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Abstract The standard way to compute H∞ feedback controllers uses algebraic
Riccati equations and is therefore of limited applicability. Here we present a new
approach to the H∞ output feedback control design problem, which is based on non-
linear and nonsmooth mathematical programming techniques. Our approach avoids
the use of Lyapunov variables, and is therefore flexible in many practical situations.

1 Introduction

Well designed feedback control systems in high technology fields are expected to
respond favorably to a list of concurring performance specifications such as stability,
good regulation against disturbances, desirable responses to commands, robustness,
control law specifications, system security, and much else. In addition, controllers
should be hardware implementable at low cost, and should allow a flexible adaption
to strategic changes during the model building process. These ever growing demands
have shown the limitations of currently used mathematical tools for synthesis, which
are based on solving algebraic Riccati equations (AREs). The rise of linear matrix
inequalities (LMIs) since the early 1990s has certainly improved the situation, but the
main limitations of these approaches persist.
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434 V. Bompart et al.

In response, various new design methods have been proposed since the late 1990s,
including methods from global optimization [6,7,34,37], matrix inequality constrained
nonlinear programming [5,14,24,25,36], augmented Lagrangian methods [13,30],
eigenvalue optimization [1–3,19], and others. Presently we discuss a new strategy for
H∞ output feedback control synthesis, which has several advantages over existing
approaches, because it avoids the use of Lyapunov variables. We shall show that this
leads to much smaller and better manageable problems, at the price that controller
synthesis becomes a nonsmooth optimization program. We develop local nonsmooth
optimization strategies suited for this new context, and show that they improve the
situation considerably.

2 Problem setting

We consider a linear time-invariant plant described in standard form by the state-space
equations

P(s) :
⎡
⎣

ẋ
z
y

⎤
⎦ =

⎡
⎣

A B1 B2
C1 D11 D12
C2 D21 0p2×m2

⎤
⎦
⎡
⎣

x
w

u

⎤
⎦ ,

where s is the Laplace variable, x ∈ R
n is the state of the system, u ∈ R

m2 the control,
w ∈ R

m1 an exogenous signal (noise, commands), z ∈ R
p1 the regulated variable

(response of the system to the input w), and y ∈ R
p2 the measured output. The goal

of feedback control synthesis is to design an output feedback controller

K (s) :
[

ẋK

u

]
=
[

AK BK

CK DK

] [
xK

y

]

where xK ∈ R
nK , AK ∈ R

nK ×nK , BK ∈ R
nK ×p2 , CK ∈ R

m2×nK and DK ∈ R
m2×p2 ,

such that the following three criteria are met:
Internal stability. The closed-loop system obtained by substituting K into P is expo-
nentially stable.
Performance. Among all internally stabilizing controllers, K minimizes the H∞-
norm of the performance channel w → z.
Control law specifications. The controller K may be subject to additional structural
constraints. For instance, one may look for decentralized controllers, reduced-order
controllers, PID, feed-forward, lead lag structures, etc.

Let us explain the performance requirement for the case u = K y of a static output
feedback controller, where DK = K ∈ R

m2×p2 . Here the closed-loop transfer function
for the performance channel w → z is

Tw→z(K )(s) = D(K )+ C(K )(s In − A(K ))−1B(K ) (1)
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Second-order nonsmooth optimization for H∞ synthesis 435

where the closed loop data are

A(K ) = A + B2 K C2 B(K ) = B1 + B2 K D21

C(K ) = C1 + D12 K C2 D(K ) = D11 + D12 K D21

For brevity, we shall subsequently write T (K , ω) := Tw→z(K )( jω). Denoting by λ1
the maximum eigenvalue function on the space of Hermitian matrices, and by σ̄ the
maximum singular value of m1 × p1 matrices, we define

f (K , ω) = λ1(T (K , ω)
H T (K , ω)) = [σ̄ (T (K , ω))]2 ,

where Z H stands for the conjugate transpose of the complex matrix Z .
The square of the H∞ norm is then defined as

‖Tw→z(K )‖2∞ = max
ω∈[0,∞] f (K , ω). (2)

Optimizing the performance of the controller therefore leads to minimizing the func-
tion f (K ) = maxω∈[0,∞] f (K , ω) over the set S of all closed-loop exponentially
stabilizing controllers K ∈ R

m2×p2 .
Notice that f is nonsmooth with two possible sources of nonsmoothness: (a) the

infinite max-operator, and (b) the nonsmoothness of λ1, which may lead to nonsmooth-
ness of f (·, ω) for fixed ω.

Remark A difficulty is that the set of exponentially stabilizing controllers S is open
and not a constraint set in the usual sense of nonlinear programming. We have observed
that it is usually possible to ignore the constraint K ∈ S, and start the minimization (3)
with an initial closed-loop stabilizing controller K ∈ S. The fact that ‖Tw→z(K )‖∞
is minimized, and therefore stays finite, very often implies closed-loop stability of the
limit point K̄ . That is why we shall consider program

min
K∈Rm2×p2

f (K ) = ‖Tw→z(K )‖2∞. (3)

under the implicit assumption that iterates Kk and the limit K̄ are closed-loop stabi-
lizing.

