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Failure-Finding Frequency for a Repairable System subject 
to Hidden Failures 

B. Lienhardt1 and E. Hugues2 
AIRBUS, Toulouse, France 

C. BES3 and D. Noll4 
Université Paul Sabatier, Toulouse, France 

This paper addresses the problem of selecting a suitable failure-finding maintenance 
policy for repairable systems. We consider hidden failures, that do not interrupt aircraft 
operation when they occur, like failures of alarm devices or back-up components. We study 
both corrective maintenance actions, carried out after item failure, and periodic failure-
finding, designed to check whether system still works. Based on our probabilistic analytic 
developments, the optimal maintenance policy is then obtained as a solution of an 
optimization problem, where the maintenance cost rate is the objective function and the risk 
of corrective maintenance is the constraint function. Finally, we show an application of our 
methodology on a real-world case provided by Airbus. 

Nomenclature 

T = Time horizon of the fleet maintenance policy. T is a given input. 
k  = Index of failure-finding interval from 0 to N within the calculation horizon T 

k
I  = 

Length of kth time interval between failure-finding 
tasks [ ]1;

+= kkk
ttI , [ ]Nk ;0! . k

I  is a given input or the output of the 
optimization problem.. 

1+N
I  = 

Residual length of time between the last failure-finding tasks at 1+N
t  and T for 

optimization studies. [ ]TtI
NN
;
11 ++ = . 

( )tj

System!  

= Failure rate of the system which failure is hidden on the interval j
I , 

[ ]1;0 +! Nj . ( )tSystem

0! Tt !"  is the given failure rate of this system 
without any corrective or failure-finding maintenance  

( )t
Demand
!  = Occurrence rate of the operational demand at time t. Tt !" , ( )t

Demand
!  is a 

given input. 

( )tj

CM!  = Occurrence rate of corrective maintenance actions at time t in the interval j
I , 

[ ]1;0 +! Nj . 

( )tY
j  

= State variable of the system with respect to its hidden or undetected failures at 
time t in the interval j

I , [ ]1;0 +! Nj  
)(tNCM j

Aircraft

 

= Counting process of corrective maintenance actions due to unscheduled failures 
for one aircraft in the interval j

I  from j
t  to t, j

It!" , [ ]1;0 +! Nj  
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FS  = Fleet size, given input. 

j

FleetNFF  
= Mean number of detected failures on the fleet during failure-finding tasks 

performed at time 1+j
t , [ ]1;0 +! Nj . 

( )tNCM j

Fleet

 

= Mean number of corrective maintenance actions due to unscheduled failures on 
the fleet from j

t  to t, j
It!" , [ ]1;0 +! Nj  

j

NoCMP  = Probability to avoid corrective maintenance actions during interval j
I , 

[ ]1;0 +! Nj  

Check
C  = Cost to perform the check during failure-finding maintenance 

CM
C  = Cost of corrective maintenance  

FF
C  = Cost of failure-finding maintenance to restore the hidden system following 

detection during check 
 

I. Introduction 
UCH of what has been written to date on the subject of maintenance strategies1,2 refers to predictive, 

preventive and corrective maintenance. Far less attention has been paid to failure-finding maintenance for hidden 

failure system. 

A hidden failure3 is a failure not evident to the crew or operator during the performance of normal duties. These 

failures occur in such a way that nobody knows that the item is in a failed state unless some other operational 

demand (additional failure, trigger event) also occurs. For instance, if a standby radio failed, no one would be aware 

of the fact because under normal circumstances the active radio would still be working. In other words, the failure of 

the standby radio on its own has no direct impact unless or until the active radio also fails. Generally, hidden failure 

affects back-up and protective systems, like safety valve (e.g. a shutdown valve or relief valve) or sensor (e.g. 

fire/gas detector, pressure sensor or level sensor). They are designed to be activated upon operational demands to 

protect people, environment or to keep a given function. These systems are common in industrial safety and 

protection systems, examples are presented in Ref 4 with standby devices. 

