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Abstract. We introduce system norms which assess transient behavior of stable Linear
Time-Invariant (LTI) systems. This allows us to address undesired responses to initial
conditions, finite resource consumption signals, or persistent perturbations. We then
consider the challenging problem of minimizing these norms in closed loop using struc-
tured linear feedback. The computed controllers mitigate transients in a linearized closed
loop, with the potential side effect of enlarging the region of stability of the underlying
non-linear controlled system. In applications this helps to prevent transition to unde-
sired nonlinear regimes, limit cycles or chaotic behavior. The success of our approach is
certified a posteriori using Lyapunov-like techniques and simulations, as we demonstrate
through a variety of applications.
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1. Introduction

It has been observed in the literature that the size of the region of attraction of a locally
stable nonlinear system

ẋ = Ax+ φ(x), x0 := x(0) := x(t = 0) , (1)

with φ : Rn → Rn is a static, memoryless nonlinearity with φ(0) = 0, φ′(0) = 0, may
strongly depend on the degree of normality of A. When A is far from normal, the lineariza-
tion ẋ = Ax, x(0) = x0, may have large transient peaks, which may incite trajectories
of (1) to leave the region of attraction. This is known as peaking, [1, 2, 3, 4, 5], and
considered a major obstacle to global stability.

The tendency of a stable A to produce large transients or peaking may be assessed by
its worst-case transient growth

M0(A) = max
t≥0

max
‖x0‖2=1

‖eAtx0‖2 = max
t≥0

σ(eAt), (2)

and in closed loop, when A depends on tunable parameters, one may minimize M0(Acl)
in order to enlarge the region of local stability of (1). This has been studied in [6] for
structured controllers, and previously in [7] using the controller Q-parametrization.

In a continuous operating process the effect of initial values is not the appropriate lever,
as instability is caused rather by noise, persistent perturbations, or finite-consumption
disturbances. Moreover, nonlinearity often arises only in some of the states z, and likewise
may affect only parts of the dynamics, and we address those issues by considering as a
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refined version of (1) a nonlinear controlled system of the form

ẋ = Ax+Bφ(z) +Bw +Buu

z = Cx

y = Cyx

(3)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rmw , z ∈ Rpz , where the non-linearity φ : Rpz → Rmw

satisfies Bφ(0) = 0 and Bφ′(0)C = 0, and where a tunable feedback controller u = K(x)y,
with x as decision variables, is sought which stabilizes the system locally, rendering it as
resilient as possible with regard to these disturbances. The latter is aimed at indirectly
by tuning the closed loop channel w → z to remain small with regard to a system norm
assessing transients, the idea being that disturbances w cause the partial state z to have
unduly large transients.

Closing the loop with respect to the controller K(x) in (3), we consider the linear
closed-loop channel Twz(x, s) = C(sI − Acl(x))−1B, which we now tune in such a way
that transients in z(t) due to disturbances w(t) remain small. Expanding on (2), we assess
transients of G(s) = C(sI − A)−1B via

M0(G) = sup
t≥0

σ
(
CeAtB

)
= sup
‖w‖1≤1

‖G ∗ w‖∞, (4)

a time-domain L1 → L∞ induced system norm, which measures the time-domain peak
of the response z = G ∗ w to a finite consumption input w. For G(s) = (sI − A)−1 we
recoverM0(G) = M0(A).

The principal goal of this contribution is to develop a closed-loop controller design
technique, which mitigates transients of (3) via the indicated heuristic, performs fast and
reliably, and at the same time can be combined with standard design specifications in
robust control. In addition, this should be achieved with simple and practically useful
controller structures commonly used in engineering designs.

In order to achieve this goal, we rely on frequency domain techniques, which leads us
to introduce the Kreiss system norm K(G) as a frequency domain approximation to (4),
the definition being given in Section 2. The fact that K(G) is frequency-based offers
algorithmic advantages for optimization and combines favorably with classical frequency-
domain specifications, such as stability margins, noise and disturbance attenuation, loop
shaping constraints, allowing realistic and practically relevant design settings. A challenge
is that this leads to multi-objective optimization programs with non-smooth criteria and
constraints.

Along with disturbances of finite consumption, w ∈ L1, it also makes sense to consider
finite energy perturbations w ∈ L2, which may be thought of as representing noise, or
time-domain bounded w ∈ L∞, which stand for persistent perturbations, as naturally all
those could be the reason why trajectories of (1) or (3) get outside the region of attraction.
Ability of a system to withstand destabilizing disturbances is referred to as resilience, and
along with M0(G) or K(G) other ways to quantify it have been discussed, see e.g. [8].
Resilience of systems is currently a subject of broad interest and addressed in various
ways, see e.g. [9, 10, 11, 12].

In parallel with (4), where peaking is quantified in the time-domain L∞-norm in re-
sponse to finite consumption inputs, dissipative system theory assesses transient responses
to initial values in the energy norm [13, 14, 15, 16]. While related, there is no direct link
between these concepts. Yet it is worth mentioning that dissipativity analysis based on
quadratic storage functions may be cast as integral quadratic constraints (IQCs), see [17].
In analysis, those lead to linear matrix inequalities (LMIs), but in synthesis turn into
bilinear matrix inequalities (BMIs), which are non-convex and often cumbersome to solve
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due to the large number of optimization variables. This is why alternative more successful
ways to address IQCs have been proposed, see [18, 19, 20].

