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Abstract

We present several new reconstruction methods for Single
Photon Emission Computed Tomography with dynamic
sources. Our approach provides dynamic reconstructions for
practically any camera system, including rotating single, double
and triple head cameras doing slow rotations. Simulations and
experiments are presented to validate our methods.

Key words: Dynamic SPECT, least squares methods,
compartment models, interface method.

I. INTRODUCTION

The goal of emission computed tomography is to
reconstruct the three dimensional radioactivity distribution of a
metabolically active tracer which has been injected in the body
and absorbed by the organ of interest. The available projection
data have been acquired by a rotating camera or by a fixed
cylindrical array of detectors surrounding the patient.

While metabolic processes are always intrinsically dynamic,
current clinical applications of SPECT are generally static.
The reason is that in the presence of a significant change of
activity during the scan (due to metabolism and/or wash-out),
a rotating camera system will acquire inconsistent data, that
is, projections corresponding to different dynamic states of
the unknown source. Traditional reconstruction methods like
filtered backprojection and EM-based methods could then
no longer be used as they are not designed to account for
dynamics, and if applied to inconsistent projections, produce
serious artefacts in the reconstructed images.

Dynamic imaging is possible in PET and with ring SPECT
instruments since in these cases a complete set of angular views
may be scanned in sufficiently short time. The data acquired
within each frame are then again consistent and may be inverted
" by static methods. Dynamics are finally accounted for by doing
a series of static images. With a rotating triple head camera, one
may mimick this situation by doing a series of fast rotations,
allowing to scan a complete sct of angular views in a short
time during which the object may be assumed stationary, [13,
22]. However, this approach suffers from poor data statistics,
requires specially equipped triple head systems capable of doing
multiple 360° rotations, and fails for single and double head
cameras.

Our present approach takes a completely different point of
view. We propose a dynamic reconstruction method which

is capable of processing inconsistent dynamic projection
data. This becomes inevitable as soon as data may no
longer be collected into consistent subgroups, and have to be
treated simultaneously. As opposed to the above mentioned
approaches via successive static imaging, our new approach
tries to build the entire movie at a time.

The observation that a metabolized radiotracer could
never behave entirely static is of course a commonplace.
Nonetheless, the traditional point of view is to ignore
its dynamic or to consider it a source of errors: blurr in
reconstructed images, and even false diagnostics [17, 26, 18].
Tracers, therefore, were designed to avoid dynamics, and
methods were proposed to eliminate dynamics by correcting
data accordingly. With a new dynamic reconstruction method
at hand, this point of view should change entirely, and
using genuinely dynamic tracers should become attractive.
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Figure 1. Pholons radialing [rom the region of inlerest. a) misses Lhe camera,
b) is absorbed by the collimator, ¢) passes the collimator and hits the camera,

Similar to the situation in PET, one should then seek to
combine dynamic information, currently available in planar
imaging, with spatial information, presently obtained in static
SPECT. Various kinetic processes may then be successfully
assessed through SPECT protocols, with exciting new
diagnostic possibilitites. As opposed to PET and ring SPECT
cameras, which require a complicated and expensive setup,
our new approach, compatible with single and double head



cameras available in most hospitals, is easier to realize as it
uses the existing clinical SPECT data acquisistion protocols.

We observe that the dynamic point of view may even be
advisable in situations (ring SPECT, PET) where successive
static imaging is possible. Cutting into frames and treating
as independent information what is actually highly correlated
may appear unsatisfactory. An approach to dynamic PET
reconstruction in this sense is presented e.g. in [9, 16].

For the sake of clarity, we mention a different source
of dynamism which should not be mixed with our present
theme: gated SPECT for the beating heart. Here dynamism is
accounted for by collecting data in subgroups each considered
static, and does not fall within the scope of tracer based
dynamics.

The paper is organized as follows. Sections II — VI present
and elaborate our method and some of its modifications.
Sections VII - IX present a phantom experiments, and a
clinical example.

As a result we will provide guidelines on (&) how
to reconstruct images, and (b) how to estimate dynamic
parameters related to metabolic processes. Hopefully, our
approach will lead to new diagnostic methods based on SPECT
and provide new insight into functional processes of the body.

II. DYNAMIC MODEL

In this section we briefly review the mathematical model
defining the inverse problem of dynamic SPECT, discuss its
discretization, and show in which way it relates to departmental
modeling.
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Figure 2. The cocllicient ryy is the relative volume of voxel i lyiug within the
beam By counceting v and the receptor bin § during the camera position 6.

We shall make the assumption that the scatter contribution
is ignored, or taken into account either by correcting data
or by interpreting scatter as a source of noise. As shown in
Appendix 1, the inverse problem may be decoupled into a

series of dynamic reconstructions of 2D slices. In each slice,
we encounter the nonlinear integral equation involving the
dynamic attenuated Radon transform:
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to be solved for the unknown variables f and a. Here f(z,1t) is
the activity of the unknown source at position z € R? and time
t, and a(z) is the linear attenuation coefficient. Notice that the
integrals in (1) are line integrals along the lines L(s,w) = {tw+
swt : t € R}, where w = (cos6,sinf), w' = (—siné,cos#h),
and g(s,w, t) represents the ideal data acquired along this line
at time ¢,

Let us now consider the discretization of (1), choosing,
exemplarily the case of a single head camera. Let the time
domain be divided into S intervals of duration At, leading to a
total acquisition time of S - At. Lett; = (k — 1)At, so the kth
stop is [tx, tx + At] referenced ¢, or simply k. We assume that
during [tz,t5+1], the activity of the source remains constant.
Since a single head camera takes one position wy, at a time #;,
we have wy, = (cosfy,sinf) with 6 = (k — 1)AH, and we
are scanning a sector of S - Af degrees.

