K'||x — X||, proving wedge convergence g;(x) 5 gi, that is,
(&(x) —&)/p — Oas (x, p) > (%,0).

Now the eigenvalues of Z,(x) = (I — p~'G(x)) ' arez;(x) = p/(p — gi(x)). Thisclearly
gives z;(x) — z; under wedge convergence, where z; =1 fori =1,...,s and z; = 0 for
i=s+1,...,m. Using the above argument backwards, convergence of the eigenvalues
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zi(x) —> Z,-_under wedge convergence (x, p) 5 (x, 0) implies convergence of the matrices
Z,(x) — Z.Here we use || X| = QX Q| for orthogonal Q. |

LEMMA 6. Assuming (Hy) —(H3), there exists €, > 0 and K, > 0 such that
| Frv(x, U, p)Il < K2, (24)
for every (x, U, p) € W(ey).

Proof. It suffices to write
Fuy(x,U, p)dU = G' () [ — p 'Gx)'sUUI — p~'Gx) ™1

for a test vector U € S™. This shows of course that F,y does not depend on U. Then conver-
gence Z,(x) = (I — plG(x)' = Zas(x, p) = (x, 0) proved in Lemma 5 above readily
implies boundedness of F,y as (x, U, p) 5 (x,U,0). ]

Let us collect some more facts about wedge convergence. We need a refinement of
Lemma 5. Let x* € R" and write G(x*) = QG+ QT for G* = diag(g;(x "), ..., gn(x1)).
Then Q also diagonalizes Z,(x"), that is, Z,(x*) = OD,(x")Q", where D,(x") =
diag(z;(x™), ..., zm(xT)). We have the following

LEMMA 7. Decomposing Q according to (9), there exists €3 > 0 and a constant K3 > 0 such
that for all (x™, p) € W/(e3),

1. The blocks of Q satisfy the following estimates:

105,02 — 11| < Ksllx* — x|, [Q],0n — Il < Ks[x™ — %I,
1010L1 < Ksllxt — X[l 10200 < Ksllx™ — x|, (25)
1021051l < Kallx* — x|, 1011Q5,1l < K3[lx™ —X|.
2. The blocks of Z,(x*) satisfy the following estimates:

1Z,xOull < Ksp,  1Z,(xDnall < Ksllx™ = &I,

_ (26)
1Z,(x")o — Il < K3p~'[lxt — X||.

Proof. Let us start by writing
G - G@) = QG -~ G)Q" +0GQT -G,

where Q diagonalizes G (x1) with diagonal matrix GT. We can see that the first term on the
right-hand side is O(G(x") — G (X)), because eigenvalue functions are locally Lipschitz, and
because || X| = |QXQ"||. Subtracting this term, shows QGQ' — G = O(G(xT) — G(¥)).
But G is locally Lipschitz, so we have QGQ T — G = O(|lx* — x||). Expanding this term
gives

0607 — G = |:Q11611Q1Tl -G QIIGIIQ;:|

0216110/ 021G1103,
using (7). This implies three estimates, namely 0,1G1 Qle =0(|x* — x||) for the (2, 2)

block, 021G 11Q], = O(|]x* — X||) for the off-diagonal blocks, and Q;1G;Q], — G| =
O(lx* — &|)) for the (1, 1) block.
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Since G <0, 021G1105, = O(|lx* — %|)) implies Q2;Q,, = O(|lx* — X||). For the
same reason, Q11G11Q], — G11 = O(||x* — X|)) implies Q1 0/, — I = O(||x™ — X||) and
similarly, 021G 11 Q], = O(|x* — X||) implies 02, Q], = O(||x* — %|]).

From orthogonality of O we can deduce three more things. Namely, Q1 QL + 01 QTZ =1
implies 01201, = O(lx* — &), 0210, + 02207, = 0 implies 00, = O(|lx* — ),
and thirdly Q21 0], + 02205, = I implies 0205, — I = O(||x* — X||). That completes the
list of statements in (25).

Consider item 2. Recall that Z, (xT) — Z under wedge convergence (x, p) 5 (x,0) by
Lemma 5. Looking at the diagonal matrix D, (x") associated with Z,(x*), we can see that
D, (x*)11 — 0 with speed D, (x*);; = O(p). This follows from the estimate

14 p .
lzi(x 1) = < <Kp, i=1,...,s,
’ p—g&(xt) T —gi(xh)
which uses g;(x*) — g <Ofori =1,...,s.

Similarly, we have D, (x ") — I under wedge convergence (x™, p) 5 (%, 0) with speed
D,(xT)p — 1 = O(p~Y||x* — ¥||). Here we use the estimate

PN 1Ca0 | [ 100 Kt 117 SR
’ T p-gGt) 1= (st -g)/p’ o
where g; =0 fori = s + 1, ..., m. Then the denominator is bounded on a wedge neighbor-

hood, while the nominator is of the order O(p~!|lx* — X|)).

