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RECONSTRUCTION WITH NOISY DATA: AN APPROACH VIA
EIGENVALUE OPTIMIZATION*

DOMINIKUS NOLL

Abstract. We present a nonlinear inverse filtering approach to problems such as power spectrum
estimation of stationary time series or deconvolution of a blurred image. The technique is based on
eigenvalue optimization and a numerical treatment may therefore be obtained using primal-dual
interior-point methods for semidefinite programming.
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1. Introduction. In this paper we discuss a nonlinear inverse filtering approach
to inverse problems such as the restoration of blurred images or the estimation of
power spectra of stationary time series. In many situations, these inverse problems
are difficult to treat due to a sizable imperfection of the available data.

Let us consider the problem of estimating an unknown nonnegative function
u(z) > 0 on some domain 2 C R™, given a finite number of measurements

(1.1) /Qak(:v)u(x) de = by, k=0,...,m,

with ag(z),...,am(x) a given set of weight functions. This problem, with only a finite
set of data available, is clearly underdetermined. More seriously, however, the data by
may suffer from measurement errors and may make inversion of (1.1) a difficult task.
As an example for such behavior consider the following.

Ezample 1.1 (power spectrum estimation). Here we wish to reconstruct the spec-
tral density u(xz) > 0, z € (—m,m) of a real stationary time series (X;), based on

knowledge of the first m + 1 sample autocovariances 30, .. .,Bm, which have been
obtained from a realization z,...,zy of (X;) (with m << N), using the statistic
| Nk
bk:N§($t—f>($t+k—f), k:0,...,m.

Equivalently (cf. [8]), we have to exhibit u(z) > 0 satisfying

(1.2) / coskzu(z)de =by, k=0,...,m,
which is precisely a problem of type (1.1). It is well known (cf. [8]) that the sample
autocovariances by are increasingly unstable for large k, and that a direct inversion
of (1.2) based on the Fourier series of u(z) usually fails. O
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As a second example, let us consider the following.

Ezample 1.2. (image restoration) Consider an image, represented by its distri-
bution of gray levels u(x) > 0 over a region QO C R%. Suppose that during trans-
mission through a news channel, the original image has suffered from various sources
of degradation, some of them being signal dependent, some caused by random pixel
noise. Assuming a linear model, the observed image v(x) > 0 may be represented by

(1.3) o(z) = / a@—y)u)dy +e(x), e,

where the convolutional term is responsible for the signal dependent blurring (q(z)
being referred to as the point spread function or simply the mask), and where e(x)
represents the signal independent random noise. Suppose now that the recorded image
v(z) has been sampled at the nodes z1,...,z,, of a rectangular grid on €. Then the
problem of deconvolving (1.3) will fit with the scheme (1.1), with the weight functions
being ag = 1, ar(x) = q(zx — x), and the data by = 1, by, = v(xy). However, if the
noise contribution e(z) becomes sizable, it may be necessary to relax equation (1.1),
Au =0, fQ udr = 1, replacing it with a tolerance model of the form

(1.4) |Au —b] < e, / u(x)de =1,
Q

where b = (b1,...,bp), Au = ([qarudz, ..., [, apudz), and |-| denotes the Euclidean
norm on R™. Various strategies for selecting an appropriate tolerance e¢ are known.
For instance, if the noise variance o2 is known—a hypothesis which is often met in
practice—the strong law of large numbers implies

1 m
Ly dao mow)
=1

which in view of [Az — b|? = |e|?* = Y1 | e? ~ mo? suggests the choice € = o\/m (see
[31, 32] for a detailed discussion). 0
A successful idea to stabilize an inversion problem of type (1.1) or (1.4) in the

presence of noisy data by, is to introduce a performance index

u) :/Qh(m,u(x),Vu(m))d:r

related to the problem under discussion, and to accept as a valid reconstruction the
unique u(z) > 0 that minimizes Z(u) under the constraints (1.1) (resp., (1.4)). Nat-
urally, the strategy for designing Z(u) should be justified by both theoretical models
and performance in practice. While many different indices Z(u) are being used in
practice, a common feature seems to be their convexity.

In the power spectrum estimation problem (1.2), an objective often used in prac-
tice is the Burg entropy Z(u) = — [, logu(x) dz, which leads to a fast and, surpris-
ingly, linear inverse method (see [7, 27]). For a theoretic justification see, e.g., [30].
By contrast, a nonlinear inverse filter is obtained when the Boltzmann—Shannon en-
tropy/mformatlon measure Z(u) fQ x) logu(x) dz is used, the discussion about
the preference between the two choices bemg controversial; cf. [24].

The Boltzmann—Shannon entropy has also been tested for the image restoration
problem (1.4), leading to a nonlinear inverse filter whose performance was found to
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be significantly superior to more standard linear inverse filters used for this type of
problems; cf. [31, 32, 22, 37].

One such linear inverse filter for the image restoration problem (1.4) is based
on the performance index Z(u) = [, |Au(z)|*dz. For this model, a fast algorithmic
solution using the 2D fast Fourier transform was presented by Hunt [23]. Other inverse
filters could be based on inverse Wiener or Kalman filtering, but these methods require
knowledge of the cross spectrum of the true image and the noise, and knowledge of
the dynamics of the input process, two pieces of information which typically would
be lacking in practical situations; cf. [2, 26].

In [36, 5, 6], a nonlinear inverse method for (1.1) based on the Fisher information

2
(1.5) I(u) = Md:p
o u(z)

was proposed. In the one-dimensional setting, sufficiently fast algorithms for the
power spectrum estimation problem (1.2) and for problems with polynomial weights
have been presented in [6, 7]. These techniques, however, are not suited for higher
dimensions, and so far a successful numerical approach in higher dimensions was
lacking. The main issue of the present paper is to present one such approach based on
techniques from eigenvalue optimization. Notice that it seems highly desirable to have
codes based on the Fisher information index (1.5), in particular for higher dimensional
problems like (1.4), since Fisher information was found to perform well in the one-
dimensional case and in particular was seen to outperform the Boltzmann—Shannon
objective in quite a number of situations, as has been reported in [6, 7].

The purpose of the present paper is to analyze the restoration programs (1.5),
(1.1) (resp., (1.5), (1.4)) using convex programming duality. This leads to their re-
formulation as eigenvalue optimization (resp., semidefinite programming) problems,
the main idea being to postpone discretization to the latest possible moment. While
sections 2 and 3 present the details of the analysis, section 4 gives a convergence re-
sult for the finite element discretization. The final section 5 presents some numerical
experiments.

Our notation in sections 2 and 3 follows standard references on variational prob-
lems and Sobolev spaces like [14, 1, 39]. Readers who find the technical arguments in
sections 2 and 3 (leading to the central Theorems 3.4, 3.5) too cumbersome to follow
in full detail are invited to obtain these dual programming formulations by formally
applying convex duality to the Lagrangian (3.1). This gives the correct answers right
away, and reading the following sections 4 and 5 is still possible.

Let us close this introductory section with a typical application for using the
Fisher information as a performance index. For further motivation see [36] or [5,
App. T1].

