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Local convergence of an augmented Lagrangian method for
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We consider nonlinear optimization programs with matrix inequality constraints, also known as
nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method
which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition
and a suitable implicit function theorem are used to prove local linear convergence without the need
to drive the penalty parameter to 0.

Keywords: Matrix inequality; Nonlinear semidefinite programming;Augmented Lagrangian; Spectral
penalty; Implicit function theorem

1. Introduction

We consider mathematical optimization programs of the form

minimize f (x), x ∈ R
n

subject to G(x) � 0
(1)

where f : R
n → R is a C2 function, G : R

n → S
m a C2 operator into the space S

m of m × m

symmetric matrices, and where � 0 means negative semidefinite. The constraint G(x) � 0 is
referred to as a matrix inequality, or as a nonlinear semidefinite constraint. We study augmented
Lagrangian methods to solve (1) and develop a suitable local convergence theory.

Nonlinear programs (1) with matrix inequality constraints have been intensely studied since
the 1990s. They arise in many applications in automatic control, finance and design engineer-
ing. Semidefinite programming (SDP) is a prominent special case of (1) which comes with
a linear objective f (x) = c�x and a linear matrix inequality G(x) = A0 + ∑n

i=1 Aixi � 0
in the constraint [1].

During the early 1990s, interior point methods were considered the only true way to
solve (1), but other methods entered the scene from the late 1990s on, including nonsmooth
and eigenvalue optimization [2–15] sequential SDP [16–19] and augmented Lagrangian
methods.
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778 D. Noll

The use of augmented Lagrangians for (1) was proposed by Ben–Tal and Zibulevski in
refs. [20,21]. Mosheyev and Zibulevski [22] studied several augmented Lagrangian mod-
els, and Kocvara and Stingl [23–25] developed the platforms PENNON and PENBMI to
solve linear and bilinear semidefinite programs. Other approaches based on the augmented
Lagrangian method are [26,27], [28–30] and [42–46]. In the present paper we obtain a local
convergence theory for the methods [20,21,23–25].

The augmented Lagrangian models proposed in [20,21] are based on the idea of a spectral
penalty function. Consider a convex C2 function φ : R → R ∪ {+∞} with the following
properties

(φ1) φ is strictly convex, increasing and of class C2 on dom(φ), which is open and contains
(−∞, 0].

(φ2) φ(0) = 0.
(φ3) φ′(0) = 1.
(φ4) tφ′(t) = O(1) as t → −∞.
(φ5) t2φ′′(t) = O(1) as t → −∞.

Typical examples are

φ(t) =

⎧⎪⎪⎨⎪⎪⎩
t + 1

2
t2, t ≥ −1

2

−1

4
log(−2t) − 3

8
, t ≤ −1

2

or φ(t) =

⎧⎪⎨⎪⎩
1

1 − t
− 1, t < 1

+∞, else
(2)

Now define a matrix function � : S
m → S

m associated with φ by setting

�(X) = �(Q diag λ(X) Q�) = Q diag φ(λ(X))Q�, (3)

where X = Q diag λ(X) Q� is a spectral decomposition of X ∈ S
m, with λ(X) ∈ R

m the
vector of eigenvalues of X in decreasing order, and where φ(λ) = (φ(λ1), . . . , φ(λm)) for
λ = (λ1, . . . , λm) ∈ R

m. Observe that the operator � is independent of the choice of the
orthonormal basis Q(X) = [q1(X), . . . , qm(X)] of eigenvectors of X, and may also be written
as �(X) = ∑m

i=1 φ(λi(X))qi(X)qi(X)�. Operators of this form are called symmetric and have
been studied e.g. in [31,32]. Since φ(x) = xn gives �(X) = Xn, � is analytic for analytic φ.
It can also be shown that � is of class C2 whenever φ is of class C2, see [33]. Given a penalty
parameter p > 0 we define �p(X) = p �(p−1X) and introduce the augmented Lagrangian
function

F(x, U, p) = f (x) + U • �p(G(x)), (4)

where U ∈ S
m with U � 0 is a Lagrange multiplier estimate. For fixed U � 0 and p > 0 we

now consider the unconstrained optimization program

min
x∈Rn

F (x, U, p) (5)

which we also call the tangent program. The augmented Lagrangian method is then defined
as follows.
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Local convergence 779

Augmented Lagrangian Algorithm

Fix 0 < γ < 1, 0 < τ < 1

1. Choose initial iterate x1 and initial Lagrange multiplier estimate U1 � 0.
Fix penalty p1 > 0.

2. Given the current iterate xk , Lagrange multiplier estimate Uk � 0 and
penalty pk > 0, solve the tangent program

minx∈Rn F (x, Uk, pk)

possibly using xk as a starting point for the inner iteration. The solution
is xk+1.

3. Update the Lagrange multiplier estimate by setting
Uk+1 = �′

pk
(G(xk+1))Uk

4. Update the penalty parameter by setting

pk+1 =
{

pk, if σ(xk+1, Uk, pk) ≤ τσ (xk, Uk−1, pk−1)

γpk, else
5. Increase counter k, and go back to step 2.

The mechanism is as follows. It is understood that solving the unconstrained program (5)
is considerably easier than solving (1). We expect the sequence xk to converge to a local
minimum x̄ of (1), while Uk converges to an associated Lagrange multiplier Ū � 0. The
so-called first-order multiplier update rule Uk+1 = �′

p(G(xk+1))Uk in step 3 is used to improve
the quality of the multiplier estimate before the next sweep. Axiom (φ1) gives φ′ > 0, so that
the operator �p is strictly monotone, which means that Uk+1 � 0 as soon as Uk � 0, and even
Uk+1 � 0 as soon as Uk � 0.

In step 4 the penalty parameter pk is decreased when xk+1 does not make sufficient progress
toward feasibility as compared to xk . This progress is measured by a suitable primal-dual
progress measure σ , defined as

σ(x+, U, p) = ‖U − �′
p(G(x+))U‖ = ‖U − U+‖.

In fact, driving pk → 0 would ultimately force feasibility, but the rationale of the augmented
Lagrangian scheme is that xk may converge to x̄ without forcing pk → 0. The objective of
our local convergence analysis here is to show under what conditions this is possible, and that
a linear rate of convergence can be obtained.

The matrix inequality constrained case has several challenges. Notice for instance that
in contrast with the classical Hestenes–Powell–Rockafellar augmented Lagrangian [34–37],
technical complications arise due to the fact that (t, p) �→ pφ(p−1t) has a singularity at (0, 0).
This difficulty leads to the concept of wedge convergence in section 7, Definitions 2 and 3,
which plays a central role in our convergence analysis.

Yet another technical difficulty arises from the fact that we have to use the sufficient second-
order no-gap optimality condition (11); cf. [38]. As we show by way of an example, it is not
appropriate to use the old form of the second-order sufficient optimality condition (13) for
matrix inequality constrained programs.

The structure of the paper is as follows. In sections 2–4 we recall useful facts from matrix
constrained programming, covered essentially by [38]. Sections 5 and 7 prepare our case for
the study of the analytic source function φ(t) = (1 − t)−1 − 1. The main result is presented in
section 6. Sections 8 and 9 are crucial and present technical results which combine the concept
of wedge convergence with the second-order nogap optimality condition. The implicit function
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780 D. Noll

theorem is applied in section 10 under a special form given in Lemma 1. The central part of
the proof, where the different threads are put together, is in section 11. We conclude with an
example in section 12, showing that the nogap optimality condition is of the essence, and that
the complications arising from it can not be avoided.

Our contribution is complementary to papers where global convergence proofs for aug-
mented Lagrangians have been presented. For instance, [20] considers convergence of the
present method in the convex case, [39] discusses and compares an even larger class of aug-
mented Lagrangian models. Local convergence theory for the classical augmented Lagrangian
method may be found in ref. [37], while local theory for classical programs based on smooth
generating functions φ is presented in ref. [40].

Notation. The space of m × m symmetric matrices S
m is equipped with the scalar product

Tr(XY) = X • Y . The negative cone in S
m is S

m− = {X ∈ S
m : X � 0}. For a symmetric expres-

sion X = A + A� we shall sometimes write X = A + ∗ in order to facilitate the presentation.
In the algorithm, x, U, p mean the current iterates, x+, U+, p+ the next iterates, x−, U−, p−
those from the previous sweep. Notions from matrix inequality constrained mathematical
programming are covered by [38].

2. First-order optimality condition

Let x̄ be a local minimum of program (1) such that Robinson’s constraint qualification
[38, p. 72] is satisfied. Let Ū � 0 be a Lagrange multiplier associated with x̄, then the
Karush–Kuhn–Tucker conditions are

f ′(x̄) + G′(x̄)�Ū = 0, G(x̄) � 0, Ū � 0, G(x̄) • Ū = 0. (6)

Here the adjoint operator G′(x)� is defined as follows. Let Gi(x) = ∂G(x)/∂xi ∈ S
m,

i = 1, . . . , n, then G′(x)�Y = (G1(x) • Y, . . . , Gn(x) • Y ) ∈ R
n, see [38,41].

As is well-known, complementarity G(x̄) ⊥ Ū in (6) implies that Ū and G(x̄) commute,
and may therefore be diagonalized simultaneously. Assuming without loss that G(x̄) and Ū

are already diagonal matrices, we have

G(x̄) = diag[ḡ1, . . . , ḡs , 0m−s], Ū = diag[0s , ūs+1, . . . , ūm] (7)

where ḡi < 0 and ūj ≥ 0. Strict complementarity is satisfied as soon as ūj > 0 for
j = s + 1, . . . , m.