Using these estimates, observe now that we have Z, (™11 = 01D QTI + Q12D QTZ.
Since Q1> erz = O(||lx* — x||) and D>, — I under wedge convergence (x*, p) = (%, 0),
the second term on the right is O(||x* — x||). Since 011 Q], — I = O(||xT — x|)), the first
term on the right is O(||Dy1]|) = O(p) under wedge convergence. That proves the estimate
Z,(x") 11 = O(p + |lx* — %||). Under wedge convergence we have ||x* — x| = p(|lxT —
x|l/p) = o(p), so the dominant expression is Z,,(x+)11 = O(p) as claimed. This proves the
first estimate in item 3.

Next observe that we have Z,,(x*)lz = Q“D”Q;1 + Q12D22Q;2. The first term is
O(pllx™ — x||), because as we have seen D3 = O(p), and Q10,5 = O(|x+ — X|)
according to item 1. The second term Q,Dx QZT2 on the other hand can be writ-
ten as Q12(Dxn —1)0y, + Q1205,. Here Q13(Dyy — 1)Q5, = O(Dy, — NO(01205,) =
O(p~!xT — x||?). On the other hand, 0120, = I — 011 Q], = O(||x" — X)) by orthogo-
nality of Q and by item 1. Since ||x* — X||/p — 0 by the definition of wedge convergence,
the dominant term for Z,(x*)5 is of the order O([lx* — X||) as claimed.

Finally, we have Z,(x")n —1 = 02D10,5 + 02nD»Q), — 1. Since 01,0, —
I = O(|lx™ — x||), orthogonality gives Q2 Q5 = O(|[xT — X||), so that the first term is
O(pllx* — %||). Let us write the second term as Q0 (D — 1)Q1, + 02 Q,, — I. Here the
left-hand term is O(p~'||x* — X||), while the right-hand term is O(||x* — x||). The dominant
expression is the first one, proving the estimate. |

Recall that UM (x*, U, p) = Z,(x")UZ,(x*). We have the following
LEMMA 8. There exists a wedge neighborhood V(€4) and a constant K4 > 0 such that
IURGH U Il < Ka(p?IIU = Ul + 167 = 51, @7

and
UL, U, p)ll < Ka(plU = U + [lx* = %ID. (28)
for every (x, U, p) € W(es).
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Proof. Notice first that
Ul = Z,)0n(UnZy() 11+ UnZy(x)5) + Z,()12(U L Z, ()11 + UnZp(x)],).

There are four terms to discuss here. Using (26) in the previous lemma, and observing
Ui, =0, wehave Uy, = O(||U — U|), so the first term Z;, Uy Z;, is O(p?||U — U|)). Using
Ui = 0 and (26), the second term Z; UnZ], is O(p||U — U|||lx* — %|)). Since [|x* —
x||/p — 0 under wedge convergence, the second term is therefore even o( pHU — U . By
symmetry, the same applies to the third term. As for the fourth term Z;,Uxn Z/,, notice that
Uy, — Uy = 0, s0 Uy, = O(1). From (26) we therefore obtain an expression of the form
O(|lx* — X||%). That proves the first estimate (27).
Similarly, the second estimate comprises four terms:

ULT = Z,(0) LU Zpy() 11 + UnZy(x)15) + Zpy ()0 (UL Z, ()11 + UnZ,(x)]).

Using again U;; = 0, Uj, = 0, so that Uy, = O(||JU — U||) and Uy, = O(|U — U]|), while
U, = O(1), the previous Lemma 7 gives O(p|lx* — %|||U — U]|) for the first term, which is
o(p2|U — U|)) under wedge convergence. The second term ZszUlzZsz isO(|lx+ — x|?|U —
Ull) = o(p*||U — U|)) under wedge convergence. The third term ZxU,,Z;; is O(p||U —
U, because Z», = O(1). The last term ZgzU22Z1T2 is O(Jlx* — x||), because Uy, = O(1).
This gives the two dominant terms in (28). [ |

9. Lemmas with wedge convergence II

In this section we consider two more technical results, which use the concept of wedge
convergence, in tandem with the no-gap second-order optimality condition.