In those cases where ‖Tw→z(K )‖∞ < ∞ does not imply closed-loop stability, a
problem occurs. Here a minimizing sequence Kk ∈ S for (3) will converge to a control-
ler K̄ on the boundary of the domain S. Such a K̄ is not a valid solution of the control
problem. Fortunately, the phenomenon is easily detected, and a practical way out is
to consider an additional closed-loop transfer channel Tstab(K , s) = (s I − A(K ))−1,
called the stabilizing channel. For a small parameter ε > 0, we may then minimize
the objective

f (K ) = max
(
‖Tw→z(K )‖2∞, ε‖Tstab(K )‖2∞

)
, (4)
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436 V. Bompart et al.

and we are now sure that f (K ) < ∞ implies closed-loop stability of K . Notice that
f is again of the form (3) if a transfer matrix with the two diagonal blocks Tw→z and
εTstab is introduced. ��
Remark Our approach to H∞ controller synthesis based on program (3) differs sub-
stantially from standard ways to solve such problems, where the H∞ norm is avoided
and replaced by a matrix inequality using the bounded real lemma [10]. In solving (3)
directly we dispense with Lyapunov variables, which leads to a spectacular reduction
in the number of unknowns, especially when small controllers for large systems are
sought. In exchange we have to deal with nonsmoothness and with semi-infinity, and
those are addressed during the next sections. ��

First-order nonsmooth optimization methods for (3) have for the first time been
proposed in [1], and have been further developed in [2–4]. Here we propose a sec-
ond-order approach, which when combined with the first-order technique speeds up
the minimization process at the end, improves the final precision, and serves as an
additional convergence certificate.

3 Approach via semi-infinite programming

In the previous section we have introduced program (3) for the case of static con-
trollers, and we shall continue to do so because the general case of dynamic K may
be reduced to the static case by prior dynamic augmentation of the system. More
precisely, the following substitutions are performed:

K →
[

AK BK

CK DK

]
, A →

[
A 0
0 0k

]
, B1 →

[
B1
0

]
, C1 → [

C1 0
]

B2 →
[

0 B2
Ik 0

]
, C2 →

[
0 Ik

C2 0

]
, D12 → [

0 D12
]
, D21 →

[
0

D21

]
.

(5)

Now we have the following

Lemma 1 For a closed-loop stabilizing controller K , the set of active frequencies
Ω(K ) := {ω ∈ [0,∞] : f (K ) = f (K , ω)} is either finite, or Ω(K ) = [0,∞], that
is, f (K , ω) = f (K ) for all ω.

Proof Notice that as K is fixed, we are concerned with a one parameter family
ω �→ T (K , ω)H T (K , ω) of m1 × m1 Hermitian matrices. Here the bundle of the m1
eigenvalues λi

(
T (K , ω)H T (K , ω)

)
as functions of ω has a very specific structure: it

consists of m1 real analytic functions φi (ω), ω ∈ R; see e.g. [21, pp. 82, 138], or [26].
More precisely, there are m1 real analytic functions φ1, . . . , φm1 such that

{σ1(T (K , ω)), . . . , σm1(T (K , ω))} = {|φ1(ω)|, . . . , |φm1(ω)|}, (6)

where σi (T (K , ω)) are the singular values of T (K , ω). In consequence, the maximum
eigenvalue function (2) is the maximum of m1 real analytic functions φ2

i (ω). These φ2
i

123



Second-order nonsmooth optimization for H∞ synthesis 437

are also analytic at ∞, because we are dealing with a stable (proper) transfer matrix
T (K , ω), which is rational as a function of ω. (The statement above may be made
more precise: there exist functions φi which are analytic on a strip B on the Riemann
sphere S

2 = C ∪ {∞}, such that B contains the meridian S
1 = R ∪ {∞} passing

through the north pole ∞, with φi taking real values on S
1, such that (6) is satisfied

for all ω ∈ S
1.)

Suppose nowΩ(K ) is infinite. Then one of these m1 real analytic functions φ2
i has

an infinity of maxima on S
1 with the same value f (K ). Since S

1 is compact, these
maxima have an accumulation point ω̄. In terms of the analytic extensions on B, that
means the Taylor expansion of the φ2

i in question at ω̄ is the same as the Taylor expan-
sion of the function with constant value f (K ). This implies indeed φ2

i (ω) = f (K )
for all ω. ��
Remark 1. The stable transfer function φ : s �→ s−1

s+1 satisfies φ( jω)φ(− jω) = 1, so
it is theoretically possible that Ω(K ) = [0,∞]. This may even arrive in practice: it
is known that the so-called central (full order) optimal H∞-controller K∞ renders the
frequency plot ω �→ f (K∞, ω) flat or all-pass.

2. Notice also that we cannot omit the frequency ω = ∞ in the discussion, as
witnessed by the stable transfer function φ(s) : s �→ s+1

s+2 . Here maxω∈[0,∞] φ( jω)φ
(− jω) = 1 is attained at ω = ∞.

3. The frequencies ω ∈ Ω(K ) will be called the peaks of the frequency curve at
K . Local maxima of the frequency curve ω �→ f (K , ω) which are not peaks will be
called secondary peaks. Notice that the above argument also shows that the number
of secondary peaks is finite. ��

For the technical formulas we shall concentrate on those K , where the set of active
frequencies or peaks Ω(K ) = {ω ∈ [0,∞] : f (K ) = f (K , ω)} is finite. In practice
we have never observed flat frequency curves when the order of the controller is smaller
than the order of the plant.

During the following we will analyze the case where the multiplicity ofλ1(T (K ,ω)H

T (K , ω)) is one at all active frequencies ω. This is motivated by practical consider-
ations, because nonsmoothness (b) never occurred in our tests. The necessary changes
required for the general case will be discussed in Sect. 4.3.

It is useful to cast program (3) as an equivalent constrained semi-infinite program

minimize t
subject to f (K , ω)− t ≤ 0, ω ∈ [0,∞] (7)

with decision variable (K , t).
In [18] three approaches to semi-infinite programming are discussed: exchange of

constraints, discretization, and local reduction. Here we use a local reduction method.
The main ideas are recalled below; see also [20] for this approach.

Let (K̄ , t̄), with t̄ = f (K̄ ), be a local solution of (7). Indexing the active frequencies
Ω(K̄ ) = {ω̄1, . . . , ω̄p} at K̄ , we suppose that the following conditions are satisfied

(i) f ′
ω(K̄ , ω̄i ) = 0, i = 1, . . . , p.

123



438 V. Bompart et al.

(ii) f ′′
ωω(K̄ , ω̄i ) < 0, i = 1, . . . , p.