Let the 1D cross-section of the camera be divided into M
bins of size As, giving a cross-section of length £ = M - As.
The data registered in bin j during the kth stop are

8;+As  ptp+At
Yik = / / g(s, wy, t) dtds. )
8 th

Integrating (1) using (2) leads to the set of equations
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Choosing a finite basis representation for f and a:
N N
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for an orthogonal system 1;,...,%x and substituting into (3)
leads to the linear system
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while the matrix coefficients

*1
8;+As = / a(y) dy
cisk(a / [ Yi(r)e Je deds (5)
Lswe)

depend on the attenuation coefficient a(z). During the
following, we shall represent equation (4) by the compact
notation C'(a) f = y, y denoting the measured M S data vector,
[ the unknown NS dynamic image vector, ¢ the unknown
attenuation coefficient, and C(a) = {c;;x(a)} the above linear
tensor converted into a 2D mamx of size M S x NS, by letting
cirjr = Cijp Withd' =i+ (k= 1)N, j' =5 + (k- 1) M.

The traditional choice for the basis functions is to divide the
region of interest into quadratic pixel B;, i = 1,..., N of size
Az x Az, and letting

1
Yi(z) = Az ke (@)
the characteristic function of the ith pixel scaled to 1. We shall

adopt this choice here, but mention that at least in the static case,
other bases have been tested.

It is instructive to see the meaning of the matrix coefficients
in the unattenuated case a(z) = 0. Here the integral (5)
simplifies to

8;+As
e (0) = f f i() dz ds
8 L(swi)

1 8;+As
S o
8 L(s,w)NB;

which is just the surface of that part of pixel B; lying in the strip
Sj connectingto bin j during the camera position k (see Figure
2), and scaled by the full surface of the pixel. This indicates in
fact the sparsity pattern of C(a) = {c;;x(a)}, which is the same
for all possible attenuation maps a(z). For instance, in a typical
case with a 64 x 64 region of interest (ROI), a camera whose
cross section size is equal to the size of an edge of the region of
interest, and discretized into 64 bins, and finally on the basis of
64 views over 1807, the matrix C is only .046% filled.

We proceed to observe that equation (4) is largely
underdetermined. This may be seen by considering the above
example, a ROI with 64 x 64 pixels, 64 bins per camera
cross-section, and 64 stops, where we have 642 measured data
points to fit a dynamic image with 64° degrees of freedom. The
situation is less dramatic if double or triple head cameras are
used, but equation (4) remain under fitted. On the more abstract
level of equation (1), this is explained by the fact that for a
single head camera, the ideal data are g(s,w(t),t), with only
one direction w(t) scanned at time ¢{. As a consequence, and
in contrast with the static case, we have to provide additional

information in order to invert (1).
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Figure 3. Sparsity pattem of the matrix CT C incase S = 0 stops, M = 4 bins, N = 16
pixels.

The missing information is provided by compartemental
modeling, and we shall, very briefly, recall the essentials of this
method.

The purpose of dynamic emission tomography being
the understanding of the metabolic processes of the body, a
radioactively labelled molecule (called the tracer) specifically
selected for the organ of interest is injected in the body. The
tracer molecule will undergo chemical reactions in the organ,
and a usually simplified model of the complex chemical
reaction will retain a certain number of chemical states referred
to as compartments. Knowledge of the exchange rates between
compartments is expected to reveal important information
about the health of the organ.

Often the reactive scheme is modeled by a linear dynamical
system involving the tracer concentrations c, (¢) of the different
compartments » = 1,..., P at time ¢. The tracer concentration
in the blood compartment, cg(t), is often supposed to be
known. The interplay between the compartments is then
governed by a dynamical system

c(t) = Ke(t) + ca(t)po

with a source term cp(t)py, involving a contribution vector
Po, and a P x P coefficient matrix K representing reactive
exchange rates k;;. If the system matrix K is diagonalizable,
the compartmental concentrations have an eigenfunction
representation of the form

f)—Z%ne At weylt) ©)

k=1

with * denoting convolution. Here the unknown parameters 7,
and )\, depend analytically on k;;, po, and vice versa, so that
knowledge of one set of parameters implies knowledge of the
other.



For our experiments we concentrate on the 2-compartment
model, P = 2. Two cases are possible. On one hand, (a), we
might wish to follow the whole process of uptake and wash-out
of the tracer. This requires a relatively precise knowledge of
the tracer concentration cg(t) in the blood pool, obtained for
instance by taking continuous measurements during the whole
dynamic study (cf. [13]). On the other hand, (b), we might be
content to represent the wash-out period only. This would be
possible by starting data acquisition after uptake, and would not
require a precise knowledge of cg (), which in most cases may
even be assumed zero.

