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Summary. Maximum entropy density estimation, a technique for reconstructing an
unknown density function on the basis of certain measurements, has applications in
various areas of applied physical sciences and engineering. Here we present numer-
ical results for the maximum entropy inversion program based on a new class of
information measures which are designed to control derivative values of the unknown
densities.
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1. Introduction

To begin with, let us consider the following Fourier inversion problem. We wish to
reconstruct an unknown function x(t) ≥ 0 on [−π,π] on the basis of a finite number
of known Fourier coefficients

bk :=
∫ π

−π
x(t) exp{ikt} dt, k = 0, . . . , n.(1.1)

Problem (1.1) is most conveniently solved by calculating the truncated Fourier series,
often via discretizing and using the fast Fourier transform (FFT). While this approach
is generally trouble-free, there are a variety situations where it may have serious
drawbacks. For instance, in nuclear magnetic resonance spectroscopy (NMR), due to
a poor signal-to-noise ratio, a low resolution in the data bk may cause artificial effects
in the estimated spectra x(t). Sensitivity, that is the ability to detect weak resonances
by distinguishing them from noise, may be low, and noisy or corrupted data may
easily propagate into the reconstruction. Generally speaking, with only sparse data
bk, similar phenomena may arise in various other problems of Fourier spectroscopy,
or in the analysis of stationary time series.
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The maximum entropy method offers a potentially more intelligent approach to
the processing of the data (1.1). Among the infinitely many solutions of (1.1) it selects
the estimate x(t) which maximizes a given measure of entropy H(x). The resulting
mathematical model is the following best entropy density estimation program

minimize I(x) = −H(x) :=
∫

T
φ(x(t), x′(t)) dt

(P ) subject to x ≥ 0, x ∈ A(T ),∫

T
ak(t)x(t) dt = bk for k = 0, . . . , n.

Here, besides the trigonometric case ak(t) = exp{ikt} on [−π,π], the weight functions
may be algebraic polynomials (orthonormalized), ak(t) = tk on T = [0, 1], in which
case the bk would be known Hausdorff (Legendre) moments of the unknown x(t), or as
is the case in many applications like for instance in image reconstruction, seismology,
or in small angle neutron scattering or other problems in plasma physics (see [12]),
the ak might be an appropriate wavelet basis, in which case the bk would be known
wavelet coefficients of x(t). Here, A(T ) denotes the space of absolutely continuous
functions on the interval T .

In Part I of this paper [10], we began with a constrained optimization problem
of type (P ) and transformed it to a dual problem (P )∗ which we were then able to
convert to an optimization problem with constraints given in terms of a boundary value
problem for an ODE. This result is quite surprising. In this paper we describe how
this dual problem can be solved computationally and demonstrate that the resulting
reconstructed functions are comparable in quality to other entropy methods. We do
conjecture that our present method of reconstruction is less likely to introduce spurious
spikes since the objective (1.2) below pays a heavy price for such functions.

An important aspect of the best entropy method (P ), which has found much
attention in the applied literature, is the choice of the entropy measure H(x). The
entropy functions most frequently encountered in practice are the Boltzmann-Shannon
entropy and the Burg entropy, whose integrands φ(x) do not depend on derivative
values of the densities and are defined respectively as

φ(x) :=






x logx for x > 0
0 for x = 0
+∞ for x < 0

resp. φ(x) :=
{
− logx for x > 0
+∞ for x ≤ 0 .

Another density which is encountered in power spectrum estimation is the positive
L2 entropy defined by

φ(x) :=
{ 1

2x
2 x ≥ 0

+∞ else .

The purpose of our present investigation is to discuss extended entropy-information
models (P ) which attempt to control derivative values of the densities. In particular
we discuss a model based on the Fisher information measure which is defined by

φ(x, x′) :=






x′2

x for x > 0
0 for x = x′ = 0
+∞ else

.(1.2)
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More generally, we consider a class of information measures called Csiszár distances,
which have been used in related situations (see [14], [6] and [10]), and which are
defined by the integrands of the form

φ(x, x′) :=






xψ
(
x′

x

)
for x > 0

0+ψ(x′) for x = 0
+∞ for x < 0

.(1.3)

Here ψ : → is a real convex function, and 0+ψ denotes its recession function,
see [31]. The case of the Fisher information is recovered from (1.3) by choosing
ψ(v) = v2. The use of the Fisher information for the inference problem of type (P )
was proposed in [35] and [18], and the mathematical aspects of the corresponding
model (P ) have been discussed in [10].