3. Second-order optimality condition

Let us now consider the second order sufficient optimality condition as proposed in [38,41].
The Lagrangian of (1) is

L(x, U) = f (x) + U • G(x). (8)

Following [41 formula (37)], the critical cone at (x̄, Ū ) is

C(x̄) = {h ∈ R
n : Ū • [G′(x̄)h] = 0, G′(x̄)h ∈ T (Sm

−, G(x̄))},
where T (Sm−, G) is the tangent cone to S

m− at G ∈ S
m−. This tangent cone is

T (Sm
−, G) = {Z ∈ S

m : E�ZE � 0},
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Local convergence 781

where E is a m × (m − s) matrix whose columns form an orthonormal basis of the null space
of G; cf. [38, p. 474]. Due to (7), the null space of Ḡ = G(x̄) is spanned by the m − s unit
vectors es+1, . . . , em. That means, if we partition the matrix Z as

Z =
[
Z11 Z12

Z�
12 Z22

]
, Z11 ∈ S

s , Z22 ∈ S
m−s , (9)

then T (Sm−, Ḡ) = {Z ∈ S
m : Z22 � 0}. Therefore, the critical cone may be written as

C(x̄) = {h ∈ R
n : Ū • [G′(x̄)h] = 0, [G′(x̄)h]22 � 0}.

Naturally, the first of these two conditions may also be written as

Ū • [G′(x̄)h] = Ū22 • [G′(x̄)h]22 = 0.

Strict complementarity, ūi > 0 for i = s + 1, . . . , m, in tandem with [G′(x̄)h]22 � 0 implies
[G′(x̄)h]22 = 0. In other words, under strict complementarity the critical cone is the linear
subspace

C(x̄) = {h ∈ R
n : [G′(x̄)h]22 = 0}. (10)

Let us now present the so-called no-gap second-order sufficient optimality condition. It
reads

h�[Lxx(x̄, Ū ) + H(x̄, Ū )]h > 0 for every h ∈ C(x̄), h �= 0, (11)

where Lxx(x̄, Ū ) is the Hessian of the Lagrangian (8), and where H(x̄, Ū ) is a term reflecting
curvature information of the feasible domain at x̄. According to [41, formula (40)], this term
is of the form

[H(x̄, Ū )]ij = −2Ū • (Gi(x̄)[G(x̄)]†Gj(x̄)),

or in a compact notation

H(x̄, Ū ) = −2

(
∂G(x̄)

∂x

)�
(Ū ⊗ [G(x̄)]†)

(
∂G(x̄)

∂x

)
,

where M† denotes the pseudo inverse of a matrix M , ⊗ the Kronecker product, and where
∂G(x)/∂x denotes the n2 × m matrix [vec G1(x), . . . , vec Gm(x)]. Consequently, we obtain
for the curvature term

h�H(x̄, Ū )h =
n∑

i,j=1

hihj

(−2Ū • Gi(x̄)G(x̄)†Gj(x̄)
)

= −2Ū •
⎛⎝ n∑

i,j=1

hihjGi(x̄)G(x̄)†Gj(x̄)

⎞⎠
= −2Ū •

⎛⎝ n∑
i=1

hiGi(x̄)G(x̄)†
n∑

j=1

hjGj (x̄)

⎞⎠
= −2Ū • [G′(x̄)h]G(x̄)†[G′(x̄)h].

Due to the special structure (7), (9), we may develop this expression further, which yields

h�H(x̄, Ū )h = −2diag(ūs+1, . . . , ūm) • [G′(x̄)h]�12diag

(
1

ḡ1
, . . . ,

1

ḡs

)
[G′(x̄)h]12. (12)
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782 D. Noll

As can be seen, this term is ≥ 0, which means that the no-gap condition (11) is weaker than
the ‘classical’ second-order sufficient condition:

h�Lxx(x̄, Ū )h > 0 for all h ∈ C(x̄) \ {0}. (13)

In fact, as we shall see in section 12, this condition, which is still used by many authors to extend
results from classical nonlinear programming to matrix inequality constrained programming
in a straightforward way, is too strong to be realistic. Results based on (13) are therefore of
little interest.

4. Constraint qualification

We need one more element, a generalization of the linear independence constraint qualification
(LICQ) from classical nonlinear programming. Let Ḡ = G(x̄) and let E be a m × (m − s)

matrix whose m − s columns form an orthonormal basis of the null space of Ḡ, then we say
that the generalized LICQ condition holds if

W �−→ (E�G1(x̄)E • W, . . . , E�Gn(x̄)E • W), S
m−s −→ R

n is injective. (14)

In the situation (7), condition LICQ is equivalent to the following:

W �−→ (G1(x̄)22 • W, . . . , Gn(x̄)22 • W), S
m−s −→ R

n is injective. (15)

As in classical nonlinear programming, LICQ implies uniqueness of the Lagrange multiplier
Ū . Notice that (15) appears fairly restrictive at first sight, because it requires in particular that
n ≥ (m − s)(m − s + 1)/2. However, as we will see, this condition reduces to the classical
LICQ condition if the operator G is diagonal.

Indeed, suppose more generally that G : R
n → S

m1 ⊕ · · · ⊕ S
mb ⊂ S

m has a block diagonal
structure with b blocks, where m1 + · · · + mb = m. Then multipliers U and partial derivatives
Gj(x) have the same structure, and the linear independence condition can be restricted to that
space, i.e., (15) is required injective on the space of W ∈ S

m−s with this structure. In particular,
this means n ≥ ∑b

j=1(mj − sj )(mj − sj + 1)/2, where in each block j , we assume that sj

eigenvalues are < 0, the remaining mj − sj eigenvalues are active at 0.
In the special case where G(x) is diagonal, we have mj = 1 and m = b. Assuming that

p constraints are active, we would have s1 = · · · = sp = 0, sp+1 = · · · = sm = 1. Here the
LICQ condition coincides with the classical one, and the dimension condition simply reduces
to

∑m
j=1(mj − sj )(mj − sj + 1)/2 = p ≤ n, which is of course necessary if the p active

constraint gradients are to be linearly independent at x̄.

5. Analytic source function φ(t) = (1 − t)−1 − 1

In this section we will start analyzing the augmented Lagrangian model in the special case
of the source function φ(t) = (1 − t)−1 − 1, which was proposed in [21,22] and later used
to develop the software tool PENNON [23,24]. In this case, analyticity of φ allows explicit
computations of the derivatives of the associated �. Starting out with �(X) = (I − X)−1 − I ,
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Local convergence 783

we consider

�p(G(x)) := p �(p−1G(x)) = p(I − p−1G(x))−1 − pI.

Expanding the C2 operator G(x + d) = G(x) + G′(x)d + (1/2)G′′(x)[d, d] + O(||d||3), we
have

�p(G(x + d)) = �p(G(x)) + (I − p−1G(x))−1[G′(x)d](I − p−1G(x))−1

+ (I − p−1G(x))−1

[
1

2
G′′(x)[d, d]

]
(I − p−1G(x))−1

+ p−1 (I − p−1G(x))−1[G′(x)d](I − p−1G(x))−1

× [G′(x)d](I − p−1G(x))−1 + O(‖d‖3).

Therefore, the expansion of the penalty term U • �p(G(x)) in (4) is

U • �p(G(x + d)) = U • �p(G(x)) + [G′(x)d] • U+(x, U, p)

+ 1

2

{[G′′(x)[d, d]] + 2p−1[G′(x)d]
× (I − p−1G(x))−1[G′(x)d]} • U+(x, U, p) + O(‖d‖3),

where we put U+(x, U, p) := (I − p−1G(x))−1U(I − p−1G(x))−1. Using the standard
notations

Gi(x) = ∂G(x)

∂xi

∈ S
m, Gij (x) = ∂2G(x)

∂xi∂xj

∈ S
m,

we derive the following formulas:

Fx(x, U, p) = f ′(x) + G′(x)�U+(x, U, p)

= f ′(x) + (G1(x) • U+(x, U, p), . . . , Gn(x) • U+(x, U, p)) (16)

and

Fxx(x, U, p)ij = f ′′(x)ij + Gij(x) • U+(x, U, p) + 2p−1(Gi(x)(I − p−1G(x))−1Gj(x)

+ Gj(x)(I − p−1G(x))−1Gi(x)) • U+(x, U, p). (17)

Notice that (16) gives the following formula

Lx(x, U+(x, U, p)) = Fx(x, U, p) (18)

whose analogue in the classical setting is well-known [37, p. 104ff]. It will be of use later.
The first-order update formula U+ = �′

p(G(x+))U takes the following explicit form

U+ = (I − p−1G(x+))−1U(I − p−1G(x+))−1. (19)

Finally, we will also make use of the partial derivative FxU, which is readily obtained as

FxU(x, U, p)δU = (Gi(x) • ((I − p−1G(x))−1δU(I − p−1G(x))−1))ni=1 ∈ R
n. (20)

Using the notation Zp(x) = (I − p−1G(x))−1 and the definition of the adjoint operator
G′(x)�, we can write this more compactly as

FxU(x, U, p)δU = G′(x)�[Zp(x)δUZp(x)].
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784 D. Noll

6. Main theorem

Let x̄ be a local minimum of (1) which is a KKT-point with unique associated Lagrange
multiplier matrix Ū . We consider the following hypotheses at x̄:

(H1) Strict complementarity (7).
(H2) The second-order sufficient no-gap optimality condition (11).
(H3) The generalized LICQ condition (15).

THEOREM. Let x̄ be a local minimum of (1) with associated Lagrange multiplier Ū such that
hypotheses (H1)–(H3) are satisfied. Then there exists a neighborhood N of Ū , a neighborhood
U of x̄, and p > 0 such that the following conditions are satisfied:
1. Whenever U1 ∈ N and γp < p1 ≤ p, then the sequences Uk, pk > 0 and xk generated

by the augmented Lagrangian algorithm are well-defined if xk+1 is the local minimum of
minx∈Rn F (x, Uk, pk) in U . The sequence Uk stays in N, and xk+1 is the unique critical
point of (5) in U .

