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Abstract We discuss backtracking linesearch and trust-region descent algorithms
for unconstrained optimization and prove convergence to a critical point if the ob-
jective is of class C1 and satisfies the Kurdyka-Łojasiewicz condition. For linesearch
we investigate in which way an intelligent management memorizing the stepsize
should be organized. For trust-regions we present a new curvature based acceptance
test which ensures convergence under rather weak assumptions.
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1 Introduction

Global convergence for linesearch descent methods traditionally only assures sub-
sequence convergence to critical points (see e.g. [4, Proposition 1.2.1] or [13, The-
orem 3.2]), while convergence of the entire sequence of iterates is not guaranteed.
Similarly, subsequence convergence in trust-region methods is establish by relating
the progress of trial points to the minimal progress achieved by the Cauchy point.
These results are usual proved for C1,1 or C2-functions, see [8, Theorem 6.4.6] or
[13, Theorem 4.8].

Recently Absil et al. [1] proved convergence of iterates of descent methods to
a single limit-point for analytic objective functions, using the fact that this class
satisfies the so called Łojasiewicz inequality [11, 12]. Here we prove convergence of
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linesearch and trust-region descent methods to a single critical point for C1 functions
satisfying the Kurdyka-Łojasiewicz (KL) inequality [10], a generalization of the
Łojasiewicz inequality. This is motivated by recent convergence results based on
this condition in other fields, see e.g. [2], [5], [6, 3].

For linesearch methods we prove convergence for C1 functions, and we show
that it is allowed to memorize the accepted steplength between serious steps if the
objective is of class C1,1. This option may be of interest for large scale applications,
where second-order steps are not practical, and re-starting each linesearch at t = 1
may lead to unnecessary and costly backtracking.

For trust-region methods we discuss acceptance tests which feature conditions
on the curvature of the objective along the proposed step, in tandem with the usual
criteria relating the achieved progress to the minimal progress guaranteed by the
Cauchy point.

The paper is organized as follows. Section 2 presents the Kurdyka-Łojasiewicz
inequality. Sections 3 to 5 are devoted to the convergence of backtracking linesearch
for functions satisfying the KL inequality. In section 6 convergence for trust-region
methods under the KL condition is discussed and new conditions to guarantee con-
vergence in practice are investigated.

2 The Kurdyka-Łojasiewicz condition

In 1963 S. Łojasiewicz [11, 12] proved that a real analytic function f : Rn→ R has
the following property, now called the Łojasiewicz property. Given a critical point
x̄ ∈ Rn of f , there exists a neighborhood U of x̄, c > 0 and 1

2 ≤ θ < 1 such that

| f (x)− f (x̄)|θ ≤ c‖∇ f (x)‖

for all x ∈ U . In 1998 K. Kurdyka presented a more general construction which
applies to differentiable functions definable in an o-minimal structure [10]. The fol-
lowing extension to nonsmooth functions has been presented in [5]:

Definition 1. A proper lower semi-continuous function f : Rn→R∪{+∞} has the
Kurdyka-Łojasiewicz property (for short KL-property) at x̄ ∈ dom∂ f = {x ∈ Rn :
∂ f (x) 6= /0} if there exist η > 0, a neighborhood U of x̄, and a continuous concave
function ϕ : [0,η ]→ [0,+∞) such that:

1. ϕ(0) = 0, ϕ is C1 on (0,η), and ϕ ′ > 0 on (0,η).
2. For every x ∈U ∩{x ∈ Rn : f (x̄)< f (x)< f (x̄)+η},

ϕ
′ ( f (x)− f (x̄))dist(0,∂ f (x))≥ 1. (1)

The Łojasiewicz inequality or property is a special case of the KL-property when
ϕ(s) = s1−θ , θ ∈ [ 1

2 ,1). It is automatically satisfied for non-critical points, so (1) is
in fact a condition on critical points. We will need the following preparatory result.



Convergence of linesearch and trust-region methods using KL inequality 3

Lemma 1. Let K ⊂ Rn be compact. Suppose f is constant on K and has the KL-
property at every x̄ ∈ K. Then there exists ε > 0, η > 0 and a continuous concave
function ϕ : [0,η ]→ [0,∞), which is C1 on (0,η) and satisfies ϕ(0) = 0, ϕ ′ > 0 on
(0,η), such that

ϕ
′( f (x)− f (x̄))dist(0,∂ f (x))≥ 1

for every x̄ ∈ K and every x such that dist(x,K)< ε and f (x̄)< f (x)< f (x̄)+η .

Proof. The proof is a slight extension of a similar result in [2] for functions having
the Łojasiewicz property.

For every x̄ ∈ K pick a neighborhood B(x̄,εx̄) of x̄ and ηx̄ > 0 in tandem with a
function ϕx̄ as in definition 1. Since K is compact, there exist finitely many x̄i ∈ K,
i = 1, . . . ,N such that K ⊂

⋃N
i=1 B(x̄i,

1
2 εx̄i). Write for simplicity εi := εx̄i , ηi := ηx̄i ,

ϕi := ϕx̄i . Then put

η = min
i=1...N

ηi > 0 and ε = min
i=1,...,N

1
2 εi > 0.

It follows immediately that: {x ∈ Rn : dist(x,K)< ε} ⊂
N⋃

i=1

B(x̄i,εi).

Suppose f (x)= f for every x∈K. Then (1) holds uniformly on K in the sense that
given any x with dist(x,K)< ε and f < f (x)< f +η , there exists i(x) ∈ {1, . . . ,N}
such that

ϕ
′
i(x)( f (x)− f ) dist(0,∂ f (x))≥ 1.