(iii) f (K̄ , ω) < f (K̄ ), for every ω /∈ Ω(K̄ ) = {ω̄1, . . . , ω̄p}.
These assumptions define the setting denoted as the “standard case” in semi-infi-
nite programming [18]. The three conditions express the fact that the frequencies
ω̄i ∈ Ω(K̄ ) are the strict global maximizers of f (K̄ , ·). Notice that condition (iii) is
the finiteness hypothesis already mentioned, justified by Lemma 1, while condition
(ii) is slightly conservative, because the necessary optimality condition only tells us
that f ′′

ωω(K̄ , ω̄i ) ≤ 0.

Remark Notice that f (K̄ , ·) is twice differentiable at each ω̄i even without the hypoth-
esis that the maximum singular values of the T (K , ω̄i ) have multiplicity 1. This is
because the maximum singular value function ω → σ̄ (G( jω)) of a stable transfer
matrix G is always twice continuously differentiable at its local maxima [9]. ��

Conditions (i) and (ii) allow the implicit function theorem, according to which we
can find a neighborhood U of K̄ , and neighborhoods Vi of ω̄i (i = 1, . . . , p), together
with C1-functions ωi : U → Vi , such that the following conditions are satisfied

(iv) ωi (K̄ ) = ω̄i , i = 1, . . . , p.
(v) f ′

ω (K , ωi (K )) = 0, i = 1, . . . , p.
(vi) Whenever K ∈ U and ω ∈ Vi satisfy f ′

ω(K , ω) = 0, then ω = ωi (K ).

Condition (ii) says f ′′
ωω(K̄ , ω̄i ) < 0, so by shrinking U if required, we may arrange

that f ′′
ωω (K , ωi (K )) < 0 for K ∈ U . Then ωi (K ) are local maxima of f (K , ·).

Moreover, by (vi), ωi (K ) is the only critical point of f (K , ·) in Vi . We then have the
following

Lemma 2 Under conditions (i)–(iii) the neighborhood U of K̄ may be chosen such
that max

ω∈[0,∞] f (K , ω) = max
i=1,...,p

f (K , ωi (K )) for every K ∈ U. In particular,Ω(K ) ⊂
{ω1(K ), . . . , ωp(K )} for every K ∈ U.

Proof Choose U and Vi such that conditions (iv)–(vi) are satisfied. Suppose that con-
trary to the statement there exists a sequence Kr → K̄ such that

mr := max
i=1,...,p

f (Kr , ωi (Kr )) < max
ω∈[0,∞] f (Kr , ω) =: Mr .

Pickωr where the maximum Mr is attained. Passing to a subsequence, we may assume
ωr → ω∗ for some ω∗ ∈ [0,∞]. Since mr → f (K̄ ) and Mr → f (K̄ ), we have
f (K̄ ) = f (K̄ , ω∗). By axiom (iii), that means ω∗ = ω̄i for some i = 1, . . . , p. Then
(Kr , ω

r ) ∈ U × Vi from some index r0 onwards.
But f ′

ω(Kr , ω
r ) = 0, because ωr is a maximum at Kr , so condition (vi) implies

ωr = ωi (Kr ). That shows mr = Mr for r ≥ r0, a contradiction. ��
Altogether, we have shown that program (3) is locally equivalent to the standard

constrained nonlinear program

minimize t
subject to f (K , ωi (K ))− t ≤ 0, i = 1, . . . , p

(8)

123



Second-order nonsmooth optimization for H∞ synthesis 439

which we may solve via a SQP method. In the next section we will discuss how this
should be organized, and that the jet information may be computed efficiently. Local
convergence of this approach will be assured under the following hypothesis

(vii) f ′
K (K̄ , ω̄1), . . . , f ′

K (K̄ , ω̄p) are linearly independent

because this guarantees that program (8) satisfies the linear independence constraint
qualification hypothesis (LICQ).

4 Solving with SQP

4.1 Quadratic tangent subproblem

In this section we assume that for K in a neighborhood of K̄ , the set {ω1(K ), . . . ,
ωp(K )} is available. The computation of this set will be discussed in Sect. 5.1.

In order to derive the tangent quadratic program for (8), let us write Gi (K , t) =
f (K , ωi (K ))− t , F(K , t) = t . The Lagrangian of (8) is then

L(K , t; τ) = F(K , t)+
p∑

i=1

τ i Gi (K , t),

so that

L ′
K (K , t; τ) =

p∑
i=1

τ i ( f ′
K (K , ωi (K ))+ f ′

ω (K , ωi (K )) ω
′
i (K )

)

=
p∑

i=1

τ i f ′
K (K , ωi (K ))

using condition (v) above. Similarly,

L ′
t (K , t; τ) = 1 −

p∑
i=1

τ i .

The second-order elements are L ′′
K t (K , t; τ) = 0, L ′′

t t (K , t; τ) = 0, and

L ′′
K K (K , t; τ) =

p∑
i=1

τ i [ f ′′
K K (K , ωi (K ))

+ f ′
ω (K , ωi (K )) ω

′′
i (K )+ f ′′

ωK (K , ωi (K )) ω
′
i (K )

�]

=
p∑

i=1

τ i
[

f ′′
K K (K , ωi (K ))+ f ′′

ωK (K , ωi (K )) ω
′
i (K )

�] ,
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again using condition (v). Differentiating (v) gives

0 = f ′′
ωK (K , ωi (K ))+ f ′′

ωω (K , ωi (K )) ω
′
i (K ),

which allows us to express ω′
i (K ) through derivatives of f . Altogether,

L ′′(K , t; τ) =
[

L ′′
K K (K , t; τ) 0

0 0

]

with

L ′′
K K (K , t; τ) =

p∑
i=1

τ i
[

f ′′
K K

(
K , ωi (K )

)

− f ′′
ωK (K , ωi (K )) f ′′

ωω (K , ωi (K ))
−1 f ′′

ωK (K , ωi (K ))
�] .