There are cases where applying dissipativity theory to a nonlinear system with a static
nonlinearity can be turned into LMI synthesis conditions. This occurs in the application
of section 7, where the structure of the nonlinearity admits a simple characterization
via quadratic constraints. In this setting, no multipliers are required and the synthesis
conditions can be reduced to LMIs in the same vein as in [21, 22]. These conditions
may be conservative and should therefore be evaluated in the context of each specific
application. It should be emphasized that this approach does not provide a means to
prescribe or restrict the structure of the controller.

Mitigating large transients is a general concern in control design, and has been addressed
e.g. in [23, 24, 25, 26]. LMI approaches are discussed in [27, 28], and a comparison
between minimization of (4) and LMI techniques is [29], suggesting that, in the case of
plane Poiseuille flow, minimization (4) may be less conservative.

The remainder of this article is organized as follows. Section 2 introduces the Kreiss
system norm K(G) as a frequency domain approximation ofM0(G), followed by Section
3, which presents the central Kreiss optimization program. Section 4 gives norm estimates
related to L1-disturbances. Section 4.1 derives the system norm estimate K(G) ≤M0(G)
from Young’s inequality. In Section 4.2 we investigate attainment of the lower bound
σ(CB) ≤ K(G) ≤ M0(G). This is important in view of the quest whether lack of
normality of the system A-matrix continues to be the cause of unduly large transients
when the set-up is (3) and no longer (1). Section 5.3 addresses the case of persistent
perturbations, again using Young’s inequality. Experiments in Sections 6 and 7 focus on
L1-disturbances, where we apply the Kreiss norm minimization of Section 2 to control
nonlinear dynamics involving limit cycles, chaos or multiple fixed points, with the goal
to mitigate transients and thereby increase the region of local stability or to even achieve
global stability in closed loop. Conclusions are given in Section 8.

Notation

Notation is standard. Time-domain Lp-spaces are equipped with classical signal norms
as in [30]. Time and Laplace variables are t and s, and Re(.) denotes the real part, ∗
is convolution. For matrices M symbols MT , MH , M−1, Tr(M) mean transpose, con-
jugate transpose, inverse and trace, In stands for the identity matrix of size n. We use
diag(A1, A2) to denote a block-diagonal matrix with blocks A1 and A2. For Hermitian
matrices, M � N means M − N is positive definite, M � N means M − N is positive
semi-definite. Maximum singular values and maximum eigenvalues are denoted σ and
λ. The matrix exponential is eA. The H∞-norm of a transfer function G(s) is denoted
‖G‖∞ or ‖G(s)‖∞. The Clarke directional derivative of a locally Lipschitz function f is
f ′(x, d), the Clarke sub-differential is ∂f(x); [31]. The adjoint of a linear operator T is
T ∗. Additional specific notations are introduced within the text.

2. Kreiss system norm

As observed in [32], it may be difficult to compute M0(A) andM0(G) fast and accu-
rately enough for the purpose of optimization. In response, the authors of [32] propose
to use the Kreiss constant K(A) of a matrix A ∈ Rn×n as an alternative measure of
normality. The latter is defined as

K(A) = max
Re(s)>0

Re(s)σ
(
(sI − A)−1

)
, (5)
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and its computation was investigated in [33, 34, 6]. By the famous Kreiss Matrix Theorem
[35, p. 151, p.183] the estimate

K(A) ≤M0(A) ≤ enK(A) (6)

is satisfied with e = 2.7183.. the Euler number and n the matrix size, where the right
hand estimate is generally pessimistic, but sharp as shown in [32].

In view of (6) minimizing K(Acl) has an effect similar to minimizing M0(Acl), and this
is in line with the observation that the global minimum K(A) = M0(A) = 1 is the same
for both criteria and occurs for normal A, and more generally, for matrices A where eAt
is a contraction in the spectral norm. In [6] we have shown that optimizing K(Acl) is
numerically possible, and that it has indeed the desired effect of driving Acl closer to
normal behavior. This has incited a vivid interest in Kreiss constant minimization, see
e.g. [36, 37, 38, 39, 40, 41].

Expanding to (3) requires computation and optimization of M0(G), which in closed
loop encounters similar difficulties. We therefore introduce the Kreiss system norm

K(G) := sup
Re(s)>0

Re(s)σ
(
C(sI − A)−1B

)
,

which generalizes K(A) in a natural way and satisfies the same estimate

K(G) ≤M0(G) ≤ enK(G), (7)

as we shall prove in Section 4.1. The principled reason to use K(G) is that its computation,
and for that matter, optimization, may be based on a robust control technique, first
proposed in [6, Thm. 2.1] for the case B = C = In:

Lemma 1. Suppose A is stable. Then the Kreiss system norm K(G) can be computed
through the robust H∞-performance analysis program

K(G) = max
δ∈[−1,1]

∥∥∥C (sI − (1−δ1+δ
A− I

))−1
B
∥∥∥
∞
, (8)

where ‖G‖∞ denotes the H∞-system norm. �

The Kreiss norm can be computed either by solving a nonsmooth max-max program,
or by a convex Semi-Definite Program (SDP); see [6, Theorems 2.1 and 2.4] and the
discussion given there. The SDP provides a certified accuracy and accounts for the worst
case complexity, but the nonsmooth technique is considerably faster. In numerical testing,
we therefore use the SDP only for the final certification.