The best entropy method has been applied in such diverse areas as astronomy
and geophysics, tomography, signal processing, in problems of spectroscopy or crys-
tallography, and in the analysis of stationary time series. For a survey containing an
abundance of references see [13, 16, 17, 19, 22, 26, 27, 34, 44, 45, 46], and also
[5, 6, 7, 8, 9, 10, 29].

Efficient numerical codes for the Boltzmann-Shannon and Burg entropy models
have been used for several years, see [7, 4, 2, 18] for example. The programs (P )
for the Fisher information (1.2) and the Csiszár distances (1.3) are different in nature
and our approach for solving them resembles models in convex optimal control.
While these kinds of control problems are often solved by means of Galerkin or
Ritz-Treffts methods, cf. [20], our present approach is based on a different idea which
uses convexity methods, motivated in particular by the partially finite programming
technique as discussed for instance in [5, 6] or [34].

While the numerical results we present are for the case of algebraic and trigono-
metric polynomials ak, the mathematical models (Sects. 2 and 3) nevertheless encom-
pass much more general classes of weight functions, and one might in particular use
wavelets. While the latter are typically used in the time-frequency analysis of signals
occurring in image reconstruction, a great variety of applications of the reconstruction
problem of type (1.1) still arise as problems of classical spectral analysis, with the bk
representing the Fourier coefficients of an unknown physical entity like an electron
density, or a spectral density of a stationary time series, obtained by means of a phys-
ical measurement or from a series of observations, and this shows that the numerical
procedures presented here are of practical relevance.

The structure of the paper is the following. In Sects. 2 and 3 we present the
theoretical background for the treatment of program (P ) using the objectives (1.2)
and (1.3). Sections 4 and 5 give the details of the numerical results which we obtained
using the duality approach previously documented [10].

Let us fix some notations. For a convex function ψ, the Young-Fenchel conjugate
ψ∗ is as usual defined by the formula ψ∗(y) = supx x · y−ψ(x), see [31]. By φ(x, y)
we shall always denote a lower semi-continuous proper convex function on 2. The
associated integral functional is

I(x, y) =
∫

T
φ(x(t), y(t)) dt,

and we keep the notation I(x) for I(x, x′). Given the weight functions a0, . . . , an, we
let A denote the operator Ax =

( ∫
T a0x, . . . ,

∫
T anx

)
, and we let b = (b0, . . . , bn).
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2. Duality

We need the following minimal requirement on the weight functions ak. We assume
that {a0, . . . , an} is a pseudo-Haar family, which means that a0|M, . . . , an|M is
linearly independent on any set M of positive measure (see [5] for this notion). In
particular, this is the case for any Tchebysheff system in the sense of [26], and in
particular, for the trigonometric or algebraic polynomial systems. Equally, it would
be fulfilled e.g. for ak representing an appropriate wavelet basis. Also, we assume
ak ∈ L∞(T ), and for convenience that a0 ≡ 1 on T .

The first question for program (P ) regards feasibility. This is answered by the
following:

Proposition 2.1. Suppose there exists x̂ ∈ L1(T ) such that x̂ ≥ 0, x̂ (= 0, and having∫
T ak(t)x̂(t) dt = bk for k = 0, . . . , n. Then problem (P ) is feasible for any of the
Csiszár objectives (1.3). Even more, the following constraint qualification is satisfied:

(CQ) ∃x̃ ∈ C 1(T ) x̃ > 0 and
∫

T
ak(t)x̃(t) dt = bk for k = 0, . . . , n.

Proof. Observe first that (CQ) certainly implies feasibility of (P ), since φ(x̃, x̃′) =
x̃ψ(x̃′/x̃) is integrable for x̃ as in (CQ).