The tangent quadratic program is now

minimize δt + 1
2δK �L ′′

K K (K , t; τ)δK

subject to f (K , ωi (K ))+ f ′
K (K , ωi (K ))� δK − t − δt ≤ 0,

i = 1, . . . , p
δt ∈ R, δK ∈ R

m2×p2

(9)

4.2 First and second derivative formulas

We first recall some useful results from matrix perturbation theory, concerning the
first derivatives of a non-degenerate eigenvalue and an associated eigenvector. Gen-
eral formulae may be found in [17]. We specialize to the case of a Hermitian matrix
depending on real parameters: given A(u), a n ×n complex Hermitian matrix depend-
ing smoothly on u ∈ R

p, we denote by λ1(u) ≥ · · · ≥ λn(u) the eigenvalues of A(u),
and by

(
q1(u), . . . , qn(u)

)
an orthonormal basis of eigenvectors, such that

⎧⎪⎨
⎪⎩

A(u) = Q(u)Λ(u)Q(u)H ,

Λ(u) = diag
(
λ1(u), . . . , λn(u)

)
and

Q(u) = [
q1(u), . . . , qn(u)

]
.

For a fixed k and a given u0 ∈ R
p, under the assumption that λk(u0) is a simple

(non-degenerate) eigenvalue of A(u0), λk and qk are differentiable at u0, and for all
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Second-order nonsmooth optimization for H∞ synthesis 441

δu in R
p, we have

λ′
k(u0).δu = qk(u0)

H (A′(u0).δu
)
qk(u0)

q ′
k(u0).δu =

n∑
i=1

i �=k

qi (u0)
H
(

A′(u0).δu
)
qk(u0)

λk(u0)− λi (u0)
qi (u0)

Notice from the second equality that q ′
k(u0).δu is orthogonal to the eigenvector

qk(u0).
Furthermore we derive from these expressions that λk is twice differentiable at u0,

and for all δu1, δu2 in R
p, dropping the dependency on u0 for the right hand side

terms, we get

λ′′
k (u0).(δu1, δu2) = q H

k

(
A′′.(δu1, δu2)

)
qk

+ 2 Re

⎛
⎜⎜⎜⎝

n∑
i=1
i �=k

q H
k

(
A′.δu1

)
qi q H

i

(
A′.δu2

)
qk

λk − λi

⎞
⎟⎟⎟⎠ .

We specialize to the case of f (K , ω), the squared maximum singular value of the
transfer matrix T (K , ω). Then u = (K , ω) and A(u) = A(K , ω) = T (K , ω)H T
(K , ω), and f = λ1 ◦ A.

We note eigenvalues of T (K , ω)H T (K , ω) as (λi )1≤i≤m1 and an orthonormal basis
of associated eigenvectors as (qi )1≤i≤m1 . We drop the dependency on K and ω for
ease of notation. We assume that λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm1 . Applying the above
formulae gives:

f ′
K (K , ω).δK = 2 Re

(
q H

1 T H (T ′
K .δK )q1

)

f ′
ω(K , ω) = 2 Re

(
q H

1 T H T ′
ωq1

)

f ′′
K K (K , ω).(δK1, δK2)

= 2 Re

[
q H

1

(
(T ′

K .δK2)
H T ′

K .δK1 + T H T ′′
K K .(δK1, δK2)

)
q1

+
m1∑
i=2

q H
1

(
T H T ′

K .δK1+(T ′
K .δK1)

H T
)

qi q H
i

(
T H T ′

K .δK2+(T ′
K .δK2)

H T
)

q1

λ1−λi

]
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f ′′
ωω(K , ω) = 2 Re

[
q H

1

(
T ′
ω

H T ′
ω + T H T ′′

ωω

)
q1

]

+2
m1∑
i=2

∣∣∣q H
1

(
T H T ′

ω + T ′
ω

H T
)

qi

∣∣∣2

λ1 − λi

f ′′
ωK (K , ω).δK = 2 Re

[
q H

1

(
(T ′

K .δK )H T ′
ω + T H T ′′

ωK .δK
)

q1

+
m1∑
i=2

q H
1

(
T H T ′

ω+T ′
ω

H T
)

qi q H
i

(
T H T ′

K .δK+(T ′
K .δK )H T

)
q1

λ1−λi

⎤
⎦

The first and second partial derivatives of the transfer function T can be expanded
with the closed-loop state-space matrices A, B and C. Starting out with formula (1),
we derive

T ′
K .δK =T ′

K (K , ω).δK

=
(

D12 + C( jωIn − A)−1
B2

)
δK
(

C2
(

jωIn − A)−1B + D21

)

T ′′
K K .(δK1, δK2)=T ′′

K K (K , ω).(δK1, δK2)

=
(

D12 + C( jωIn − A)−1
B2

)

×
(
δK2C2

(
jωIn − A)−1

B2δK1+δK1C2
(

jωIn − A)−1
B2δK2

)

×
(

D21+C2
(

jωIn − A)−1B
)

T ′
ω=T ′

ω(K , ω) T ′′
ωω = T ′′

ωω(K , ω)

=− j C( jωIn − A)−2B = −2 C( jωIn − A)−3B

T ′′
ωK .δK = T ′′

ωK (K , ω).δK

=− j

((
D12 + C( jωIn − A)−1

B2

)
δK
(

C2
(

jωIn − A)−2B
)

+
(
C( jωIn − A)−2

B2

)
δK
(

D21 + C2
(

jωIn − A)−1B
))

Introducing the following transfer matrices

F(K , ω) = (
jωIn − A(K ))−1

G12(K , ω) = D12 + C(K )F(K , ω)B2

G21(K , ω) = D21 + C2 F(K , ω)B(K ) G22(K , ω) = C2 F(K , ω)B2.
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we finally get

T ′
K .δK = G12δK G21

T ′′
K K .(δK1, δK2) = G12

(
δK2G22δK1 + δK1G22δK2

)
G21

T ′
ω = − jCF2B

T ′′
ωω = −2CF3B

T ′′
ωK .δK = − j

(
G12δK C2 F2B + CF2 B2δK G21

)
.