2. The sequence Uk converges to Ū with Q-linear speed, and xk converges to x̄ with R-linear
speed.

3. The sequence pk > 0 is constant from some index k1 on.

The proof of this Theorem requires the preliminaries in sections 2–5, while the principal
arguments are covered by sections 7–11.

7. Preparations

In this section we consider technical notions needed for our convergence proof.

LEMMA 1. Let � be an open subset of R
n × R

m and let H : � → R
n be of class Ck(�) for

some k ≥ 1. Let K∗ be a compact subset of R
m and suppose there exists a vector x∗ ∈ R

n with
{x∗} × K∗ ⊂ � such that H(x∗, y) = 0 for every y ∈ K∗. Suppose Hx(x

∗, y) is invertible
for every y ∈ K∗. Then there exists a neighborhood W of {x∗} × K∗, a neighborhood V of
K∗, and a function x(·) : V → R

n of class Ck such that H(x(y), y) = 0 for every y ∈ V and
x(y) = x∗ for every y ∈ K∗. The function is unique in the sense that for every (x, y) ∈ W,

H(x, y) = 0 if and only if y ∈ V and x = x(y). Moreover,

x ′(y) = −[Hx(x(y), y)]−1Hy(x(y), y).

This coincides with the usual implicit function theorem when the set K∗ = {y∗} is a
singleton set.

The following technical notion will be helpful in our convergence proof.

DEFINITION 2. The sequence (xk, Uk, pk) ∈ R
n × S

m × R is said to wedge-converge to
(x̄, Ū , 0), noted (xk, Uk, pk)

w→ (x̄, Ū , 0) if xk → x̄, Uk → Ū , pk → 0 in such a way
that (xk − x̄)/pk → 0, (Uk − Ū )/pk → 0. Similarly, (xk, pk) wedge converges to (x̄, 0) in
R

n × R if xk → x̄, and pk → 0 such that (xk − x̄)/pk → 0.

The following concept will also be useful. It represents a different way to describe wedge
convergence.
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Local convergence 785

DEFINITION 3. The set

W(ε) =
{
(x, U, p) : ‖x − x̄‖

p
≤ ε,

‖U − Ū‖
p

≤ ε, 0 < p ≤ ε

}
is called a wedge neighborhood of (x̄, Ū , 0). Similarly, the set

W ′(ε) =
{
(x, p) : ‖x − x̄‖

p
≤ ε, 0 < p ≤ ε

}
is a wedge neighborhood of (x̄, 0).

8. Lemmas with wedge convergence I

The results in this section exploit properties of the augmented Lagrangian function as it relates
to wedge convergence. We can think of this part as collecting prior information, which will
enable us later on (in section 11) to fix a parameter interval I = [p, p].

LEMMA 4. Assume hypotheses (H1)–(H3) are satisfied. Then there exist ε1 > 0 and K1 > 0
such that

‖Fxx(x, U, p)−1‖ ≤ K1 (21)

for every (x, U, p) ∈ W(ε1). Equivalently, there exists ρ > 0 such that

Fxx(x, U, p) � ρI � 0 (22)

for every (x, U, p) ∈ W(ε1).

Proof. 1) It suffices to prove that Fxx(x, U, p) � ρI � 0 on a wedge neighborhood of
(x̄, Ū , 0). Assume on the contrary that there exist xk → x̄, Uk → Ū , pk → 0 such that
(xk − x̄)/pk → 0, (Uk − Ū )/pk → 0 but d�

k Fxx(xk, Uk, pk)dk ≤ δk → 0 for certain unit vec-
tors dk . Passing to a subsequence if necessary, we may assume that dk → d for a unit vector d,
and that d�

k Fxx(xk, Uk, pk)dk converges to a quantity −ϑ with ϑ ≥ 0. A priori, we could have
ϑ = +∞, but we will see in a moment that this possibility can be ruled out.

2) Now observe that with (17), writing Zk := Zpk
(xk) = (I − p−1

k G(xk))
−1, we obtain

d�
k Fxx(xk, Uk, pk)dk = d�

k f ′′(xk)dk + Uk • Zk[G′′(xk)[dk, dk]]Zk

+ 2p−1
k Uk • Zk[G′(xk)dk]Zk[G′(xk)dk]Zk

= d�
k Lxx(xk, ZkUkZk)dk + 2p−1

k Uk • Zk[G′(xk)dk]Zk[G′(xk)dk]Zk.

(23)

Let us show that the term d�
k Lxx(· · · )dk on the right-hand side of (23) converges to

d�Lxx(x̄, Ū )d. This follows as soon as we show that ZkUkZk converges to Ū . To prove
this, consider a spectral decomposition G(xk) = QkGkQ

�
k , where Gk = diag(gk

1, . . . , g
k
m).

Then Zk = (I − p−1
k G(xk))

−1 = QkDkQ
�
k , where the diagonal matrix Dk = (I − p−1

k Gk)
−1

has diagonal entries pk/(pk − gk
i ). Selecting a convergent subsequence Qk → Q, we have

Zk = QkDkQ
�
k → Qdiag(0s , Im−s)Q

�, because (gk
i − ḡi )/pk → 0 by wedge convergence,

and ḡi = 0 for i = s + 1, . . . , m, while ḡi < 0 for i = 1, . . . , s. Here Q is an orthogo-
nal matrix which gives a spectral decomposition of G(x̄). According to (7), this means
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786 D. Noll

G(x̄) = QḠQ� = Ḡ = diag(ḡ1, . . . , ḡm). Since Ū and G(x̄) commute, Q also diagonalizes
Ū , i.e., with (7) we have QŪQ� = Ū . Therefore, with Ũk = Q�

k UkQk we have ZkUkZk =
Qk(DkŨkDk)Q

�
k → Qdiag(0s , Im−s)Ūdiag(0s , Im−s)Q

� = QŪQ� = Ū as claimed. The
result being the same for any convergent subsequence Qk → Q, the conclusion is that
ZkUkZk → Ū .

3) Let us now look at the second term on the right-hand side of (23), which is nonnegative.
Since the first term d�

k Lxx(· · · )dk on the right-hand side of (23) converges to d�Lxx(x̄, Ū )

d ∈ R, non-negativity of the second term on the right-hand side of (23) implies that the limit
−ϑ of d�

k Fxx(· · · )dk on the left-hand side of (23) must be finite. In consequence, the limit of
the second term on the right-hand side of (23) is also finite and ≥ 0.

This term is of the form 2p−1
k �k ≥ 0 with �k = �k(I − p−1

k G(xk))
−1�k • U+(xk,

Uk, pk), where we have for ease of notation put �k := G′(xk)dk . Since 2p−1
k �k converges by

what was seen above, and since p−1
k → +∞, it follows that �k → 0.

Now as we have seen, U+(xk, Uk, pk) = ZkUkZk → Ū , and �kZk�
k → �̄

Z̄�̄ = �̄diag[0s , Im−s]�̄, where �̄ := G′(x̄)d, Z̄ := diag[0s , Im−s]. Therefore, we have
�k → Ū22 • �̄22�̄22 = 0. Since Ū22 � 0 by strict complementarity and �̄22�̄22 � 0, we
deduce �̄22 = [G′(x̄)d]22 = 0. In other words, d ∈ C(x̄) is a critical direction (10).

Using this information we get back to the convergent term 2p−1
k �k , which we write as

2p−1
k �k = 2p−1

k Zk�
kZk�

kZk • Uk.

As before let Qk an orthogonal matrix which diagonalizes G(xk), G(xk) = QkGkQ
�
k

with Gk = diag(gk
1, . . . , g

k
m). Then Zk = (I − p−1

k G(xk))
−1 = Qk(I − p−1

k Gk)
−1Q�

k . Let us
introduce the matrices �̃k = Q�

k �kQk and Ũk = Q�
k UkQk . We decompose according to (9):

�̃k =
[

�̃k
11 �̃k

12

�̃k�
12 �̃k

22

]
, Ũk =

[
Ũ k

11 Ũ k
12

Ũ k�
12 Ũ k

22

]

and expand the term 2p−1
k �k as follows:

2p−1
k �k = 2p−1

k (I − p−1
k Gk)

−1�̃k(I − p−1
k Gk)

−1�̃k(I − p−1
k Gk)

−1 • Ũk

= 2p−1
k Ũ k

11 • ((I − p−1
k Gk)

−1
11 �̃k

11(I − p−1
k Gk)

−1
11 �̃k

11(I − p−1
k Gk)

−1
11

+ (I − p−1
k Gk)

−1
11 �̃k

12(I − p−1
k Gk)

−1
22 �̃k�

12 (I − p−1
k Gk)

−1
11 )

+ 2p−1
k Ũ k

12 • ((I − p−1
k Gk)

−1
22 �̃k�

12 (I − p−1
k Gk)

−1
11 �̃k

11(I − p−1
k Gk)

−1
11

+ (I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 �̃k�

12 (I − p−1
k Gk)

−1
11 )

+ 2p−1
k Ũ k�

12 • ((I − p−1
k Gk)

−1
11 �̃k

11(I − p−1
k Gk)

−1
11 �̃k

12(I − p−1
k Gk)

−1
22

+ (I − p−1
k Gk)

−1
11 �̃k

12(I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 )

+ 2p−1
k Ũ k

22 • ((I − p−1
k Gk)

−1
22 �̃k�

12 (I − p−1
k Gk)

−1
11 �̃k

12(I − p−1
k Gk)

−1
22

+ (I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 ).