3. Kreiss norm minimization

This leads us now to the following synthesis program:

minimize K(Twz(x))
subject to K(x) stabilizing

x ∈ Rn
(9)

where x ∈ Rn are the finitely many tunable parameters of the structured controller
K(x), and where Twz(x, s) is the linear closed-loop channel of (3), by which we assess
transients. In practice program (9) will be complemented by adding standard H∞- or H2-
loop-shaping requirements as constraints to further improve performances and robustness,
as for instance explained in [42, 43, 44]. Examples are (17) and (34) in Sections 6 and 7.

Program (9) is a special case of a much wider class of problems with parametric un-
certainty discussed in [43, 44]. Computation of K(Twz(x)) in closed loop involves system
matrices of size N := n + nK , with n the order of the plant, nK the controller state
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dimension, and is of the order O(N3) mainly through Hamiltonian eigenvalue computa-
tions. The same complexity applies to computing transfer functions. Clarke subgradients
of criteria and constraints use [43, Sect. IV, Prop. 1] and are of the order O(p3z+m3

w+n3
K),

which gives some speedup of (3) over (1). Some experiments are documented in [29, 6].
Further information in the assessment of (9) concerns the number of iterations required

by the optimizer. Since design problems are non-convex, we content ourselves with local
minima, which is beneficial as finding global minima is NP-hard and computationally
infeasible for sizable problems. Non-smoothness of criteria and constraints complicates
matters, and in response is addressed by tailored optimization techniques, [45, 46]. An
advantage of our approach is that it avoids the use of Lyapunov variables, so that the
number of decision variables is typically way smaller than the matrix dimension, dim(x)�
n + nK . This is significant, because each optimization step calls for a convex quadratic
program with size dim(x) and computational complexity O(dim(x)3). Altogether the
optimizer succeeds for medium size problems consistently under 100 iterations.

Comparisons in [6] show that LMI-based methods fail much earlier when the matrix
dimension increases. Recent experiments in the literature as well as our own in Sections
6 and 7 indicate that N = n+ nK is the dominant parameter.

Organization of the theoretical contribution

In the following two sections we discuss theoretical aspects of disturbances causing large
transients via peaking. This includes:

Section 4: Finite consumption disturbances and norm estimates relating time and
frequency domain via Young’s inequality:
• Estimate for the Kreiss system norm (Section 4.1),
• Question of attainment of the lower bound of K(G) and the role of normality
of the system A-matrix (Section 4.2).
• Hausdorff’s numerical abscissa extended to systems (Section 4.3).

Section 5: System norms other thanM0(G), K(G) which assess peaking:
• Alternative computable frequency based system norms (Sections 5.1, 5.2).
• Peak gain norm for persistent perturbations and estimate relating it to the
H∞-norm via Young’s inequality.
• L2 → L2 operator norm to address noise (Sections 5.4).

4. Norm estimates

In this Section, we obtain basic estimates relating the Kreiss system norm K(G) to the
L1 → L∞ induced normM0(G). We recall Young’s inequality:

Lemma 2. (Young’s inequality; see [47]). Let 1/p + 1/q + 1/r = 2, p, q, r ≥ 1, and
1/p+ 1/p′ = 1. Then∣∣∣∣∫∫ f(x)g(x− y)h(y)dydx

∣∣∣∣ ≤ CpCqCr‖f‖p‖g‖q‖h‖r,

where

Cp =
(
p1/p

/
p′1/p

′
)1/2

, C1 = C∞ = 1.

�
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Let ξ, η be test vectors of appropriate dimensions and consider a one-dimensional signal
u(t), then Lemma 2 gives

ξTC(sI − A)−1Bη u(s) =

∫ ∞
0

e−st(ξTCeAtBη ∗ u)(t)dt

≤ CpCqCr‖e−st‖p‖ξTCeAtBη‖q‖u‖r
= CpCqCrRe(s)−1/pp−1/p‖ξTCeAtBη‖q‖u‖r,

(10)

where f(t) = e−st, g(t) = ξTCeAtBη, and h(t) = u(t) are understood to take values 0 for
t < 0. In the sequel we consider various choices of p, q, r.

4.1. Kreiss system norm. We apply Young’s inequality with r = 1, q = ∞, p = 1,
where CpCqCr = 1. This leads to the following

Theorem 1. For a stable system G(s) = C(sI − A)−1B we have the estimate

K(G) := sup
Re(s)>0

Re(s)σ
(
C(sI − A)−1B

)
≤ sup

t≥0
σ
(
CeAtB

)
=:M0(G). (11)

Proof: From (10) with r = 1, q =∞, p = 1, we get

Re(s)|ξTC(sI − A)−1Bη u(s)| ≤ ‖ξTCeAtBη‖∞‖u‖1.
Now take uε(t) = ε−1 on [0, ε], uε(t) = 0 else. Then ‖uε‖1 = 1. On the other hand,
uε(s)→ 1 as ε→ 0, hence we get

Re(s)|ξTC(sI − A)−1Bη| ≤ ‖ξTCeAtBη‖∞ = sup
t≥0
|ξTCeAtBη|.

Now we consider test vectors ξ ∈ `2, η ∈ `2. Passing to the supremum over ‖ξ‖2 ≤ 1,
‖η‖2 ≤ 1 on the right gives

Re(s)|ξTC(sI − A)−1Bη| ≤ sup
t≥0

sup
‖ξ‖2,‖η‖2≤1

|ξTCeAtBη|

= sup
t≥0

σ
(
CeAtB

)
.