To conclude the proof, it remains to define the function ϕ : [0,η ]→ [0,∞). We
let

ϕ(t) =
∫ t

0
max

i=1...N
ϕ
′
i (τ)dτ, t ∈ [0,η ].

Observe that τ 7→ max
i=1...N

ϕ
′
i (τ) is continuous on (0,η) and decreasing on [0,η ]. Then

ϕ is well defined and continuous on [0,η ], and of class C1 on (0,η). We also easily
check ϕ(0) = 0, ϕ concave on [0,η ] and strictly increasing on (0,η). Finally we
have

ϕ ′( f (x)− f (x̄)) dist(0,∂ f (x)) = ϕ ′( f (x)− f ) dist(0,∂ f (x))
≥ ϕ ′i(x)( f (x)− f (x̄)) dist(0,∂ f (x))≥ 1

for all x̄ ∈ K and all x ∈ Rn such that dist(x,K)< ε and f < f (x)< f +η .

Next we address convergence of linesearch methods assuming f of class C1 and
having the (KL) property. We will need the following technical lemma, whose proof
can be found e.g. in [7]:

Lemma 2. Let f be of class C1 and x j→ x, y j→ x. Then

f (y j)− f (x j)−∇ f (x j)
>(y j− x j)

‖y j− x j‖
→ 0.
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3 Linesearch without memory

Descent methods which attempt second-order steps usually start the linesearch at
the step length t = 1. We refer to this as memory-free. The challenge is to prove
convergence for C1 functions.

The algorithm discussed hereafter uses the following well-known

Definition 2. A sequence d j of descent directions chosen by a descent algorithm
at points x j is called gradient oriented if there exist 0 < c < 1 such that the angle
φ j := ∠

(
d j,−∇ f (x j)

)
satisfies

∀ j ∈ N,0 < c≤ cosφ j. (2)

Algorithm 1 Linesearch descent method without memory.

Parameters: 0 < γ < 1, 0 < θ < θ < 1, τ > 0, 0 < c < 1.
1: Initialize. Choose initial guess x1. Put counter j = 1.
2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise compute a gradient

oriented descent direction d j with cosφ j ≥ c and goto linesearch.
3: Initialize linesearch. Put linesearch counter k = 1 and initialize steplength t1 such that:

t1 ≥ τ
‖∇ f (x j)‖
‖d j‖

.

4: Acceptance test. At linesearch counter k and steplength tk > 0 check whether

ρk =
f (x j)− f (x j + tkd j)

−tk∇ f (x j)>d j ≥ γ.

If ρk ≥ γ , put x j+1 = x j + tkd j , quit linesearch, increment counter j, and go back to step 2.
On the other hand, if ρk < γ , reduce steplength such that tk+1 ∈ [θ tk,θ tk], increment linesearch
counter k, and continue linesearch with step 4.

Lemma 3. Suppose f is differentiable and ∇ f (x j) 6= 0 and let d j be a descent di-
rection at x j. Then the linesearch described in algorithm 1 needs a finite number
of backtracks to find a steplength tk such that x j + tkd j passes the acceptance test
ρk ≥ γ .

Proof. The proof is straightforward. Suppose the linesearch never ends, then ρk < γ

for all k and tk→ 0. Since f ′(x j,d j) = ∇ f (x j)>d j < 0, ρk < γ transforms into

f (x j + tkd j)− f (x j)

tk
> γ∇ f (x j)>d j = γ f ′(x j,d j),

and the left hand side converges to f ′(x j,d j). This leads to 0 > f ′(x j,d j) ≥
γ f ′(x j,d j), contradicting 0 < γ < 1.
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Having proved that an acceptable steplength is found in a finite number of back-
tracks, we now focus on convergence of the whole algorithm. The proof of Theorem
1 below first establishes stationarity of limit points, generalizing well-known results
for gradient methods (see e.g. [4, Proposition 1.2.1]), and then proves the conver-
gence of the iterates using the Kurdyka-Łojasiewicz condition.

Theorem 1. Let Ω = {x ∈ Rn : f (x) ≤ f (x1)} be bounded. Suppose f is of class
C1 and satisfies the Kurdyka-Łojasiewicz condition. Then the sequence of iterates x j

generated by algorithm 1 is either finite and ends with ∇ f (x j) = 0, or it converges
to a critical point x̄ of f .

Proof. 1) We can clearly concentrate on the case of an infinite sequence x j. Consider
the following normalized sequence of descent directions d̃ j = (‖∇ f (x j)‖/‖d j‖)d j.
Then the directions d̃ j are also gradient oriented and ‖d̃ j‖= ‖∇ f (x j)‖. A trial step
x j + td j can then also be written as x j + t̃ d̃ j, where the stepsizes t, t̃ are in one-
to-one correspondence via t̃ = (‖d j‖/‖∇ f (x j)‖)t. Neither the backtracking rule in
step 4 nor the acceptance test are affected if we write steps x j + td j as x j + t̃ d̃ j. The
initial condition in step 3 becomes t̃ ≥ τ . Switching back to the notation x j + td j,
we may therefore assume ‖d j‖ = ‖∇ f (x j)‖ and that the linesearch is initialized at
t1 ≥ τ . The gradient oriented direction d j now satisfies

‖∇ f (x j)‖2 ≥−∇ f (x j)>d j ≥ c‖d j‖‖∇ f (x j)‖= c‖∇ f (x j)‖2 (3)