LEMMA 9. Assume hypotheses (Hy)—(Hz), let U (x*, U, p) = Z,(x U Z,(x*), and write
U™ for short. There exists a wedge neighborhood W(es), a neighborhood N of U, and a
constant Ks > 0 such that the following condition is satisfied. Suppose (x, U, p) € W(es),
Ut €N, and 8U € S" with ||8U|| = 1, and put h = p~'F_'(x*, U, p)Foy (x*, U, p)sU.
Suppose the exotic equation
hT Lo, UDR+ p ' [G' DRl e (U = p~'GHISUIL — p' G
+2p7'[G' DRl e (I — p~' GO T'[G (xD)h]
x[1=p' GOV - p' GG I =0 (29)

is satisfied. Then ||h| < Ks.

Proof.  Suppose contrary to the statement that there exist (x,f, Uk, pr) % (%, U,0) and
Uk+ — U along with unit vectors 6U; such that equation (29) is satisfied, but||s;| — oo,
where

he = pi 'F (xf, Ur, po) Fa(x, Ur, po)8Ur.

Put d; = hy/||hi |l Passing to a subsequence, we may assume that d, — d for a unit vector d,
and also §U; — U for a unit vector §U.
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Dividing (29) by ||A;||* gives

SU,
dl Lo (F, UDd + [G' (x5 di] » ([1 - pi ' GxH1™! o h"k“ [l — p,:lG(x;nl)
+2p; ' [G (xHd] o (T — p ' GG (x)dy]
x [I — p'GOaHI U — p ' G(xH1™H = 0. (30)

There are now two cases to be discussed. Case 1 is when py ||| > u > 0 for some w and a
subsequence of k € K. Case 2 is when py||hi|| — O.
Let us discuss case 1 first. Considering the subsequence k € K only, the term

SUy
Prllhill

O = [G'(x{)dy] » ([1 ~ p GO - ple(xb]—l)

is bounded above by ,u’l[G/(x,j')dk] o ([ — pk_lG(x,j)]’l(SUk[I — pk_lG(x,j)]’l), which is
bounded on a wedge neighborhood. Passing to yet another subsequence, and using Lemma 5,
we may therefore assume ®; — © for some ® € R. Going back with this information to (30),
we see that the identity is now of the form

d Lo (xt, UDdy + O +2p ' By =0,

where the two leftmost terms converge. Consequently, 2p,” 'E, has no choice, it converges,
and given the fact that pk_1 — 00, this implies E;y — 0. Now

Br = [G'(x;)di] @ (Z,, DG (A Z p, (5 Uk Zp (x5))
converges to
E = [G'(X)d]n o [G'(¥)d]nUxn =0,

where we use Z, (x,j Y > Z = diag(0;, I,,—s) by Lemma 5. Since Uy =0 by strict
complementarity, we deduce [G'(x)d]x; = 0, that is, d is a critical direction (10).

Let us analyze the term © in (30) a little further. Writing Z; := Z,, (x,j') and using (20) in
tandem with the definition d; = p; ‘|||~ F ! Foy8Uy gives

Or = pi el G () F G (6 (Z18U Zi)) ® (Z18Ui Zy).
Since the quadratic form G’ (x ,j )F x‘xl G/(x,j )* is positive semidefinite by Lemma 4, this implies
®; > 0. Passing to a subsequence, we may therefore assume that ®; — ©, where ® > 0.
As we know from the proof of Lemma 4, the term Zpk_1 By = 2pk_IZk\Ilka\IJka o U; in

(30) may be decomposed as oy + 1, where oy > 0, and 7z — dTH(x, U)d. We therefore
have the following situation:

dl Lo (x5, UDdr + O + 0 + 14 = 0.
Passing to the limit, we find that
d"L (%, 0)d+ O +0+d HE U)d =0.

Since ® + 0 > 0 and d is a critical direction, this contradicts the second-order sufficient
no-gap optimality condition (hypothesis (H;)) and settles case 1.
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Let us now consider case 2, where ||hi|| — oo, but pgllhi| — 0. Multiplying (30) with
Prllh|l gives the identity

Pl dl Lee (x5, UDd + [G' (xdi] o (L — p ' GO SULT — pr ' G(xHT™)
+ 20 I[G ()diT @ (1 — p ' GO TG (x)di]
x [I — p' GO ' UI — pr'GxHT™H =0. @31)

Here the first term converges to 0, the second term @k = [G/(x,jr )di] e (---) converges to
O := [G'(x)d]y, ® 8Uy;. Therefore, the rightmost term in (31) is also convergent.

This term is now of the form 2|/, || Ex, where &, is as before, and ||, || — oo. Therefore, we
must have E; — 0. But ; — E =V ¢ ZUWZUZ = Uy, @ Wy Wy, = 0. Since Uy, > 0 by
strict complementarity, this implies Uy, = [G'(X)d]a, = 0, so thatd is a critical direction (10).