Now observe that Ũk
w→ Ū , so that 2p−1

k Ũ k
11 → 0 and 2p−1

k Ũ k
12 → 0. Therefore, the first

three terms of the above expression 2p−1
k Ũ k

11 • (· · · ), 2p−1
k Ũ k

12 • (· · · ) and 2p−1
k Ũ k�

12 • (· · · )
all converge to 0, and it remains to discuss convergence of the fourth term 2p−1

k Ũ k
22 • (· · · ).
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Local convergence 787

This term splits into two terms: 2p−1
k Ũ k

22 • (· · · ) = τk + σk . The second of those is

σk = 2p−1
k Ũ k

22 • ((I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 �̃k

22(I − p−1
k Gk)

−1
22 )

= 2p−1
k (I − p−1

k Gk)
−1
22 Ũ k

22(I − p−1
k Gk)

−1
22 • �̃k

22(I − p−1
k Gk)

−1
22 �̃k

22,

which is nonnegative, because Ũ k
22 → Ū22 � 0 and (I − p−1

k Gk)
−1
22 � 0 for Gk

22 close enough

to Ḡ22 = 0, a fact which follows from wedge convergence G(xk)
w→ G(x̄). Passing to a sub-

sequence as k → ∞, the term σk therefore converges to some value σ ≥ 0. Again, σ = +∞
seems a priori possible, but we will be able to rule this out below.

4) Finally, the first of the terms in 2p−1
k Ũ k

22 • (· · · ) is

τk = 2p−1
k Ũ k

22 • ((I − p−1
k Gk)

−1
22 �̃k�

12 (I − p−1
k Gk)

−1
11 �̃k

12(I − p−1
k Gk)

−1
22 )

= (I − p−1
k Gk)

−1
22 Ũ k

22(I − p−1
k Gk)

−1
22 • 2�̃k�

12 p−1
k (I − p−1

k Gk)
−1
11 �̃k

12.

Now observe that (I − p−1
k Gk)

−1
22 → I22 under wedge convergence (xk, pk)

w→ (x̄, 0), so that
the term on the left of • in τk converges to Ū22. As for the term on the right of •, observe that

p−1
k (I − p−1

k Gk)
−1
11 = (pkI − Gk)

−1
11 −→ diag

(
− 1

ḡ1
, . . . ,− 1

ḡs

)
,

which means that the term to the right of • converges to 2�̄�
12(−G(x̄)†)11�̄12. Conse-

quently, τk → 2�̄�
12(−G(x̄)†)11�̄12 • Ū22 = d�H(x̄, Ū )d , using (12). We have shown that

2p−1
k �k = σk + τk → σ + d�H(x̄, Ū )d .
Altogether, in (23), passing to the limit in each of the terms, we have the following situation:

−ϑ = d�Lxx(x̄, Ū )d + d�H(x̄, Ū )d + σ

with ϑ ≥ 0, σ ≥ 0. Since d �= 0 is a critical direction by part 3), the second-order suffi-
cient no-gap optimality condition implies d�(L′′(x̄, Ū ) + H(x̄, Ū ))d > 0. This is clearly a
contradiction and therefore proves the result. �

Remark. The result could be summarized by saying that Fxx(x, U, p)−1 remains bounded as
p → 0, x → x̄, U → Ū as long as convergence takes place in a controlled fashion, namely,
as long as (x, U, p)

w→ (x̄, Ū , 0). This is what originally motivated the definition of wedge
convergence.

Recall the definition Zp(x) = (I − p−1G(x))−1. We have the following

LEMMA 5. Suppose (x, p)
w→ (x̄, 0), then Zp(x) → Z̄, where Z̄ = diag(0s , Im−s).

Proof. We prove that (x, p)
w→ (x̄, 0) implies G(x)

w→ G(x̄), which in turn gives gi(x)
w→

ḡi . In other words, (gi(x) − ḡi )/p → 0. This is a consequence of the fact that eigen-
value functions of symmetric matrices are locally Lipschitz: |λi(X) − λi(X̄)| ≤ K‖X − X̄‖.
Since the operator G is locally Lipschitz, we deduce |λi(G(x)) − λi(G(x̄))| ≤ K ′‖x −
x̄‖, which is |gi(x) − ḡi | ≤ K ′‖x − x̄‖, proving wedge convergence gi(x)

w→ ḡi , that is,
(gi(x) − ḡi )/p → 0 as (x, p)

w→ (x̄, 0).
Now the eigenvalues ofZp(x) = (I − p−1G(x))−1 are zi(x) = p/(p − gi(x)). This clearly

gives zi(x) → z̄i under wedge convergence, where z̄i = 1 for i = 1, . . . , s and z̄i = 0 for
i = s + 1, . . . , m. Using the above argument backwards, convergence of the eigenvalues

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
a
r
s
 
C
n
r
s
]
 
A
t
:
 
1
1
:
2
6
 
2
0
 
M
a
r
c
h
 
2
0
0
9



788 D. Noll

zi(x) → z̄i under wedge convergence (x, p)
w→ (x̄, 0) implies convergence of the matrices

Zp(x) → Z̄. Here we use ‖X‖ = ‖QXQ�‖ for orthogonal Q. �

LEMMA 6. Assuming (H1) –(H3), there exists ε2 > 0 and K2 > 0 such that

‖FxU(x, U, p)‖ ≤ K2, (24)

for every (x, U, p) ∈ W(ε2).

Proof. It suffices to write

FxU(x, U, p)δU = G′(x)�[(I − p−1G(x))−1δU(I − p−1G(x))−1]
for a test vector δU ∈ S

m. This shows of course that FxU does not depend on U . Then conver-
gence Zp(x) = (I − p−1G(x))−1 → Z̄ as (x, p)

w→ (x̄, 0) proved in Lemma 5 above readily

implies boundedness of FxU as (x, U, p)
w→ (x̄, Ū , 0). �

Let us collect some more facts about wedge convergence. We need a refinement of
Lemma 5. Let x+ ∈ R

n and write G(x+) = QG+Q� for G+ = diag(g1(x
+), . . . , gm(x+)).

Then Q also diagonalizes Zp(x+), that is, Zp(x+) = QDp(x+)Q�, where Dp(x+) =
diag(z1(x

+), . . . , zm(x+)). We have the following

LEMMA 7. Decomposing Q according to (9), there exists ε3 > 0 and a constant K3 > 0 such
that for all (x+, p) ∈ W ′(ε3),

1. The blocks of Q satisfy the following estimates:

‖Q�
22Q22 − I‖ ≤ K3‖x+ − x̄‖, ‖Q�

11Q11 − I‖ ≤ K3‖x+ − x̄‖,
‖Q12Q

�
12‖ ≤ K3‖x+ − x̄‖, ‖Q22Q

�
12‖ ≤ K3‖x+ − x̄‖,

‖Q21Q
�
21‖ ≤ K3‖x+ − x̄‖, ‖Q11Q

�
21‖ ≤ K3‖x+ − x̄‖.

(25)

2. The blocks of Zp(x+) satisfy the following estimates:

‖Zp(x+)11‖ ≤ K3p, ‖Zp(x+)12‖ ≤ K3‖x+ − x̄‖,
‖Zp(x+)22 − I‖ ≤ K3p

−1‖x+ − x̄‖. (26)

Proof. Let us start by writing

G(x+) − G(x̄) = Q(G+ − Ḡ)Q� + QḠQ� − Ḡ,

where Q diagonalizes G(x+) with diagonal matrix G+. We can see that the first term on the
right-hand side is O(G(x+) − G(x̄)), because eigenvalue functions are locally Lipschitz, and
because ‖X‖ = ‖QXQ�‖. Subtracting this term, shows QḠQ� − Ḡ = O(G(x+) − G(x̄)).
But G is locally Lipschitz, so we have QḠQ� − Ḡ = O(‖x+ − x̄‖). Expanding this term
gives

QḠQ� − Ḡ =
[
Q11Ḡ11Q

�
11 − Ḡ11 Q11Ḡ11Q

�
21

Q21Ḡ11Q
�
11 Q21Ḡ11Q

�
21

]
using (7). This implies three estimates, namely Q21Ḡ11Q

�
21 = O(‖x+ − x̄‖) for the (2, 2)

block, Q21Ḡ11Q
�
11 = O(‖x+ − x̄‖) for the off-diagonal blocks, and Q11Ḡ11Q

�
11 − Ḡ11 =

O(‖x+ − x̄‖) for the (1, 1) block.
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Local convergence 789

Since Ḡ11 ≺ 0, Q21Ḡ11Q
�
21 = O(‖x+ − x̄‖) implies Q21Q

�
21 = O(‖x+ − x̄‖). For the

same reason, Q11Ḡ11Q
�
11 − Ḡ11 = O(‖x+ − x̄‖) implies Q11Q

�
11 − I = O(‖x+ − x̄‖) and

similarly, Q21Ḡ11Q
�
11 = O(‖x+ − x̄‖) implies Q21Q

�
11 = O(‖x+ − x̄‖).

From orthogonality of Q we can deduce three more things. Namely, Q11Q
�
11 + Q12Q

�
12 = I

implies Q12Q
�
12 = O(‖x+ − x̄‖), Q21Q

�
11 + Q22Q

�
12 = 0 implies Q22Q

�
12 = O(‖x+ − x̄‖),

and thirdly Q21Q
�
21 + Q22Q

�
22 = I implies Q22Q

�
22 − I = O(‖x+ − x̄‖). That completes the

list of statements in (25).
Consider item 2. Recall that Zp(x+) → Z̄ under wedge convergence (x+, p)

w→ (x̄, 0) by
Lemma 5. Looking at the diagonal matrix Dp(x+) associated with Zp(x+), we can see that
Dp(x+)11 → 0 with speed Dp(x+)11 = O(p). This follows from the estimate

|zi(x
+)| = p

p − gi(x+)
≤ p

−gi(x+)
≤ Kp, i = 1, . . . , s,

which uses gi(x
+) → ḡi < 0 for i = 1, . . . , s.