2) From Lemma 3 we know that the linesearch ends after a finite number of back-
tracks, let us say with steplength tk j > 0. So x j+1 = x j + tk j d

j. From the acceptance
test ρk j ≥ γ we know that

f (x j)− f (x j+1) ≥ −γ∇ f (x j)>(x j+1− x j),
≥ −γtk j ∇ f (x j)>d j ≥ cγtk j‖∇ f (x j)‖2 (according to (3)). (4)

By construction we have: tk j = ‖x j+1− x j‖/‖d j‖= ‖x j+1− x j‖/‖∇ f (x j)‖, so that:

f (x j)− f (x j+1)≥ cγ‖∇ f (x j)‖‖x j+1− x j‖, (5)

in which we recognize the so-called strong descent condition in [1]. Summing (5)
from j = 1 to j = m−1 gives

m−1

∑
j=1
‖∇ f (x j)‖‖x j+1− x j‖ ≤ (cγ)−1

m−1

∑
j=1

f (x j)− f (x j+1) = (cγ)−1 ( f (x1)− f (xm)
)
.

Since the algorithm is of descent type, the right hand side is bounded above, so the
series on the left is summable. In particular, ‖∇ f (x j)‖‖x j+1− x j‖ → 0, or equiva-
lently tk j‖∇ f (x j)‖2→ 0.

3) Fix an accumulation point x̄ of x j and select a subsequence j ∈ J such that
x j→ x̄, j ∈ J. To show that x̄ is critical, it suffices to find a subsequence j′ ∈ J′ such
that ∇ f (x j′)→ 0.



6 Dominikus Noll and Aude Rondepierre

Suppose on the contrary that no such subsequence exists, so that ‖∇ f (x j)‖ ≥
µ > 0 for some µ > 0 and all j ∈ J. To obtain a contradiction, we will focus on the
last step before acceptance.

3.1) First note that we must have tk j → 0, j ∈ J. Indeed using ‖∇ f (x j)‖‖x j+1−
x j‖ ≥ µ‖x j+1 − x j‖, j ∈ J in tandem with the results from part 2), we see that
‖x j+1− x j‖→ 0, j ∈ J. Then, knowing that

tk j = ‖x
j+1− x j‖/‖∇ f (x j)‖ ≤ µ

−1‖x j+1− x j‖,

we deduce tk j → 0 and by boundedness of the x j also tk j‖∇ f (x j)‖→ 0, j ∈ J.
3.2) We now claim that there exists an infinite subsequence J′ of J such that (i)

‖∇ f (x j)‖ ≥ µ > 0, j ∈ J′, (ii) tk j → 0, j ∈ J′, and (iii) k j ≥ 2 for j ∈ J′ i.e. for j ∈ J′,
there was at least one backtrack during the jth linesearch. Item (iii) is a consequence
of the initial condition t1 ≥ τ in step 3 of the algorithm. Namely, in tandem with
tk j → 0, j ∈ J, this condition says that the set J′ = { j ∈ J : k j ≥ 2}= { j ∈ J : tk j < t1}
cannot be finite.

This sequence j ∈ J′ satisfies ρk j ≥ γ , ρk j−1 < γ , tk j → 0, ‖∇ f (x j)‖ ≥ µ > 0.
Because of the backtracking rule, we then also have tk j−1→ 0. Putting yk j−1 = x j +

tk j−1d j, given that x j→ x̄, tk j‖∇ f (x j)‖→ 0, j∈ J′, and tk j−1‖d j‖= tk j−1‖∇ f (x j)‖≤
θ
−1tk j‖∇ f (x j)‖, we have yk j−1→ x̄, j ∈ J′.

Note that d j is gradient oriented so that yk j−1− x j is also gradient oriented and

−∇ f (x j)>(yk j−1− x j) ≥ c‖∇ f (x j)‖‖yk j−1− x j‖ ≥ cµ‖yk j−1− x j‖. (6)

3.3) Now we expand

ρk j−1 =
f (x j)− f (yk j−1)

−∇ f (x j)>(yk j−1− x j)
= 1− f (yk j−1)− f (x j)−∇ f (x j)>(yk j−1− x j)

−∇ f (x j)>(yk j−1− x j)

=: 1−R j.

Using (6) gives

|R j| =
∣∣ f (yk j−1)− f (x j)−∇ f (x j)>(yk j−1− x j)

∣∣
−∇ f (x j)>(yk j−1− x j)

≤
∣∣ f (yk j−1)− f (x j)−∇ f (x j)>(yk j−1− x j)

∣∣
cµ‖yk j−1− x j‖

.

Since f is of class C1, and since x j → x̄, yk j−1→ x̄, Lemma 2 guarantees the exis-
tence of a sequence ε j→ 0 such that∣∣∣ f (yk j−1)− f (x j)−∇ f (x j)>(yk j−1− x j)

∣∣∣≤ ε j‖yk j−1− x j‖.
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We deduce |R j| ≤ ε j/(cµ)→ 0, hence ρk j−1 → 1 contradicting ρk j−1 < γ . This
proves that ‖∇ f (x j)‖ ≥ µ > 0 for all j ∈ J was impossible. Therefore x̄ is critical,
and so are all the accumulation points of x j.

4) By boundedness of the sequence x j the set K of its accumulation points x̄ is
bounded and consists of critical points of f . It is also closed, as can be shown by a
diagonal argument. Hence K is compact. Since the algorithm is of descent type, f
has constant value on K.