In our experiments (Sections VII - IX) we shall consider
both cases, and as shown in Appendix 2, a 2-compartment
model will usually lead us to represent the compartment
concentrations ¢, (t) as sums of double exponentials,

—Ait —Aat

cr(t) = Yv1€ + Y2€ + Yps- (7)

How does compartmental modeling relate to tomography?
Assuming that the reactive scheme may vary locally over the
organ, the constants v,, and )\, are allowed to vary with the
position z. Since all compartments contribute to radiation in
the same way, the source term for the localized 2-compartment
maodel is a sum of the local compartmental concentrations

f(z,t) = m(@)e M 4 gy (2)e M 4 (),  (8)
intended to capture situations where parts of the organ are
unhealthy and show different reactive behavior.

III. DIRECT METHODS

In this section we shall present a first approach to the inverse
problem (1), (8) under the assumption that the attenuation
map a(z) is known. In our experiments, this is always the
case since the attenuation map is either obtained through a
transmission scan performed in parallel with the dynamic
SPECT session (double head camera experiment, cf. [8, 7]), or
may be mathematically estimated beforehand using emission
data only (cf. [34, 23, 25]).

Discretizing the localized 2-compartment equation (8) and
assuming that radioactivity is modeled by a Poisson law, we are
lead to consider the Nonlinear Poisson Model:

(NPM)

s , N N
D, (Zcijkfsfk — Yjk log (Z Cijkfik))
k=1 \i=1 i=1
subjectto fi = Y itk 4 pe NItk 4 g,

M
. . .ze Z
j=1

Up to constant terms, the objective is the negative log-likelihood
function for the joint Poisson law of the observed data. The

model has been discussed at more details in [1].
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Figure 4. Plots of the singular values of C for different geometries. Both images
show the case N = 642, M = 5 = 64 over 360°. In the left hand plot, the
camera cross-section equals the edge of the region of interest. In the right hand
plot, the camera cross section has the length of the diagonal of the (square) region
of interest.

A second approach, also examined in [1], and originally
proposed in [17], replaces (N PM) by the following weighted

Nonlinear Least Squares approach:
M S N 5
(NLS) minimize Z Zwﬁk ( Zcijkfsk = !ij)
j=1 k=1 i=1

subjectto  fix = yiie™ M 4 ypiem 2t g

Both (NPM) and (N LS) are nonlinear optimisation problems
with 5N unknown variables (vy,)\), and a hidden constraint
fit > 0in (NPM). One may add regularizing terms to both
objectives, as explained in Section IV and Appendix 3, and
likewise introduce linear inequality constraints.

We implemented both methods using the limited memory
BFGS code with bounds by Nocedal et al. [19, 4]. A
Levenberg-Marquardt algorithm used in [17] could mot be
tuned to work satisfactory due to the size and high nonlinearity
of the problem. With a careful adaption of the stopping criteria
and a good initial guess, both algorithms may reconstruct a
typical slice in 1 - 2 hours CPU, which is a little long for
convenient clinical applications.

The difficulty of (IVLS) may to some extent be understood
from a mathematical analysis presented in [2]. The authors
show that difficulties ought to be expected as soon as some
of the eigenvalues A;; and ); coalesce, but otherwise relate
performance to the condition number of the matrix C(a),
which as we shall see is usually satisfactory (see Figure 4). An
obvious drawback of both approaches is the large number of
local minima, which renders performance highly dependent on
the initial guess, and often produces aberrand solutions.

IV. RELAXATION METHODS

As a remedy to the algorithmic problems of (NPM) and
(NLS), we propose a relaxation which temporarily abandons
the constraint fix = y1,e™ 14tk + 4556~ 22k 4 5, imposed by
the compartmental modeling. In order to present the idea, let us
first consider the case (b), where only washout is represented,
and the activity of the dynamic image decreases. We propose a



weighted Linear Least Squares problem

M S N 2
(LLS) minimize Zzwjk(gcijkfik_yjk)

J=1 k=1
subjectto fi > fio > ... 2 fis

where we have replaced the biexponential decay profiles by
an arbitrarily decaying curve. This increases the number of
variables dramatically, SN for (LLS), versus 5N in (NLS),
but leads to a quadratic programming problem with a very
convenient linear constraint structure. With a change of

variables
fix = fir = Fips1, ®

(LLS) may be transformed in a quadratic program with box
constraints.

If uptake and washout have to be represented, the constraint
set has to be modified. In the renal study presented in Section
V, we find a first guess for the peak activity at ky,,,, and then
set constraints of increasing-decreasing activity which allow the
reconstruction to automatically choose a maximum at ko, +1.
The constraint set is then

DS hi S fo S Sifina
Jiknas+1 ? e fis 20,
fi,kmax Z E(fi‘kmux—l g fi)kmu+1)’

which allows the curves f;; to select their peaks among the
positions k = kmax—1, kmax, kmax+ 1. The change of variables
(9) again gives a quadratic program with box constraints.

Let us analyze the performance of (LLS). Writing f = T f'
for the change of variables (9), the decreasing case (b) may be
reformulated as

(10)

minimize ||CTf' — y||?

)
(LLS)  ubjectto f1, > 0.

and correspondingly in the increasing-decreasing case (a) using
the constraint set (10) in tandem with (9). Our implementation
of (LLS') uses a method proposed by Moré and Toraldo [21],
which extends the gradient projection method by the possibility
to doing a conjugate gradient based minimization on a suitable
face of the admissible set. A single outer iteration of the
algorithm consists in doing gradient projection steps until a
face has been identified worth doing a complete minimization,
and the outer step ideally ends with the minimum on this face.
Performance of the method therefore depends on (i) the speed
of the cg-based minimization on the chosen faces, and (ii) the
number of gradient projection steps needed before settling on a
face.