Then taking the supremum over ‖ξ‖2 ≤ 1, ‖η‖2 ≤ 1 and Re(s) > 0 on the left gives

K(G) = sup
Re(s)>0

Re(s)σ
(
C(sI − A)−1B

)
≤ sup

t≥0
σ
(
CeAtB

)
=M0(G),

which is the claimed estimate. �

In order to interpret the expressionM0(G) on the right, we consider vector norms on
Lp([0,∞),Rn) defined as

‖u‖p,q =

(∫ ∞
0

|u(t)|pqdt
)1/p

,

where |u|q = (
∑n

i=1 |ui|q)
1/q is the standard vector q-norm in Rn, and where ‖u‖∞,q =

supt≥0 |u(t)|q. Then, with the terminology introduced in [30],

‖G‖(q,s),(p,r) = sup
u6=0

‖G ∗ u‖q,s
‖u‖p,r

(12)

are induced norms G : (Lp, ‖ · ‖p,r)→ (Lq, ‖ · ‖q,s). In some cases these admit closed-form
expressions, which is a prerequisite to making them amenable to computations, and even
more so, optimization. By [30, (25)] one such case is

‖G‖(∞,p),(1,r) = sup
t≥0
‖G(t)‖p,r, (13)
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where ‖A‖q,p = supx 6=0 ‖Ax‖q/‖x‖p are the usual well-known induced matrix norms.
Therefore, if we choose p = r = 2 in (13), then

‖G‖(∞,2),(1,2) = sup
t≥0
‖G(t)‖2,2 = sup

t≥0
σ(G(t)) =M0(G).

We have proved
Proposition 1.M0(G) is an induced system norm. Given the vector input w(t) satisfying∫∞
0
|w(t)|2dt =

∫∞
0

(
∑p

k=1 |wk(t)|2)
1/2
dt = 1, it measures the output z = G∗w by the vector

signal norm

sup
t≥0
‖z(t)‖2 = sup

t≥0

(
m∑
i=1

|zi(t)|2
)1/2

.

�

The normM0(G) = ‖G‖(∞,2),(1,2) will be called the worst case transient peak norm, as
it measures the peak of the time-domain response of G to a signal with finite resource
consumption. Here ’response to a signal of finite resource consumption’ is terminology
adopted from [48].

In consequence, the expression K(G) is a frequency domain lower bound of M0(G),
and it is easy to see that K(G) is a norm, which we will call the Kreiss system norm.
Remark 1. We do not expect K(G) to be an induced system norm, but it does have
the property of an operator norm, as follows from Theorem 1. Indeed, let Gδ = C(sI −
(1−δ
1+δ

A−I))−1B, then ‖Gδ‖∞ is the L2 → L2 induced system norm when we take ‖ ·‖2,2 as
vector norm. Hence ‖z‖2,2 ≤ maxδ∈[0,1] ‖Gδ‖∞‖w‖2,2, which due to (8) gives ‖G ∗w‖2,2 ≤
K(G)‖w‖2,2.
Remark 2. Suppose G = (A,B,C) is output controllable. Then for y0 ∈ im(C), y0 6= 0,
there exists u0 and t0 > 0 such that CeAt0Bu0 = y0. Then M0(G) ≥ σ(CeAt0B) ≥
‖CeAt0Bu0‖2/‖u0‖2 = ‖y0‖2/‖u0‖2 > 0. Some such condition is of course required, be-

cause if we take C = [1 1], B =

[
1
−1

]
, A = −I2, then CeAtB = 0 for all t.

Remark 3. The famous estimate (upper bound due to Spijker [49])
K(A) ≤M0(A) ≤ neK(A) (14)

holds for matrices A of size n × n, and the global minimum K(A) = M0(A) = 1 is
attained for matrices where eAt is a contraction in the spectral norm, and in particular,
for normal matrices. For this reasonM0(A), andK(A), have been considered as ’measures
of non-normality’ of a matrix.

The following extends (14), obtained in [50, 32, 49], to system norms:
Theorem 2. We have

K(G) ≤M0(G) ≤ enK(G).

Proof: We have already shown in Theorem 1 that K(G) ≤ M0(G). For the upper
bound estimate, take test vectors ξ, η, then on putting q(s) = ξTC(sI −A)−1Bη, we have

ξTCeAtBη =
1

2πj

∫
Re(s)=µ

estξTC(sI − A)−1Bη ds (inverse Laplace)

= − 1

2πj

∫
Re(s)=µ

est

t
q′(s)ds (partial integration)

= − 1

2πj

eµt

t

∫ ∞
−∞

ejωtq′(µ+ jω)j dω
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Using Re(s) = µ = 1/t and taking absolute values, we obtain

|ξTCeAtBη| ≤ e

2π

1

t

∫ ∞
−∞
|q′(1/t+ jω)|dω =

e

2π
Re(s)‖q′(Re(s) + j·)‖1.

Since by [49] and [32] we have ‖q′‖1 ≤ 2πn‖q‖∞, we find

|ξTCeAtBη| ≤ enRe(s) sup
ω
|ξTC((Re(s) + jω)I − A)−1Bη|

≤ en sup
Re(s)>0

Re(s)|ξTC(sI − A)−1Bη|,

so that taking the supremum over ‖ξ‖2 = 1, ‖η‖2 = 1 gives the right hand estimate. �

4.2. Attainment of the Kreiss lower bound. The fact that K(A) and M0(A) attain
their common global lower bound K = M0 = 1 for contraction semi-groups eAt in the
spectral norm rises the question whether the situation for K(G) and M0(G) is similar.
This is investigated in the present section. In particular, we ask whether a gap between
K(G), M0(G) and their lower bound can still be attributed to non-normal behavior of
the system A-matrix.

Proposition 2. We have the lower bound σ(CB) ≤ K(G) ≤M0(G).