Failure-finding maintenance for hidden failure falls into none of the three maintenance categories: predictive, 

preventive, corrective. However this kind of maintenance is far from being negligible. According to the Ref.5, if 

Reliability Centered Maintenance (RCM) is correctly applied to almost any modern, complex industrial system, it is 

not unusual to find that up to 40% of failure modes fall into the hidden category. Furthermore, up to 80% of these 

failure modes require failure-finding. As a result, up to one third of the tasks generated by comprehensive, correctly 

applied maintenance strategy development programs are failure-finding tasks. In this case, we have to deal in 

particular with both corrective maintenance actions and periodic failure-finding tasks. 

M 
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Corrective maintenance tasks are carried out after an item has failed. The purpose of corrective maintenance is to 

bring the item back to a functioning state as soon as possible, either by repairing or replacing the failed item, or by 

switching in a redundant item. Corrective maintenance is also called breakdown maintenance or run-to-failure 

maintenance. To sum up, corrective maintenance refers to the actions performed, as a result of failure, to restore an 

item to a specified condition 3. 

Besides, failure-finding tasks are designed to check whether the system is still working. More precisely, failure-

finding tasks are carried out to reveal hidden that have already occurred. For example the smoke detector is an 

emergency system; it only activates when smoke is present. Failure of the smoke detector, during normal operation, 

would constitute a hidden failure. The failed smoke detector would only be evident when smoke was present, and it 

failed to sound. A failure-finding task for the smoke detector would be to periodically check the fire detection circuit 

to see if it is operational (blowing smoke at the detector and checking if the alarm sounds). Another example is a 

pressure switch designed to shut down a machine when the lubricating oil pressure drops below a certain level. 

Switches of this type should be checked regularly by dropping the oil pressure to the required level and checking 

whether the machine shuts down. 

Ideally, we have to find out a failure-finding maintenance which ensures 100% availability of the protective or 

back-up system when operational demand occurs. In this ideal case, there is none corrective maintenance task and 

the number of failure-finding tasks is infinite. In practice, it is impossible to achieve a 100% or very high availability 

of the hidden system, because of both technical feasibility and costs induced by high number failure-finding tasks. 

Therefore in real-world cases the problem is to determine an optimal frequency of failure-finding tasks that makes 

the best compromise between the cost of corrective tasks and the cost failure-finding tasks. Note that, for some 

systems, due to safety or operational reasons, constraints on system availability have also to be taking into account 

in the optimization process. 

This purpose of this paper is to develop a precise framework to optimally determine failure-finding maintenance 

frequency for repairable systems put in operation at time t=0 for a finite time horizon. It is organized as follows. In 

section 2, based on in-service aircraft utilization, we introduce the modeling assumptions made on failure-finding 

maintenance. Section 3 is devoted to mathematical developments. We give equations for computing the mean 

number of both corrective and failure-finding maintenance actions over a finite time horizon. From these previous 

results, we state the optimization problem that defines the optimal frequency of failure-finding tasks. Section 4 deals 
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with constant failure rate. Simple analytical formulae are then derived from those of section 3. They provide a clear 

understanding about the influence of each reliability parameter on the optimization process result. In section 5, a 

numerical example provided by Airbus is given on a pressure relief valve to illustrate how the model can be used on 

a real world case. Finally in section 6, we conclude and open further perspectives. 

II. Assumptions 

The following modelling assumptions are based on common practices of airlines. 

• The operational demand is a general non-homogenous Poisson process1. In particular the rate of occurrence 

of the demand can be a function of time and there will be no more than one demand at the same time. 

• The failure rate of the system with hidden failure is a function of time (ex: infant mortality, aging effect...) . 

Failure of all fleet systems are supposed to be statistically independent with the same probability 

distribution. 

• If the hidden system checked during failure-finding task is in an operating state, nothing is done. 

• If the hidden system checked during failure-finding task is in a failed state, it is replaced by a new 

component of the same type, or restored to an “as good as new” condition. It means that the failure time 

distribution of the repaired or the new system is identical to that previous one at t=0.  