Suppose now x̂ is given as above. Then according to [5, Thm. 2.9] there exists
x̄ ∈ L∞(T ) such that x̄ ≥ ε > 0 for some ε > 0 and still Ax̄ = b, where A denotes
the operator Ax =

(∫
T a0x, . . . ,

∫
T anx

)
, and b = (b0, . . . , bn). Now observe that A

is surjective and hence open as an operator C 1(T )→ n+1, since the ai are pseudo-
Haar and so in particular independent. So there exists δ > 0 such that any v ∈ n+1

with |v| < δ may be written as v = Ax for some x ∈ C 1(T ) with ‖x‖∞ ≤ ε/8,
say. Fix a sequence (xk) in C 1(T ) having xk ≥ ε/2 which converges to x̄ in L1-
norm. Then Axk → Ax̄ = b. Find k such that v = A(x̄ − xk) has |v| < δ, and let
v = Ax with x as above. Setting x̃ = xk + x ∈ C 1(T ), then Ax̃ = A(xk + x) = b, and
x̃ ≥ ε/2− ε/8 > ε/8. But notice that x̃ ∈ domIφ for any of the integrands φ of type
(1.3), since x̃ψ(x̃′/x̃) is integrable. This shows that problem (P ) is feasible for any
of the Csiszár distances, and that the constraint qualification (CQ) is satisfied. +,

For algebraic or trigonometric moments ak, the feasibility condition in Proposition
2.1 above has an explicit algebraic formulation. For ak(t) = tk on T = [0, 1], and
with b = (b0, . . . , bn) (= 0, problem (P ) is feasible, (and therefore, the constraint
qualification (CQ) is satisfied) if and only if

(a) For n = 2m, the matrices
(
bi+j

)
0≤i,j≤m and

(
bi+j+1 − bi+j+2

)
0≤i,j≤m−1 are posi-

tive definite;
(b) For n = 2m + 1, the matrices

(
bi+j+1

)
0≤i,j≤m and

(
bi+j − bi+j+1

)
0≤i,j≤m are

positive definite.

In fact, in this case, the feasibility condition is equivalent to b = (b0, . . . , bn) being
an interior point of the moment cone Mn+1 in the sense of [26], and the latter may
be expressed by (a),(b) above. See [26, p. 106], and [27] for details including even
more general pseudo-Haar systems. Similarly, for the trigonometric moment case,
ak(t) = exp ikt on T = [−π,π], program (P ) is feasible (and hence (CQ) is satisfied)
if and only if

(c) the Toeplitz matrix
(
bk−l

)
0≤k,l≤n is positive definite.
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See [1] and also [27] for the details of the formulation in these cases.
With the question of feasibility of program (P ) settled, let us now discuss the

existence and uniqueness of its solution, and the duality result used to calculate it.
This has been presented in full detail in the first part [10] of this paper, and we recall
the relevant facts here.

On recognizing problem (P ) as an infinite dimensional convex optimization pro-
gram, the basic idea is to apply methods of convex duality. This requires a Lagrangian
formulation. As in similar situations, see [10] or [32, 33, 21], we define the Lagrangian
as

L(x, y; v,λ) :=
∫

T
φ(x, y) dt +

∫

T
v(x′ − y) dt +

n∑

k=0

λk

(∫

T
akx dt− bk

)
(2.1)

= I(x, y) + 〈v, x′ − y〉 + 〈λ, Ax− b〉,
with x ∈ A(T ), y ∈ L1(T ), v ∈ A(T ), λ ∈ n+1. Then program (P ) clearly has
the equivalent formulation

(P ) inf
x,y

sup
v,λ

L(x, y; v,λ),

and one defines the corresponding dual program as
(P )∗ sup

v,λ
inf
x,y

L(x, y; v,λ).

The constraint qualification (CQ) is then needed to prove the equivalence of both
programs. In particular, in [10], we proved the following:

Proposition 2.2. Suppose ψ is strictly convex and coercive (that is ψ(t)/t → +∞ as
|t| →∞). Let (P ) be the problem with corresponding integrand φ given in (1.3), and
suppose (P) is feasible. Then:
(1) problem (P) has a unique optimal solution x̄ which is strictly positive on T = [t0, t1]

and satisfies x̄′(t0) = x̄′(t1) = 0;
(2) problem (P )∗ has the equivalent formulation

maximize −
n∑

j=0

λjbj

(P )∗ subject to v′ + ψ∗(v) =
n∑

j=0

λjaj ,

v(t0) = v(t1) = 0, v ∈ C 1(T ).