Since f satisfies the Kurdyka-Łojasiewicz condition at every x̄ ∈ K, Lemma 1
gives us ε > 0, η > 0, and a continuous concave function ϕ : [0,η ]→ [0,∞) with
ϕ(0) = 0 and ϕ ′> 0 on (0,η) such that for every x̄∈K and every x with dist(x,K)<
ε and f (x̄)< f (x)< f (x̄)+η we have

ϕ
′ ( f (x)− f (x̄))‖∇ f (x)‖ ≥ 1. (7)

5) Assume without loss of generality that f (x̄) = 0 on K. Then f (x j)> 0 for all
j, because our algorithm is of descent type. Concavity of ϕ implies

ϕ
(

f (x j)
)
−ϕ

(
f (x j+1)

)
≥ ϕ

′ ( f (x j)
)(

f (x j)− f (x j+1)
)
. (8)

Using f (x̄) = 0, the Kurdyka-Łojasiewicz estimate (7) gives

ϕ
′ ( f (x j)

)
= ϕ

′ ( f (x j)− f (x̄)
)
≥ ‖∇ f (x j)‖−1

. (9)

Hence by (8)

ϕ
(

f (x j)
)
−ϕ

(
f (x j+1)

)
≥ ‖∇ f (x j)‖−1 ( f (x j)− f (x j+1)

)
≥ cγ‖x j+1− x j‖ (using (5)).

Summing from j = 1 to j = m−1 gives

cγ

m−1

∑
j=1
‖x j− x j+1‖ ≤ ϕ

(
f (x1)

)
−ϕ ( f (xm)) ,

and since the term on the right hand side is bounded, the series on the left converges.
This shows that x j is a Cauchy sequence, which converges therefore to some x̄ ∈ K,
proving that K = {x̄} is singleton.

4 Memorizing the steplength

In Newton type descent schemes it is standard to start the linesearch at steplength
t = 1. However, if a first-order method is used, a different strategy may be more
promising. To avoid unnecessary backtracking, we may decide to start the ( j+1)st

linesearch where the jth ended. Such a concept may be justified theoretically if f is
of class C1,1.
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Standard proofs for backtracking linesearch algorithms use indeed C1,1 func-
tions. The Lipschitz constant of ∇ f on Ω allows a precise estimation of the Armijo
stepsize

tγ = sup{t > 0 : f (x+ td)− f (x)< γt∇ f (x)>d}.

As long as the linesearch starts with large steps, t > tγ , backtracking tk+1 ∈ [θ tk,θ tk]
will lead to an acceptable steplength t∗ such that θ tγ ≤ t∗ ≤ tγ . This mechanism
guarantees that the accepted steplength is not too small and replaces the usual con-
ditions against small stepsizes. However, what we plan to do in this section is mem-
orize the last accepted steplength. So the above argument will not work, because our
linesearch may already start small, and we will have no guarantee to end up in the
interval [θ tγ , tγ ]. In that situation the safeguard against too small steps is more subtle
to assure. We propose the following

Algorithm 2 Descent method with memorized steplength.

Parameters: 0 < γ < Γ < 1, 0 < c < 1, 0 < θ < θ < 1, Θ > 1.
1: Initialize. Choose initial guess x1. Fix memory steplength τ1 = 1. Put counter j = 1.
2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise compute descent

direction d j with ‖d j‖= ‖∇ f (x j)‖ and cosφ j ≥ c and goto linesearch.
3: Initialize linesearch. Put linesearch counter k = 1 and use memory steplength τ j to initialize

linesearch at steplength t1 = τ j .
4: Acceptance test. At linesearch counter k and steplength tk > 0 check whether

ρk =
f (x j)− f (x j + tkd j)

−tk∇ f (x j)>d j ≥ γ.

If ρk ≥ γ put x j+1 = x j + tkd j , quit linesearch and goto step 5. On the other hand, if ρk < γ

backtrack by reducing steplength to tk+1 ∈ [θ tk,θ tk] and continue linesearch with step 4.
5: Update memory steplength. Define the new memory steplength τ j+1 as

τ j+1 =

{
tk if γ ≤ ρk < Γ

Θ tk if ρk ≥ Γ
,

where tk is the accepted steplength in step 4. Increment counter j and go back to step 2.

Theorem 2. Let Ω = {x ∈ Rn : f (x)≤ f (x1)} be bounded, and suppose f satisfies
the Kurdyka-Łojasiewicz condition and is of class C1,1(Ω). Let x j be the sequence
of steps generated by the descent algorithm 2. Then either ∇ f (x j) = 0 for some j,
or x j converges to a critical point of f .

Proof. 1) As in the proof of Theorem 1 we concentrate on the case where the se-
quence x j is infinite. As required by algorithm 2, the sequence d j is already normal-
ized to ‖d j‖ = ‖∇ f (x j)‖. We now follow the proof of Theorem 1 until the end of
part 2), where tk j‖∇ f (x j)‖2→ 0 is proved.

2) We wish to prove ∇ f (x j)→ 0, j ∈N. Assume on the contrary that there exists
an infinite set J ⊂ N such that ‖∇ f (x j)‖ ≥ µ > 0 for all j ∈ J. Then we must have
tk j → 0, j ∈ J. This is shown precisely as in part 3.1) of the proof of Theorem 1.
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3) Using the sequence j ∈ J which satisfies ‖∇ f (x j)‖ ≥ µ and tk j → 0, j ∈ J, we
now have the first substantial modification. We construct another infinite sequence
J′ ⊂ N such that tk j → 0, j ∈ J′, and such that in addition for every j ∈ J′ the jth

linesearch did at least one backtrack. In other words, k j ≥ 2 for every j ∈ J′. In
contrast with Theorem 1 we do not claim that J′ is a subsequence of J. Neither do
we have any information as to whether ‖∇ f (x j)‖ ≥ µ for j ∈ J′, and we therefore
cannot use such an estimate, as we did in the proof of Theorem 1.