Remark Notice that the transfer matrices F , T , G12, G21 and G22 can be reliably and
efficiently evaluated at the active frequencies ω ∈ Ω(K ) with a Hessenberg method,
as explained in [22].

Altogether, we have proved the following

Proposition 1 Suppose λ1
(
T (K , ωi )

H T (K , ωi )
)

has multiplicity 1 for every ωi ∈
{ω1(K ), . . . , ωp(K )}. Then the frequency response (w1, w2) → (z1, z2) of the plant

⎡
⎢⎢⎣

ẋ

z1

z2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A(K ) B(K ) B2

C(K ) D(K ) D12

C2 D21 0p2×m2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

w1

w2

⎤
⎥⎥⎦ ,

can be used to compute all the jet elements of tangent program (9). Indeed, it suffices
to partition in order to get T , G12, G21 and G22:

T (K , ω) = Tw1→z1(K , jω) G12(K , ω) = Tw2→z1(K , jω)

G21(K , ω) = Tw1→z2(K , jω) G22(K , ω) = Tw2→z2(K , jω)

Similar formulae for the derivatives of the transfer function T are obtained for
dynamic controllers, using the substitutions (5). Proposition 1 has the practical conse-
quence that the jet information for (9) may be computed using the MATLAB control
tool environment. Our experience shows that this works efficiently even for systems
with several hundreds of states.

4.3 Multiple eigenvalues

The working hypothesis of the previous section was that leading eigenvalues λ1(
T (K , ωi (K ))H T (K , ωi (K )

)
had multiplicity 1 for all frequencies in the set {ω1

(K ), . . . , ωp(K )} and for all K in a neighborhood of K̄ . This hypothesis is motivated
by our numerical experience, where we have never encountered multiple eigenvalues.
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This is clearly in contrast with experience in pure eigenvalue optimization problems,
where multiplicity of limiting elements is > 1 as a rule, causing failure of those
numerical methods which assume smoothness of the maximum eigenvalue function.

Nonetheless, our approach is still functional if the hypothesis of single eigenvalues
at peak frequencies is dropped. What is needed is the weaker assumption that the
eigenvalue multiplicities r̄i at the limit point K̄ are known for all active frequen-
cies ω̄i , i = 1, . . . , p. More precisely, λ1

(
T (K̄ , ω̄i )

H T (K̄ , ω̄i
)

has multiplicity r̄i ,
i = 1, . . . , p, and for K sufficiently close to K̄ , we have a mechanism to reliably
guess r̄i , based solely on the information at the current iterate K .

This situation has been discussed by several authors, see e.g. [15,29,31,32]. With
r̄i known, SQP can still be applied as follows. Consider X ∈ S

m1 where λ1(X) has
multiplicity r . We replace the maximum eigenvalue function λ1 by the average of the
first r eigenvalues

λ̂r (X) = 1

r

r∑
ν=1

λν (X) .

This function is smooth in a neighborhood of the smooth manifold

Mr = {X ∈ S
m1 : λ1(X) = · · · = λr (X) > λr+1(X)}

of Hermitian matrices X ∈ S
m1 with eigenvalue multiplicity r , and λ1 = λ̂r on Mr .

The manifold has co-dimension d := r(r+1)
2 − 1 in S

m1 , and in a neighborhood of X̄
may be described by d equations h1(X) = 0, . . . , hd(X) = 0. The tangent space of
Mr can be computed, see [32,35], and an SQP approach may be derived, if hypothe-
ses (i) and (ii) are suitably modified. For pure eigenvalue optimization, this has been
discussed in [29]. The extension to the semi-infinite case is clear under the finiteness
assumption (iii). Introducing natural analogues of conditions (i), (ii), see for instance
[18], we may then approach minimization of the H∞-norm along the same lines and
obtain the finite program

minimize t

subject to λ̂r̄i

(
T (K , ωi (K ))H T (K , ωi (K ))

) ≤ t

T (K , ωi (K ))H T (K , ωi (K )) ∈ Mr̄i

i = 1, . . . , p

with decision variables (K , t). Its tangent quadratic program uses the explicit form of
the tangent space T (Mr , X) given in [35].

The case of multiple eigenvalues therefore requires two separate estimation steps.
As before we have to select p primary and secondary peaks. Then we have to
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estimate the eigenvalue multiplicity for each T (K , ωi )
H T (K , ωi ). There exist in-

deed practically useful ways to estimate the limiting multiplicity r̄ = r̄i of λ1 for each
frequency ωi . For instance, with a small threshold τ > 0, a guess r of r̄ could be
obtained by letting

λ1 − λr < τ max{1, |λ1|}, λ1 − λr+1 ≥ τ max{1, |λ1|}.

We leave the details of this extension to the care of the reader.

4.4 Globalisation via trust-region

Independently of whether or not the eigenvalue multiplicity at the active and nearly
active frequency peaks is 1, the local program (8) remains dependent on the character-
istics of the local solution (K̄ , t̄) of (7), because the number p of primary and secondary
peaks may vary. Using Helly type theorems, an upper bound for p may be derived, see
e.g. [18, Theorem 4.2]. For a controller K of order k we have p ≤ (m1 + k)(p1 + k)
peaks, but this is pessimistic as a rule. In order to stabilize our method, we will therefore
use a trust region strategy.

In order to control the step quality computed at a given primal-dual pair (K , t; τ),
we use the following �1-merit functions φ1 and ψ1, respectively, associated with the
local program (8) and the tangent program (9);

φ1(K , t;µ) = t + 1

µ

p∑
i=1

[ f (K , ωi (K ))− t]+

ψ1(δK , δt;µ) = δt + 1

2
δK �L ′′

K K (K , t; τ)δK

+ 1

µ

p∑
i=1

[δK �∇ f (K , ωi (K ))− δt + f (K , ωi (K ))− t]+.