(3) problem (P )∗ has a unique optimal solution (v̄, λ̄), and the primal optimal solution
x̄ may be recovered from the latter by means of the formulae

x̄′(t)
x̄(t)

= ψ∗′ (v̄(t)) and Ax̄ = b.(2.2)

Proof. The results are covered by [10]. Statement (1) is Theorem 2.4 and Corollary
4.8, while statement (2) is Proposition 4.5 and Example 4.1. Formula (2.2) above is
formula (4.11) in [10]. +,

It is worth noting that for ak and ψ∗ of class C k, the solution x̄ is of class C k+2.
In particular, for the Fisher information, and for the ak algebraic or trigonometric
polynomials, x̄ is a C ∞ function.
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3. Numerical formulation

In this section we obtain a numerically tractable formulation for the dual program
(P )∗. We assume throughout that ψ is strictly convex and coercive. This implies that
the conjugate function ψ∗ is differentiable and dom ψ∗ = . We start by considering
the differential equation with initial condition

v′(t) + ψ∗(v(t)) =
n∑

j=0

λjaj(t), v(t0) = 0.(3.1)

Notice that in the Fisher case ψ(v) = v2, ψ∗(v) = 1
4v
2, (3.1) is a Riccati equation.

Now let Ω denote the set of all λ ∈ n+1 for which (3.1) has a unique solution v(λ, ·)
defined on the whole interval T = [t0, t1]. Clearly 0 ∈ Ω, and it is well-known that
Ω is an open domain in n+1, see for instance [22, p. 95]. Let k : Ω → be defined
as

k(λ) := v(λ, t1),(3.2)
then k is of class C 1 on Ω, see [22, p. 95]. The dual program (P )∗ obtained in
Proposition 2.2(2) now takes the equivalent finite dimensional form

(P )∗ maximize −
n∑

j=0

λjbj
subject to λ ∈ Ω, k(λ) = 0.

Notice that in this formulation, (P )∗ has an optimal solution λ̄ by Proposition 2.2(3),
with the corresponding v̄ := v(λ̄, ·) satisfying v̄(t1) = v(λ̄, t1) = k(λ̄) = 0.

Let us consider the Lagrangian for problem (P )∗:

L(λ, r) = −
n∑

j=0

λjbj + rk(λ).

Then the optimal solution λ̄ gives rise to a saddle point (λ̄, r̄) of L(λ, r). Here the
Kuhn-Tucker conditions must be satisfied, and these take the form

−bj + r̄ ∂
∂λj

k(λ̄) = 0 for j = 0, . . . , n
k(λ̄) = 0

.(3.3)

Assuming again that b = (b0, . . . , bn) (= 0, we must have r̄ (= 0. Also, since problem
(P ) is feasible and a0 = 1, we must have b0 > 0, which implies sgn r̄ = sgn ∂

∂λ0
k(λ̄).

Observe next that for i, j = 0, . . . , n

∂

∂λi
k(λ) =

∂

∂λi
v(λ, t1) =: vi(λ, t1),(3.4)

∂2

∂λi∂λj
k(λ) =

∂2

∂λi∂λj
v(λ, t1) =: vij(λ, t1),

and that the functions vi(λ, ·) so defined solve the initial value problems

v′i(λ, t) + ψ∗′ (v(λ, t)) vi(λ, t) = ai(t), vi(λ, t0) = 0,(3.5)

for i = 0, . . . , n. Similarly, the functions vij(λ, ·) solve the initial value problems
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v′ij(λ, t) + ψ∗′′
(
v(λ, t)

)
vi(λ, t) vj(λ, t) + ψ∗′

(
v(λ, t)

)
vij(λ, t) = 0,

vij(λ, t0) = 0(3.6)

for 0 ≤ i, j ≤ n. Let us now define

α(t) := exp
{∫ t

t0

ψ∗′
(
v̄(s)

)
ds

}
,(3.7)

where v̄ = v(λ̄, ·), then α(t0) = 1, α(t1) > 0, and α′/α = ψ∗′(v̄). Therefore, α is an
integrating factor for each of the equations (3.5), and we obtain

α′vi + v′iα = aiα, i = 0, . . . , n.