Now J′ can be constructed as follows. Put

j′( j) = min{ j′ ∈ N : j′ ≥ j,k j′ ≥ 2}, and J′ = { j′( j) : j ∈ J}.

We claim that j′( j) < ∞ for every j ∈ J. For suppose there exists j ∈ J such that
k j′ = 1 for all j′ ≥ j. Then no backtracking is done in any of the linesearches j′

following j. Since the stepsize t is not decreased between linesearches, it is not
decreased at all, so it cannot become arbitrarily small any more. This contradicts
tk j → 0, j ∈ J. This argument shows j ≤ j′( j) < ∞ for all j ∈ J, so J′ is an infinite
set.

For the indices j ∈ J′ we have k j ≥ 2 and

tk j accepted, tk j−1 rejected, θ tk j−1 ≤ tk j ≤ θ tk j−1.

In particular, ρk j−1 < γ , ρk j ≥ γ . Moreover, tk j−1→ 0, j ∈ J′. Writing yk j−1 = x j +

tk j−1d j, we see that x j− yk j−1→ 0, j ∈ J′. Now we expand

ρk j−1 =
f (x j)− f (yk j−1)

−tk j−1∇ f (x j)>d j = 1− f (yk j−1)− f (x j)−∇ f (x j)>(yk j−1− x j)

−tk j−1∇ f (x j)>d j

=: 1+R j.

Since f is of class C1,1, and since the sequences x j and yk j−1 are bounded and
x j− yk j−1 → 0, there exists a constant L > 0 (the Lipschitz constant of ∇ f on Ω )
such that∣∣∣ f (yk j−1)− f (x j)−∇ f (x j)(yk j−1− x j)

∣∣∣≤ L
2‖y

k j−1− x j‖2 = L
2 t2

k j−1‖d j‖2

for all j ∈ J′. Gradient orientedness of d j implies |∇ f (x j)>d j| ≥ c‖d j‖2, so the
residual term R j may be estimated as

|R j| ≤
L
2 t2

k j−1‖d j‖2

ctk j−1‖d j‖2 = (L/2c) tk j−1→ 0 ( j ∈ J′).

That shows ρk j−1 → 1, ( j ∈ J′), contradicting ρk j−1 < γ . This argument proves
∇ f (x j)→ 0, j→∞. In consequence, every accumulation point x̄ of the sequence x j

is a critical point.
4) The remainder of the proof is now identical with 4) - 5) in the proof of Theorem

1, and the conclusion is the same.
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5 A practical method

In algorithm 2 we cannot a priori exclude the possibility that τ j becomes arbitrarily
small, even though it has in principle the possibility to recover if good steps are made
(see step 5 of Algorithm 2). Let us see what happens if d j =−P−1

j ∇ f (x j), where Pj
is the Hessian of f or a quasi-Newton substitute of the Hessian. The crucial question
is, will this method eventually produce good steps ρk ≥ Γ , so that the memorized
steplength increases to reach τ j = 1, from whereon the full Newton step is tried
first?

Theorem 3. Let 0< γ <Γ < 1
2 . Suppose the Newton steps d j =−∇2 f (x j)−1∇ f (x j)

at x j form a sequence of gradient oriented descent directions. Let x̄ be a local mini-
mum of f satisfying the second order sufficient optimality condition.

Then there exists a neighborhood V of x̄ such that as soon as x j ∈V , the iterates
stay in V , the first trial step x j+1 = x j + t1d j is accepted with ρ1 ≥ Γ , so that the
memory steplength is increased from τ j to τ j+1 = min{Θτ j,1}, until it reaches 1
after a finite number of steps. From that moment on the full Newton step is tried and
accepted, and the method converges quadratically to x̄.

Proof. This theorem is similar to theorem 6.4 from [9] with the following differ-
ences: the step tk does not necessarily satisfy the second Wolfe condition, and the
sequence x j of iterates is not assumed to converge towards x̄. Instead we have to use
the hypothesis of gradient-orientedness, and the backtracking process of the line-
search to prove the same result.

Since the local minimum x̄ satisfies the second order sufficient optimality condi-
tion, the Hessian of f at x̄ is positive definite, and we have µ := λmin(∇

2 f (x̄))> 0.
Using a well-known result on Newton’s method (see e.g. [9, theorem 2.1]), there
exists an open neighborhood U of the local minimum x̄, where the Newton iterates
are well-defined, remain in U , converge to x̄ and

λmin(∇
2 f (x))≥ µ

2
and λmax(∇

2 f (x))≤ K < ∞ (10)

for every x ∈U .
Assume now that the iterates x j reach U . We first prove that the Newton step

is acceptable in the sense that f (x j +d j)− f (x j) < γ∇ f (x j)>d j because of γ < 1
2 .

Indeed, as in the proof of Theorem 6.4 in [9], the combined use of the mean value
theorem, gradient-orientedness and hypothesis (10) imply that for all j with x j ∈U ,
the Newton iterate x j +d j is accepted by any Armijo parameter < 1

2 , so that it even
passes the acceptance test with the larger constant Γ instead of γ due to 0 < γ <
Γ < 1

2 . Note that the same is then true for every damped Newton step, namely as
soon as t = 1 passes the acceptance test, so does any t < 1.