Similarly, we have Dp(x+)22 → I under wedge convergence (x+, p)
w→ (x̄, 0) with speed

Dp(x+)22 − I = O(p−1‖x+ − x̄‖). Here we use the estimate

|zi(x
+) − 1| ≤ |gi(x

+)|
p − gi(x+)

= |gi(x
+) − ḡi |/p

1 − (gi(x+) − ḡi )/p
, i = s + 1, . . . , m,

where ḡi = 0 for i = s + 1, . . . , m. Then the denominator is bounded on a wedge neighbor-
hood, while the nominator is of the order O(p−1‖x+ − x̄‖).

Using these estimates, observe now that we have Zp(x+)11 = Q11D11Q
�
11 + Q12D22Q

�
12.

Since Q12Q
�
12 = O(‖x+ − x̄‖) and D22 → I under wedge convergence (x+, p)

w→ (x̄, 0),
the second term on the right is O(‖x+ − x̄‖). Since Q11Q

�
11 − I = O(‖x+ − x̄‖), the first

term on the right is O(‖D11‖) = O(p) under wedge convergence. That proves the estimate
Zp(x+)11 = O(p + ‖x+ − x̄‖). Under wedge convergence we have ‖x+ − x̄‖ = p(‖x+ −
x̄‖/p) = o(p), so the dominant expression is Zp(x+)11 = O(p) as claimed. This proves the
first estimate in item 3.

Next observe that we have Zp(x+)12 = Q11D11Q
�
21 + Q12D22Q

�
22. The first term is

O(p‖x+ − x̄‖), because as we have seen D11 = O(p), and Q11Q
�
21 = O(‖x+ − x̄‖)

according to item 1. The second term Q12D22Q
�
22 on the other hand can be writ-

ten as Q12(D22 − I )Q�
22 + Q12Q

�
22. Here Q12(D22 − I )Q�

22 = O(D22 − I )O(Q12Q
�
22) =

O(p−1‖x+ − x̄‖2). On the other hand, Q12Q
�
22 = I − Q11Q

�
11 = O(‖x+ − x̄‖) by orthogo-

nality of Q and by item 1. Since ‖x+ − x̄‖/p → 0 by the definition of wedge convergence,
the dominant term for Zp(x+)12 is of the order O(‖x+ − x̄‖) as claimed.

Finally, we have Zp(x+)22 − I = Q21D11Q
�
21 + Q22D22Q

�
22 − I . Since Q11Q

�
11 −

I = O(‖x+ − x̄‖), orthogonality gives Q21Q
�
21 = O(‖x+ − x̄‖), so that the first term is

O(p‖x+ − x̄‖). Let us write the second term as Q22(D22 − I )Q�
22 + Q22Q

�
22 − I . Here the

left-hand term is O(p−1‖x+ − x̄‖), while the right-hand term is O(‖x+ − x̄‖). The dominant
expression is the first one, proving the estimate. �

Recall that U+(x+, U, p) = Zp(x+)UZp(x+). We have the following

LEMMA 8. There exists a wedge neighborhood W(ε4) and a constant K4 > 0 such that

‖U+
11(x

+, U, p)‖ ≤ K4(p
2‖U − Ū‖ + ‖x+ − x̄‖2), (27)

and

‖U+
12(x

+, U, p)‖ ≤ K4(p‖U − Ū‖ + ‖x+ − x̄‖). (28)

for every (x+, U, p) ∈ W(ε4).
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790 D. Noll

Proof. Notice first that

U+
11 = Zp(x)11(U11Zp(x)11 + U12Zp(x)�12) + Zp(x)12(U

�
12Zp(x)11 + U22Zp(x)�12).

There are four terms to discuss here. Using (26) in the previous lemma, and observing
Ū11 = 0, we have U11 = O(‖U − Ū‖), so the first term Z11U11Z11 is O(p2‖U − Ū‖). Using
Ū12 = 0 and (26), the second term Z11U12Z

�
12 is O(p‖U − Ū‖‖x+ − x̄‖). Since ‖x+ −

x̄‖/p → 0 under wedge convergence, the second term is therefore even o(p2‖U − Ū‖). By
symmetry, the same applies to the third term. As for the fourth term Z12U22Z

�
12, notice that

U22 → Ū22 � 0, so U22 = O(1). From (26) we therefore obtain an expression of the form
O(‖x+ − x̄‖2). That proves the first estimate (27).

Similarly, the second estimate comprises four terms:

U+�
12 = Zp(x)�12(U11Zp(x)11 + U12Zp(x)�12) + Zp(x)22(U

�
12Zp(x)11 + U22Zp(x)�12).

Using again Ū11 = 0, Ū12 = 0, so that U11 = O(‖U − Ū‖) and U12 = O(‖U − Ū‖), while
U22 = O(1), the previous Lemma 7 gives O(p‖x+ − x̄‖‖U − Ū‖) for the first term, which is
o(p2‖U − Ū‖) under wedge convergence. The second term Z�

12U12Z
�
12 is O(‖x+ − x̄‖2‖U −

Ū‖) = o(p2‖U − Ū‖) under wedge convergence. The third term Z22U
�
12Z11 is O(p‖U −

Ū‖), because Z22 = O(1). The last term Z22U22Z
�
12 is O(‖x+ − x̄‖), because U22 = O(1).

This gives the two dominant terms in (28). �

9. Lemmas with wedge convergence II

In this section we consider two more technical results, which use the concept of wedge
convergence, in tandem with the no-gap second-order optimality condition.

LEMMA 9. Assume hypotheses (H1)–(H3), let U+(x+, U, p) = Zp(x+)UZp(x+), and write
U+ for short. There exists a wedge neighborhood W(ε5), a neighborhood N of Ū , and a
constant K5 > 0 such that the following condition is satisfied. Suppose (x+, U, p) ∈ W(ε5),
U+ ∈ N , and δU ∈ S

m with ‖δU‖ = 1, and put h = p−1F−1
xx (x+, U, p)FxU (x+, U, p)δU .

Suppose the exotic equation

h�Lxx(x
+, U+)h + p−1[G′(x+)h] • ([I − p−1G(x+)]−1δU [I − p−1G(x+)]−1)

+ 2p−1[G′(x+)h] • ([I − p−1G(x+)]−1[G′(x+)h]
× [I − p−1G(x+)]−1U [I − p−1G(x+)]−1) = 0 (29)

is satisfied. Then ‖h‖ ≤ K5.

Proof. Suppose contrary to the statement that there exist (x+
k , Uk, pk)

w→ (x̄, Ū , 0) and
U+

k → Ū along with unit vectors δUk such that equation (29) is satisfied, but‖hk‖ → ∞,
where

hk = p−1
k F−1

xx (x+
k , Uk, pk)FxU(x+

k , Uk, pk)δUk.

Put dk = hk/‖hk‖. Passing to a subsequence, we may assume that dk → d for a unit vector d,
and also δUk → δU for a unit vector δU .
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Dividing (29) by ‖hk‖2 gives

d�
k Lxx(x

+
k , U+

k )dk + [G′(x+
k )dk] •

(
[I − p−1

k G(x+
k )]−1 δUk

pk‖hk‖[I − p−1
k G(x+

k )]−1

)
+ 2p−1

k [G′(x+
k )dk] • ([I − p−1

k G(x+
k )]−1[G′(x+

k )dk]
× [I − p−1

k G(x+
k )]−1Uk[I − p−1

k G(x+
k )]−1) = 0. (30)

There are now two cases to be discussed. Case 1 is when pk‖hk‖ ≥ μ > 0 for some μ and a
subsequence of k ∈ K. Case 2 is when pk‖hk‖ → 0.

Let us discuss case 1 first. Considering the subsequence k ∈ K only, the term

�k = [G′(x+
k )dk] •

(
[I − p−1

k G(x+
k )]−1 δUk

pk‖hk‖[I − p−1
k G(x+

k )]−1

)
is bounded above by μ−1[G′(x+

k )dk] • ([I − p−1
k G(x+

k )]−1δUk[I − p−1
k G(x+

k )]−1), which is
bounded on a wedge neighborhood. Passing to yet another subsequence, and using Lemma 5,
we may therefore assume �k → � for some � ∈ R. Going back with this information to (30),
we see that the identity is now of the form

d�
k Lxx(x

+
k , U+

k )dk + �k + 2p−1
k �k = 0,

where the two leftmost terms converge. Consequently, 2p−1
k �k has no choice, it converges,

and given the fact that p−1
k → ∞, this implies �k → 0. Now

�k = [G′(x+
k )dk] • (Zpk

(x+
k )[G′(x+

k )dk]Zpk
(x+

k )UkZpk
(x+

k ))

converges to

� = [G′(x̄)d]22 • [G′(x̄)d]22Ū22 = 0,

where we use Zpk
(x+

k ) → Z̄ = diag(0s , Im−s) by Lemma 5. Since Ū22 � 0 by strict
complementarity, we deduce [G′(x̄)d]22 = 0, that is, d is a critical direction (10).

Let us analyze the term �k in (30) a little further. Writing Zk := Zpk
(x+

k ) and using (20) in
tandem with the definition dk = p−1

k ‖hk‖−1F−1
xx FxUδUk gives

�k = p−2
k ‖hk‖−2[G′(x+

k )F−1
xx G′(x+

k )�(ZkδUkZk)] • (ZkδUkZk).

Since the quadratic form G′(x+
k )F−1

xx G′(x+
k )� is positive semidefinite by Lemma 4, this implies

�k ≥ 0. Passing to a subsequence, we may therefore assume that �k → �, where � ≥ 0.
As we know from the proof of Lemma 4, the term 2p−1

k �k = 2p−1
k Zk�

kZk�
kZk • Uk in

(30) may be decomposed as σk + τk , where σk ≥ 0, and τk → d�H(x̄, Ū )d. We therefore
have the following situation:

d�
k Lxx(x

+
k , U+

k )dk + �k + σk + τk = 0.