On integrating over T = [t0, t1], we get
∫ t1

t0

α(s)ai(s) ds = α vi
∣∣∣∣
t1

t0

= α(t1)
∂

∂λi
k(λ̄) =

α(t1)bi
r̄

.(3.8)

Choosing i = 0 therefore gives r̄ > 0. Let us summarize:

Proposition 3.1. Suppose problem (P )∗ has optimal solution λ̄. Then problem (P )
has optimal solution x̄ with the explicit form

x̄(t) = C exp
{∫ t

t0

ψ∗′ (v̄(s)) ds
}
,(3.9)

where C = r̄/α(t1) > 0, v̄ = v(λ̄, ·), and where (λ̄, r̄) is a Kuhn-Tucker point of (P )∗.

Let us continue by noticing that α(t) is in addition an integrating factor for the
equations (3.6), and leads to

− αψ∗′′(v) vi vj = α′ vij + α v′ij .(3.10)

On integrating over T we obtain

−
∫ t1

t0

α

α(t1)
ψ∗′′(v) vi vj ds =

1
α(t1)

α vij |t1t0 = vij(λ, t1) =
∂2

∂λi∂λj
k(λ).(3.11)

Using this formula, we may now establish the following:

Proposition 3.2. Suppose ψ is differentiable and ψ∗ is of class C 2. Then k is strictly
concave on its domain Ω.

Proof. It follows from (3.11) that the associated Hessian quadratic form for k at
λ ∈ Ω is given by

n∑

i=0

n∑

j=0

∂2

∂λi∂λj
k(λ)µiµj = −

∫ t1

t0

α

α(t1)
ψ∗′′(v)

(
n∑

k=0

µk vk

)2
ds ≤ 0,(3.12)

for every µ ∈ n+1, and it suffices to show that, with the possible exception of the
point λ = (ψ∗(0), 0, . . . , 0), the term (3.12) is strictly negative for µ (= 0 [30, Thm.
(2.3.7)].
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Suppose (3.12) equals 0 for some µ (= 0. Suppose first that ψ∗′′ (v(λ, ·)) > 0
on a set M of positive measure. Then

∑n
k=0 µkvk = 0 on M , and hence is zero

on some interval I = (r, s) in which M is dense; (notice that ψ∗′′ is continuous).
Differentiating with respect to t implies

∑n
k=0 µkv

′
k = 0 on I , and equation (3.5) then

implies
∑n

k=0 µkak = 0 on I . Since the ak are linearly independent on I , this gives
µ = 0, which is impossible, so we must have ψ∗′′ (v(λ, ·)) = 0 almost everywhere on
T in order that (3.12) equal 0 for nonzero µ.

Suppose alternatively we had ψ∗′′ = 0 on some interval. Then ψ∗ is linear there,
and hence is not strictly convex, contradicting the assumption that ψ is differentiable.
So {t : ψ∗′′(t) = 0} does not contain an interval, and by continuity, this implies that
v(λ, ·) has constant value, which is 0 by the initial condition in (3.1). Now equation
(3.1) tells that this is only possible for λ0 = ψ∗(0), λ1 = . . . = λn = 0, as claimed.
This proves the fact that k is strictly concave on its domain Ω. +,

As a consequence of Proposition 3.2, we see that program (P )∗ is equivalent to
the concave program

(P̃ )∗
maximize −

n∑

j=0

λjbj

subject to λ ∈ Ω, k(λ) ≥ 0.

Indeed, any optimal solution for (P̃ )∗ is attained at a boundary point of the con-
straint set, and hence is admissible for program (P )∗. But now, as a consequence of
the concavity, the Kuhn-Tucker conditions (3.3) fully characterize the optimal solution
of (P )∗.