Ezample 1.3 (robustness and higher order statistics (see [40])). Consider the
problem of estimating the parameters a;, b; of a linear input-output ARMA system
of the form

Yo +a1Yi—1+ - amYi—m = Te + 01741 + -+ bpTi_p,

where t € Z, x; is the input, and y; the output sequence, and where the orders n,m
are known. Suppose that the input is white noise with mean zero, variance o2, and
probability density p.

Given a sample y1,...,yyN of outputs, the idea of maximum likelihood estimation
of = (ay,...,am,b1,...,b,) is to choose it to maximize a likelihood function of the
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form
N
L(0) = = > £(r:(0)),
t=1
where 7;,(0) = y;—x; —b1xi—1— - —bpTi_p+a1yi—1+- + -+ @ Yi—m is the ith residual.

How to find the appropriate £(r)? This could be based on the following observa-
tion, essentially made already by Fisher [17]; see also Doob [15]. Under some mild
assumptions on the input distribution p and the smoothness of ¢, the estimates éN
based on /¢ are asymptotically normally distributed, i.e.,

VN by — 0°) ~ N(0,0A/5?)  as N — .

Here the positive definite (n +m) x (n +m) matrix A = A(6*) depends only on the
true parameter vector 0, while the scaling factors 02 = 0(p) and a = a(¢, p) depend
on the choice of £ and the underlying density p of the input law:

a(l,p) = / Cpde / ( / é”pdm)2

and could therefore be influenced by our choice of /.

Let us assume in the following that the elements p of the class P have identical
variance o3 = %(p). Designing a robust estimate now leads us to consider the worst
case pg among the probability densities p € P and then improve the asymptotic
efficiency of the estimate 6y by choosing ¢ to minimize sup,, a(f, p) = a(¢, pg). That

is, solve the minimax problem

inf sup «a(4,p).
€ pep

Switching the infimum and the supremum, the inner minimization (now over the ¢ for a
fixed p) admits a solution of the form £ = —plogp (p constant). As a(¢,p) = a(%&p),
the problem is now equivalent to maximizing a(—logp, p) = Z(p)~!, or equivalently,
minimizing Z(p), the Fisher information, over the admissible family P of probability
densities.

The classical choice is of course £o(r) = 2. This is explained by choosing as the
family P of admissible input distributions all laws p with given moments up to order
2. Indeed, the solution py to the problem of minimizing the Fisher information Z(p)
subject to the constraints [ p(z)dz =1, [p(z)zdr =0, and [ p(z)z® dz = o? is just
the Gaussian with mean zero and variance o2, which leads to £o(r) = —logpo(r) =
O(r?).

Suppose now that the white noise processes x; has higher-order moments, say,
up to order m > 2, m even. In this case, the classical choice £4(r) = r2 should be
replaced by ¢y = — log pg, where py now minimizes Fisher information over the set P
of densities p with given moments up to order m. The results presented by Zivojnovic
[40] suggest that this choice of ¢y will indeed improve the asymptotic efficiency of
the maximum likelihood approach. The maximization of L(#) would then, with no
explicit £ available, have to be performed numerically. 0

2. Variational formulation. In this section we will analyze the Fisher varia-
tional problem. First observe that the precise definition of the Fisher integrand h(u, p)
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is
Ip|?/u if u >0,

(2.1) h(u,p) = { 0 if u=0and p=0,
400 otherwise,

which is a normal convex integrand in the sense of Rockafellar [35]. The variational
problem we consider is now

2
minimize  Z(u) = / h(u(a), Vu(e)) de = / Vu(@)P
subject to ag(z)u(x)de =by, k=0,...,m,

Q
u(z) >0, ue WH(Q).

(P)

In tandem with (P) and motivated by the image restoration problem (1.4) we also
consider the relaxed Fisher program

2
minimize  Z(u) = / Mdz
o u(r)
subject to  u(z) >0, u € WhH(Q),
ap(z)u(x) dx = b,
Q
|Au — b| <,

where Au = ([yaiudz,..., [qanudr) and b = (by,...,by). Notice that (P) and
(P,-) are convex programs.

Throughout the following we shall assume that programs (P), (P,) are feasible.

Moreover, to avoid pathological situations, we shall assume throughout that v = 0 is
not an optimal solution of (P), (P,). Let us introduce the substitution

(2.2) u(z) = v(z)?, 2v(z)Vo(r) = Vu(z),

which turns problems (P), (P,) into the equivalent but nonconvex programs (P), (P,.):

minimize J(v) = 4/ |V1)(m)|2
. Q
(P) subject to v € Wh2(Q),
/ ap(z)v(z)?dr = by, k=0,...,m,
Q

resp.,

minimize 7 (v) = 4 / Vo(a)2da
. Q
(P,) subject to v € W12(Q), |Av? — b| < e,

ao(z)v(x)dz = by.

We are now in the position to prove existence and unicity of solutions of (P) and
(P,).
PROPOSITION 2.1. Let ag,...,am € LX(Q), and assume [, ao(x)dz # 0. Let
Q be a bounded domain of class C%'. Then program (P) has a unique solution in
W), and similarly, (P,) has a unique solution in WH1(Q).
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Proof. (1) We prove existence of a solution in the case of program (P;.). Using the
transform (2.2), we may consider (P,). Let v, € W2(Q) be a minimizing sequence

for (P,),
(2.3) J(vy) — min, |Av2 —b| <, / apv2dx = by.
Q

Observe that |v,| is as well a minimizing sequence, since |V, | = |V|v,|| a.e. Hence
we may assume v, > 0.

The first condition in (2.3) implies the boundedness of Vw, in £2. Suppose
v, was not bounded in W12(Q). Then, since Vv, is bounded we may decompose
Vp, = Wy, + ¢y, Where w,, is a bounded sequence in Wl’z(Q), and the ¢,, are constants
tending to oo. Indeed, let ¢, = [, vpde and w, = v, — ¢,. Then [, w,dr =0 in
tandem with the boundedness of |[Vw, |2 = [[Vv,||2 implies boundedness of w,, in £>
(using a Poincaré inequality like, for instance, Ziemer [39, Thm. 4.2.1]). But then

bo = / v2agdr = ci/ ag dz + O(cy),
Q Q

which implies fQ agdx = 0, a contradiction. This implies the boundedness of v,, in
W2, We select a weakly convergent subsequence, also noted v,,, i.e., v, — v. The
convexity of J implies its weak lower semicontinuity, hence

liminf J (v,) > J(v),

and so if v turns out to be feasible, it must be a minimum for (P,.).

The fact that 2 is of class C%! implies the compactness of the inclusion W2(Q) —
L%(Q); cf. [21]. Hence v, has a norm convergent subsequence in £2, also noted v,,, i.e.,
vp, — v in £2. This implies v2 — v? in £, since |[v2 —v2||1 < ||vn, —v]|2||vn +v]]2 — 0.
It also implies v > 0. Now € > |Av2 — b| — |Av? — b| and by = [ agvidz — [ agv®dx
together imply the feasibility of v. With v a minimum for (f’r), u = v? is a minimum
for (P,.).