The last point is to prove that if the iterates x j enter U with τ j < 1, then our
algorithm starts to increase τ until the Newton step is actually made. Indeed, even
though at the beginning a smaller step x j +td j with t < 1 is made, according to what
was previously shown, this step is accepted at once with ρ1 > Γ and remains in U .
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We then update τ j+1 =Θτ j (with a fixed Θ > 1), meaning that τ j is increased until
it hits 1 after a finite number of iterations j. From that moment onward the Newton
step is tried first, accepted at once, and quadratic convergence prevails.

Remark 1. This result indicates that Γ should be only slightly larger than γ , at least
near the second order minimum.

Remark 2. The following modification of the update rule of τ seems interesting. Fix
1 <Θ < Ξ and put

τ j+1 =


tk j if γ ≤ ρk j < Γ

Θ tk j if ρk j ≥ Γ and k j ≥ 2
Ξ tk j if ρk j ≥ Γ and k j = 1

.

This accelerates the increase of τ if acceptance is immediate and helps to get back
to τ = 1 faster if the neighborhood of attraction of Newton’s method is reached. Our
convergence analysis covers this case as well.

6 Convergence of trust-region methods for functions of class C1

The idea of memorizing the step length in a linesearch method is paralleled by the
trust-region strategy. The basic trust-region algorithm uses a quadratic model

m(y,x j) = f (x j)+∇ f (x j)>(y− x j)+
1
2
(y− x j)>B j(y− x j)

to approximate the objective function f within the trust-region {x ∈Rn : ‖y−x j‖ ≤
∆k} around the current iterate x j, where ∆k > 0 is the trust-region radius, and B j
an approximation of the Hessian at x j. One then computes an approximate solution
yk+1 of the tangent program

min{m(y,x j) : ‖y− x j‖ ≤ ∆k,y ∈ Rn}. (11)

Instead of minimizing the trust-region model, the step yk+1 is only supposed to
achieve a decrease of m(·,x j), which is at least a given percentage of the reduction
obtained by the Cauchy point x j+1

C . This means, yk+1 satisfies

f (x j)−m(yk+1,x j)≥ c
[

f (x j)−m(x j+1
C ,x j)

]
(12)

where 0 < c < 1 is fixed once and for all and where the Cauchy point x j+1
C is defined

as the solution of the one-dimensional problem:

min
{

m
(

x j− t
∇ f (x j)

‖∇ f (x j)‖
,x j
)

: t ∈ R,0≤ t ≤ ∆k

}
. (13)
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Here we follow the line of Conn et al. [8], who determine a step yk+1 satisfying the
weaker condition

f (x j)−m(yk+1,x j)≥ c‖∇ f (x j)‖min
(

∆k,
‖∇ f (x j)‖
1+‖B j‖

)
. (14)

It can be shown that (12) implies (14), and that the exact solution of (11) satisfies
(14). With these preparations we can now state our algorithm.

Algorithm 3 Trust-region method.

Parameters: 0 < γ < Γ < 1, 0 < θ < θ < 1, τ > 0.
1: Initialize. Choose initial guess x1 and initial trust-region radius ∆

]
1 > 0. Put counter j = 1.

2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise goto step 3.
3: Model definition. Define a model m(·,x j) of f in {x ∈ Rn : ‖x− x j‖ ≤ ∆

]
j}:

m(y,x j) = f (x j)+∇ f (x j)>(y− x j)+ 1
2 (y− x j)>B j(y− x j).

4: Initialize inner loop. Put counter k = 1 and ∆1 = ∆
]
j .

5: Tangent program. At inner loop counter k let yk+1 be an approximate solution of

min{m(y,x j) : ‖y− x j‖ ≤ ∆k,y ∈ Rn}

in the sense of (12).
6: Acceptance test. At counter k, check whether

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
≥ γ. (15)

• If ρk ≥ γ put x j+1 = yk+1, and update:

∆
]
j+1 ∈

{
[∆k,+∞[ if ρk > Γ and ‖yk+1− x j‖= ∆k
[θ̄∆k,∆k] otherwise.

Increment outer counter j, and go back to step 2.
• If ρk < γ , then: ∆k+1 ∈ [θ∆k,θ∆k]. Increment inner counter k and go to step 5.

The trial point yk+1 computed in step 5 of the algorithm is called a serious step if
accepted as a new iterate x j+1, and a null step if rejected. To decide whether a step
yk+1 is accepted, we compute the ratio

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
,

which reflects the agreement between f and its model at yk+1. If the model m(·,x j)
is a good approximation of f at yk+1, we expect ρk ≈ 1, so here yk+1 is a good
point and should be accepted. If ρk � 1, yk+1 is bad and we reject it. Step 6 of the
algorithm formalizes this decision.
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The proof of the global convergence of the trust-region algorithm for functions
of class C1 in the sense of subsequences can be found in e.g. [13, theorem 4.8]. One
first proves finiteness of the inner loop and then global convergence of algorithm 3.