4. Algorithms

The straight forward approach is to solve the dual program (P )∗ by solving the
nonlinear equations (3.3) directly using Newton’s method. This requires the first and
second order partial derivatives of k at every step. These are obtained by first solving
the equations (3.1), (3.5) using a standard ODE solver to compute the value k(λ) and
the gradient ∇k(λ). The second order partial derivatives may then be obtained by
first computing α via (3.7) and then applying formula (3.11), which requires another
(n+1)(n+2)/2 quadratures. As an initial vector λ(0) we may choose λ(0) = 0, which is
always a feasible point. The primal solution x̄ is finally calculated from the dual data
λ̄ and r̄ by numerical integration using (3.9). In the case of the Fisher information,
ψ∗′(v) = v/2 is known explicitly and does not need an extra numerical procedure.
We then have the following Algorithm 1:

1. Initialize λ(0) = 0; j = 0.
2. Solve the initial value problems, (3.1), (3.5) in order to compute k

(
λ(j)
)
,

∇k
(
λ(j)
)
. Then use (3.11) to compute ∇2k

(
λ(j)
)
.

3. Use Newton’s method with an Armijo-Goldstein line search to update λ(j) →
λ(j+1).

4. Stop when |k(λ(j+1))| ≤ ε and reconstruct x̄ by computing (3.9).

There is an alternative way which makes a more explicit use of the fact that program
(P )∗ resp. (P̃ )∗ is concave. Using the concave Young-Fenchel conjugate k∗ of k, that
is, k∗(y) := infx∈ yx− k(x), we have
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L(r) := sup
λ
L(λ, r) = sup

λ
rk(λ)− 〈λ, b〉 = −rk∗(b/r).

Therefore, the derivative L′(r) is available, namely,

L′(r) = k(λr) where λr solves r∇k(λ) = b.

This leads to the following Algorithm 2:

1. Initialize r(0) > 0; j = 0.
2. Calculate L(r(j)) = supλ r(j)k(λ)− 〈λ, b〉 using step 2 in Algorithm 1 above. Let

λ(j) be the solution.
3. Update r(j) → r(j+1) using the value L′(r(j)) = k(λ(j)).
4. Stop when |k(λ(j))| ≤ ε and reconstruct x̄ using (3.9).

To obtain a good initial value for r using Hausdorff (or an equivalent orthogonal-
ized system) moments, we can exploit the structure of the equations. On the interval
[0, 1], a simple transformation of (3.9) results in,

x̄(t) = r̄ exp

{
−
∫ 1

t
ψ∗

′
(v̄(s)) ds

}
.

Using integration by parts twice on the moments,

bN−1 =
∫ 1

0
x̄(t)tN−1 dt and bN =

∫ 1

0
x̄(t)tN dt

(assuming x̄ is C 2) we obtain

N (N + 1)bN−1 = (N + 1)x̄(1)− ˙̄x(1) +
∫ 1

0
¨̄x(t)tN+1 dt

(N + 1)(N + 2)bN = (N + 2)x̄(1)− ˙̄x(1) +
∫ 1

0
¨̄x(t)tN+2 dt.

Subtracting the two equations, we obtain asymptotically

r̄ = x̄(1) ≈ (N + 1)(N + 2)bN −N (N + 1)bN−1

which can be used as an initial approximation for r. In order to obtain a good initial
value for λ in an N -moment problem, the solution to the easier problem using the
first M moments (M < N ) can be computed and then used to initialize λ for the
more difficult N -moment problem. This emphasizes one of the advantages of the
dual approach, namely a dual vector λ calculated for a reconstruction with M < N
moments is a feasible point for the N -moment reconstruction, a fact which is not true
for the corresponding primal programs.
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Fig. 1. x(t) = cos10(10t) + .15 with 10 Legendre moments

5. Numerical Results

In this section we compare reconstructions using the Fisher Algorithm 2 with the
Boltzmann-Shannon and positive L2 methods for several examples. All computations
were written in C and run on SGI machines in double precision. Tests for the Burg
entropy are not included since in [3] it was shown that Boltzmann-Shannon and
positive L2 methods very generally produced better reconstructions than Burg (see
however [28]).

In Figs. 1, 2 and 3 we compare the reconstructions using each method with the
original known function which was used to generate the moments. Visually, the re-
constructions appear to be fairly comparable. They all locate the spikes, yet have
trouble finding the height of the original spikes and oscillate along flat regions.