Using this information, we now go back to (30). Here the third term is of the form 2 pk_l .
Using the argument in the proof of Lemma 4, we have 2 pk_1 8r = oy + 1, where o, > 0 and
7w — d ' H(X, U)d. Let us examine the second term of (30), which is ©; = pk_1 ]~ Wk o
Z8Uy Zy. Substituting backwards, using dy = hy /|| hi||, the definition of 4, and representing
F,y as in (20), we have

O = p 2 el 2 LG (xR @ Z48UL Zy
= pi M G ) Fox (57, Ur, po) ™' G () (Zi8UR Zi)] ® (Zi8U Zy) > 0,

the latter, because the quadratic form G/(x,j' ) Fx’x1 G’(x,j )* is positive semidefinite by Lemma 4.
This means ®; > 0. We therefore find the following situation:

dl Lo (x5, UDdr + O + 7 + 0 = 0,

which after passing to a subsequence converges to the limit d'L,,(x,U)d + © +
d"H (%, U)d + o = 0. This contradicts the second-order optimality condition, because
® + o > 0, and since d was recognized as a critical direction. This ends case 2, and thereby
completes the proof. |

Recall the notation Ut = U (x*, U, p) = Z,(x"UZ,(x") in (19), where Z,(xT) =
(I — p~'G(x*))~!. We have the following technical

LeEMMA 10. Under hypotheses (Hi)—(H3), there exist € > 0 and a constant K¢ > 0, such
that the following condition is satisfied: Suppose (x, U, p) € W(eg) and §U € S™ with
|8U || = 1 are such that

h:=p~'Fax™, U, p)~ Fyx™, U, p)U,
and
H:=p'Z,NHUZ,(x") + p 'UTG' xNhZ,(x™) + *
satisfy the equation
Lot UNHh+ G x)*H =0. (32)
Then || Hy|l < Ke(||]| + 1).
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Proof. Let us write (32) as
LT, UNDh+(GixT)eH,...,G,(xT) e H) = 0.
Using the decomposition (9), and shifting (1, 1) and (1, 2)-terms to the right, this becomes
Gi(x ) e Hy =~/ Lu(x*, UNDh = G(x")11 @ Hyy — 2T (G (x )12 H}y)

where e; is the jth coordinate unit vector. Therefore each G j(x+)22 e Hy, is of the
form O(||h| + ||Hi2|| + || H11]]), because U™ is bounded on a wedge neighborhood by
Lemma 8. Now by the LICQ hypothesis (H3), the operator (15) is injective, and therefore
Wi (Gi(x)peW,...,G,(xT) e W) is injective at x* in a neighborhood of x. In other
words, [|(Gi(xT)pn e W, ..., G,(x)n e W)| > k||W] for some k > 0, all W, and all x*
sufficiently close to x. This proves Hy, = O(||k| + [|Hiz2ll + | Hi1ll)-

Next observe that by the definition of H,

Hi = (p~'Z,HSUZ, x4+ (p UG DRI Z,(x )1t + %
=p ' Z,cH18UNZ, D+ p UL Z, D) + UL Y LZ, (D) +

where we have put ¥ = G’(x*)h for brevity. According to (27) we have U ﬁ = O(1), while
p~'Z,(x")11 = O(1) under wedge convergence by (26). Similarly U}, = O(1) by (28).
Putting these together therefore gives H;; = O(1 + || &||) under wedge convergence. The same
applies to Hi;:

Hip=p ' Z,cH118UnZ,(x o + p(Z, WU + Z,(x )1 Wy U) + .

This completes the proof. |

10. Application of the implicit function theorem

Let us now put €; = min{e;, €;, €3, €4, €5, €¢}. Then all the properties collected over the
previous Lemmas will be valid on the wedge neighborhood W(e7).
Next consider the system of nonlinear equations

F.(x,U, p)=0,

based on formula (16). Notice that (X, U, p) is solution for every p > 0. Let us fix an interval
Z = [p1, p2] such that 0 < p; < p, < e7. We apply the implicit function theorem Lemma 1
where the H in the Lemma becomes F,, the compact set is K* = {U} x Z, the variable y
is (U, p) € ™ x R, while x is x. The invertibility hypothesis on H, in Lemma 1 therefore
reduces to invertibility of F\,, which is guaranteed by Lemma 4 (22). Consequently, there
exists an open neighborhood M, ,, C R" x §" x Rof {x} x {U} x [p1, p2], an open neigh-
borhood Ny, ,, of {U} x [p1, p2]in S” x R, and a C! function x* (-, -): N}, ,, — R" such
that F,(x*(U, p), U, p) = 0 for every (U, p) € Ny, p,, xt (U, p) = x for all p € [p1, p2l,
and such that the function x (-, -) is unique in the sense that (x, U, p) € M 1. p, together with
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F.(x,U, p) = 0implies x = xT(U, p). This may also be expressed by
{x, U, p) € My, p, : Fe(x, U, p) =0} ={(xT(WU, p), U, p): U, p) € Nppy.p,}. (33)
We may assume without loss that
M, p, C W(ey) forevery Z = [py, p>] having ps < €7, (34)

because WW(e7) is a neighborhood of {x} x (U} x [p1, p2]. Moreover, by further shrinking
M, p, and N, ,,, if required, we may arrange that