Passing to the limit, we find that

d�Lxx(x̄, Ū )d + � + σ + d�H(x̄, Ū )d = 0.

Since � + σ ≥ 0 and d is a critical direction, this contradicts the second-order sufficient
no-gap optimality condition (hypothesis (H2)) and settles case 1.
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792 D. Noll

Let us now consider case 2, where ‖hk‖ → ∞, but pk‖hk‖ → 0. Multiplying (30) with
pk‖hk‖ gives the identity

pk‖hk‖d�
k Lxx(x

+
k , U+

k )dk + [G′(x+
k )dk] • ([I − p−1

k G(x+
k )]−1δUk[I − p−1

k G(x+
k )]−1)

+ 2‖hk‖[G′(x+
k )dk] • ([I − p−1

k G(x+
k )]−1[G′(x+

k )dk]
× [I − p−1

k G(x+
k )]−1Uk[I − p−1

k G(x+
k )]−1) = 0. (31)

Here the first term converges to 0, the second term �̃k = [G′(x+
k )dk] • (· · · ) converges to

�̃ := [G′(x̄)d]22 • δU22. Therefore, the rightmost term in (31) is also convergent.
This term is now of the form 2‖hk‖�k , where �k is as before, and ‖hk‖ → ∞. Therefore, we

must have �k → 0. But �k → � = �̄ • Z̄�̄Z̄Ū Z̄ = Ū22 • �̄22�̄22 = 0. Since Ū22 � 0 by
strict complementarity, this implies �̄22 = [G′(x̄)d]22 = 0, so that d is a critical direction (10).

Using this information, we now go back to (30). Here the third term is of the form 2p−1
k �k .

Using the argument in the proof of Lemma 4, we have 2p−1
k �k = σk + τk , where σk ≥ 0 and

τk → d�H(x̄, Ū )d . Let us examine the second term of (30), which is �k = p−1
k ‖hk‖−1�k •

ZkδUkZk . Substituting backwards, using dk = hk/‖hk‖, the definition of hk , and representing
FxU as in (20), we have

�k = p−2
k ‖hk‖−2[G′(x+

k )h] • ZkδUkZk

= p−2
k ‖hk‖−2[G′(x+

k )Fxx(x
+
k , Uk, pk)

−1G′(x+
k )�(ZkδUkZk)] • (ZkδUkZk) ≥ 0,

the latter, because the quadratic form G′(x+
k )F−1

xx G′(x+
k )� is positive semidefinite by Lemma 4.

This means �k ≥ 0. We therefore find the following situation:

d�
k Lxx(x

+
k , U+

k )dk + �k + τk + σk = 0,

which after passing to a subsequence converges to the limit d�Lxx(x̄, Ū )d + � +
d�H(x̄, Ū )d + σ = 0. This contradicts the second-order optimality condition, because
� + σ ≥ 0, and since d was recognized as a critical direction. This ends case 2, and thereby
completes the proof. �

Recall the notation U+ = U+(x+, U, p) = Zp(x+)UZp(x+) in (19), where Zp(x+) =
(I − p−1G(x+))−1. We have the following technical

LEMMA 10. Under hypotheses (H1)–(H3), there exist ε6 > 0 and a constant K6 > 0, such
that the following condition is satisfied: Suppose (x+, U, p) ∈ W(ε6) and δU ∈ S

m with
‖δU‖ = 1 are such that

h := p−1Fxx(x
+, U, p)−1FxU(x+, U, p)δU,

and

H := p−1Zp(x+)δUZp(x+) + p−1U+[G′(x+)h]Zp(x+) + ∗
satisfy the equation

Lxx(x
+, U+)h + G′(x+)�H = 0. (32)

Then ‖H22‖ ≤ K6(‖h‖ + 1).
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Local convergence 793

Proof. Let us write (32) as

Lxx(x
+, U+)h + (G1(x

+) • H, . . . , Gn(x
+) • H) = 0.

Using the decomposition (9), and shifting (1, 1) and (1, 2)-terms to the right, this becomes

Gj(x
+)22 • H22 = −e�

j Lxx(x
+, U+)h − Gj(x

+)11 • H11 − 2Tr(Gj (x
+)12H

�
12)

where ej is the j th coordinate unit vector. Therefore each Gj(x
+)22 • H22 is of the

form O(‖h‖ + ‖H12‖ + ‖H11‖), because U+ is bounded on a wedge neighborhood by
Lemma 8. Now by the LICQ hypothesis (H3), the operator (15) is injective, and therefore
W �→ (G1(x

+)22 • W, . . . , Gn(x
+)22 • W) is injective at x+ in a neighborhood of x̄. In other

words, ‖(G1(x
+)22 • W, . . . , Gn(x

+)22 • W)‖ ≥ κ‖W‖ for some κ > 0, all W , and all x+
sufficiently close to x̄. This proves H22 = O(‖h‖ + ‖H12‖ + ‖H11‖).

Next observe that by the definition of H ,

H11 = (p−1Zp(x+)δUZp(x+))11 + (p−1U+[G′(x+)h]Zp(x+))11 + ∗
= p−1Zp(x+)11δU11Zp(x+)11 + p−1(U+

11�11Zp(x+)11 + U+
12�

�
12Zp(x+)11) + ∗,

where we have put � = G′(x+)h for brevity. According to (27) we have U+
11 = O(1), while

p−1Zp(x+)11 = O(1) under wedge convergence by (26). Similarly U+
12 = O(1) by (28).

Putting these together therefore gives H11 = O(1 + ‖h‖) under wedge convergence. The same
applies to H12:

H12 = p−1Zp(x+)11δU12Zp(x+)22 + p−1(Zp(x+)11�12U
+
22 + Zp(x+)11�11U

+
12) + ∗.

This completes the proof. �

10. Application of the implicit function theorem

Let us now put ε7 = min{ε1, ε2, ε3, ε4, ε5, ε6}. Then all the properties collected over the
previous Lemmas will be valid on the wedge neighborhood W(ε7).

Next consider the system of nonlinear equations

Fx(x, U, p) = 0,

based on formula (16). Notice that (x̄, Ū , p) is solution for every p > 0. Let us fix an interval
I = [p1, p2] such that 0 < p1 < p2 ≤ ε7. We apply the implicit function theorem Lemma 1
where the H in the Lemma becomes Fx , the compact set is K∗ = {Ū} × I, the variable y

is (U, p) ∈ S
m × R, while x is x. The invertibility hypothesis on Hx in Lemma 1 therefore

reduces to invertibility of Fxx , which is guaranteed by Lemma 4 (22). Consequently, there
exists an open neighborhood Mp1,p2 ⊂ R

n × S
m × R of {x̄} × {Ū} × [p1, p2], an open neigh-

borhood Np1,p2 of {Ū} × [p1, p2] in S
m × R, and a C1 function x+(·, ·) : Np1,p2 → R

n such
that Fx(x

+(U, p), U, p) = 0 for every (U, p) ∈ Np1,p2 , x+(Ū , p) = x̄ for all p ∈ [p1, p2],
and such that the function x+(·, ·) is unique in the sense that (x, U, p) ∈ Mp1,p2 together with
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794 D. Noll

Fx(x, U, p) = 0 implies x = x+(U, p). This may also be expressed by{
(x, U, p) ∈ Mp1,p2 : Fx(x, U, p) = 0

} = {(
x+(U, p), U, p

) : (U, p) ∈ Np1,p2

}
. (33)

We may assume without loss that

Mp1,p2 ⊂ W(ε7) for every I = [p1, p2] having p2 ≤ ε7, (34)

because W(ε7) is a neighborhood of {x̄} × {Ū} × [p1, p2]. Moreover, by further shrinking
Mp1,p2 and Np1,p2 if required, we may arrange that{

Mp1,p2 is of the form Mp1,p2 = Up1,p2 × Np1,p2

for an open neighborhood Up1,p2 of x̄.
(35)

and similarly that⎧⎪⎨⎪⎩
Np1,p2 is of the form Np1,p2 = Np1,p2 × Ip1,p2 for a convex open

neighborhood Np1,p2 of Ū and an open interval Ip1,p2 containing

I = [p1, p2].
(36)

In our notation x+(U, p) we have suppressed the dependence of the implicit function on the
choice of I = [p1, p2], but we will say that x+(U, p) is associated with the choice of some
I. This slight abuse of notation is justified by the following

LEMMA 11. Under the standing assumptions (H1)–(H3), we have the following uniqueness
statements:

1. Suppose 0 < p1 < p2 ≤ ε7 and (U, p) ∈ Np1,p2 . Then x+(U, p) is the unique local mini-
mum (even the unique critical point) of program minx∈Rn F (x, U, p) in the neighborhood
Up1,p2 of x̄.

2. Suppose 0 < p′ < p2 and 0 < p′′ < p2, p2 ≤ ε7 and that we have (U, p) ∈ Np′,p2 ∩
Np′′,p2 . Then the values x+(U, p) of the two implicit functions associated with [p′, p2]
and [p′′, p2] agree.

Proof. Let us prove statement (1). We first show that x+(U, p) is a local minimum of F .
Clearly it is a critical point by the implicit function theorem, but in addition, we have
Fxx(x

+(U, p), U, p) � ρI � 0, because (x+(U, p), U, p) ∈ W(ε7) by construction, so
Lemma 4 (22) applies. Now the sufficient second order optimality condition for program
(5) is satisfied at x+(U, p), which is therefore a local minimum.

Suppose now x is a critical point of program minx∈Rn F (x, U, p) in Up1,p2 . Then (x, U, p) ∈
Up1,p2 × Np1,p2 = Mp1,p2 , and of course Fx(x, U, p) = 0. Due to formula (33), this implies
x = x+(U, p).