(2) To prove unicity, we may return to the original program (P,.). The argument
is now verbally the same as for the one-dimensional case given in [5, Thm. 2.1]. Notice
that by contrast the solution of (P,.) is not unique, but a unique nonnegative solution
exists. |

In order to obtain more information on the optimal solution of (P) (resp., (P,.)), we
shall need a Lagrange multiplier result. For this we recall the concept of a pseudo-Haar

family which was introduced in [4]: Call ag, ..., a;, pseudo-Haar if ag|A4, .. .,an|A are
linearly independent on any measurable set A C € with positive measure.
PROPOSITION 2.2. Suppose that the weight functions aq, - . ., am are pseudo-Haar

and of class C*~' for some t > 1. Suppose that Q is bounded and of class CtJrl.~ Let
7 € WhH2(Q) be the unique nonnegative optimal solution of program (P) (resp., (Py)).

Then there exist real numbers Aq, ..., A\m Such that v satisfies the linear elliptic PDE
with Neumann boundary conditions:

(2.4) —Av(z) + Z Arag(z)v(x) =0 on Q,
k=0

0v(x)

(2.5) G

=0 on Of.
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Moreover, v € Wt2(Q), and in particular, for t > k + 5 — 1, we have v € k().

Proof. We give the proof in the case of program (P,.). The argument for (P) is
similar. Introducing an auxiliary variable e € R™, program (P,.) takes the equivalent
form

minimize f(’u,e):/ |Vo(z)|*dx
Q

subject to  go(v,e) = / ao(x)v(x)?dz — by = 0,
Q

gi(v,e) = / ai(x)v(x)’de —b;—e; =0, i=1,...,m,
Q

gmi1(v,e) = — |e|* > 0.

We claim that there exist Lagrange multipliers Ao, ..., A, and A, 41 > 0 such that
the optimal pair (7, €), with & = [ a;0*dz — b;, satisfies

L. vyf(l_)a é) + Z;;n:o A Vogi(0,€) = 05

2. _)\i_2)\m+1éz’207 izl,...,m;

3. Ama1(€2 —|e[?) = 0.
To prove this, we need a Lagrange multiplier result in a Banach space setting. For
instance, the multiplier rule obtained by Ginsburg and Ioffe [20, Thm. 3.1] applies
to the above program. (Notice that this result is obtained through techniques of
nonsmooth analysis and needs no constraint qualification. In particular, the linear
independence of the a; is not needed for this argument.) Now let the associated
Lagrangian be defined as

m—+1
L(’U, €l U, >\0a sy )\ma >\1n+1) = Mf(v: 6) + Z Akgk(vv 6),
k=0
then the quoted result provides multipliers 1 > 0, A0s -+ s Ams Am1 > 0 not all zero
such that Ap4+19m+1(9,€) = 0 and such that

(2.6) (0,0) € 0o L(U,&; [y -y Ant1)-
Here 0, refers to the approzimate subdifferential (in the sense of [20]) with respect
to (v,e). Notice, however, that the functions f, gy are all Fréchet differentiable with
respect to the variables v, e, so J, coincides with the Fréchet derivative. Evaluating
(2.6) therefore, along with the constraints, gives the following conditions:

L gV f(0,8) + 300 M Vege(0,€) = 05

2./ _)\i_2)\m+1éi :0, 1= 1,...,m;

3. )\m+1gm+1(’f), é) =0.
This is almost what we wish to prove, and it remains to check that the case i = 0
may be excluded, i.e., that the problem is normal. It is this part of the proof which
requires our qualification hypothesis.
~ Suppose we had . = 0. Then we must have Ams1 > 0. Indeed, by item 2/,
Ama1 = 0 implied A\; = --- = A\, = 0. Hence Ay # 0. But item 1’ now reads as
Mo [ ao(z)v(z)h(x) dz = 0 for all test functions h, hence agd = 0, and since 7 # 0
this contradicts the pseudo-Haar assumption. So we must have A,,+1 > 0.

Consequently, item 1’ with i = 0 gives us Y.7" A, V,gx(v,€) = 0, and by the
definition of the Fréchet derivative of the gi with respect to v, this implies

Zxk/ﬂak(m(:ﬂ)h(w) dz =0
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for all test functions h € C*(Q2). Hence Y 7" Aray® = 0. Since the aj, are assumed
pseudo-Haar, and since 7 does not vanish identically, we deduce A\; = -+ = X, = 0.
Inserting this in item 2’ gives €, = --- = &, = 0, as A\,,,1 had been agreed to be
strictly positive. But then the inequality constraint could not have been active, and
by item 3’, we had to have A\p,;1 = 0, a contradiction. This reasoning proves i > 0,
and we may assume g = 1.

We now exploit item 1 in the appropriate sense. Observe that f,g; are all
Fréchet differentiable on W2(Q) x R™ with (V,f(v,e), h)wi.z = (Vv,Vh) 2 and
(Vygi(v,e),hywiz2 = {agt, h) 2. This implies that o is a weak solution of the Neu-
mann problem (2.4), (2.5). Applying a boundary regularity result like [21, Thms.
9.1.15, 9.1.17] implies that the solution o is in fact in W!T%2(2), and using Green’s
formula, the equation (2.4) with Neumann boundary condition (2.5) are satisfied.

Finally, observe that the Sobolev embedding theorem gives W142(Q) c C*(Q)
whenever t +1 > k +n/2 (cf. [21, Thm. 6.2.30]), and this implies the last state-
ment. ]

Remarks. 1) For C* weight functions a;, the classical inner regularity theory
implies that the solution @ of (P) (resp., (P,.)) is of class C>(Q); see [21].

2) For applications it seems more natural to consider C%! domains, which includes,
in particular, polyhedral domains used for finite elements. Here at least in dimensions
n = 2,3, and for smooth a;, the generalized solution is in C°°(£2) N C%(Q) for some
Holder exponent 0 < a < 1, so (2.4) is satisfied classically, but (2.5) has to be
interpreted in the variational sense. The Holder boundary regularity here may be
derived from Theorem 3.2 of Murthy and Stampacchia [29)].

3) In the imaging case n = 2, choosing ¢ > 2 implies that the solution 7 is of
class C'. The equation (2.4) and the boundary condition (2.5) are then satisfied in
the classical sense.

A case of particular interest is Example 1.3. Here 2 = R, and the weight functions
are smooth but unbounded, so Proposition 2.2 does not apply directly. We have the
following result, which is not the most general one but covers the type of applications
motivated by Example 1.3.

COROLLARY 2.3. Consider the problem (P) of minimizing Fisher information
Z(u) subject to the moment constraints

/ cfu(z)de =by, k=0,...,m.

Then if m = 2r is even, problem (P)ﬁ has a unique solution u which is positive on
R. Moreover, there exist multipliers g, - - ., Aoy such that v = u*/? is analytic and
satisfies the linear differential equation with boundary conditions

v (z) + Z MexFo(z) =0, v(xo00) = 0.

_ Proof. 1) We first prove existence. As before, we solve the transformed problem
(P). Consider the weighted Sobolev space W of functions v € W12(R) satisfying
Jv?(z)2" dx < 4o00. A corresponding Hilbert space norm is

o] = (/Z v'(x)zdx+/0;v(x)2x2r dx)l/Q.