M, p, is of the form M, ,, = U, p, X Ny, 35)
for an open neighborhood U, ,, of x.
and similarly that
Ny, . p, is of the form N}, ,, = N, ,,, X I, p, for a convex open
neighborhood N, ,, of U and an open interval I,, ,, containing (36)

Z =[p1, p2l.

In our notation x ™ (U, p) we have suppressed the dependence of the implicit function on the
choice of Z = [py, p2], but we will say that x* (U, p) is associated with the choice of some
7. This slight abuse of notation is justified by the following

LEMMA 11. Under the standing assumptions (Hy)—(H3), we have the following uniqueness
statements:

1. Suppose 0 < py < ps < €7 and (U, p) € Ny, p,. Then x* (U, p) is the unique local mini-
mum (even the unique critical point) of program min,cr- F (x, U, p) in the neighborhood
u[’l,[’z ofi.

2. Suppose 0 < p’ < py and 0 < p” < py, p» < €; and that we have (U, p) € Ny, N
Ny p,. Then the values x* (U, p) of the two implicit functions associated with [p', p,]
and [p”, p,] agree.

Proof. Let us prove statement (1). We first show that x* (U, p) is a local minimum of F.
Clearly it is a critical point by the implicit function theorem, but in addition, we have
Fo (xT(U, p),U, p) > pI = 0, because (xT(U, p), U, p) € W(e7) by construction, so
Lemma 4 (22) applies. Now the sufficient second order optimality condition for program
(5) is satisfied at x T (U, p), which is therefore a local minimum.

Suppose now x is a critical point of program min,cg» F(x, U, p)inld,,, ,,.Then (x, U, p) €
Up,.p, X Ny py = M, s and of course Fy(x, U, p) = 0. Due to formula (33), this implies
x =x%(U, p).

The proof of statement (2) is based on the same argument. |

We will make use of the derivative formula for the implicit function, which is part of the
statement of the implicit function theorem (Lemma 1). Using (20), we have

(U, p)SU = —Fy (x*(U. p). U, p)~' Foy (x*(U. p). U. p) 8U

~Fu (") U p) T G (1= 276 (W )

SU(1=p G (W p)) ], 37)

whenever the implicit terms are defined.
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Let us introduce a second implicit function U™ (U, p) defined on V,,, ,, by

UtW, py=(I—p 'G(x*W,p) U —p'G(x*W,p)) .

In other words, Ut (U, p) = U" (x™(U, p), U, p), where the right-hand term uses the
function U™ introduced in section 8. We then have the following

LEMMA 12. Let 0 < p; < py < €;. Then the implicit function x* (U, p) associated with the
interval T = [py, p2] satisfies

Il (U, p)Il < Ksp, (38)
forevery (U, p) € Ny, ,. Similarly, the implicit function Ut (U, p) associated with T satisfies
I (U5 WU, p)),yy, Il < Ke(Ks+1)p (39)

forevery (U, p) € Ny, p,.-

Proof. 1) We start out with formula (37). Write for brevity x* = x*(U, p) and puth = p~!
x; (U, p)8U = p~'Fo o (xT, U, p) "' Fyy(x ", U, p)8U. The construction of the implicit func-
tion guarantees that (x*, U, p) € W(e7) for (U, p) € Ny, p,.

2) We claim that the exotic equation (29) is satisfied. This can be seen as follows. We
consider the identities:

L, (x*(U, p), UT(U, p)) =0 (40)
([ e (x+(U, p)))_l U (] -p'G (x+(U, p)))_l —-UtU,p)=0

based on (18), F, = 0, and (19). We differentiate these equations with respect to U. For the
first equation in (40) we obtain
Lo (x*(U, p), U, p)) x5 (U, p)SU + G (x(U, p))* [Uf (U, p)sU] =0.  (41)
Differentiating the second equation in (40) gives
[1-p7'G(x* W, p)] U1 -p'G ("W, p)]

+UTW. p) [p7G (W, p) (x5 . U] [1 = p7'G (xF (. p))]

+[1=p7'G (W )] [p7'G (xFW. ) {xf . pSUY UT W, p)

— U (U, p)sU = 0. 42)
Substituting (42) into (41) gives

L (v, U") 208U + Gt ([1 = p'G ()] oU 1= p7'6 (x)]7)

+2p7' G (1= p7'6 ()]G @ HsU} [T = p7'6 ()]

x Ul1=p'G(x)]™") =0, (43)

where we write x* = xT (U, p), Ut = Ut (U, p) and where we suppress the arguments.