Proof: For x > 0 we have K(G) ≥ xσ(C(xI −A)−1B) = σ(Cx(xI −A)−1B), and since
the matrix x(xI−A)−1 approaches I as x→∞, we get the lower bound σ(CB) all right. �

For G = (sI − A)−1 this reproduces the bound K(A) ≥ 1, which as we know is
attained when eAt is a contraction in the spectral norm, and in particular, for normal
matrices. The question is therefore whether, or for which systems G = (A,B,C), the
bound σ(CB) is attained. It is clear from Proposition 2 that M0(G) = σ(CB) implies
equality σ(CB) = K(G) =M0(G). However, in the matrix case the reverse argument is
also true, i.e., K(A) = 1 implies M0(A) = 1 as a consequence of the Hille-Yosida theorem
[51]. The analogous result for systems is no longer valid.

Example 1. If we consider a stable SISO system

G(s) =
cn−1s

n−1 + · · ·+ c0
sn + an−1sn−1 + · · ·+ a0

then in controllable companion form

A =


0 1 0 . . . 0
0 0 1

. . .
. . .

0 0 . . . 1
−a0 −a1 −an−1

 , B =


0
...
0
1

 , C = [c0 . . . cn−1].

If the degree of the numerator is n − 1, then we can normalize by taking the system
G/cn−1, then σ(CB) = 1, and we may ask whether there are choices of the ai, ci where
this bound is attained. However, if the degree of the numerator is ≤ n − 2, then always
CB = 0, so here the lower bound is never attained.

This leaves now two situations. In case σ(CB) = 0 one may wonder under what
conditions K(G) =M0(G) > 0 is satisfied, and whether this holds under normality of A.
On the other hand, when σ(CB) > 0 one may ask under what conditions the lower bound
is attained, whether attainment σ(CB) = K(G) implies attainment σ(CB) = M0(G),
and again, whether this is linked to normality of A.
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The following example shows that in the case σ(CB) = 0, normality of A is no longer
the correct answer.

Example 2. Take C = [1 1], B =

[
1
−1

]
, A =

[
−λ 0
0 −µ

]
with 0 < λ < µ. Then

σ(CB) = 0, but CeAtB = e−λt − e−µt 6= 0 for t > 0, so that M0(G) > 0, and by the
Kreiss matrix theorem we also have K(G) > 0. This also means that neitherM0 not K
are monotone in t. For λ = 1, µ = 2 we obtain K(G) = 0.1716 <M0(G) = 0.25,

In case σ(CB) > 0, the situation is also fairly unsettled, as the following examples
underline.

Example 3. Take B = [0 0 1]T , C = [1 1 1], a0 = 0.9608, a1 = 1, a2 = 1, in the
controllable companion form above, which gives G = (s2+s+1)/(s3+s2+s+0.9608), then
|CB| = 1, K(G) =M0(G) = 1. Here the lower bound is attained, while K((sI−A)−1) =
1.17,M0((sI−A)−1) = 1.43, thus with A not a contraction, and in particular, not normal.

Example 4. Now we give an example where K(G) = σ(CB) = 1, but K(G) <M0(G).
Take A = [−q, p; 0,−q], B = [b1; b2], C = [c1, c2] with b1c1 + b2c2 = 1. Then with the
choices q = 0.6509, p = 0.8746, C = [−19.5450,−19.1251], B = [−0.2592; 0.2126], we get
K(G) = 1 <M0(G) = 1.72. This situation may also arise with normal A.

Example 5. Example 4 can be used to analyze the special case considered in [6], where
the C-matrix is J = [In, 0] and the B-matrix is JT . Starting out from the system in
Example 4, we have to find a regular 2 × 2 matrix T such that CT−1 = [1, 0] = J and
TB = [1; 0] = JT . That requires t11 = c1, t12 = c2 and c1b1 + c2b2 = 1. Moreover, we need
to fix t21, t22 such that t21b1 + t22b2 = 0. That gives for b1 6= 0:

T =

[
c1 c2
− t22b2

b1
t22

]
which is regular for t22 6= 0. Now G = CeAtB = CT−1TeAtT−1TB = JeTAT

−1tJT , where
A is as in the previous example. Then we have 1 = K(G) < M0(G), so the special
structure C = BT = J used in [6] does not help.

Remark 4. Reference [52] gives conditions, under which any induced system norm attains
the value σ(CB). Since this applies toM0(G), this case gives attainment.

4.3. Numerical abscissa. Hausdorff’s numerical abscissa ω(A) satisfies ‖etA‖ ≤ eω(A)t,
hence etA is a contraction semigroup iff ω(A) ≤ 0. Since ω(A) = d

dt
‖etA‖

∣∣∣
t=0

, the slope

of the curve t 7→ ‖etA‖ at t = 0 in the matrix case conveys global information on the
entire curve, and the semigroup etA. This is why in the fluid flow literature it has been
suggested that minimizing ω(Acl) in closed loop might be a way to prevent transition
to turbulence [24, 53, 35, 54, 55, 25]. Due to ω(A) = 1

2
λ(A + AT ) this would have the

additional advantage of being an eigenvalue optimization problem, easier to handle than
(9). However, in [6] we demonstrated that minimizing ω(Acl) in closed loop does not have
the desired effect of reducing transients.