Analyzing the cg-step is done along the usual lines. Fixing
a face of the admissible polytope corresponds to fixing certain
coordinates f;, . Given the current iterate f!, we obtain the new
iterate f = f! + A f' by solving the problem

minimize ||CT(f.+ Af') —y|?
subjectto A Af' =0.

Here A, is the matrix fixing the coordinates corresponding to
the chosen face, A.(f' + Af') = A.f'. Letting Z a projector
onto ker A;, and substituting Af' = Z(df'), with §f' the
reduced vector of free coordinates in A f/, this is equivalent to
solving the linear system

(2Xrfcterz)éf =2*rreT=ery); a1
and performance of the conjugate gradient step therefore
depends on the condition number of the system matrix
S = ZTTTCTCTZ. Observe that since CTC is highly rank
deficient, S is not regular and requires regularization, either by
using CTC + €I instead of CTC, or by regularizing S directly,
Se=8+¢€l.

The maximum eigenvalue of S is majorized by the
meximum eigenvalue of TTCTCT, which in our typical
example was calculated as Apox(T7CTCT) ~ 1.5 10°.
The singular value distribution of C is in fact quite good,
two typical cases are displayed in Figure 4. What appears
more critical is the change of variables (9), which has
cond(T7T) ~ 1686. If the regularization CTC + eI with
€ &~ 10 is used, the usual pessimistic formula for the number of
cg-iterations

6fm =0fill . 2(&—1)"
16f5 = 8£0l = (Ve +1)2m + (V& - 1)%m

(k = cond(S,), &f. the solution of (11)), would indicate of
the order of 50 cg-iterations to obtain a 30% error reduction.
In practice, we usually do much better, which is due to
the fact that the true system matrix S, is usually better
conditionned than 77 (CTC + €I)T, so that of the order of
10 — 50 cg-iterations usually give satisfactory comvergence
on a face. We notice that as compared to a linear system,
the conmstraint structure naturally complicates the situation.
For instance, it is not of much help to have a preconditioner
for H. = TT(CTC + €I)T, although a way to include this
information is discussed in [12]. In fact, the inverse of H, is
readily calculated using the Sherwood-Morrison-Woodbury
formula, but the cg-step requires preconditioning S, rather than
i,

The number of projection steps needed to find a suitable
face is the second ingredient of good performance. In fact, if
the algorithm needs too many gradient projection steps, the
complexity will become exponential, and the approach will
fail. Our analysis shows that the relative success of (LLS')
is in fact based on a surprisingly small number of gradient
projection steps. What may be prohibitive is the Tychonoff
regularizing term e[| f'||?, since its contribution —¢f’ to the
negative gradient reflects the constraint structure at the current
iterate, and may therefore prevent the algorithm from selecting
a new (and better) face. We therefore do not Tychonoff
regularize the objective function as a whole, but prefer an
adapted regularization for the individual cg-steps, i.c., we
prefer S, over H..




For the typical slice, an (LLS) solution will be obtained
with up to 6 - 20 outer iterations. A typical profile, plotting
the number of cg-iterations and gradient projections per outer
iteration is shown in Figure 5. The algorithm converges with
typically between 2 and 10 minutes CPU for the typical slice.
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Figure 5. The diagrams show the performance of (LLS) for the increasing-
decreasing model (10) (left) and the concave-convex model using second
differences (12) (right). The upper curve shows the number of iterations per cg-
step. The lower curve shows the number of gradient projection steps needed
to seftle on a face. Convergence was obtained after 6 outer iterations in the
decreasing-increasing case (left), and 50 outer iterations in the concave-convex
case (right).

A change of variables involving second differences

:;c = f:k = f;,k+1 (12)
may appear attractive when modeling an increasing-decreasing
profile as in the renal SPECT experiment. Inspecting the planar
imaging curve in Figure 7 shows that a concave-convex profile
is expected. While first differences leave us with the delicate
problem of locating the peak, a concave-convex curve would
require locating the inflection point instead, which seems less
error sensitive. However, the corresponding second difference
matrix f = T'f" is prohibitively badly conditioned, and we
have not been able as yet to tune the method to converge in
acceptable time.

V. INTERFACE METHODS

The solution f obtained from a relaxation method (LLS)
does not have the doubly exponential form imposed by the
underlying compartemental philosophy. We therefore fit the
required exponential curves to the dynamic image f. This may
be done on a pixel-by-pixel basis, or by drawing regions of
interest and fitting exponentials to the corresponding dixels or
their sum.

While aposteriori fitting will be briefly discussed in the
subsequent section, we presently emphasize that the fit may
either be the final result of the entire procedure, as is the
case in the phantom experiment, or we may use the fitted
biexponential curve f as a starting point to a new instance of
(LLS) or (NLS),(NPM). This new instance of (LLS)
will usually add a penalty term of the form K||f — f||2 to the
objective in order to bias the algorithm towards the previously
obtained fit f. Iterating back and forth a few times between
the results f of the relaxation method, and the fitted curves

f will usually improve the quality of the reconstruction. As
(LLS) is surprisingly fast, several iterations back and forth
are acceptable for a single slice, and this is what we refer to
as interface methods. The user may intervene at the stages f
and f, doing visual checks and inspecting curves. On the other
hand, the decision on whether an improved f has to be sought
for could also be automatized.