Multiplying (43) from the left with & defined in part 1) above, and dividing by p?, we obtain
indeed the exotic equation (29). In consequence, Lemma 9 applies and gives p~! ||x$ W, pl =
Al < Ks on Ny, p,.
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3) Let us proceed in a similar way for the implicit function U ™. Observe that (43) is nothing
else but equation (29), when we substitute the expression for /4 used in 1), and when we put
H = p’IU,J]”(U, p)8U. Therefore, Lemma 10 implies

Ip~" (U5 WU, p)),y || = 1 Haall < Ko (IR]] + 1) < Ke(Ks + 1).

This proves the second part of the statement. |

Remark. The important fact about the constants collected over the past Lemmas is that they
are independent of the choice of the interval Z = [p;, p»], as long as p, < €7 is respected. We
refer to this as prior information, because it is needed before we ultimately fix the interval Z.
This will become clear in section 11.

We are now ready to obtain the following major step toward the local convergence of the
AL algorithm.

LEMMA 13.  Under hypotheses (Hy)—(H3), there exists €7 > 0 and K7 > 0 such that for all
0 < p1 < p» < €; the implicit functions x™ and U™ associated with the interval T = [p, ps]
satisfy the estimates

(@) |x*(U, p) — % < K;pllU = U, () |[UTU, p)—Ull < K7p|U = Ul (44)
forevery (U, p) € Ny, p,.

Proof.  Given the fact that x* (U, p) = x for every p and each of the implicit functions, we
can integrate and obtain

1
lx*(U, p) — x| = H/ xp(U+t(U —U), p)(U —U)dr| < Ksp|lU-U]|\,
0

using estimate (38) in Lemma 12, (U, p), (U, p) € Ny, .p.» and the fact that V), ,, is convex.
This proves estimate (a) with constant Ks.

To prove estimate (b) for the multiplier update, U™, we first apply the same argument to
the (2, 2)-block of U™. Since U* (U, p) = U for every p, we have

|UT(U, p)an — Un|l < Ke(Ks+ DpllU — U,

using integration, now based on estimate (39). For the (1, 1) and (1, 2) blocks we use directly
(27) and (28) in Lemma 8. We only have to notice that for every interval Z = [p;, p»] with
P2 < €7, picking (U, p) € N, ,,, implies (xT(U, p), U, p) € W(e7) by (34), so that

Ut (x* (WU, p). U, p), I+ 1U* (x* (U, p).U.p), |
< Ks (PPIU = Ul + IxT(U, p) = 1> + pllU = Ul + IxT(U, p) — %[
<2K4p|U - U]

by estimates (27) and (28), estimate (44) (a) with constant K’s, and the fact that we may render
14+p+ K52p||U —-U| + K52||U —U| <2 by reducing €; > 0 if necessary. This takes into
account that Ut(U, p) = Ut (x*(U, p), U, p). Altogether, we have shown |UT(U, p) —
Ul < K4+ K¢(Ks + 1)) p|U — U], proving the second part of estimate (44). If we put
K; = max{Ks, 2K, + K¢(Ks + 1)}, we clearly obtain both estimates in (44) with the same
constant K. [ |
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Remark. As a consequence of Lemma 13, we see that if we allow the penalty parameter
Pr to shrink to 0, we obtain local superlinear convergence Uy — U, while x; — X converges
R-superlinearly. See also [25] for a proof of this fact. Naturally, allowing the penalty parameter
to converge to 0 leads to numerical ill-conditioning in the tangent program (5), and has to be
avoided in practice. It is mandatory to freeze p at a decent positive value. During the following
section, we show that the algorithm then still converges linearly if the initial U is sufficiently
closeto U.

11. Progress measure

Recall that the progress measure o (x, U, p) used in step 4 of our algorithm is given as:
. -1 _ —1
o, U,p)=IU—~(I-p'G) U —-p 'Gw) I (45)

Then in fact o (x*, U, p) = ||[U — U™||. The test in step 4 therefore becomes ||U — UT| <
T||U~ = U||,where U = U™ (x, U™, p~). This is indeed a primal-dual progress test, because
it takes the full information x, U, p from two consecutive sweeps into account.