90 DOMINIKUS NOLL

Reasoning as in Proposition 2.1, consider a minimizing sequence v, for (P). Then
v, |l2 = O(1) is clear. Now [ 22", (z)?dx = bs, implies the boundedness of v, in W.
It is this part of the proof which requires m to be even. Selecting a weakly convergent
subsequence, the rest of the proof remains unchanged.

2) The second part of the argument leading to the Euler equation is now exactly
the same as in Proposition 2.2. Notice, however, that the elements of W vanish at
infinity, so the boundary value problem is now actually a Dirichlet problem, which
explains the boundary condition o(+0c0) = 0. As the weight functions are analytic,
the same must be true for the solution v.

3) It remains to argue that ¥ is positive on R. This may be shown by reasoning
similar to [5, Thm. 3.2(1)]. d

Remark. Notice that for m odd, the Fisher problem with moment constraints
up to order m in general fails to have a solution. In the case m = 1, this may be
easily seen, e.g., for by = 1,b; = 0 by constructing a sequence of symmetric u,, > 0
satisfying [ un,dz =1 and Z(u,) — 0. By symmetry, one always has [ zu,(z)dz = 0.

3. Exploiting convexity. On transforming the programs (P),(P,) into the
equivalent form (P), (P,.), we were able to prove the existence of solutions and we
obtained necessary optimality conditions using a Lagrange multiplier result. How-
ever, the convexity of the problems was not preserved by (2.2), so we lost some
information, which turns out to be crucial for an appropriate numerical formulation.
In the present section, we will therefore apply techniques from convex duality theory
to obtain the missing information.

Introducing dummy variables p, e, program (P,.) takes the equivalent form

minimize  Z(u,p) ::/hum /|p

subject to p=Vu, Au—b—e=0,uec W-?(Q
u(z) >0, / ag(z)u(x) dx = by,
Q
€2 — e > 0.
Recall that in section 2, the setting chosen for the programs (P), (P,) was W11(Q).
However, as Proposition 2.2 shows the optimal solution to lie in a better space, re-
stricting (P,) to W12(Q) is justified and will provide a more convenient setting for

the reasoning in this section.
The Lagrangian associated with this formulation is

(3.1) L(u,p,e;w, A\, i, v) = I(u,p) + (w,Vu—p) + A (Au—b—e)
—l—u(/ﬂao(:v)u(m) dx — bo) +v(e? — |e]?),

where the state constraint © > 0 need not be modeled explicitly into the Lagrangian,
since it is implicit in the definition of the Fisher functional Z(u, p). With (3.1) program
(P,) takes the equivalent form

V(PT):inf{sup{L(u,p,e;w,)\,u,l/):wGEQ, AER™ peR,v>0}:

u€ W2 pe L2 |e| < 6}.
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The dual program (D,.) associated with (P,.) is then defined as

V(D,) = sup { uirzl)feL(u,p, e;w, A\, V) 1w, A, V}
with the obvious relation V(D,) < V(P,). Under the following Slater-type constraint
qualification the two programs will be seen to be equivalent:

there exists @ € C1(Q2), @ > 0, such

(CQ) that [ aplidr = by and |At — b| < e.

Q

PROPOSITION 3.1. Suppose that (CQ) holds for (P.), then there exist multipliers
w e L2(Q), N€ER™, and ji € R, ¥ > 0 such that

V(D,) =V (P,) = inf L(u,p,e;w,\, fi,?) = L(@, Vi, & w,\, fi, 7)
u,p,e
are satisfied. That is, (0, V7, &, \, i, 7) is a saddle point of L in W12(Q) x £2() x
R™ x £2(2) x R™ x R x R.
Proof. The result is standard, so we only sketch the argument. Define a lower
semicontinuous proper convex function f : £2(2) x R™ x R x R — R U {+o00} by
setting

f(z,G,a,a):inf{I(u,p):uewl’z,peﬁz, Vu—p=z,Au—b—e=290,

/ agudr — by = a,e® — |e|* > a}.
Q

Then the value of (P,) is V(P,) = f(0,0,0,0) > —oo. It remains to show that
(0,0,0,0) is in the interior of domf as a subset of £? x R™ x R x R, for then
d£(0,0,0,0) is nonempty and any (—w, —\, —fi, —7) € 9f(0,0,0,0) will provide the
desired Lagrange multipliers. Now the constraint qualification (CQ) is seen to imply
f(2,0,u,v) < +o0 on a full neighborhood of the origin in £2(2) x R™ x R x R, whence
the result. |
COROLLARY 3.2. Suppose that (CQ) is satisfied for (P,) and let u be its solution.
Then E = {z € Q : u(x) = 0} is a Lebesgue null set and the function logu is in
W12(Q). Moreover, i > 0 on Q if either (i) the dimension of the problem is n = 1
or (ii) the weight functions ay, are analytic on Q.
Proof. a) We first prove that |Va|/a is square integrable on Q\ E = {z € Q :
@(x) > 0}. Since (@, Vi, & @, \, i, 7) is a saddle point of L, we find that
0< - (L(u+t,Vu,&w, A\ g v) — Lu, Va, e w, A, i, 7))
—|Vau/?
(a>o0y U(@+1t)

I
\ ~ | =

dx +/ (A*j\ + ﬂao) dr < 400,
Q

which uses the fact that Vi = 0 a.e. on {z = 0}. By convexity, the integrand is
nondecreasing in ¢ > 0, and hence monotone convergence allows us to pass to the
limit + — 0 under the integral sign. This implies |Va|/@ € £2(92) on {@i > 0}.

b) We now argue that F is Lebesgue null. We first show how to derive this in
dimension n = 2. Since u € WH2(Q), [39, Thm. 2.1.4] implies that for almost all
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¢ € R, a(¢,-) is absolutely continuous on Q¢ = {n € R: (£&,n) € Q}. Moreover, by
part a), daui/u is integrable on Q \ E, and hence for almost all &, dqa(€,-)/u(€,-) is
integrable on Q¢ N {n : u(&,n) > 0}. Fix some ¢ satisfying both conditions. We claim
that the following alternative holds: Either u(&,-) > 0 on Q¢, or u(&, ) = 0 identically
there. Indeed, suppose we had u(&,n) = 0 for some 7 € Q¢, but u(£,-) > 0 near the
zero 1, say on I = (n,7n’). Then 02u(E,-)/u(€,-) fails to be integrable on I, which is a
contradiction. Indeed, for 6 > 0 we have

() S i
/n+6u(€ﬂ7)dn_log“(5”7)logu(€,n+5)—>+oo (65— 0).

This proves the claimed alternative.

Suppose now that u(¢,-) = 0 on some . This shows that every u(-,7) vanishes
somewhere on 7 = {¢: (£,n) € Q}. Repeating the above argument with respect to
the second coordinate gives the same alternative as above, but with the first possibility
now excluded. Hence for almost every n, we have @(-,n) = 0 identically, i.e., 7 =0
a.e. This is impossible, and hence E must be a null set in dimension n = 2. For larger
n we have to iterate the above argument using Fubini’s theorem.