Our issue here is to prove convergence of the sequence, which requires the
Kurdyka-Łojasiewicz condition and the so-called strong descent condition in [1]:

Theorem 4. Let Ω = {x ∈ Rn : f (x) ≤ f (x1)} be bounded. Suppose f is of class
C1 and satisfies the Kurdyka-Łojasiewicz condition. Let the Hessian matrices B j be
uniformly bounded. If the sequence x j, j ∈ N, of iterates of algorithm 3 satisfies the
strong descent condition

f (x j)− f (x j+1)≥ σ‖∇ f (x j)‖‖x j+1− x j‖, (16)

then it is either finite and ends with ∇ f (x j) = 0, or it converges to a critical point x̄
of f .

Proof. Let K be the set of the accumulation points of the sequence x j, j ∈ N. As in
the proof of theorem 1 we prove compactness of K and show that f is constant on
K. Then the Kurdyka-Łojasiewicz condition gives

ϕ( f (x j))−ϕ( f (x j+1)) ≥ ϕ ′( f (x j))
(

f (x j)− f (x j+1)
)

≥ ‖∇ f (x j)‖−1
(

f (x j)− f (x j+1)
)
.

Assuming the strong descent condition f (x j)− f (x j+1) ≥ σ‖∇ f (x j)‖‖x j+1− x j‖
as in [1] now yields

ϕ( f (x j))−ϕ( f (x j+1))≥ σ‖x j+1− x j‖.

Using the series argument from theorem 1 proves convergence of the sequence of
iterates x j to some x̄ ∈ K, and then K = {x̄}.

Now we have to give practical criteria which imply the strong descent condition
(16). Several easily verified conditions for the iterates of the trust-region algorithm
are given in [1]. Here we focus on conditions involving the curvature of the model
along the search direction. Let ω(y,x j) denote the curvature of the model m(·,x j)
between x j and yk+1, namely:

ω(yk+1,x j) =
(yk+1− x j)>B j(yk+1− x j)

‖yk+1− x j‖2 .

Note that the curvature along the Cauchy point direction is:

ω(x j+1
C ,x j) =

∇ f (x j)>B j∇ f (x j)

‖∇ f (x j)‖2 .

We propose the following modified tangent program in algorithm 3:
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Fix 0 < µ < 1.

5’: Tangent program. Compute an approximate solution yk+1 of

min{m(y,x j) : ‖y− x j‖ ≤ ∆k,y ∈ Rn}

in the sense of (12), such that in addition

ω(yk+1,x j)≥ µω(x j+1
C ,x j)≥ 0 (17)

as soon as the Cauchy point lies in the interior of the trust-region, i.e., if ‖∇ f (x j)|| ≤
∆kω(x j+1

C ,x j).

This modified step (5’) in the algorithm has a solution yk+1, because the Cauchy
point satisfies the two conditions (12) and (17). We have to prove the convergence
of the modified trust-region algorithm, which we will achieve by proving the strong
descent condition. We will need the following preparatory

Lemma 4. When yk+1 is a descent step of the model m(·,x j) away from x j, then it
satisfies

‖∇ f (x j)‖ ≥ 1
2

ω(yk+1,x j)‖yk+1− x j‖.

Each serious step x j+1 generated by algorithm 3 satisfies:

‖∇ f (x j)‖ ≥ 1
2 ω(x j+1,x j)‖x j+1− x j‖.

Proof. By definition every descent step yk+1 of the model m(·,x j) at the current
iterate x j, has to verify −∇ f (x j)>(yk+1− x j) > 0 and f (x j)−m(yk+1,x j) ≥ 0, so
that

−∇ f (x j)>(yk+1− x j)≥ 1
2 (y

k+1− x j)>B j(yk+1− x j).

Using the Cauchy-Schwarz inequality ‖∇ f (x j)‖‖yk+1− x j‖ ≥ −∇ f (x j)>(yk+1−
x j), we obtain

‖∇ f (x j)‖ ≥ 1
2
(yk+1− x j)>B j(yk+1− x j)

‖yk+1− x j‖
=

1
2

ω(yk+1,x j)‖yk+1− x j‖.

According to the acceptance test, any serious step is also a descent step of the model
at the current iterate, which proves the second part of the lemma.

Note that the previous result is only useful when the curvature is positive.

Proposition 1. The iterates x j generated by the algorithm (3) with step 5’ replacing
the original step 5 satisfy the strong descent condition (16).

Proof. The idea here is to show that the Cauchy step is bounded below by a fraction
of the step i.e. there exists η ∈ (0,1) such that

‖x j+1
C − x j‖ ≥ η‖x j+1− x j‖. (18)
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Indeed, the sufficient decrease condition (12) together with (18) gives strong descent
(see theorem 4.4 from [1]). By the definition of the Cauchy point we have

‖x j+1
C − x j‖=


‖∇ f (x j)‖

ω(x j+1
C ,x j)

if ‖∇ f (x j)|| ≤ ∆k j ω(x j+1
C ,x j)

∆k j otherwise.

In the first case, that is, when ‖∇ f (x j)|| ≤ ∆k j ω(x j+1
C ,x j), the curvature condition

(17) gives

‖x j+1
C − x j‖= ‖∇ f (x j)‖

ω(x j+1
C ,x j)

≥ µ
‖∇ f (x j)‖

ω(x j+1,x j)
≥ µ

2
‖x j+1− x j‖

according to Lemma 4. In the second case we have ‖x j+1
C −x j‖= ∆k j ≥‖x j+1−x j‖,

since x j+1 has to belong to the trust-region. Thus (18) is satisfied in both case with
η = µ

2 .

In the last part of the paper we present yet another version (5”) of the tangent
program based on condition (14) from Conn et al. [8], which allows to prove con-
vergence, and yet is weaker than the sufficient decrease condition. Note that this
condition is at least satisfied by the Cauchy point and the exact solution of the tan-
gent program.