• In case of corrective maintenance, the breakdowns are minimally repaired. With minimal repair, a failed 

item is returned to operation with the same effective age, as it possessed immediately prior to failure. 

• No time-value for money. 

III. Analytic Development 

In this section we define the model of failure-finding maintenance as a Markov Process. From this model, we 

derive the formula of the system failure rate. Then, we estimate the mean number of maintenance actions over a 

fleet, either corrective or during failure-finding tasks. We also assess the probability to avoid corrective maintenance 

actions over an interval. Finally, we state the optimization problem that allows determining the optimal failure-

finding frequency minimizing maintenance costs and satisfying an acceptable level of corrective maintenance 

frequency. 

A. Definition of System State and Failure Rate 



Page 5 of 18 

The type of system studied here can be modeled within an interval by a simple Markov graph, as below: 

 

Fig. 1 Markov transition diagram. 
j
It!" , [ ]1;0 +! Nj , the state variable ( )tY

j  of a system with respect to its hidden failures is: 

• ( ) 1=tY
j , if the system is functioning at time t; 

• ( ) 0=tY
j , if the system item is not functioning at time t. 

j
It!" , with the assumption of minimal repair during corrective maintenance, we have the following differential 

equation: 
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Then the analytical solution of the previous equations (1), (2) and (3) is given by: 
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To solve it, we can use discretization schemes, such as Euler, Runge Kutta6. 

 Because of assumptions made on corrective and failure- finding maintenance, it is now straightforward to 

formulate the system failure rate as: 

 Nj !!1 , j
It!" , ( ) ( ) ( )( ) ( ) ( )( )01

1011 =!"+=!= """ jjj

System

jjj

System

j

System tYPtttYPtt ###  (5) 

With ( )tSystem

0! Tt !"  is the given failure rate of this system without any corrective or failure-finding 

maintenance and ( )t
Demand
!  Tt !"  is the given occurrence rate of the operational demand. 

B. Mean Numbers of Maintenance Actions 

Basically the system studied in this article can fail to operate: 

• In the presence of an operational demand, generating corrective maintenance; 

• In the absence of operational demand, generating failure-finding maintenance. 

 

The probability to detect a failure for one aircraft during failure-finding tasks performed at time 1+j
t  

[ ]1;0 +! Nj  is given by: 

 )0)((
1

==
+jj

tYPNFF j

Aircraft
 (6) 

Besides )(tNCM j

Aircraft
, the mean number of corrective maintenance actions on [ ]tt

j
;  per aircraft in the interval 

j
I , is a renewal process. Its rate of occurrence can be easily computed from, ( ) ( ) ( )( )0=!= tYPtt j

Demand

j

CM ""  

j
It!" . 

Then we have: 
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t

t
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j
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These results are directly expanded to a fleet through the following formulae [ ]1;0 +!" Nj : 

 j

Aircraft

j

Fleet NFFFSNFF !=  (8) 

 j
It!" , ( ) )(tNCMFStNCM jj

Fleet Aircraft
!=  (9) 

C. Probability to Avoid Corrective Maintenance Actions between Two Failure-Finding Tasks 

The event “no corrective maintenance action during Interval j
I [ ]1;0 +!" Nj  is divided in two distinct 

events: 

• No system failure within interval j
I ; 

• System failure within j
I , but no operational demand within j

I  after system failure. 

Therefore we can write 

 

( )

!
!
!

"

#

$
$
$

%

&

'+

=

failure systemafter   within demand process No

 

  within failure System

j

j

jj

NoCM

I

I

P

IwithinfailuresystemNoPP

 (10) 

We are going to detail each of these two probabilities. 