Nonetheless, it is worthwhile to extend ω(A) to systems as ω(G) = d
dt
‖CetAB‖

∣∣∣
t=0

,
because then ω(G) ≤ 0 continues to be a necessary condition for attainment M0(G) =
σ(CB). However, unlike the matrix case, it is no longer sufficient. Before showing this,
we address necessity of attainment for the Kreiss norm:

Proposition 3. A necessary condition for attainment of the lower bound K(G) = σ(CB)
is λ(Y + Y T ) ≤ 0, where Y = QTCABBTCT , and where the columns of Q form an
orthonormal basis of the maximum eigenspace of CBBTCT .
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Proof: Let A(η) = η
2−ηA − I and put G(η, s) = C(sI − A(η))−1B, then (8) can be re-

written as K(G) = maxη∈[0,2] ‖G(η, ·)‖∞. Now η = 0 contributes the value σ(CB) to the
maximum over η ∈ [0, 2], because A(0) = −I, and therefore G(0, s) = C(sI−A(0))−1B =
(s + 1)−1CB, hence ‖G(0, ·)‖∞ = maxω |(jω + 1)−1|σ(CB) = σ(CB), attained at the
single frequency ω = 0. In consequence, due to our hypothesis K(G) = σ(CB) > 0, the
slope of φ : η 7→ ‖G(η, ·)‖∞ at η = 0 must be non-positive, as otherwise ‖G(η, ·)‖∞ =
‖C(sI − A(η))−1B‖∞ would attain values > σ(CB) for some small η > 0.

To compute φ′(0), observe that since ‖G(0, ·)‖∞ is attained at the single frequency
ω = 0, we have

φ′(0) = ‖ · ‖∞′(G(η, ·), d
dη
G(η, ·))

∣∣∣
η=0

= σ′(G(η, j0), d
dη
G(η, j0))

∣∣∣
η=0

= σ′(CB,−C(A(η)−1 d
dη
A(η)A(η)−1)B)

∣∣∣
η=0

= σ′(CB,C 1
2
AB)

= 1
4
λ(QH(CAB)P + PH(BTATCT )Q)

=
1

4σ(CB)
λ(QHC(ABBT +BBTAT )CTQ),

where the second line uses d
dη

[A(η)−1] = −A(η)−1 d
dη
A(η)A(η)−1 = −A(η)−1 2

(2−η)2AA(η)−1,
which at η = 0 gives −1

2
A, whereas the third line uses Lemma 4 based on a SVD

G(0, 0) = CB =
[
Q R

] [σ(CB)I
Σ

] [
P T

T T

]
. The last line follows by re-substituting

QHCB = σ(CB)PH . �

Note that this leads back to ω(A) ≤ 0 for C = B = In.

Lemma 3. The Clarke subdifferential of the maximum singular value function is ∂σ(G) =

{QY PH : Y � 0,Tr(Y ) = 1}, where G =
[
Q R

] [σ(G)
Σ

] [
PH

TH

]
is a SVD of G.

Proof: From σ(G)2 = λ(GGH) we get 2σ(G)∂σ(G) = F ′(G)∗∂λ(F (G)), where F :
Mn,m → Sm is the mapping F (X) = XXH . Now ∂λ(GGH) = {QY QH : Y � 0,Tr(Y ) =
1}, where the columns of Q in the SVD form an orthonormal basis of the maximum
eigenspace of GGH . Furthermore, F ′(G)D = GDH+DGH , hence for a test vector S ∈ Sm
we have by the definition of the adjoint 〈D,F ′(G)∗S〉 = 〈F ′(G)D,S〉 = Re TrS(GDH +
DGH) = 2Re TrSDGH = 2Re Tr (SG)HD = 〈D, 2SG〉, so that the action of the ad-
joint is F ′(G)∗S = 2SG. On substituting S = QY QH ∈ ∂λ(GGH), we obtain ∂σ(G) =

1
2σ(G)
{2QY QHG : Y � 0,Tr(Y ) = 1}. Now since QHG = σ(G)PH from the SVD, we

obtain the claimed ∂σ(G) = {QY PH : Y � 0,Tr(Y ) = 1}. �

Lemma 4. The Clarke directional derivative is σ′(G,D) = 1
2
λ(QHDP + PHDHQ).

Proof: We have σ′(G,D) = max{〈Φ, D〉 : Φ ∈ ∂σ(G)} = max{Re Tr ΦHD : Φ ∈
∂σ(G)} = max{Re TrPY QHD : Y � 0, tr(Y ) = 1} = max{1

2
Re TrY (QHDP+PHDHQ) :

Y � 0,Tr(Y ) = 1} = 1
2
λ(QHDP + PHDHQ). �

On re-substituting QHG = σ(G)PH , we can also write this in the form σ′(G,D) =
1

2σ(G)
λ(QHDGHQ+QHGDHQ) = 1

2σ(G)
λ(QH

[
DGH +GDH

]
Q).

The following is now a consequence of the finite maximum rule for the subdifferential
[31, Prop. 2.3.12], along with a non-smooth chain rule [31, Sect. 2.8]. A similar argument
was already used in [45, Sect. III], [56, Sect. 4 and 6], and [46, Thm. 3.2].
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Lemma 5. Suppose ‖G‖∞ is attained at the finitely many frequencies ω1, . . . , ωr. Then
∂‖ · ‖∞(G) = {

∑r
k=1QkYkP

H
k : Yk � 0,

∑r
k=1 Tr(Yk) = 1}, where for every k we let

G(jωk) =
[
Qk Rk

]
diag(‖G‖∞,Σk)

[
Pk Tk

]H be a SVD of G(jωk). �

One also immediately gets the following description of the Clarke directional derivative
of the H∞-norm:

Lemma 6. Suppose ‖G‖∞ is attained at the finitely many frequencies ω1, . . . , ωr. Then
‖ · ‖′∞(G,D) = max

k=1,...,r

1
2
λ(QH

k DPk + PH
k D

HQk), with Pk, Qk the same as above. �

Remark 5. Formulas for subgradients and directional derivatives of the H∞-norm have
first been given in [56, 57, 45, 46]. Using the SVD as in Lemma 3 is numerically preferable
to formulas using the subdifferential ∂λ directly, and we exploited this favorably in the
implementation of hinfstruct and systune [58].