This rises the question in which way and at what stage
further prior information could be used. Instead of running
(LLS) in its raw form, we use several prior steps to improve
the quality of the reconstructed images.

A first step is data filtering, which due to the inconsistency of
the projections is done in 2D. In [20] we analyzed the spectrum
of the dynamic Radon transform, and proposed a 2D filter for
the sinogram as a whole, using the theoretically expected bowtie
shape.

As a second step, we run a static version of the EM-
algorithm using the dynamic data. While FBP would usually
fail quite badly for such data, EM often performs surprisingly
well and reconstructs an average state of the dynamic source.
This helps locating the object spatially, often gives the contour
of the body, and provides first estimates of the attenuation map,
if required. Using the averaged static image and the overall
dynamic profile (estimated e.g. through the projection data or
other prior knowledge), we create the initial iterate for the first
instance of (LLS).

Thirdly, after a static fit or a preliminary raw (LLS)
reconstruction, we use the localization of the source to find and
include spatially regularizing terms in the (L LS) objective, and
we use weights w;, to reduce artefacts. As we have noticed,
spatial regularization is of minor importance if the length
v/NAgz of the edge of the ROI is adapted to the length £ of
the camera cross-section. New ideas are needed, however, for
regularization in time. In Appendix 3 we present a regularizer
which tries to stabilize by minimizing the kinetic energy in the
dynamic images f.

Finally, in the case of the increasing-decreasing model the
user may, between two instances of (LLS), wish to modify the
peak positions k. of the individual dixels. This may be done
if a reconstructed curve f; shows a large plateau around the
originally chosen peak position, indicating that k.. should be
shiftet to one side. This is for instance the case in the (LLS)
reconstruction of the renal example, where the curves for the left
kidney are too flat and indicate that the peak should be shifted
to the right.

VI. FITTING EXPONENTIALS

Fitting data by a sum of exponentials in the least squares
sense or other is well-known to be difficult computationally.
Consequently, there is an abundance of statistical literature on
the subject, and we have counted at least 10 different methods,
some of them rather sophisticated, others of more adhoc style.
We mention the references [32, 29, 28, 15] and the textbook
[30] with a special chapter on compartmental modeling.



As far as applicability to our present situation is concerned,
we have to distinguish two situations. If a fit to a single
dynamic pixels or a sum of those (selected by drawing a ROI in
the reconstructed image f) is required, practically any of these
method could be used. We remark that the state of art of global
optimization now even allows a search for the global optimal
fit in acceptable time. d

The picture changes if the exponential fit f is used to create
the starting point to a new instance of (LLS) or another box.
In the extreme case this would require fitting exponentials on a
pixel-by-pixel basis, so has to be fast and reliable. In particular,
methods which require visual inspection (like exponential
peeling) could not be used. Since many of the output dixels
from f may show strongly nonexponential profiles, the risk
of obtaining aberrand parameters in f is high, and should be
limited through the use of constraints. For instance, in the renal
example we expect increasing-decreasing profiles similar to the
ones shown in Figure 7, which could be assured by the program

S

minimize Z (™2t 4 ype Motk 4y — fik)2
k=1
subjectto A > Ay >0

71""}"220172 2017320-

(EF)

A method we have been applying successfully uses slow
dynamics to stabilize: We first detect the peak activity
positon of the ith data dixel f;, say kma., and then fit a
monoexponential yoe 22tk + 4 to the tail fip ..., fis
of the data, assuming that the slower dynamic will prevail in
the later positions. Subtracting the result from the data, we
fit another monoexponential y;e~*1% + ~! to the residue,
obtaining with v3 = ~j + 74 a fit of the sought for form (8).
We may now either use the parameters f so obtained directly as
f, or obtain a fit f using f as starting value for program (EF).

We finally notice that an idea often used in compartmental
modeling consists in successively increasing the number
of exponentials used to fit the data until certain criteria
indicate saturation (cf. [30, 14]). In the absence of theoretical
knowledge, this may identify the number P of discernable
compartments. We doubt that this strategy will work in our
present context since we often face profiles f which hardly
resemble sums of exponentials, and would often lead us to
overestimate the number P of compartments.

VII. EXPERIMENT 1

Our first experiment uses projection data generated by a
dynamic heart-in-thorax phantom [5] built at the Vancouver
Hospital. Initially all parts of the phantom heart are filled with
activity. Uniform water flow through each container dilutes and
washes out these activities. This produces single exponential
dynamic activity changes determined by the speed of the water
flow. The study shown in Figure 6 uses 4 similar containers
(one of them shown in top line right) with decreasing activities
of different half lives (2, 4 , 6 minutes) acquired over 12