The agreement between the actual reduction and the predicted reduction is mea-
sured by the ratio

ρ = φ1(K , t;µ)− φ1(K + δK , t + δt;µ)
ψ1(0;µ)− ψ1(δK , δt;µ) . (10)

Then the trust-region radius is managed according to the following algorithm, based
on a basic trust-region algorithm from [12].
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Fix 0 < η1 ≤ η2 < 1, 0 < θ < 1.

1. Initialize. Find an initial closed-loop stabilizing controller K0. Fix t0 =
f (K0), p0 and τ0 ∈ R

p0+ , and set counter k = 0.
2. Peak estimation. Given current Kk and τk ∈ R

pk−1+ , estimate number
pk and positions of primary and secondary peaks {ω1(Kk ), . . . , ωpk (Kk )}.

3. Model inconsistency. If pk differs from pk−1, or if last step taken was
Cauchy step, then modify old τk ∈ R

pk−1+ or create a new consistent
multiplier vector τk ∈ R

pk+ .
4. Initialize Newton method. Put Kk,0 = Kk , τk,0 = τk .

Set ∆0 = 1 if k = 0 or if k ≥ 1 and Kk = K C

Otherwise, set ∆0 = ∆ j+1.
Set counter j = 0.

5. Newton step. Use current iterate Kk, j , multiplier estimate τk, j and trust
region radius ∆ j to solve (9) and generate Newton trial step Kk, j+1, with
associated multiplier estimate τk, j+1 ∈ R

pk+ .
6. Decision. Compare predicted progress in the local quadratic model ψ1 to

progress in φ1 using progress ratio ρ j+1 in (10). There are two cases:
Step accepted: ρ j+1 ≥ η1. If even ρ j+1 ≥ η2 and ‖Kk, j − Kk, j+1‖
= ∆ j , then double radius ∆ j+1 = 2∆ j . Otherwise keep ∆ j+1 = ∆ j .
Put K N = Kk, j+1 and pN := f (Kk )− f (K N ). Goto step 7.
Step refused: ρ j+1 < η1. Put ∆ j+1 = ∆ j /2, increase counter j , and
go back to step 5.

7. Cauchy step. Given the current iterate Kk , compute a Cauchy step K C

away from Kk using the first-order method described in [2]. Let pC :=
f (Kk )− f (K C ) ≥ 0 be first-order progress. If pN ≥ θpC let Kk+1 = K N ,
and τk+1 = τk, j+1, otherwise put Kk+1 = K C .

8. Stopping test. If accepted step Kk+1 ∈ {K N , K C } offers no progress
over Kk , stop. Otherwise increase counter k and go back to step 2.

In the inner loop j , the penalty parameter µ j for the expressions φ1, ψ1 is initialized
at j = 0 with µ0 = (‖τ1‖∞ + α)−1 and updated according to the following rule for
j ≥ 1, with a chosen constant α > 0

µ j =
{
µ j−1 if µ−1

j−1 ≥ ‖τ j+1‖∞ + α,(‖τ j+1‖∞ + 2α
)−1 otherwise,

In this way, µ j < ‖τ j+1‖−1∞ and the �1 merit function ψ1 is exact (see [28]).
Notice that the trust region procedure in the inner loop j between steps 4 and 6

follows standard lines, but is based on the guess p and {ω1(K ), . . . , ωp(K )} of model
(8), so a few comments are in order here. Namely, since the model may be incorrect,
the following phenomenon may be observed. The Newton step may be successful
with regard to (8), i.e., with regard to the inner loop, but may nevertheless fail when
matched with reality in step 7. This is when the first order step K C takes over. In the
worst case, our method therefore converges with the speed of the underlying first-
order technique [2]. Alternative first-order methods which could be used instead are
for instance [3,4,27,33].

A second phenomenon, which also arises due to the necessity to guess p, is
addressed in step 3. It may happen that the new Kk+1 ∈ {K N , K C } is no longer
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consistent with the old model used in the previous step, because the number p had
to undergo a change, or because a first-order step K C had to be taken. The multiplier
estimate τk+1 = τk, j+1 from the last instance of step 6 is then of little use. We then
restart multipliers afresh, or we recycle the old ones.

Finally, when p and ωi (K ) have been estimated correctly, the quadratic model will
ultimately produce steps with quadratic progress. This means the test in step 8 will
ultimately accept the Newton step, showing that our method has a fair chance to give
local quadratic convergence.

Notice that two kinds of stopping tests are needed. We have to apply a standard
second order test in order to halt the inner loop j if too small a trust region radius
(indicating failure) arises. But even when the inner loop j is stopped with a successful
step K N , the first-order step K C may override this decision in cases where the model
was incorrect. It may even happen that the Newton model alerts a local minimum
(K N = Kk), but K C allows to decrease the function value further. These cases are
covered by the test in step 8.

5 Technical aspects

5.1 Identifying peak frequencies

It is important to observe that our approach differs substantially from standard semi-
infinite programming methods in so far as we have a highly efficient procedure to
evaluate the H∞ norm of the transfer channel at a fixed closed-loop stabilizing con-
troller K ∈ R

(m2+k)×(p2+k).
Computing peak frequencies can be based on a classical algorithm for estimating

the L∞ norm of a transfer matrix G(s) = D + C(s I − A)−1 B explained in detail in
[9]; see also the variations in [9,11,16]. This algorithm detects in the first place the
peak frequencies Ω(K ), but may also be used to estimate secondary peaks. Its basic
version is the following:

Computing ‖G‖∞

1. Initialization. Find initial γ such that σ(D) ≤ γ ≤ ‖G‖∞.
Fix tolerance ε > 0.

2. Step. For current γ , find the frequency intervals I1, . . . , I�
where σ(G( jω)) > γ . If none is found, return the current γ .