The proof of statement (2) is based on the same argument. �

We will make use of the derivative formula for the implicit function, which is part of the
statement of the implicit function theorem (Lemma 1). Using (20), we have

x+
U (U, p)δU = −Fxx

(
x+(U, p), U, p

)−1
FxU

(
x+(U, p), U, p

)
δU

= −Fxx

(
x+(U, p), U, p

)−1
G′(x)�

[(
I − p−1G

(
x+(U, p)

))−1

δU
(
I − p−1G

(
x+(U, p)

))−1
]
, (37)

whenever the implicit terms are defined.
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Local convergence 795

Let us introduce a second implicit function U+(U, p) defined on Np1,p2 by

U+(U, p) = (
I − p−1G

(
x+(U, p)

))−1
U
(
I − p−1G

(
x+(U, p)

))−1
.

In other words, U+(U, p) = U+ (
x+(U, p), U, p

)
, where the right-hand term uses the

function U+ introduced in section 8. We then have the following

LEMMA 12. Let 0 < p1 < p2 ≤ ε7. Then the implicit function x+(U, p) associated with the
interval I = [p1, p2] satisfies

‖x+
U (U, p)‖ ≤ K5p, (38)

for every (U, p) ∈ Np1,p2 . Similarly, the implicit function U+(U, p) associated with I satisfies

‖ (U+
U (U, p)

)
22 ‖ ≤ K6(K5 + 1)p (39)

for every (U, p) ∈ Np1,p2 .

Proof. 1) We start out with formula (37). Write for brevity x+ = x+(U, p) and put h = p−1

x+
U (U, p)δU = p−1Fxx(x

+, U, p)−1FxU(x+, U, p)δU . The construction of the implicit func-
tion guarantees that (x+, U, p) ∈ W(ε7) for (U, p) ∈ Np1,p2 .

2) We claim that the exotic equation (29) is satisfied. This can be seen as follows. We
consider the identities:{

Lx

(
x+(U, p), U+(U, p)

) = 0(
I − p−1G

(
x+(U, p)

))−1
U
(
I − p−1G

(
x+(U, p)

))−1 − U+(U, p) = 0
(40)

based on (18), Fx = 0, and (19). We differentiate these equations with respect to U . For the
first equation in (40) we obtain

Lxx

(
x+(U, p), U+(U, p)

)
x+

U (U, p)δU + G′ (x(U, p))�
[
U+

U (U, p)δU
] = 0. (41)

Differentiating the second equation in (40) gives[
I − p−1G

(
x+(U, p)

)]−1
δU

[
I − p−1G

(
x+(U, p)

)]−1

+ U+(U, p)
[
p−1G′ (x+(U, p)

) {
x+

U (U, p)δU
}] [

I − p−1G
(
x+(U, p)

)]−1

+ [
I − p−1G

(
x+(U, p)

)]−1 [
p−1G′ (x+(U, p)

) {
x+

U (U, p)δU
}]

U+(U, p)

− U+
U (U, p)δU = 0. (42)

Substituting (42) into (41) gives

Lxx

(
x+, U+) xUδU + G′(x+)�

([
I − p−1G

(
x+)]−1

δU
[
I − p−1G

(
x+)]−1

)
+ 2p−1G′(x+)�

([
I − p−1G

(
x+)]−1 {

G′(x+)xUδU
} [

I − p−1G
(
x+)]−1

× U
[
I − p−1G

(
x+)]−1

)
= 0, (43)

where we write x+ = x+(U, p), U+ = U+(U, p) and where we suppress the arguments.
Multiplying (43) from the left with h defined in part 1) above, and dividing by p2, we obtain

indeed the exotic equation (29). In consequence, Lemma 9 applies and gives p−1‖x+
U (U, p)‖ =

‖h‖ ≤ K5 on Np1,p2 .
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796 D. Noll

3) Let us proceed in a similar way for the implicit function U+. Observe that (43) is nothing
else but equation (29), when we substitute the expression for h used in 1), and when we put
H = p−1U+

U (U, p)δU . Therefore, Lemma 10 implies

‖p−1
(
U+

U (U, p)
)

22 ‖ = ‖H22‖ ≤ K6 (‖h‖ + 1) ≤ K6(K5 + 1).

This proves the second part of the statement. �

Remark. The important fact about the constants collected over the past Lemmas is that they
are independent of the choice of the interval I = [p1, p2], as long as p2 ≤ ε7 is respected. We
refer to this as prior information, because it is needed before we ultimately fix the interval I.
This will become clear in section 11.

We are now ready to obtain the following major step toward the local convergence of the
AL algorithm.

LEMMA 13. Under hypotheses (H1)–(H3), there exists ε7 > 0 and K7 > 0 such that for all
0 < p1 < p2 ≤ ε7 the implicit functions x+ and U+ associated with the interval I = [p1, p2]
satisfy the estimates

(a) ‖x+(U, p) − x̄‖ ≤ K7p‖U − Ū‖, (b) ‖U+(U, p) − Ū‖ ≤ K7p‖U − Ū‖ (44)

for every (U, p) ∈ Np1,p2 .

Proof. Given the fact that x+(Ū , p) = x̄ for every p and each of the implicit functions, we
can integrate and obtain

‖x+(U, p) − x̄‖ =
∥∥∥∥∫ 1

0
x+

U (Ū + τ(U − Ū ), p)(U − Ū ) dτ

∥∥∥∥ ≤ K5p‖U − Ū‖,

using estimate (38) in Lemma 12, (Ū , p), (U, p) ∈ Np1,p2 , and the fact that Np1,p2 is convex.
This proves estimate (a) with constant K5.

To prove estimate (b) for the multiplier update, U+, we first apply the same argument to
the (2, 2)-block of U+. Since U+(Ū , p) = Ū for every p, we have

‖U+(U, p)22 − Ū22‖ ≤ K6(K5 + 1)p‖U − Ū‖,
using integration, now based on estimate (39). For the (1, 1) and (1, 2) blocks we use directly
(27) and (28) in Lemma 8. We only have to notice that for every interval I = [p1, p2] with
p2 ≤ ε7, picking (U, p) ∈ Np1,p2 implies (x+(U, p), U, p) ∈ W(ε7) by (34), so that

‖U+ (
x+(U, p), U, p

)
11 ‖ + ‖U+ (

x+(U, p), U, p
)

12 ‖
≤ K4

(
p2‖U − Ū‖ + ‖x+(U, p) − x̄‖2 + p‖U − Ū‖ + ‖x+(U, p) − x̄‖)

≤ 2K4p‖U − Ū‖
by estimates (27) and (28), estimate (44) (a) with constant K5, and the fact that we may render
1 + p + K2

5 p‖U − Ū‖ + K2
5 ‖U − Ū‖ ≤ 2 by reducing ε7 > 0 if necessary. This takes into

account that U+(U, p) = U+(x+(U, p), U, p). Altogether, we have shown ‖U+(U, p) −
Ū‖ ≤ (2K4 + K6(K5 + 1))p‖U − Ū‖, proving the second part of estimate (44). If we put
K7 = max{K5, 2K4 + K6(K5 + 1)}, we clearly obtain both estimates in (44) with the same
constant K7. �
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Local convergence 797

Remark. As a consequence of Lemma 13, we see that if we allow the penalty parameter
pk to shrink to 0, we obtain local superlinear convergence Uk → Ū , while xk → x̄ converges
R-superlinearly. See also [25] for a proof of this fact. Naturally, allowing the penalty parameter
to converge to 0 leads to numerical ill-conditioning in the tangent program (5), and has to be
avoided in practice. It is mandatory to freeze p at a decent positive value. During the following
section, we show that the algorithm then still converges linearly if the initial U is sufficiently
close to Ū .

11. Progress measure

Recall that the progress measure σ(x, U, p) used in step 4 of our algorithm is given as:

σ(x, U, p) = ‖U − (
I − p−1G(x)

)−1
U
(
I − p−1G(x)

)−1 ‖. (45)

Then in fact σ(x+, U, p) = ‖U − U+‖. The test in step 4 therefore becomes ‖U − U+‖ ≤
τ‖U− − U‖, where U = U+(x, U−, p−). This is indeed a primal-dual progress test, because
it takes the full information x, U, p from two consecutive sweeps into account.

LEMMA 14. Suppose hypotheses (H1)–(H3) are satisfied at (x̄, Ū ). Then there exists ε7 > 0,
0 < p < p < ε7, a neighborhood N of Ū and a neighborhood U of x̄ such that for all p1 and
U1 satisfying pγ < p1 ≤ p and U1 ∈ N :

1. The sequences pk , Uk and xk+1 = x+(Uk, pk) generated by the augmented Lagrangian
algorithm are well defined, and Uk ∈ N for every k.

2. xk+1 ∈ U for all k.
3. The sequence pk stays in the interval I = [p, p], and is therefore constant from some index

k1 on.

Proof. Let ε7 and the wedge neighborhood W(ε7) be as in the proof of Lemma 13. Choose
p ≤ ε7 such that K7p < 1. For later use put

K8 := K3ε7 + ‖Im−s‖ + K3K7ε
2
7 + K3K7ε

3
7 ,

K9 := ‖Ū22‖K2
3 K2

7 ε2
7 + 2K3K7ε7‖Ū22‖ + K3K7

and define

p := min

{
γ 2p,

γ 2τ

K7
(
1 + K2

8 + K9 + τ
)} (46)

where τ, γ are the parameters used in the algorithm, and where the constants Ki , εi are as in
the previous sections. Recall that these constants are available before p is defined, because
they have been collected as part of the prior information.