5”: Tangent program. Compute an approximate solution yk+1 of

min{m(y,x j) : ‖y− x j‖ ≤ ∆k,y ∈ Rn}

in the sense of (14), i.e., f (x j)−m(yk+1,x j)≥ c‖∇ f (x j)‖min
(

∆k,
‖∇ f (x j)‖
1+‖B j‖

)
.

Now with 5” each serious step satisfies

f (x j)−m(x j+1,x j) ≥ c‖∇ f (x j)‖min
(

∆k j ,
‖∇ f (x j)‖
‖B j‖

)
≥ c‖∇ f (x j)‖min

(
‖x j+1− x j‖, ‖∇ f (x j)‖

‖B j‖

)
≥ cmin

(
1,

‖∇ f (x j)‖
‖B j‖‖x j+1− x j‖

)
‖∇ f (x j)‖‖x j+1− x j‖.

(19)

To infer the strong descent condition (16), the question is how to guarantee that
‖∇ f (x j)‖

‖B j‖‖x j+1−x j‖ remains bounded away from 0? Let us first consider the simpler case
when the matrix B j is positive.
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Proposition 2. Consider the following conditions:

(H1) B j is positive definite and there exists a κ ≥ 1 such that:

cond(B j) := ‖B j‖‖B−1
j ‖ ≤ κ (using the matrix 2-norm).

(H2) There exists σ̄ > 0 and σ > 0 such that σ̄ I � B j � σ I � 0.

Then (H2)⇒ (H1). Moreover condition (H1) in tandem with the acceptance condi-
tion (14) used within the modified step 5” of algorithm 3 guarantees strong descent.

Proof. Clearly (H2) implies (H1). Now for the second part assume that the matrix
B j is positive definite. Then the curvature of the model m(·,x j) is also positive and
by (19) and Lemma 4:

f (x j)−m(x j+1,x j) ≥ cmin
(

1,
‖∇ f (x j)‖

‖B j‖‖x j+1− x j‖

)
‖∇ f (x j)‖‖x j+1− x j‖,

≥ cmin
(

1,
1
2

ω(x j+1,x j)

‖B j‖

)
‖∇ f (x j)‖‖x j+1− x j‖.

Note that
ω(x j+1,x j)

‖B j‖
≤ 1, therefore

f (x j)−m(x j+1,x j)≥ c
2

ω(x j+1,x j)

‖B j‖
‖∇ f (x j)‖‖x j+1− x j‖.

Condition (H1) clearly guarantees that ω(x j+1,x j)/‖B j‖ stays bounded away from
0, hence we have strong descent (16).

In order to cover also those cases where B j is not positive, we propose to replace
the acceptance test (15) by the following. Fix 0 < µ < 1. The trial step yk+1 is
accepted to become x j+1 if it satisfies

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
≥ γ and ‖∇ f (x j)‖ ≥ µ‖B j‖‖x j+1− x j‖. (20)

The following result shows that condition (20) is eventually satisfied by the trial
steps yk+1 according to 5”. Convergence of the trust-region algorithm with the tan-
gent program 5” follows then with the same method of proof.

Proposition 3. Let x ∈ Rn be the current iterate. Suppose f differentiable and
∇ f (x) 6= 0. Then the inner loop of the trust-region algorithm with condition (14)
and acceptance test (20) finds a serious iterate after a finite number of trial steps.

Proof. Suppose on the contrary that the inner loop turns forever. Then ∆k → 0 and
yk+1→ x (k→ ∞). Now we expand

ρk =
f (x)− f (yk+1)

f (x)−m(yk+1,x)
= 1− f (yk+1)−m(yk+1,x)

f (x)−m(yk+1,x)
.
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By condition (14) at each inner iteration k we have

f (x)−m(yk+1,x) ≥ c‖∇ f (x)‖min
(
‖∇ f (x)‖
1+‖B‖

,∆k

)
≥ c‖∇ f (x)‖∆k for sufficiently large k.

≥ c‖∇ f (x)‖‖yk+1− x‖ for sufficiently large k.

On the other hand we also have

| f (yk+1)−m(yk+1,x)| ≤ | f (yk+1)− f (x)−∇ f (x)>(yk+1− x)|
+ 1

2 |(y
k+1− x)>B(yk+1− x)|

≤ ‖yk+1− x‖εk +
1
2‖B‖‖y

k+1− x‖2,

where the existence of εk → 0 follows from Lemma 2. Combining the previous
inequalities, we obtain∣∣∣∣ f (yk+1)−m(yk+1,x)

f (x)−m(yk+1,x)

∣∣∣∣ ≤ ‖yk+1− x‖εk +
1
2‖B‖‖y

k+1− x‖2

c‖∇ f (x)‖.‖yk+1− x‖

≤
εk +

1
2‖B‖‖y

k+1− x‖
c‖∇ f (x)‖

→ 0 (k→ ∞),

which implies ρk→ 1 (k→∞). By our working hypothesis the acceptance test (20)
fails. Since it requires two conditions, and since the first of these two conditions,
ρk ≥ γ , is satisfied for large k, the second condition must eventually fail, i.e; there
must exists K ∈ N such that

‖∇ f (x)‖< µ‖B‖‖yk+1− x‖

for all k ≥ K. But from yk+1→ x (k→ ∞) we deduce ∇ f (x) = 0, a contradiction.
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11. S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les
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