 

To begin with, the probability of no system failure within j
I  is given by: 
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A first order approximation of the probability of first system failure between t and t+dt at time t is given (here) 

by the density function multiply by dt. It is well known that the density function of a first system failure is equal to 

the failure rate multiplied by the survival function: 
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Now we assess the probability of no system demand after system failure at time t. 
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The number of operational demands ( ){ }0, !ttN
Demand

 is assumed to be a Non-Homogeneous Poisson Process 

(NHPP) with rate function ( )t
Demand
!  for 0!t . From the properties of NHPP7, we have the following equality 

given: 
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To sum up, the probability that no operational demand after system failure writes: 
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As a result the probability to avoid corrective maintenance actions over an interval j
I  is the sum of equation 

(11) and (14): 
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D. Optimization of Failure-Finding Frequency 

The problem here is to determine the optimal interval length k
I  between failure-finding tasks over a finite time 

horizon [ ]T,0  (e.g. the time an airline holds an aircraft). Under a risk constraint on the probability of avoiding 

corrective maintenance, the optimal object is to minimize the maintenance cost of the system by balancing failure-

finding tasks and corrective actions. A model to optimize maintenance policies by minimizing system cost rate with 

availability constraint is presented in Ref. 8. 

Compare to corrective maintenance, failure-finding maintenance are planned and hence cheaper, while failure 

during operation might be costly and dangerous. However high numbers of failure-finding checks can also conduct 

to prohibitive costs. Therefore the problem is to determine the best optimal length k
I  that insure the best 

compromise. 
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For the sake of simplicity and because in real word cases of aircraft maintenance the intervals are constant, we 

suppose in this section that the intervals between two successive scheduled tasks are constant (i.e. II
k
=  and 

Ikt
k

!= ). Note that the maintenance optimization problem can be extended in a straightforward manner to 

variable interval length. In that case, we have to deal with a multivariable optimization problem. 

The objective function of this optimization problem is the expected maintenance cost rate on the horizon period 

T. Its numerator is the sum of the maintenance costs on each interval II
k
=  plus the residual length interval 1+N

I . 

For each interval maintenance costs takes into account  

• The cost of corrective maintenance to restore an item following functional failure; 

• The cost of failure-finding maintenance to restore an item following detection during check; 

• The cost to perform the check during failure-finding task to identify any potential failure. 

The denominator term is the T horizon interval length. There are two constraints to this optimization problem. 

This interval length must be higher or equal to zero and the probability to have no corrective maintenance must be 

higher than a given threshold! . This threshold corresponds to the maximum unscheduled event that the airline 

tolerates. Note that 0=!  means that the only criterion is economic. 

The optimization problem can be expressed as: 

 Min )(IC  (16) 
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This optimization problem has generally no analytical solution. The I* optimal solution can be obtain by using 

adequate non-linear programming methods9. 

IV. � Application for Constant Failure Rate 

In this section, the formulae are developed for system whose hidden failure can occur randomly, i.e. constant 

failure rate10,11. This assumption is widely taken in real aeronautical world when we have to deal with system during 

their useful life period. With constant failure for both system and operational demand, simple analytical formulae 

are derived from those of section 3. They provide a clear understanding of the influence of each input parameter on 

the optimization process. 

A. Mean Numbers of Maintenance Actions 

The system with equations (1), (2) and (3) can be resolved analytically. The probabilities that the item is 

functioning at time t is: 
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The probabilities that the item is not functioning at time t is: 
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We can now write analytically the formulae (8) and (9). The mean number of detected failures on the fleet 

during failure-finding tasks performed at time 1+k
t  and T are given respectively by: 
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 The mean number of corrective maintenance actions due to unscheduled failures on the fleet from j
t  to t, 
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It is straightforward to have the total number of corrective maintenance actions over interval k
I  and 1+N

I . 
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One should notice the special cases when there is no failure-finding task. In this case, the equipment deliberately 

runs to failure and the previous probabilities become: 
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B. Probability to Avoid Corrective Maintenance Actions between Failure-Finding Tasks 

With the assumption of constant failure rate, the formulae (15) can be rewrite: 

 ! !!!
+

"
"

#

$

%
%

&

'
()

"
"

#

$

%
%

&

'
()+

"
"

#

$

%
%

&

'
(=

(

(1

expexpexp
0

00

0

0

j

j

j

j

jj t

t

I

tt

Demand

tt

SystemSystem

I

System

j

NoCM dtdddP *+*++*+  (31) 



Page 12 of 18 

The formulae (31) can be integrated in a straightforward way. The probability to face no risk of corrective 

maintenance over k
I  is given by: 
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When there is no failure-finding task, i.e. 0=
j
t and +!"