minutes. The 17ml containers each equipped with a mixing
propeller are initially filled with Tc-99m with activity levels
ranging from 70MBq to 40MBq. A Siemens Multispect-3
(MS3) triple head camera with low energy ultra high resolution
(LEUHR) collimator was used. The initial positions of the
heads are 0°, 120° and 240°, and each head rotated over 180°
with 64 stops, collecting 64 data per camera cross section and
stop. Letting the length of the camera cross section 40cm, the
region of interest was chosen as 35 x 35cm. The data acquired
by the first of the camera heads were used to simulate a single
head camera. Figure 6 (first line, left) shows the sinogram
of the first head. Line 2 shows a (LLS) reconstruction of a
slice displayed at times 0, 3 and 9 minutes. The first image
shows serious streaking artifacts towards the 0° position of the
camera. To enhance the image, a region of support surrounding
the four bottles was automatically generated from the last of the
64 images reconstructed by (LLS) (line 2). (LLS) was then
restarted using the 0 — 1 image as apriori information. Line 3
shows the result of a restart of (LLS) which used an initial
estimate f(%) obtained by scaling the 0 - 1 image to capture the
energy level of the raw restoration and then generating replica
with activity decreasing in time. The (LLS) reconstruction
shown in line 4 uses the prior f(°) obtained by truncating the
result of line 2 outside the region of support. Both restarts of
(LLS) were using a penalty term K||f — £ to stabilize
towards the previously obtained estimate f(°), In order to test
the quality of the single head images, a (LLS) reconstruction
using the data acquired by the three heads simultaneously is
shown at the same instants in line 5. Notice that attenuation
was ignored in this experiment, and data were not filtered prior
to inversion.

Sinogram LLS
1 head | 3 head
Half-life (min) 1.95 2.95 2.15
Initial activity
(counts) 796 | 1545
NLS monoexp NLS biexp
1head | 3 head | 1head | 3 head
Half-life (min) | 2.27 | 2.09 2.46 2:32
Initial activity
(counts) 1332 | 15.90 | 11.07 | 14.18

Table 1. The half life of the container with the fastest wash-out (2 minutes)
(rightmost in Figure 6) was estimated by different methods. Reconstructions
based on the data acquired by one camera head tend to overestimate the half
life due to the missing initial activity blurred into the streaking artifacts.

In order to validate the dynamic parameters, we directly
estimated the half lives of the four bottles by fitting lines to
the log-plots of the dixels in each bottle. A quality check is
possible on the basis of the triple head reconstruction, which
is apparently almost perfect, and knowledge of the physical



experiment itself. Observe that the single head reconstructions
tend to overestimate the half lives of the bottles due to the
missing activity in the first views blurred into the streaking
artefacts. With the help of our interface technique, this effect
could be reduced considerably.

Figure 6. The first line (left) shows the sinogram of the first camera head. Line 2
shows the raw ( L L 5) reconstruction at 0, 3 and 9 minutes. In order to reduce the
typical streaking artifacts visible in the first view, line 2 was used to automatically
generate a 0 — 1 image identifying a region of support of the object. The latter
served as a priori to the ( L LS) reconstructions on lines 3 and 4. Line 3 chooses
as initial £(°) the scaled 0 - | image with activity decreasing in time, while line 4
chooses as initial guess the result of line 2 truncated outside the region of support.
In both cases, a penalty term J< || f — £°||? is used to bias towards the pricr. The

last line shows the reconstruction obtained from the three heads simultaneously.

VIII. EXPERIMENT 2

In this section we describe a clinical study performed at the
Vancouver Hospital. A testperson was administered a dose of
15ml i.v. of the dynamic renal tracer Tc-99mMAG3. Two
minutes after injection, we started the SPECT session with a
Ecam double head camera. The camera was equipped with a

gadolinium emission source in order to obtain a transmission
scan parallel to SPECT. The test persion was scanned in prone
position, the camera heads initially at 0° and 90°. Each head
rotated over 90, taking 64 stops each of 10 seconds duration, so
both heads together scanned a 180° sector. The total acquisition
time was 12 minutes 48 seconds, with a dead time of 2 seconds
per position.

The results are shown in Figure 7. The first line shows the
sinogram of the two heads. In order to emphasize the dynamic
nature of the experiment, we prefer not to arrange, as one would
do in the static case, the data from the two heads to obtain a
single sinogram over 180°. The attenuation map (line 2, right)
was reconstructed on a 128 x 128 grid and used to build the
matrix C'(a). It also served to reduce the ROI to a smaller size
86 x 86.

After estimating the peak position at kya, = 8 from the
acquisition protocol, (LLS) with constraints (10) was run, and
the reconstruction f was used to automatically generate two
masks (line 2) locating the left and right kidney. Line 3 displays
those dixels from f which are inside the masked regions (right
kidney to the left).

Using the method from Section VI we fitted biexponentials
(8) to the output f of (LLS). To ensure the increasing
decreasing profile, we used the constraints

Yii+72i 20,728 20,738 20, Az 2 Ag; 2 0.

The fit f was now used to run (NLS) and to re-run (LLS)
with inital iterate f. The result for (IVLS) at times 2, 6 and
12 minutes is displayed in line 4, and the dixels belonging to
the masked regions are shown in line 5. Line 6 shows the
result of a restart of (LLS) with f as input, and line 7 shows
the corresponding dixels. Finally, line 8 shows the result of
adapting a biexponential to the sum plot of both kidney. Since
only two curves had to be fitted, we calculated the global
minima for the problem (EF).

i

Figure 7. Results of conventional planar scan with the dynamic tracer TC-

.99_mM,_*\GR used to assess the glomerular filtration rate (GFR). The time scale

15 1n minutes.

In order to validate the reconstruction, a planar dynamic
renal scan using 10ml of Tc-99mMAG3 was performed prior
to the dynamic SPECT session, and revealed the form of the
expected dynamic profiles (Figure 7). The curves on line 7 of
Figure 8 should be compared to those in Figure 7.