Corollary 1. Condition λ(Y + Y T ) ≤ 0 is also necessary for attainment of the lower
boundM0(G) = σ(CB). Moreover, when C = B = In, this condition is also sufficient.

Proof: The first part of the statement follows from (2) in tandem with Proposition
3. One may also obtain it directly by computing d

dt
‖CetAB‖

∣∣∣
t=0

= σ′(CB,CAB) =

1
2σ(CB)

λ(QT (CABBTCT + CBBTATCT )Q) = 1
2σ(CB)

λ(Y + Y T ) using Lemma 4.
For C = B = In we have Q = In, hence λ(Y +Y T ) = λ(A+AT ) = 2ω(A), but ω(A) ≤ 0

is the classical necessary and sufficient condition for a contraction semi-group. �

Example 6. Now we show that the necessary condition λ(Y + Y T ) ≤ 0 is generally
not sufficient, which contrasts with the case C = B = In, where this is true. We take

A =

[
0 1
−6 −5

]
, B =

[
0
1

]
, C =

[
−10 1

]
, where one gets 1 = σ(CB) = K(G) <

M0(G) = 1.5148, ω(G) = −30 with λ(Y + Y T ) = −30, confirming that the condition
is necessary for attainment of the Kreiss norm, but not sufficient for attainment of the
transient amplification.

Another case is A =

[
0 1
−5 −1

]
, B =

[
0
1

]
, C =

[
−8 1

]
, which gives σ(CB) = 1 <

K(G) = 1.13 with λ(Y + Y T ) = −18, showing that the condition is neither sufficient for
attainment of the Kreiss norm, nor of transient amplification.

We do not know whether there are cases with σ(CB) < K(G) =M0(G).

5. More system norms for transients

In this Section we consider several alternatives to the worst case peak norm and the
Kreiss norm as its frequency approximation. Computability and use for optimization are
primordial criteria. Persistent perturbations and noise are discussed in .

5.1. L1 → L∞ system norm with euclidean vector norm. The discussion in Section
4.1 considersM0(G) as induced operator norm G : (L1, ‖ · ‖1,2)→ (L∞, ‖ · ‖∞,2), with the
`2-norm as vector norm. However, (13) shows that other choices of vector norms could
lead to numerically exploitable expressions K,M. Choosing test vectors ξ ∈ `p′ , η ∈ `r
gives

sup
Re(s)>0

Re(s)‖C(sI − A)−1B‖r,p ≤ sup
t≥0
‖CeAtB‖r,p,

where ‖M‖r,p is the `p → `r induced matrix norm. This may lead to other criteria
compatible with the goal to sensing L1 → L∞ amplification. Tractable expressions are
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obtained e.g. for p = 1, r = ∞, which corresponds to taking ξ ∈ `1, η ∈ `1. Here we get
the estimate

sup
Re(s)>0

max
ik

∣∣ciRe(s)(sI − A)−1bk
∣∣ ≤ sup

t≥0
max
ik

∣∣cieAtbk∣∣
which reads as

max
ik
K(cie

A•bk) ≤ max
ik
M0(cie

A•bk)

with a finite maximum of SISO Kreiss constants and transient growth norms involved.
This practical entry-wise Kreiss norm offers potential to weigh some channels more than
others. The upper bound ofM0 is again enmaxikK(cie

A•bk) from Theorem 2.

5.2. L1 → L∞ system norm with `∞-vector norm. Now take (10), but with |ξ|∞ ≤
1, |η|∞ ≤ 1. We get on the right

|ξT (CeAtB)η| ≤ ‖(CeAtB)η‖1 ≤ ‖CeAtB‖1,∞
because the dual norm to `∞ is `1. However, this norm is not very helpful for matrices
with large dimension m, because for A ∈ Rm×n, we have:

‖A‖1,∞ = max
r∈{−1,1}m

‖Ar‖1,

where {−1, 1}m are m-vectors of ±1 entries. With the above technique, we easily get the
following estimate

max
r∈{−1,1}m

K(Gr) ≤ max
r∈{−1,1}m

M0(Gr).

5.3. Peak-to-peak norm for persistent perturbations. In this section, we discuss
the choice p =∞, q = r = 1 in Young’s inequality (10), which will allow us to address the
case of persistent perturbations w in (3), when for an input ‖w‖∞,∞ ≤ 1, we measure the
response by the same signal norm ‖G∗w‖∞,∞. For test vectors ξ, η and a one-dimensional
signal u we get from (10)

|ξTC(sI − A)−1Bη u(s)| ≤ ‖e−st‖∞‖ξTCeAtBη‖1‖u‖1 = ‖ξTCeAtBη‖1‖u‖1.
Letting the scalar signal u(t) of unit L1-norm approach the δ-distribution, we get

|ξTC(sI − A)−1Bη| ≤ ‖ξTCeAtBη‖1 =

∫ ∞
0

|ξTCeAtBη|dt.