+1j
t , the limit of j

NoCMP  is: 
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C. Optimization of Failure-Finding Frequency 

Thanks to the previous analytic results, we are now able to compute analytic sensitivity of the objective and 

constraint functions of the optimization problem. 

Note that when there is no failure-finding task, i.e. +!"I , the limit of )(IC  is: 

 
0

0

)(lim
SystemDemand

SystemDemand

CM
I

FS
CIC

!!

!!

+

""
"=

+#$

 (35) 

V. � Numerical Example 

A. Case Studied Definition 

To illustrate the formulae developed, we consider a pressure relief valve. The component is a classic failure-

finding scenario because it serves as a protective device. Its conditional property of failure is unrelated to age and it 

does not exhibit infant mortality. 

Pressure relief valves are designed to provide protection from over-pressure in steam, gas, air and liquid lines. 

As a result the failure of the valve stays hidden if there is no overpressure. Moreover there is a process demand of 

the valve every time safe pressures are exceeded. In this case, the valve lets off steam to drop the pressure to a preset 
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level. The corrective maintenance actions will be performed every time the valve fails to ensure that the system does 

not exceed the preset level. 

We consider the following numerical data: 

• Mean Time Between Failure=5,000 flight hours, hence 000,5/1
0

=System!  

• Valve used once every 900 flight hour, hence 900/1=
Demand

!  

• 10 aircrafts in the fleet, hence 10=FS  

• Cost to perform the check during failure-finding maintenance $15=
Check
C  

• Cost of failure-finding maintenance $60=
FF
C  

• Cost of corrective maintenance $150=
CM
C  

• Computation period T=10,000 flight hours 

B. Impact of Failure-Finding Frequency 

In this section we illustrate the formulae presented in section 4. The failure-finding interval length varies from 

to 100 flight hours to T. 

The first shape is the maintenance cost rate C(I) as a function of I. It shows how the length of the failure-

finding interval impacts the maintenance cost. This is a U-curve. 
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Fig. 2 Maintenance cost as a function of failure-finding interval length. 

The following curve presents as a function of interval length the probability to avoid corrective maintenance 

actions during a failure-finding interval. This curve shows that when the interval length increases, the probability to 

have corrective maintenance also increases, which is logical. In fact, the main purpose of failure-finding task is to 

prevent or at least reduce the risk of associated failure leading to corrective maintenance actions 
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Fig. 3 Probability of no corrective maintenance actions as a function of failure-finding interval length. 

C. Optimization of Failure-Finding Frequency 

If we suppose that the threshold !  is equal to 79.73%, then according to the following sketch, the interval must 

be lower than 1,700FH. As a result to minimize the cost rate, the optimal interval I*  is equal to 500 FH. For this 

value the cost rate is 0.1872 $/FH. 
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Fig. 8 Interval optimization as a function of failure-finding interval length. 

VI. � Conclusion 

In this paper, we introduced a new methodology for modeling the combination of failure-finding and corrective 

maintenance for a hidden failure system. From this model, we provided cost and risk formulae and we derived an 

optimization problem to determine the optimal length of failure-finding task interval. Moreover we provided exact 

analytical formulae in the case of constant failure rate. We illustrated these results from a classic failure-finding 

scenario on a pressure relief valve. 

Future related work will attempt to extend our approach by relaxing one or more of the original assumptions. 

Our first attempt will be to address a broader problem that includes condition parameters directly linked to the 

system degradation. Condition parameters could be any characteristic such as temperature, wear, humidity, sound, 

pressure, chemical concentration, and shock. As in health management system, information provided by sensors 

about the change on condition parameters can be used to optimize the next failure-finding task. 
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