With @ > 0 a.e., it follows that loga is defined a.e., and such that V(loga) €
L£2(Q) by part a). It follows via a Poincaré inequality that loga is in W12(€).

¢) Statement (i) now follows, for in dimension n = 1 the embedding theorem gives
Wh2(Q) c C(Q), and so loga is continuous, which means @ > 0. As for statement
(ii), observe that the differential operator in (2.4) has now analytic coefficients, so
by Lewy’s classical argument (cf. [12]) the solution ¥, and hence 4 = ¥, must be
analytic on §2. For analytic u, log % could not be integrable in a neighborhood of a
zero of u, so u > 0. 0

Remark. The above reasoning shows that the set £ could not contain any line
segments or even pieces of curves.

In the following, assume that (CQ) is satisfied with @ > 7 > 0 of class C1(€), so
that Proposition 3.1 applies. This implies

L(i+ u, Vi, &w, A, i1,v) > V(P,) = V(D) > —occ

for every u € C1(Q) having ||ul| < 1/2. Since Z(i + u, Vi) is bounded on |[u <
1/2, the linear form u — (Vu, @) is bounded below (and hence bounded) on ||ullcc <
n/2. Tt extends to a bounded linear form on C(£2). Hence there exists a signed Borel
measure m on ) satisfying

—(u,m) = (Vu,w)

for every u € C!(Q2). Notice that m =div @ in the distributional sense, but m
also comprises the singular boundary measure. Let m be decomposed according to
Lebesgue, that is,

m = 1mg + Ms,

where m, is absolutely continuous with respect to Lebesgue measure and m; is sin-
gular. Let dim, = ¢ dt, then the Lagrangian (3.1) may be rewritten in the form

Lu,v,e;w, A, i, V) = Z(u,v) — (p,u) — (Mg, u) — (w,v) + (A'X, u)

(3.2) —X-e—X-b+ (fag,u) — fiby + (e — |e|?).
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Notice that in contrast with (3.1), the presence of the term (mg,u) in formula (3.2)
requires at least u € C(€2). Assuming in the following that the program data allow
for Proposition 2.2 to apply (with ¢ > n/2), the optimal % is of class C1(Q2). In view
of Proposition 3.1, this means that (@, Vi, & w, A, /i, 7) is now a saddle point of (3.2)
in the duality C(2) x £2(Q) x R™ x £2(2) x R™ x R x R.

Following the outline of convex duality theory, we shall now calculate (using
(3.2)) the Fenchel conjugate L*(-,-,-;w, A, fi,7) of L(-,-,-;w,\, i, 7) with respect to
this duality. As myg is concentrated on a Lebesgue null set, the supremum over the
term (ms, u) may be controlled by a portion of each w living on a set with arbitrarily
small Lebesgue measure, not affecting the supremum to be obtained for the remaining
terms, (cf. [5] for a similar argument). The methods of Rockafellar [35] therefore lead
to the following formula

L*(yv'Z:a;wv;‘aﬂv’j) ZI*(y+<5—ﬂa0—At5\,z+w)+ﬁb0+5\b+e|5\+a|,

+ sup(ms, u).
u>0

Here A" : R™ — £2(Q) denotes the adjoint of A, defined as A'A = >"1" Apay. Now
the conjugate Z* of the Fisher integral functional (1.5) is found to be Z*(y, z) =
Jo P*(y(x). z(x)) dx, where

B (y.2) = { 0 ify+ gl <0,
400 otherwise
and dealing with the singular term in L* remains.

Observe that L* has finite value somewhere; hence sup,, .o (s, u) = sup,>q ((m7,
—(my, u)) must be finite. This implies that the positive part m must vanish. The
remaining term is sup,,~o(—m, ,u) = 0. Since L*(0,0,0;, -, -, -) is finite at (@, \, fi, ),
we must have ¢ — fiag — A*\ + i\wP < 0 a.e. Moreover, the saddle point condition
(Proposition 3.1) implies

u)

(3.3) (W, y) +(Vi,z) +e-a <e(|A+al —|A)
for all (y, z, ) for which L* is finite, or what is the same, for which
g iy 4 L .y

(3.4) y+¢—ua0—A>\+Z|z+w\ <0 ae.
Suppose now we have ¢ — fiag — A'A + 1]w|? < —0 < 0, (for some 6 > 0) on a set .
Choosing y = Oxx gives a tuple (y,0,0) admitted in (3.4); hence (a,0xx) < 0. As @
is strictly positive, this is possible only when ¥ is a null set. This reasoning shows
that

ol £y 4 Ly
(3.5) ¢ — fag — A )\+Z|w\ =0 a.e.
The feasibility condition (3.4) therefore becomes y + £z - w + 1|2[> < 0 a.e. Conse-

quently, on setting y = —3z - w — 1|z|?, we obtain a feasible (y, z,0). Inserting this
in (3.3) gives

<a, L w> ) + (V2 <0
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for every z € L£>*(Q). As for small z the quadratic term becomes negligible, this
readily implies

1
<—2uw + Vu,z> <0

for every such z, and hence, on replacing z by —z, we obtain

1 ]
(3.6) S0 = = V(logn) ae

u

In particular, w is seen to be a gradient field, and equation (3.5) with ¢ = (divw), =
(div V(2log@)), now reads as

(3.7) 2(A(logw)) 4 |V(log@)|* — fiag — A*A = 0.

The question which remains is when we may expect m_ to vanish. This is closely
related to the question whether or not the implicit constraint u > 0 in our original
problem (P) becomes active.

LeEMMA 3.3. The singular measure m is concentrated on the set E = {z € ) :
u(x) = 0}.

Proof. We sketch the argument, which is of classical variational type. Ob-
serve that the infimum V(P,) of L(,-,-;w,\, i,7) is attained at (@, Vi,e). Let
Q@ = support(m;) N {x : a(x) > 0}. For a given € > 0 we find disjoint open in-
tervals Iy, ..., I, covering the support of m_ up to a set of m -measure < ¢, and such
that the whole family has Lebesgue measure < e. Now start modifying the function
u on the small set

QE:OIiﬁ{x:u(x)>0}

to build a function u., which on a relevant portion P, of Q. (i.e., m, (Q. \ P.) — 0)
equals %ﬂ, while outside Q. still equals u. The construction gives

,u€> - 7<msi’ﬂ>'

As u. — @ in the sense of Lebesgue measure, the nonsingular terms in (3.2) are not
affected, that is, on passing to the limit ¢ — 0, we find

V(PT‘) S L(’U,E,Vfb, é;w,j\,ﬂ,ﬁ) - V(PT) - 7<ms_7’a>7

giving (m; ,u) = 0, and hence m; (Q) = 0, as claimed. 0

Remark. In view of Corollary 2.3, mg = 0 if either the dimension is n = 1 or the
weights a; are analytic functions on 2.