3. Update. Otherwise let ωk be the midpoint of Ik . Update
γ+ = (1 + ε)maxk=1,...,� G( jωk). Go back to step 2.

The returned value γ satisfies γ ≤ ‖G‖∞ < (1 + ε)γ on exit, which guarantees a
relative tolerance ε for ‖G‖∞ as well as for the positions of the peak frequencies.
Secondary peaks may be estimated in several ways.

A first idea is to detected them on the way. Each interval Ik occurring in step 2
above contains one or several primary or secondary peaks. If an interval Ik at level γ
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does not have a successor at level γ+, we conclude that a secondary peak ωi ∈ Ii with
f (K , ωi ) ∈ [γ, γ+) has been left behind. Fixing a threshold α ∈ (0, 1), we keep those
secondary peaks ωi with value f (K , ωi ) > α‖G‖∞. Since the values and slopes of
the curve ω �→ f (K , ω) at the endpoints of the Ik are known, and since the peak value
is in the range [γ, γ+), a polynomial estimation of the ωi is usually quite accurate.

A second more direct way to estimate secondary peaks is the following: as soon as
the above algorithm is stopped at the final γ , the imaginary eigenvalues of H(γ ) indi-
cate primary peaks. After fixing the threshold αγ , we keep those complex eigenvalues
λ of H(γ ) which lie in the strip αγ ≤ Re λ < γ , and choose ω = Re λ as our set of
secondary peaks. This method is elegant as it also allows to estimate p very reliably.

It is clear that the above methods can be combined, and more sophisticated ways
to estimate secondary peaks can be imagined. However, it should be maintained that
knowing ωi (K ) to a high precision if f (K , ωi (K )) < f (K ) is not necessary, as the
constraint is currently inactive. The closer the secondary peaks come to being active,
the higher the precision to which they are computed.

Detecting intervals Ik where σ(G( jω)) > γ is based on the Hamiltonian matrix

H(γ ) =
(

A 0
0 −A�

)
−
(

0 B
C� 0

)(
γ I D
D� γ I

)−1 (C 0
0 −B�

)
.

We use the fact that

Lemma 3 γ is a singular value of G( jω) if and only if jω is an eigenvalue of H(γ ).

Remark Our approach is robust with respect to the estimation of the cardinality p of
the unknown set Ω(K̄ ). If we overestimate p, we create a program (8), where some
constraints remain inactive near K̄ , a situation which is automatically dealt with by the
SQP solver. What is needed to justify this situation theoretically is an implicit func-
tion for any of these additional secondary peaks. That may be assured by extending
conditions (i) and (ii) to secondary peaks. ��

5.2 Stopping criteria

We implemented two stopping tests in order to check convergence. The first of them
checks criticality of the iterate (Kk, tk) with multipliers τk , through the absolute test

‖L ′
(K ,t)(Kk, tk; τk)‖ < ε1,

where ‖ · ‖ is a norm on R
m2×p2+1.

The second stopping condition checks the relative step length on the decision vari-
ables

‖(Kk, tk)− (Kk−1, tk−1)‖ = ‖(δK , δt)‖ < ε2(1 + ‖(Kk−1, tk−1)‖)
As some SQP iterates may become infeasible for problem (8), we also check if

f (K , ωi (K ))− t < ε for all i = 1, . . . , p. The algorithm stops as soon as the current
iterate is feasible and one of the stopping tests is satisfied.
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Table 1 H∞ synthesis: transport airplane (AC7)

Alg. Iterations CPU H∞ Optimality Final
Cauchy Newton time (s) norm criteria |Ω|

NS1 434 0 95.42 6.5098 × 10−2 −9.7008 × 10−6 2

NS2 2 11 12.23 6.5091 × 10−2 9.4168 × 10−6 2

6 Numerical results

The results presented here were obtained with the algorithm described in Sect. 4.4.
The plants are taken from [23], and the acronyms refer to that reference and allow to
retrieve the data from the literature.

At every iteration, Newton and Cauchy steps are generated, and the one giving best
progress is performed. In order to initialize the method, a closed-loop stabilizing con-
troller is computed in the initial phase (step 1) of the algorithm. This first stage uses
first-order nonsmooth techniques for minimizing the closed-loop spectral abscissa, as
described in [8]. Alternatively, derivative-free methods have been successfully used
for stabilization (see [1]) if the controller size is not too large. If no prior information
on K is available, we start this preliminary stabilization phase at K = 0. Then the
initial multipliers for SQP are set to τ i

0 = 1
p for i = 1, . . . , p.

Test example AC7 (transport airplane from [23]) has been given special attention,
because it is possible to visualize iterates in controller space (Fig. 2). This example
highlights the benefits of the second order algorithm (denoted by NS2) in terms of
convergence speed, compared to the nonsmooth first-order method from [2] for H∞
synthesis (denoted by NS1). As required in step 1, a closed-loop stabilizing static
controller K0 = [4.5931 1.2164] is first computed. The initial closed-loop H∞ per-
formance is ‖Tw→z(K0)‖∞ = 1.4614, which after optimization is reduced to the
optimal value ‖Tw→z(K̄ )‖∞ = 6.5091 × 10−2.

Table 1 shows that the gain of the second-order algorithm NS2 over the existing
method NS1 is significant in terms of the number of iterations and CPU.

Notice that the optimality criteria for the first and second order methods are differ-
ent: a nonpositive optimality function for NS1 (see [2] for details), and the norm of
the Lagrangian gradient for NS2 (as defined in Sect. 5.2).