Now we define the neighborhoods in question by setting U = Up,p and N = Np,p,
N = Np,p. See section 10, formulas (33)–(36), for their definitions. Notice that by Lemma 11
we have xk+1 = x+(Uk, pk) for the implicit function associated with [p, p] for all k with
pk ∈ I = [p, p]. In particular, the sequences xk+1, Uk and pk are well defined for these k.
This is because Uk+1 stays in the neighborhood Np,p in view of estimate (46) (b) and K7p < 1,
so that the procedure can be continued at the next step. In particular, from the uniqueness part
of the implicit function theorem (33) we then know that xk+1 stays in U = Up,p and is the
unique local minimum (even unique critical point) of tangent program (5) in U .
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798 D. Noll

Suppose the sequence pk does not stay in the interval I = [p, p]. Then there exists a
smallest index k1 such that pk1 ∈ I, but pk1+1 = γpk1 < p. We will show that this leads to a
contradiction.

Notice first that pk1 < p1, so that k1 ≥ 2. Indeed, pk1 = p1 > γp would give p > pk1+1 =
γpk1 = γp1 > γ 2p, contradicting the definition of p. Hence indeed k1 ≥ 2.

Let Zk := (I − p−1
k G(xk+1))

−1, where xk+1 = x+(Uk, pk), Z̄ = diag(0s , Im−s). Then
Zk = Zpk

(x+(Uk, pk)). We have

‖Uk − Ū‖ ≤ pkε7 ≤ pε7 ≤ ε2
7 .

Using this, (26), and (44) (a) we have

‖Zk‖ ≤ ‖(Zk)11‖ + ‖(Zk)22‖ + 2‖(Zk)12‖
≤ ‖(Zk)11‖ + ‖Im−s‖ + ‖(Zk)22 − Im−s‖ + 2‖(Zk)12‖
≤ K3pk + ‖Im−s‖ + K3p

−1
k ‖xk+1 − x̄‖ + 2K3‖xk+1 − x̄‖

≤ K3ε7 + ‖Im−s‖ + K3K7‖Uk − Ū‖ + 2K3K7ε7‖Uk − Ū‖
≤ K3ε7 + ‖Im−s‖ + K3K7ε

2
7 + 2K3K7ε

3
7 = K8 (47)

according to the definition of K8. Next consider the matrix expression

Ū − ZkŪZk =
[−Zk

12Ū22Z
k�
12 −Zk

12Ū22Z
k
22

−Zk
22Ū22Z

k�
12 Ū22 − Zk

22Ū22Z
k
22

]
.

Using again (26), we have

‖Ū − ZkŪZk‖ ≤ ‖ (Ū − ZkŪZk

)
11 ‖ + 2‖ (Ū − ZkŪZk

)
12 ‖ + ‖ (Ū − ZkŪZk

)
22 ‖

= ‖Zk
12Ū22Z

k�
12 ‖ + 2‖Zk

12Ū22Z
k
22‖ + ‖Ū22 − Zk

22Ū22Z
k
22‖

≤ ‖Ū22‖ (K3 ‖xk+1 − x̄‖)2 + 2K3 ‖Ū22‖ ‖xk+1 − x̄‖ + K3p
−1
k ‖xk+1 − x̄‖

≤ (‖Ū22‖K2
3 K2

7 ε2
7 + 2K3K7ε7‖Ū22‖ + K3K7

) ‖Uk − Ū‖
= K9‖Uk − Ū‖ (48)

using the definition of K9. Combining (47) and (48) gives the estimate

σ(xk+1, Uk, pk) = ‖Uk − ZkUkZk‖
≤ ‖Uk − Ū‖ + ‖Ū − ZkŪZk‖ + ‖ZkŪZk − ZkUkZk‖
≤ ‖Uk − Ū‖ + ‖Ū − ZkŪZk‖ + ‖Zk‖2‖Uk − Ū‖
≤ (1 + K2

8 + K9)‖Uk − Ū‖. (49)

On the other hand, using estimate (44) (b) we have for k ≥ 2:

‖Uk − Ū‖ ≤ K7pk−1‖Uk−1 − Ū‖ ≤ K7pk−1
(‖Uk−1 − Uk‖ + ‖Uk − Ū‖)

and therefore

‖Uk − Ū‖ ≤ (
(K7pk−1)

−1 − 1
)−1 ‖Uk−1 − Uk‖, (50)
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Local convergence 799

where we have (K7pk−1)
−1 > 1 for all k ≥ 2 by assumption. Combining (49) and (50) gives

σ(xk+1, Uk, pk) ≤ 1 + K2
8 + K9

(K7pk−1)−1 − 1
‖Uk−1 − Uk‖

= 1 + K2
8 + K9

(K7pk−1)−1 − 1
σ(xk, Uk−1, pk−1)

=: τk σ (xk, Uk−1, pk−1). (51)

Since the pk are decreasing, the sequence τk defined by (51) decreases as well. Consequently,
if we can find an index k2 such that τk2 ≤ τ , where τ is the parameter used in the algorithm,
then we have τk ≤ τ for every k ≥ k2. According to step 4 of the algorithm, and due to (51),
the parameter pk would then be unchanged for k ≥ k2. In consequence, an index k2 of this
type could not possibly occur before k1. Namely, suppose we had k2 ≤ k1, then pk = pk2 for
k ≥ k2, contradicting the definition of k1, where we have pk1+1 = γpk1 .

What we therefore know is k2 > k1. In other words, τk > τ for every k < k2, meaning
τk > τ for every k ≤ k1. In particular τk1 > τ . Setting K10 := 1 + K2

8 + K9, this becomes

τk1 = K10

(K7pk1−1)−1 − 1
> τ

if we plug in the expression (51) for τk1 . This is now the same as

pk1−1 >
τ

K7(K10 + τ)
.

Since p+ ∈ {p, γp} at each step of the algorithm, we deduce

pk1 ≥ γpk1−1 >
γτ

K7(K10 + τ)
.

Using pk1+1 = γpk1 then gives

pk1+1 >
γ 2τ

K7(K10 + τ)
.

On the other hand, pk1+1 < p by construction, which means

p >
γ 2τ

K7(K10 + τ)
= γ 2τ

K7(1 + K2
8 + K9 + τ)

.

This contradicts the definition (46) of p. �

Remark. If the sequences xk , Uk and pk generated by the augmented Lagrangian algorithm
are started with initial p1 > p, then, as the pk are reduced, there will be a smallest k0 with
pk0 ≤ p. Then pk0 > γp, and the conclusions of Lemma 14 are still valid for the sequence
(Uk, pk), k ≥ k0, if Uk0 ∈ U for the neighborhood U found in Lemma 14. Naturally, as we
prove a local convergence result, such a restriction has to be expected.

Remark. The initial parameter p1 must fall in the range (γ p, p], which appears small.
However, since p+ ∈ {γp, p} at each step, some pk always falls within this range as the
pk , starting large, get smaller. On the other hand, if we feel uncomfortable with this initial
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800 D. Noll

condition, we can easily replace it by p1 ∈ (γ ap, p] for some large a > 1, so that γ ap � p,
by adapting the definition (46) of p in the proof.

Assembling the findings of the previous sections leads to the following local convergence
theorem.

THEOREM 1. Let x̄ be a local minimum of (1) with associated Lagrange multiplier Ū such
that the hypotheses (H1)–(H3) are satisfied. Then there exists a neighborhood N of Ū , a
neighborhood U of x̄, and p > 0 such that the following conditions are satisfied:

1. Whenever U1 ∈ N and γp < p1 ≤ p, then the sequences Uk , pk > 0 and xk+1 generated
by the augmented Lagrangian algorithm are well-defined if xk+1 is the local minimum of
minx∈Rn F (x, Uk, pk) in U . The sequence Uk stays in N , and xk+1 is the unique critical
point of (5) in U .

2. The sequence Uk converges to Ū with Q-linear speed, and xk converges to x̄ with R-linear
speed.

3. The sequence pk > 0 is constant from some index k1 on.

Proof. We choose p, p, and then U and N as in the proof of Lemma 14. Then we know
that the sequence pk does not leave the interval [p, p]. Since it is decreasing, it is eventually
constant with value p̂ ∈ [p, p].

Now xk+1 = x+(Uk, p̂) and Uk+1 = U+(Uk, p̂), so estimate (44) (b) immediately shows
that Uk converges Q-linearly with speed K7p̂ ≤ K7p < 1. By (44) (a), xk then converges
R-linearly. �

12. Example

Let us indicate by way of an example that condition (13) is too strong in general. Consider
the program

minimize f (x) = 1

2

(−x2
1 − x2

2

)

subject to G(x) =

⎡⎢⎢⎣
−1 1 − x1 0

1 − x1 −1 −x2

0 −x2 −1

⎤⎥⎥⎦ � 0

whose unique minimum is x̄ = (2, 0). The Hessian of the Lagrangian is Lxx(x, U) =[−1 0
0 −1

]
, because G′′ = 0. That already means that (13) has no chance to be true. Observe

that G′(x̄)�U = (−2u12, −2u23), so that the KKT-conditions read[
−x1

x2

]
+
[
−2u12

−2u23

]
=
[

0

0

]

along with complementarity, which gives

Ū =
⎡⎢⎣ 1 −1 0

−1 1 0

0 0 0

⎤⎥⎦ .
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Local convergence 801

The matrix Q which diagonalizes G(x̄) and Ū in the sense that Ū = QdiagŪQ� is

Q =

⎡⎢⎢⎢⎢⎢⎣
1√
2

− 1√
2

0

1√
2

1√
2

0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

The curvature term is therefore

H(x̄, Ū ) =
[

0 0
0 2

]
.

The final link is obtained by computing the critical cone. According to (10), we obtain C(x̄) =
R(0, 1) here. And it can indeed be verified that

h� (
Lxx(x̄, Ū ) + H(x̄, Ū )

)
h = [0 h2]

[
−1 0

0 1

][
0

h2

]
= h2

2 > 0

whenever h ∈ C(x̄), h �= 0. That means the second-order no-gap sufficient optimality
condition (11) is satisfied, even though Lxx(x̄, Ū ) ≺ 0.
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