Our present acquisition protocol may not be optimal as far
as the number of stops are concerned. In fact, in static scans
with a double head camera, 32 stops are often considered
sufficient. According to our mathematical analysis [20], 64



stops seem appropriate, but a future clinical test should provide
more evidence on this quest. As a second point, we remark
that the dosage was chosen rather conservatively, and a slightly
higher dose might produce more reliable results.

IX. CONCLUSION

We have presented several nonlinear programming based
approaches to solve the dynamic SPECT reconstruction
problem. As direct fitting of the Radon transform of a
biexponential to the dynamic projection data, (NLS), turned
out difficult computationally. =~We proposed a relaxation
scheme based on a convex quadratic program with box
constraints, (LLS), which we combined with aposteriori

- & B 8 8 8 8 3 8

fitting of biexpomentials and an interface technique using
several re-starts of (LLS). The relaxed approach is faster and
robust. Using a phantom experiment and a clinical test, we
validated our approach and showed that it reconstructs dynamic
parameters even with a single head camera.

While a conclusive comparison between the various
methods requires further testing, the approach we have chosen
is promising, in particular if prior information is used to
adapt it to a specific situation. We have shown that dynamic
reconstruction may and should be based on slow rotations.

In the clinical test we proposed a rather high number of
stops (64 per camera head on a 90° sector for each head) in
order to account for the fast dynamics during uptake. Future

testing might show that a smaller number of stops is sufficient.
While our cameras only allow for stops of equal length, an
optimal protocol might require more flexible stops of individual
duration.

s & B 8B & 8

X. APPENDIX 1 - TRANSPORT MODEL

Dynamic emission tomography is described by the dynamic
photon transport equation (cf. [10, Vol. I, Section 5])

w [ L = L] L] L]

18
= au(a‘:,w,E, t) +w - Vu(z,w, E,t) + a(z, E)u(z,w, E, t)
oo
=/ b(z,E',E,w',w)u(z,w', E',t)dw' dE' + f(z,E,1)
0 §2

aENEBREAER

Here u(zr,w, E,t) is the density of the angular transport
of photons at position z and time ¢ in direction w € S2
and with energy E, c is the speed of light, a(z, E) is the
linear attenuation coefficient, b(z, E, E',w, w') the scattering
kernel (both unknown), and f(z,E,t) is the unknown
radioactive source we wish to estimate. The emergy of
photons used in nuclear medicine is monochromatic, so ideally
f(z,E,t) = f(z,t)0(E — Eop) for a fixed energy level Ej.
(For example, E, = 140keV for *°Tc used in SPECT, and
—r——— E = 511keV in PET).

Figure 8. Results of a clinical dynamic SPECT experiment with the dynamic The 3D model (13) is certainly required if scatter is taken

tracer TC-99mMAG3.

into account. However, it is usually justified to ignore the scatter
contribution or rather, to interpret it as a source of noise in the

a



data. This allows us to break the 3D reconstruction into a series
of 2D reconstructions, and we may then restrict the transport
model to the 2D case. With b = 0, the energy dependence
of transport could then be restricted to the fixed energy level
Ey. Integrating (13) over all energy levels using the averaged
angular transport

o0
u(z,w,t) = / u(z,w, E,t)dE
0
leads to the simplified equation in u(z,w, t)

% %u(m,w,t) + w  Vu(z,w,t) + a(z) u(z,w,t) = f(z,1)

(19) by e, Fourier inversion then gives the family of integral
equations

T _ % d
/ flz,t— |2y —2|/c) € fz ) ydﬂ:=g(8,w,t),

(20)
exhibiting a delay between the data acquired at time ¢ and the
source terms considered at times ¢ — |z; — z|/c. The method
of characteristics (cf. [10]) would of course have produced the
same result without using the Fourier transform. Since photons
travel with the speed of light, we may in practice assume

t— |z —z|/cxt,

which leads to the approximate equation involving the dynamic

(%) sttenuated Radon transform Rla, f]:

withw € S,z € R2,¢ > 0.

As usual, we parametrize lines by s € R, and
w = (cosd,sinf) € S, letting L(s,w) = {swt +tw: ¢t € R}.
Suppose the unknown source and attenuation coefficient are
zero outside the unit disk D. Then the measured data may be
understood as boundary information on D. Indeed,
for v, w <0, z9€dD (15)
(v = outerunitnormalto D), i.e., there is no incoming
radiation. And further, the outgoing radioactive transport is
known:

u(zo,w,t) =0

u(zy,w, t) =: g(s,w,t) forv,, -w>0, z:€dD. (16)
Here L(s,w) N D = [z, 21], and we call 2y = zo(s,w), 21 =
21 (s, w) the entry and exit points.

Assuming that the source f(z,?) and data g(s,w,t) decay
sufficiently fast as ¢ — oo we may Fourier transform equation
(14). This leads to the family of equations

w-VU(z,w,0) + (a(z) +ic/c)U(z,w,0) = F(z,0) (17)
with boundary information

U(z,w,0) =0, U(zy,w,0) = G(8,w,0). (18)
Here capital letters refer to the Fourier transforms of the
corresponding lower case functions, and o stands for the
Fourier domain variable. Integrating equation (4) using (5) on
each segment L(s,w) N D = [z0, 1] separately leads to the

formula

I
21 ’ —/ a(y) dy
/ F(z,0) e clei—zl/e.o Jo dz = G(s,w,0),

o
19)
which is a Fourier domain counterpart of the known integral
equation obtained in the case of stationary SPECT based on
the attenuated Radon transform (cf. [24, 23, 25]). Multiplying