The resulting controllers are respectively KNS1 = [2.0331 1.8446 × 10−3] and
KNS2 = [2.0330 1.9655×10−3]. Both KNS1 and KNS2 have two active frequencies.
In the case of KNS2 these are ω1 = 1.9067 and ω2 = 1.3057 × 10−1, in rad s−1, with
almost linearly dependent gradients

f ′
K (KNS2, ω1) =

[
3.2855 × 10−3

−4.6984 × 10−3

]
,

f ′
K (KNS2, ω2) =

[−3.9785 × 10−3

5.6738 × 10−3

]
.
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Fig. 1 Convergence rates of NS1 and NS2 for AC7. NS1 shows linear convergence with rate close to 1
(left). NS2 gives quadratic convergence (right)
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Fig. 2 Iterates in controller space for NS1 (left) and NS2 (right). NS2 is significantly faster despite the
change of peaks caused by the non-smoothness

Figure 1 quantifies the convergence rates. Our second-order algorithm (NS2) starts
with two Cauchy steps, then SQP takes over and converges superlinearly within only
11 Newton iterations. In contrast, with Cauchy steps only (NS1), a slow first-order
convergence occurs. The iterates and contour lines of the H∞ norm are drawn in Fig. 2.

Table 2 shows various other tests from [23], illustrating that the second-order
method can speed up convergence by decreasing the number of iterations. The extra
work needed for a second-order iteration, that is, defining the tangent quadratic pro-
gram (9), locating peak frequencies, and computing first and second derivatives to
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Table 2 H∞ synthesis: comparison of NS1 and NS2 on various plants

Plant n m2 p2 Alg. Iter CPU (s) H∞ |Ω(K )|
AC6 7 2 4 NS1 79 30.28 4.1140 2

NS2 25 41.45 4.1140 2

AC7 7 1 2 NS1 434 95.42 6.5098 × 10−2 2

NS2 13 12.23 6.5091 × 10−2 2

AC8 9 1 5 NS1 14 23.50 2.0050 4

NS2 9 37.20 2.0050 4

AC10 55 2 2 NS1 74 206.16 1.3244 × 101 2

NS2 35 187.47 1.3236 × 101 5

AC10∗ 55 2 2 NS1 82 762.65 1.3251 × 101 1

NS2 71 877.18 1.3237 × 101 5

HE2 4 2 2 NS1 746 196.20 4.2495 2

NS2 12 14.67 4.2492 2

REA3 12 1 3 NS1 23 14.18 7.4251 × 101 1

NS2 9 11.06 7.4251 × 101 1

AC aircraft models, HE helicopter model, REA chemical reactor model

Table 3 Comparison of NS1 and NS2 for large scale example Boeing 747 under flutter condition (AC10)

Alg. Iterations CPU H∞ Optimality Final

Cauchy Newton time (s) norm criteria dist

NS1 74 0 206.16 1.3244 × 101 −5.4287 × 10−2 3.4000 × 10−5

NS2 28 7 187.47 1.3236 × 101 1.1926 × 10−6 3.3987 × 10−5

Column ‘dist’ shows final distance to instability

solve it, is usually compensated by the reduction of the number of steps. For plants
where the first-order method gives little progress and iterates many times (like AC7 or
HE2), the gain is dramatic. Other examples like REA3 show less significant gain or no
gain at all, (AC6, AC8) in cases where no superlinear convergence occurs. Nonethe-
less, attempting second order steps is generally beneficial, because the final precision
is improved (AC10).

An interesting case highlighting the importance of the final precision is the bench-
mark study Boeing 767 under flutter condition, which we have tested with two different
scenarios, labeled AC10 and AC10∗. In a first test, AC10, model (3) is used. Here the
first-order method NS1 converges after 74 iterates.

The second order method NS2 needs 35 steps and converges quadratically. Despite
the higher cost for setting up and computing second order steps, this leads to a bet-
ter CPU. What is more important in this example, however, is that the second order
stopping test is much more stringent (second column from the right in Table 3) than
for the first order method. This is particularly significant for the Boeing 767 example,
because iterates of both NS1 and NS2 get extremely close to the hidden boundary of
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the stability region. The rightmost column of Table 3 gives the distance to instability
of the two solutions, and iterates on the way have approximately the same distance.
For NS1 it is therefore impossible to decide whether the optimal solution is strictly
inside or on the boundary of the stability region, because the final precision (the size
of the steps before stopping) is comparable in magnitude to the distance to instabil-
ity. In contrast, for NS2, the higher precision of the stopping test allows to conclude
that the local minimum of NS2 is indeed inside the stability region. In this example
the NS1 solution has only two active peaks, while NS2 finds five peaks, which gives
further evidence that NS1 indeed fails to converge, (even though the solution is still
reasonable from a control point of view).

In this study the stability region turns out extremely narrow, which explains numer-
ical difficulties with this example in the past. We have therefore performed a second
test, labeled AC10∗, where a stabilizing channel as in (4) is added to the objective (3).
Not surprisingly, as the transfer channel is now much larger, this almost doubles CPU
times, even though the number of steps is practically the same. The controllers obtained
are fairly similar to those obtained for AC10, but with AC10∗ closed-loop stability of
the limit K̄ can now be certified. In the numerical testing the parameter ε in (4) was
chosen such that for the initial iterate K0, ‖Tw→z(K0)‖2∞ = 4ε‖(s I − A(K0))

−1‖2∞,
which gave ε = 2.3150 × 10−4.

We mention that adding the stabilizing channel does not resolve the intrinsic dif-
ficulty of this example, caused by the fact that the objective function in (3) or (4) is
only defined on a narrow region.

7 Conclusion

We have developed and tested a second-order method to compute static and reduced-
order H∞-controllers and more general synthesis problems with structural constraints
on the controller. Our approach avoids the use of Lyapunov variables and therefore
leads to small or medium size optimization programs even for large systems (AC10
with 55 states). We use a methodology from semi-infinite programming to obtain a
local nonlinear programming model and apply a trust region SQP method. A first-order
nonsmooth spectral bundle method is used to initialize the second-order algorithm in
the neighbourhood of a local solution. Our numerical testing indicates that speed of
convergence and numerical reliability may be improved by using the second-order
method.
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