Under our standing assumption on the program data, u is continuous. Then the
exceptional set F := {x : a(x) = 0} is closed. Moreover, F is a Lebesgue null set by
Corollary 3.2, and so Q\ E is an open dense set. Now we compare equations (2.4) and
(3.5). On Q\ E, the substitution 3@ = Vi/% = 2V /0 may just be understood in the
classical sense. The aj, being linearly independent, this implies that (up to a factor i)
the multipliers A\ coming from Proposition 2.2, and the multipliers \; coming from
the convex duality of this section are identical (a fact which was to be expected, but
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still had to be verified). Since by Lemma 3.3, (divw)a = divw on 2\ E, equations
(3.5) and (2.4) are equivalent on this set. We shall see how this piece of information
may be used to obtain a convenient formulation of the dual program (V,.).

Recall that the dual (D,.) consists in maximizing —L*(0,0,0; w, A, , v) = —pbg —
o1 Akbi — €|A] over those (w, A, p, v) satisfying (3.5). On replacing (3.5) by (2.4),
and taking into account that the boundary condition coming along with (2.4) is the
Neumann condition (2.5), we obtain the following characterization of the dual (D,)
of (P,).

THEOREM 3.4. Assuming (CQ) and the conditions on the program data from
Proposition 2.2 (with t > n/2), the dual (D) of (P,) takes the equivalent form

mazimize —puby — Z Aibr — €|

k =1
subject to Z Apag(z)v + uao( o on €,
(Dr)
v
=0 o0

g on 09,
v >0, / apvdz = by.

Q

Moreover, the optimal solution i of (P,.) is obtained from the optimal solution (X, i, ¥)
of (D,.) wvia i = 2.

So far the arguments in this section have been for program (P,) and its dual.
Using a similar reasoning, we obtain the following result on program (P).

THEOREM 3.5. Suppose that the above assumptions on the program data are

satisfied, but with the constraint qualification (CQ) for (P,) replaced by the following:
There exists @ € C*(Q), @ > 0, such that Al = b.

Then the dual (D) of (P) has the equivalent form

mazximize —uby — Z Abi

subject to Z Apapv + uao( v on £,
(D) 5 1
v
— =0 o0
g on 09,
v >0, / agv?dz = by.
Q

Moreover, the optimal solution @ of (P) may be recovered from the optimal solution

(\, fi,7) of (D) wvia @ = v>.

4. Numerical aspects. In this section we obtain a formulation of the programs
(D) (resp., (D,)) which is appropriate for a numerical treatment. We adopt the
assumptions about the program data made in Theorems 3.4 (resp., 3.5), assuming
in addition that ag > 0. We start by analyzing program (D), which we reformulate
slightly: replace A\, by —4A, k =1,...,m, and u by —4u, and multiply the objective
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with 1/4. Then the dual (D) takes the equivalent form

maximize pubg + Z bk

kril
subject to  Av + Z Arag(x)v + pag(z)v =0 on Q,
D) 5 1
v
=0 01,
g on
v >0, / apvidz = b.
Q
This shows that for any feasible (1, A1, ..., A, v), p is an eigenvalue for the Neumann

eigenvalue problem
Ly[v] + pag(z)v =0 on €,
0
(N) ek on 0f)
ang
with differential operator Ly[u] = Au + (37" Agag(x)) - u, and with v the corre-
sponding eigenfunction, normalized to satisfy fQ agv?dz = by. Now observe that an
eigenfunction which does not change sign must belong to the smallest eigenvalue of
(N), so any such p must be the smallest eigenvalue for (N). Indeed, this is a classical
fact for ag > 0, cf. [12, sect. 6], but may be extended to more general weights ag (see
9)).

Let us introduce some notation. For a self-adjoint second-order elliptic partial
differential operator L = L[], the smallest eigenvalue for the Neumann problem (N),
which is known to be simple (cf. [21, 12]), will be denoted as jimin(L). The function
Mmin 18 known to be a concave function of the argument, see [28]. Since A — Ly[]
is affine, we derive that A — pmin(La[]]) is a concave function defined on the whole
of R™. This function is even analytic, since the smallest eigenvalue of L) is simple
(cf. [25, VII, Thm. 1.8] and also [12, 28]). The dual (D) may therefore be recast as
the following finite-dimensional unconstrained and smooth concave program on R™,

which is recognized as a semidefinite eigenvalue optimization program (in the sense
of 28, 38]):

(D) maximize f(A) := pmin(LA[)bo + > Abe, A €R™.
k=1

Given the optimal solution A of (D), due to (3.6), the optimal solution % of the original
program (P) is & = v2, where ¥ is the unique eigensolution belonging to the eigenvalue
Pmin(L3), which has been normalized to satisfy [ apv3dz = by.

The dual (D,) of (P,) may be treated in the same way, leading to the concave
unconstrained program

m
(D,) maximize g(A) := fimin(La[])bo + > Aibx —€[Al, A € R™
k=1

The return formula for the optimal solution % of (P,) in terms of the optimal A for
(D) is exactly the same as for (P), (D) above.

The fact that the variational problem (P) is equivalent to a smooth concave un-
constrained finite-dimensional optimization problem is by itself remarkable. It must
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nevertheless be observed that the function A — pmin(Ly) cannot be calculated ex-
plicitly, so for the numerical approach we are forced to replace the operator Ly by a
discretization L’A’. The error thereby introduced may be analyzed through the error
term |Mmin(L>\> - Mmin(L§>|‘

Motivated by the image restoration problem (1.4), a natural discretization for
(D,.) appears to be a finite difference approximation L% of Ly on a rectangular grid
Qp, with mesh h > 0 on €. On the other hand, as our program (D) comprises a variety
of eigenvalue optimization problems for second-order elliptic operators with a physical
background, one might as well use a finite element or Rayleigh—Ritz discretization.
(This was, for instance, chosen for the numerical treatment of the strongest column
problem by Cox and Overton [13]). In the following we shall discuss the discretization
errors associated with either method, and the sensitivity of the solution of (D) (resp.,
(P)) as compared to its discretized version.

LEMMA 4.1. Let Ly[u] = Au+>"}" Apag(x)u, and let ¢(N) = fimin(Lr[-]) be the
minimal eigenvalue for the Neumann problem (N) above. Then ¢ is analytic and the
first-order partial derivatives are

(4.1) 28— [ wwestras,

where ey is the normalized eigenfunction belonging to the eigenvalue fimin(Ly).
Proof. Since the smallest eigenvalue of L) is simple, the analyticity of ¢ is a
direct consequence of Theorem VII. 1.8 in [25]. To prove (4.1) we shall need an
approximation argument.
Let Lf{ be a finite difference approximation for Ly with mesh h > 0. For h small
enough, the first eigenvalue ¢5(\) := fimin(L%) of the matrix L% is simple. Now
observe that the eigenfunctions belonging to L§ are defined on the Fuclidean space

£3 with weighted norm |e[g = h"/2( Y ¢ e(x))l/2, so we have

Opn (A oL
(42) Qsh( ) — (hn/2ei;) X T)\j

" (h/2e4)

according to a well-known formula in finite dimensions (cf. [28]). Here the eigenvectors
el must satisfy |ek|o = ||h"/2ek |, = 1.