In Tables 1, 2, and 3 various measures of how well each method reconstructed
the original function are shown. The L2-norm of the difference between the estimated
function x̄ and the original test function x,

L2-error =
∫
(x̄− x)2,

and the L∞ norm of the difference,

L∞-error = max
t∈T

|x̄(t)− x(t)|

both measure how well the reconstruction of the original function was performed.
The moment error,

mom-error =
∑n

k=0 |bk − b̄k|
n + 1

(where b̄k are the reconstructed moments) measures how well each method succeeded
in reconstructing the given moments.

The implementation of the Fisher Algorithm involved a combination of numerical
optimization techniques and ODE methods and, as a result, posed an interesting
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Fig. 2. x(t) = .5 + .5χ[.1,.9](t) with 14 Legendre moments

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

.1+exp(-70*(t-.8)^2)+.5*exp(-20*(t-.2)^2)
Boltzmann-Shannon

Positive L2
Fisher

Fig. 3. x(t) = .1 + e−70(t−.8)2 + .5e−20(t−.2)2 with 6 Legendre moments

Table 1. Various Comparisons, x(t) = cos10(10t) + .15

Fisher B-S L2

L∞-error 6.3× 10−1 6.3× 10−1 6.5× 10−1
L2-error 2.8× 10−2 3.8× 10−2 4.9× 10−2
mom-error 8.1× 10−6 9.7× 10−15 2.0× 10−4
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Table 2. Various Comparisons, x(t) = .5 + .5χ[.1,.9](t)

Fisher B-S L2

L∞-error 2.5× 10−1 3.9× 10−1 3.8× 10−1
L2-error 3.6× 10−3 7.2× 10−3 6.2× 10−3
mom-error 1.8× 10−6 1.7× 10−11 2.0× 10−2

Table 3. Various Comparisons, x(t) = .1 + e−70(t−.8)2 + .5e−20(t−.2)2

Fisher B-S L2

L∞-error 5.8× 10−2 5.3× 10−2 7.2× 10−2
L2-error 9.8× 10−4 2.2× 10−4 4.9× 10−4
mom-error 6.0× 10−6 2.5× 10−13 1.0× 10−3

computational challenge. A double iteration method was used and at each iteration of
the Lagrange multiplier, r, an optimal value for λ was determined using a Newton
iteration. Further, at each of these Newton steps, for an N -moment problem it was
necessary to solve an ODE to compute k(λ), then N variational ODE’s to compute the
gradient of k, and finally (N 2 +N )/(N 2 +N )/2 integrations to compute the Hessian
of k. As might be expected, the entire computation is quite slow. However, early
tests of a Galerkin-like heuristic method for computing the Fisher algorithm indicate
that we will be able to improve the speed of the algorithm dramatically by using the
heuristic to calculate a good initial vector for the Newton iteration. We are able to
solve a typical 14-moment problem using the new heuristic method written in C on
an SGI machine in 1.6 user seconds, see [11].

A further computational difficulty is that the solution to the ODE becomes in-
creasingly unstable as the number of moments is increased. In addition, the iterations
are sensitive to both the initial value of r and of λ and did not converge well for
test functions which were close to zero. We have found that both iterations were con-
siderably more stable and the algorithm converged for more difficult problems when
the Legendre moments were used, i.e., when the sequence a0, . . . , an is orthonormal.
In practice this makes an immense difference. Despite these computational difficul-
ties, we want to emphasize that the approach we used here was a straight forward
implementation of an unusual and quite surprisingly explicit duality theory.

The reconstruction programs based on the Boltzmann-Shannon and the positive
L2-entropies have been implemented using a partially finite programming duality
approach as in [7, 34]. See [1, 8] for details, and also [3] for a comparison of these
methods.

We have found a variety of examples where the Fisher information performs better
than the more standard Boltzmann-Shannon entropy. Along with a more detailed
comparison of these methods, those will be presented in a forthcoming paper [11].
In particular, there we will present numerical results for a Galerkin-like heuristic
method for solving the same Fisher entropy problem. Early test results indicate that
the heuristic method is more stable and produces comparable reconstructions in a
very small fraction of the time. We conclude that the Fisher entropy method produces
comparable results to other entropy methods and will continue to explore its use in
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situations when it is important to minimize oscillatory behavior often exhibited in
other methods.

Acknowledgement. We wish to thank Dr. Mark A. Limber for his help with the computation and for
providing code to compute the Boltzmann-Shannon and positive L2-solutions.
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