21 - ma(y)dy
Rla, f(-1)](s,w) ==fz flz,t) e /2 dx

= g(s,w,t). (1)

For completeness, let us consider the situation in PET.
Assuming again that the relevant information is captured
by the disk D, we are led to use the PET-geometry which
parameterizes the lines in the plane via the entry and exit points
xg, 1 on 8D. The boundary information being symmetric

9(zo, z1,t) = g(z1,0,1),

and with the incoming radiation assumed zero as before, the
formula replacing (19) is

[ awa

B z1
e Yo . g—islzi—zol/e F(z,s8)dz = G(zg,21,8),
xo
and Fourier inversion provides the following family of integral

equations

z1

~/ a()dy o

e Yo / f(;r;,t— |9:1 —.."',‘[)l/C)dI = Q(IOaII!t):
zo

showing a similar type of delay between the source and data
terms. In the case of PET a simple change of variables leads to
the compact formula

exp{_R[a](mm $1)} ; R[f(s t)](xﬂr 331) =
9(z0,21,t + |21 — 20| /c)
involving the classical Radon transform parametrized through
the lines L(zo, z,) spanned by points zo,z; € 6D. Again we
may in practice assume ¢ + |z; — 2o|/c = t in (9), (10), leading
fo

exp{—R[a](zo,z1)} - R[f(",1)](20,21) = g(20,21,1) (22)

The interpretation of (22) is that it is justified to do dynamics in
PET simply by performing a series of static images, as proposed
already in the basic reference for probabilistic approaches to
PET [33].



XI. APPENDIX 2 - COMPARTMENT MODEL

In this section we exemplarily discuss a 2-compartment
model for the renal example.

We assume that tissue is represented by two compartments
with concentrations c;, co. These represent chemical as well
as physical states, so activity (in each position) is the sum of
both contributions: f(t) = fc1(t) + (1 — 8)cx(t), with another
parameter 0 < § < 1 controlling the local weighing between
both compounds.

€1 Co

ko kao

blood bladder

Figure 9. Two compartment model for the tracer TC-99mMAG3 in kidney. We assume that
tracer in compartment 1 is stable, while molecules in compartment 2 are evacuated into the
bladder at rate kng.

The dynamical system describing this compartemnt model is

koico +koi1cB

(k21 + k2o)c2

—kiser  +

Cii—=
= koo -—

¢

Assuming for simplicity that the input function cp from the
blood pool is constant during the scan, the solutions are of the
biexponential form (7), and hence f is of the form (8).

As is readily verified from the equations, it will often be
difficult or even impossible to assess the exchange rates k;; by
knowledge of the decay curves 8. For instance, if the mediation
parameter is § = .5, that is, if both compartments contribute
identically, the constants k, and k;, cancel in the sum f =
¢1 + ¢ and could not be assessed through knowledge of f.

Of course the model may be sophisticated by assuming
more elaborate input functions cp (¢) varying in time. A natural
candidate would be cp a constant value for a short time, and
cg = 0 afterwards, with another parameter governing the
switch.

XII. APPENDIX 3 - DYNAMIC REGULARIZER

Let us now consider a heuristic leading to a regularizer in
time. Consider Experiment 1, where we generated dynamics by
diluting activity in the containers through water flow. Assuming
that the container of volume V' is initially filled with activity
f(0), and that washout is caused by water flow at rate R(t), the

activity f(t) at time ¢ is

R(r)
ft) = /

if the mixture between pure and radioactive water is perfect.
Discretizing at times ¢ = (k — 1)At, and writing f;, = f(¢),
Ry = R(ty,), we have

_ ReAt _ Jer1 = Ji
4 K

Assuming that the container is cylindrical, the flow rate is
proportional to the speed of water flow, and the kinetic energy
of the radioactive part of the flow at time ¢; is

(frr1 — fr)?
T :

regarding that activity is proportional to mass. As we can see, a
strong difference in the activity levels f;., and fi, according to
the above model, must be caused by a high flow rate R, leading
to a high kinetic energy Ei,. We therefore propose to include
a penalty term

N §-1

QZZ ftk-r-]_fak

i=1 k=1

in the objective of (NLS), representing a integrated kinetic
energy contribution from all dixels. Ideally, this relies on
assuming that every pixel behaves like a small container of
the above type. Minimizing kinetic energy will help to avoid
irregular dynamic behavior and smoothen the output dixels.

As (23) is not a quadratic, it is not compatible with (LLS).
Therefore, if a prior guess f is known, or if the interface
technique is used, and the previous aposteriori fit f is available,
we propose to use the regularizer

(23)

N 5-1

a Z Z (fs,k+1; fir)?

i=1 k=1 f

instead. We apply the same regularizer to curves with increasing
activity.

Handling the penalty parameter o is based on the following
heuristic. Let the random variable (C f); have expected value
yjr and variance o;;. Then according to the law of large
numbers,

M S
(Cf - y),g‘k o
Var(j;l ; = ) MS.

Assuming that the data ;. are Poisson distributed, we are led to
assume crzk =Var(y;x) = y;k, and adopting the weights w,) =
o; o =i 7% to tune the algorithm so that at the optimal solution

’ Zzwjk(zcukfik —y_f,.k) ~ MS.

j=1k=1



Parameter value a which suit this heuristic are found
experimentally, as no explicit formula is available.
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