Now observe that 9L} /0; is the diagonal matrix with entries a;(z), € Qy, the
discretization of a;(z). Therefore the right-hand side of (4.2) equals

S Way(x)eh(x)?,

zE€Qy,

which converges to the right-hand side of (4.1) as h — 0. (For details concerning the
finite difference discretization see, e.g., [21, sect. 11.2]). 0

Let us now consider the case of a finite-element or Rayleigh Ritz approximation
of problems (D), (D). Let V.= WY2(Q), U = £%(Q) be the Gelfand pair associated
with the Neumann problem (N), and let V}, be an approximating sequence of finite-
dimensional subspaces of V. We assume that (cf. [21, sect. 11.2])

(4.3) dist(u, Vi) < Cllull14sh®  for every u € W 52(Q),

which means that the basis functions are polynomials of degree s > 1 on the elements;
cf. [11, Thm. 3.2.1]. Further, as in previous sections, we assume linear independence
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and smoothness of the weight functions ag,a1,...,ay, and for convenience we let
ag = 1. We now work on a bounded domain 2 with C%! boundary.

Let L’/{ be the operator belonging to the approximation (Nj) of the variational
problem (N) on the subspace Vj,. Let f(A) = fimin(La)bo + Y7 Aibi be the objective
of (D), and let the objective belonging to the approximate program (Dj) be fi(A) =
foanin (L2)bo + 31" Aby to be maximized over R™.

Let the optimal solutions of (D), (Dy) be A, A", respectively. Let v (resp., v") be
the positive eigensolutions belonging to pumin(L5) (resp., ftmin(L%,)), both normalized
to satisfy [, v?dz = by = [,(v")?dz. Then we consider v = (v")? as an approxima-
tion of 4, and our interest will be in the error ||z — u||yy1,1.

THEOREM 4.2. Under the above assumptions on the program data, consider a
finite element approximation Vi, of V' satisfying (4.3). Then we have the following
statements.

1. For every compact set A C R™, there exists a constant C' (depending only on
s and A\) such that the estimates

LfFO) = W< Ch*  and |V f(X) — Vfir(N)| < Ch?

are satisfied for all h > 0 and X € A.
2. The optimal solutions converge: N\, — X, v — v (in W12), and v — a (in
W), and the rate of convergence is ||i — u"||y1. = O(h®).

Proof. a) It is a known classical fact that the smallest eigenvalue of Léf converges to
the smallest eigenvalue of Ly as h — 0; cf. [21, 11.2.10]. This implies f;, — f pointwise
and hence uniformly on any compact set A, the latter since f, f, are concave.

Let us now fix a convex compact A with the global maximum \ of f in its interior.
(Notice here that the maximum A of f is unique since for any other maximum A,
the corresponding fi = fimin(L5) and ¢ would satisfy the Euler-Lagrange equation
(2.4) with boundary condition (2.5), and by Theorem 3.5 would produce an optimal
solution for (P). This gave & = @, and hence also (X, i) = (A, fi) by the pseudo-Haar
assumption). As f, — f uniformly on A, the global maxima A" of the f;, which are
unique for A small enough, must belong to A for A small enough. Again, this strongly
relies on the concavity of f, f.

b) Since L) is a second-order operator, the smallest eigenvalue fimin (L)) is simple
(cf. [12, sect. 6]) and hence so is the smallest eigenvalue fimin(L%) for every h < hyg
(ho depending only on A) and all A € A.

By Proposition 2.2, the eigensolutions are in W11$(Q). Using this, another
known result tells us that (with a constant C, independent of h) the smallest eigen-
value fimin(L) belonging to a Neumann boundary problem for a V-coercive second-
order partial differential operator L satisfies estimates of the form

(44)  |pmin(L) — pmin(L")] < CLh® and  |le(L) — e(L")|lv < Crh®

if e(L), e(L") are the corresponding normalized eigensolutions; cf. [21, sect. 11]. The
difficulty is now that we are dealing with a family Ly, A € A, of such operators and
will need a uniform estimate of the type (4.4).

Following carefully the arguments in sections 11.2.2 and 11.2.3 of [21], where
the estimates (4.4) are obtained for single eigenvalues of general V-coercive elliptic
operators, it can in fact be shown that the constant Cf, for the Ly is of the form
O(|A]). Therefore, on a compact set A, the uniform estimates

(4.5) |ttmin(L3) = pmin (L) < CR** and  [le(Ly) — e(L})llv < Ch*
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are satisfied. We do not present the individual steps of the derivation of (4.5) here,
since this may be done by tracing the constants in the above reference, while otherwise
does not provide any new insight. (Notice, however, that the arguments in [21] are
for single eigenvalues, and a similar result for say the finite element approximation of
the strongest column problem [13] would require a more sophisticated reasoning.)

Notice that the first formula in (4.5) gives the first part of statement 1. The
second part of item 1 now follows readily from the representation (4.1) of the par-
tial derivatives of A — fmin(Lx), which gives 0f(\)/O\; = fQ a;e(Ly)?*dx + b; and
Afn(N)/ON; = [ ae(LR)*dx + b;. This proves item 1.

¢) The second formula of item 1 implies |V f(A")| = |[Vf(A\") — V(M) < Ch®
for h small enough, and in particular, Vf(A\") — 0. Now by the continuity of Vf,
every convergent subsequence A of A" € A must have a limit A satisfying V f(\) = 0.
Since the global maximum A of f is unique, we deduce that A" — .

Now consider any sequence e” := e(Lih) of normalized eigenfunctions correspond-
Ing to ftmin (LY, ). Since the embedding W2 — L2 is compact, we find a subsequence

el — e for some e € £2. Reasoning exactly as in [21, 11.2.11], we can argue that

in fact e € W2 and convergence is in the Sobolev norm. In particular, e must be a
normalized eigenfunction of Ly, and since there is only one such function, e(Ly), we
deduce that the entire sequence converges to this normalized eigenfunction in W12-
norm. (Again, this part of the reasoning makes strong use of the fact that the smallest
eigenvalue is simple.) We deduce that v/ = b(l)/ze(Lgh) — U= bé/ze(L;\), which gives
the second part of statement 2. The third part of item 2 is clear from u" = (v")? and
u =%

d) We finally obtain the rate of convergence in statement 2. Starting out with

e(Lyn) = e(Ly)llv < lle(Lin) — e(Lan) v + lle(Lan) — e(Ly) v,

we observe that the first term on the right-hand side is O(h*) by (4.5). For the second
term, observe that [A" —A| = O(h?), so the claim follows when we observe that A —
ex = e(Ly) is Lipschitz in a neighborhood of A. The latter follows again from the fact

that the eigenvalues pimin(L)) are simple, whence the corresponding eigenfunctions

e(Ly) depend smoothly on X; cf. [25]. This shows ||v" ]|y = b(l]/2||e(L§h)fe(L;\)HV =

O(h*), and hence ||u" — @11 = O(h®). O
Remarks. 1) An analogous result may be derived for the relaxed program (P,)
and its dual (D,). The same rate of convergence is obtained, since the argument is
based on properties of the function pm,i,.- We do not present the detailed statement.
2) Similar results for (D), (D,) could be obtained for a finite difference approxi-
mation. The analogues of (4.4) are now

(4.6) |ttmin (L) = ponin(L")] < CLh - and [le(L) = e(L")|ly < Ch

(see [21, sect. 11]), and again one has to show that the constants behave like Cp, =
O(|A]) for the operators Ly we have in mind. This is once again a problem of tracing
constants in a classical derivation of (4.6), as given, e.g., in [21, sect. 11]. (And again,
the situation is expected to be more complicated for multiple eigenvalues.)