LeEMMA 14.  Suppose hypotheses (H, )—(_H3) are satisfied at (X, U). Then there exists €7 > 0,
0< pP<Pp<e€a neighborhood N of U and a neighborhood U of x such that for all p, and
U, satisfying py < p1 <pandU; € N:

1. The sequences py, Uy and xiy1 = x VT (Uy, pr) generated by the augmented Lagrangian
algorithm are well defined, and Uy € N for every k.

2. xpy1 € U forall k.

3. The sequence py stays in the interval T = [p, pl, and is therefore constant from some index
ki on.

Proof. Let €7 and the wedge neighborhood YW (e7) be as in the proof of Lemma 13. Choose
D < €7 such that K;p < 1. For later use put

Ks := K367 + Il sl + K3K7€3 + K3K7€3,
Ko := |UnlKiK2€s +2K3K1€7||Un || + K3 K7
and define

y’t
K7 (1+ K3+ Ko +1)

p = min {)ﬂﬁ, (46)
where 7, y are the parameters used in the algorithm, and where the constants K;, ¢; are as in
the previous sections. Recall that these constants are available before p is defined, because
they have been collected as part of the prior information. N

Now we define the neighborhoods in question by setting U =U,; and N =N, 5,
N = N, 3. See section 10, formulas (33)—(36), for their definitions. Notice that by Lemma 11
we have x4, = x1(Uy, pr) for the implicit function associated with [p, p] for all k with
pr € Z = [p, pl- In particular, the sequences x;, Uy and p; are well ‘defined for these k.
This is because Uy | stays in the neighborhood N, ; in view of estimate (46) (b) and K;p < 1,
so that the procedure can be continued at the next step. In particular, from the uniqueness part
of the implicit function theorem (33) we then know that x; stays in i{ = U, 5 and is the
unique local minimum (even unique critical point) of tangent program (5) in 4.
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Suppose the sequence p; does not stay in the interval Z = [p, p]. Then there exists a
smallest index k; such that py, € Z, but py, 11 = ypr, < p. We will show that this leads to a
contradiction. n

Notice first that p, < pi,sothatk; > 2.Indeed, py, = p; > yp would give p > py,+1 =
YPy, = yp1 > y*p, contradicting the definition of p. Hence indeed k; > 2.

Let Z = (I — p;'G(xis1))™", where xipy = xt(Us, pi). Z = diag(0y, Ii—). Then
Zy = Z, (x*T(Ug, px)). We have

U — Ul < prer < Per < &5.
Using this, (26), and (44) (a) we have
1Zell < 1(Z)ull + 1(Z)2ll + 211 (Zi)12]]
< 1Zull + M-l + 1{Zi)22 = Ln—s |l + 211(Zi)12l
< K3pi + 1 n—sll + Kapp lxert — 1| + 2K3lxiq1 — X
< Kser + [l + K3 K7 | Uy = Ul 4+ 2K3K7€7| Uy = U |
< K367 + |l + K3K7€7 +2K3K7¢65 = Ky 47)
according to the definition of Kg. Next consider the matrix expression
_ } —ZKUnZ  —zK Uy, Zk
U_auaz[ et THRmsn
—ZpUnZiy, Uxn—Z23UnZy,
Using again (26), we have
10 = ZUZill < 1 (U = ZkU Zi) | + 20 (U = ZkU Zie) , 1| + 11 (U = ZU Zi)
= 1Z5,UnZi] | + 2112, UnZ5 | + |Ux — Z5,UnZ5, ||

2l

< Ul (K3 lIxe1 — £ + 2K3 [ Uaal xp1 — Xl + K3 pg ' lxesr — %
< (IUlIK; K3€7 + 2K3Kq€7||Unll + K3K7) Uk — U ||
= Ko|Ux — U]l (48)
using the definition of K9. Combining (47) and (48) gives the estimate
o (Xkq1, Uns pr) = 1Uk — Zi U Zi||
< WU = Ul + U = ZeU Zx |l + 1 ZeU Zi — Zi U Zi |l
<NUk = Ul + U = ZU Zi|l + 11 Ze |1 Uk — U
< (I+ K5+ Ko)|U = U|. (49)
On the other hand, using estimate (44) (b) we have for k > 2:
1Uc = Ul < Kzpi—illUir = Ul < Kzpi—t (10—t — Uil + U = U)

and therefore
~ _ -1
10— Ul < ((K1pi—))™" = 1) Uiy — Uil (50)
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where we have (K7py_1)~! > 1 for all k > 2 by assumption. Combining (49) and (50) gives

14+ K§+ Ko
0 (X1, Up, pr) £ ————— IUx—1 — Ukl
i (Kpi-)~' =1

1+ K{+ K
(K7pe-1)~ ' —1
=: 7 0 (X, Uk—1, pr—1)- (51

o (xg, Uk—1, pr—1)

Since the py are decreasing, the sequence 7; defined by (51) decreases as well. Consequently,
if we can find an index k; such that 7, < , where 7 is the parameter used in the algorithm,
then we have 1, < t for every k > k. According to step 4 of the algorithm, and due to (51),
the parameter p; would then be unchanged for k > k,. In consequence, an index k, of this
type could not possibly occur before k;. Namely, suppose we had k, < ki, then p;, = py, for
k > ko, contradicting the definition of k;, where we have py,+1 = ypy, .

What we therefore know is k, > k. In other words, 7; > 7 for every k < k, meaning
7 > 7 for every k < ky. In particular 73, > 7. Setting Ko := 1+ Kg + Ko, this becomes

Ko

= - >T7
(K7pr,-1)~ ' =1

Tkl

if we plug in the expression (51) for 74, . This is now the same as

T

Pki—1 > —0—————-
] K7 (Ko + 1)

Since p* € {p, yp} at each step of the algorithm, we deduce

> ve
Py Z YPl—1 > -
] l K7(Kio+ 1)
Using pi,+1 = ¥ Px, then gives
vt
> .
Plat1 K7(Kio + 1)

On the other hand, pg,+1 < p by construction, which means

yit yit
p> = g .
= Ki(Kp+1) Ki(1+4+Kgi+ Ko+71)

This contradicts the definition (46) of p. |

Remark. If the sequences x;, Uy and p; generated by the augmented Lagrangian algorithm
are started with initial p; > p, then, as the p; are reduced, there will be a smallest ky with
Pk, < p- Then py, > yp, and the conclusions of Lemma 14 are still valid for the sequence
Uk, pr), k = ko, if Uy, € U for the neighborhood ¢/ found in Lemma 14. Naturally, as we
prove a local convergence result, such a restriction has to be expected.

Remark. The initial parameter p; must fall in the range (yp, p], which appears small.
However, since p* € {yp, p} at each step, some p; always falls within this range as the
Dk, starting large, get smaller. On the other hand, if we feel uncomfortable with this initial
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condition, we can easily replace it by p; € (y“p, p] for some large a > 1, so that y*p < p,
by adapting the definition (46) of p in the proof.

Assembling the findings of the previous sections leads to the following local convergence
theorem.

THEOREM 1. Let X be a local minimum of (1) with associated Lagrange multiplier U such
that the hypotheses (Hy)—(H3) are satisfied. Then there exists a neighborhood N of U, a
neighborhood U of x, and p > 0 such that the following conditions are satisfied.:

1. Whenever U; € N and yp < p1 < P, then the sequences Uy, p; > 0 and x| generated
by the augmented Lagrangian algorithm are well-defined if x4 is the local minimum of
min,cre F(x, Uy, pr) in U. The sequence Uy stays in N, and xy1 is the unique critical
point of (5) in U.

2. The sequence Uy converges to U with Q-linear speed, and x; converges to X with R-linear
speed.

3. The sequence py > 0 is constant from some index ki on.

Proof. We choose p, p, and then U/ and N as in the proof of Lemma 14. Then we know
that the sequence py does not leave the interval [ p, p]. Since it is decreasing, it is eventually
constant with value p € [p, pl. N

Now xi41 = xT (Ui, p) and Uy, = UT(Uy, p), so estimate (44) (b) immediately shows
that Uy converges Q-linearly with speed K7p < K;p < 1. By (44) (a), x; then converges
R-linearly. |

12. Example

Let us indicate by way of an example that condition (13) is too strong in general. Consider
the program

1
minimize f(x) = 2 (=x7 — x3)
-1 1—x; O
subjectto G(x) = | 1 — x; —1 —x3 [ <0

0 —X2 -1

whose unique minimum is x = (2,0). The Hessian of the Lagrangian is L,.(x,U) =
-1 0

0o 17

that G'(X)*U = (—2u12, —2u»3), so that the KKT-conditions read

MEESEN

along with complementarity, which gives

because G” = 0. That already means that (13) has no chance to be true. Observe

1 -1 0
U=|-1 1 0
0 0 O
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The matrix Q which diagonalizes G (x) and U in the sense that U = QdiagU 07 is

1 1O
V2 2
S T |
0=|_ __
V22
0 0 1

The curvature term is therefore

The final link is obtained by computing the critical cone. According to (10), we obtain C (x) =
R(0, 1) here. And it can indeed be verified that

-1 0]|0

T g g _
h' (Lyx (X, U) + H(X, U)) h = [0 hy] o 1|lm

=/’l%>0

whenever h € C(x), h # 0. That means the second-order no-gap sufficient optimality
condition (11) is satisfied, even though L,,(x, U) < 0.
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