Let us now consider the discretization of programs (D), (D;). For simplicity we
keep the notation A + >3 Agay = A+ > ;L A A for the discretized form of the
operator Ly. Switching from the conventional operator notation (N) to the usual
matrix notation, we have fimin(Lx) = —fimax(L)), where fimax(Ly) now denotes the
largest eigenvalue of the matrix Ly. Passing to the more convenient convex form, the
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dual (D) is now a semidefinite program

m
minimize  abg — Z bk
(D) k=1 m
subject to aI—A—Z)\kAk >0, aeR, e R™,

k=1

which can be solved using the duality theory as presented in [28, Thms. 12.1, 12.2] or
[38], references to which we refer the reader for concise information on the subject.

Since the tolerance model (1.4) was based on the Euclidean norm, (D,) does not
directly lead to a semidefinite program. Solving (D,.) as it stands requires techniques
from eigenvalue optimization as presented, e.g., in Overton [33] and Overton and
Womersley [34].

Let us show how to obtain a semidefinite programming formulation for the restora-
tion problem (1.4). The way to proceed is to replace the tolerance model (P,.), resp.,
its dual (D,) by a penalty-type approach

C
maximize Z(u) + 5 |Au — b|?

(Pp) .
subject to udr = by.
Q

The same duality scheme as applied in previous sections leads to the concave dual

. . . 2
(D,) maximize A(A) = pmin (La[])bo + Z Arbr — 5|)‘|2
k=1

based on the same return formula (cf. Theorems 3.4, 3.5). The important fact is now
that (P,) and (P,) are equivalent in the sense that, for a fixed e > 0, the solution u
of (P,) with tolerance level € also solves (P,) for a certain constant C' = C(¢), and
conversely, if @ solves (P,) with a given constant C' > 0, then it also solves (P,) with
tolerance € = ¢(C') = |Aé — b|. This may be checked by writing down the necessary
optimality conditions for both programs.

A disadvantage of (P,),(D,) as compared to (P,),(D,) is that it is harder to
obtain a default value for the constant C' > 0 than for the tolerance €, the dependence
C = C(e) not being explicit. On the other hand, it is certainly more convenient
to deal with (D)) as far as eigenvalue optimization is concerned. Indeed, we obtain
a semidefinite programming formulation for (D,) by introducing a new variable ¢
together with the constraint ¢ > \)\|2 = A\, The latter translates into tI > )Y,
which is recognized as a semidefinite constraint (see [38]). Indeed, (D,) appears as

L = 2
minimize  abg — ]; Arbi + at

m
(Dp) subject to al — A — ZAkAk >0,
k=1
tI A m
< A1 )>0, AeR™ t,aeR.
While the tolerance model had to be replaced by the penalty-type model in order
to deal with the Euclidean norm, the original form of (D,) is suitable if in (1.4)
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polyhedral norms like the one or infinity norm are used. In fact, starting with any
norm |Au—bl, in (1.4) gives the dual norm expression |A| in (D,-). Now if, for instance,
|-] in (D,) denotes the one norm, a semidefinite programming formulation is obtained
by introducing new variables A\{", A (satisfying A, = A\ — A and ;7 > 0):

m m
minimize  abg — Z (/\z — )\,;)bk + Z ()\z + )\,;)
k=1 k=1
(Dr) . + “\ 4k
subject to ol — A — Z ()\k — AL )A >0,
k=1
M >0, >0,a€R.
Similarly, when |- | in (D,.) denotes the infinity norm, the same decomposition leads

to a term maxy ()\z + )\,;), which may be transformed to the semidefinite form as for
instance in [38, sect. 1].

5. Experiments. This last section presents an experiment where we compared
various restoration techniques.

Consider the setting (1.3), where a signal u(t) has been blurred through convo-
lution with a kernel ¢(¢) and by adding a random noise term. As a simulation, the
piecewise linear original signal u on [0, 1] displayed in Figure 1 (continuous line) was
convolved by a pill-box blur ¢(¢) of variance .5, and white noise of variance 02 = .4
was added, leading to a signal-to-noise ratio of 16dB. The degraded signal v was
sampled at 25 equidistant points. The blurred (resp., blurred-and-noisy) images are
also shown in Figure 1 as the dotted (resp., broken) line.
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The Fisher restoration was obtained on the basis of model (D)), using a dis-
cretization with h = 1/50, and the penalty constant was found experimentally. Figure
2 shows the Fisher restoration (continuous line), compared with a maximum entropy
restoration (broken line) based on the model discussed, e.g., in [3, 10, 18, 22] and
displayed against the original (dotted line). Figure 3 shows a comparison of the same
Fisher restoration with a minimum cross-entropy method, where the dirty signal was
used as a priori. As can be seen, with this weighting, the maximum entropy technique
can catch up better with the Fisher restoration. For both entropy restorations, the
tolerance model (1.4) was used, with the tolerance found experimentally, starting with
the default as suggested by Example 1.2.

Figure 4 shows a restoration obtained by Burg’s entropy— [ log u(z) dz, displayed
against the original and dirty versions. Not unexpectedly, Burg’s method produced
too spiky results, which agrees with experiments reported, e.g., in [6, 16]. Figure
5 shows the restoration obtained by minimizing the Dirichlet integral [ |Vu(z)|*dz
subject to the constraints (1.4) which for this example works surprisingly well, but
generally has a tendency to produce restorations lacking in contrast. Figure 6 shows
how this could be improved using a method along the lines of Geman and Geman
[19], which combines deconvolution and edge detection. In its 1D discretized form it
consists of minimizing a functional of the type

n—1 (u u )2 n—1
k+1 — Uk
U, W) = —+« wg — 1
fluw) = 32 > (i =1)
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subject to the constraints (1.4) and wy > 1. Here the variables wy play the role of
switching parameters. The state wy = 1 corresponds to the switch being on, so that
the gap (ug+1 — uk)2 is fully penalized. Any value wy > 1 is meant to indicate a
structural gap at position & in the unknown image u (or at least a tendency for such),
the philosophy being that in this case the penalty for a jump at position k£ should be
gradually released or even switched off. Switching off is paid for through the second
term, with the control parameter « ruling the trade-off between the two. Notice that
while Geman and Geman [19] use real switches, leading to a discrete variable with
states on and off, we prefer a continuous version (using dimmers instead of switches).
The states of the variables wy in Figure 6 are represented by the stars.

Figure 7 shows a restoration obtained by Hunt’s filter [23], which is based on min-
imizing the integral [ |Au(z)|?dz and which gives a linear inverse filter if the penalty
approach is used. The final Figure 8 was included to show how a direct inversion of
(1.3) using least squares badly fails due to the relatively high noise contribution.
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