Now let m be the number of outputs, p the number of inputs, and let gik(t) be the entries
of the matrix CeAtB, then with ‖ξ‖2 ≤ 1 and ‖η‖2 ≤ 1 we get∫ ∞

0

|ξTCeAtBη|dt =

∫ ∞
0

∣∣∣∣∣
m∑
i=1

p∑
k=1

ξigik(t)ηk

∣∣∣∣∣ dt
≤

m∑
i=1

|ξi|
p∑

k=1

|ηk|
∫ ∞
0

|gik(t)|dt

=
m∑
i=1

|ξi|
p∑

k=1

‖gik‖1|ηk|

≤

(
m∑
i=1

|ξi|2
)1/2

 m∑
i=1

(
p∑

k=1

‖gik‖1|ηk|

)2
1/2

≤

m max
i=1,...,m

(
p∑

k=1

‖gik‖1

)2
1/2

=
√
m max

i=1,...,m

p∑
k=1

‖gik‖1.
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When we recall that the time-domain peak-to-peak, or peak-gain, system norm is defined
as

‖G‖pk_gn = max
u6=0

‖G ∗ u‖∞,∞
‖u‖∞,∞

= max
i=1,...,m

p∑
j=1

‖gij(t)‖1,

then we have shown the estimate ‖G‖∞ ≤
√
m‖G‖pk_gn for a system G with m outputs.

The estimate remains true for more general systems with gik ∈ L1([0,∞),Rn), and even
for (m× p)-valued Radon measures, allowing to include the case of direct transmissions.
In the matrix case ‖ · ‖pk_gn reduces to the maximum row sum norm, i.e. the induced
matrix norm `∞ − `∞.

Let us now look at the reverse estimate, which is analogous to the right-hand estimate
in the Kreiss matrix theorem (Theorem 2). Consider a stable finite-dimensional strictly
proper system.

G :

{
ẋ = Ax+Bu
y = Cx

where G(t) = CeAtB. Let gij(t) = cie
Atbj, where ci is the ith row of C, bj the jth column

of B, then ‖G‖pk_gn = maxi=1,...,m

∑p
j=1 ‖gij‖1 =

∑p
j=1 ‖cieAtbj‖1 for some i.

We now relate the peak-gain norm to the Hankel singular values of G. The following
was proved in the SISO case p = m = 1 in [59, Thm. 2] for discrete systems, and in [60,
pp. 11-12] for continuous SISO systems, where in the latter reference the idea of proof is
attributed to I. Gohberg.

Lemma 7. Let G be real-rational, strictly proper and stable, with p outputs and McMillan
degree n. Then

‖G‖pk_gn ≤ 2p1/2 (σH1 + · · ·+ σHn) , (15)
where σHi are the Hankel singular values of G. In particular, ‖G‖pk_gn ≤ 2np1/2‖G‖∞.

Proof: We have for the i ∈ {1, . . . ,m} where the maximum is attained

‖G‖pk_gn =

p∑
j=1

‖cieAtbj‖1 = 2

p∑
j=1

∫ ∞
0

∣∣cie2Aτbj∣∣ dτ
= 2

∫ ∞
0

p∑
j=1

∣∣∣(eAT tcTi )T (eAtbj)
∣∣∣ dt

≤ 2

(∫ ∞
0

p∑
j=1

‖eAT tcTi ‖22dt

)1/2(∫ ∞
0

p∑
j=1

‖eAtbj‖22dt

)1/2

= 2p1/2
(∫ ∞

0

Tr(eA
T tcTi cie

At)dt

)1/2
(∫ ∞

0

p∑
j=1

Tr(eAtbjb
T
j e

AT t)dt

)1/2

= 2p1/2
(∫ ∞

0

Tr(eA
T tcTi cie

At)dt

)1/2(∫ ∞
0

Tr(eAtBBT eA
T t)dt

)1/2

.

Recall that the observability and controllability Gramians of the system G are

Wo =

∫ ∞
0

eA
T tCTCeAtdt, Wc =

∫ ∞
0

eAtBBT eA
T tdt.

Now Tr
∫∞
0
eA

T tcTi cie
Atdt ≤ Tr

∫∞
0
eA

T tCTCeAtdt follows from cTi ci � CTC by applying
a congruence transformation with eAt. Hence ‖G‖pk_gn ≤ 2p1/2 [Tr(Wo)Tr(Wc)]

1/2. Now
if we take a balanced realization, then Wo = Wc = diag(σH1, . . . , σHn) for the Hankel
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singular values σH1 ≥ · · · ≥ σHn, hence ‖G‖pk_gn ≤ 2
√
p(σH1 + · · ·+ σHn) ≤ 2p1/2nσH1 ≤

2p1/2n‖G‖∞ for a system without direct transmission. This uses σH1 ≤ ‖G‖∞. �

Note, however, that by the Enns-Glover bound we have

‖G‖∞ ≥ max{σ(D), σH1}

for the maximum Hankel singular value σH1 of G = (A,B,C,D), so our estimate holds
also for systems with direct transmission. Indeed, if we define the Hankel semi-norm of a
system G as

‖G‖H = sup

{
‖G ∗ u‖L2(T,∞)

‖u‖L2[0,T ]

: T > 0, u ∈ L2[0,∞)

}
,

then ‖G‖H = σH1 for the maximum Hankel singular value. But with this formulation, it
is immediate that ‖G‖H ≤ ‖G‖∞, when we recall that ‖G‖∞ is the L2-operator norm.

Therefore we get for a system with direct transmission

‖G‖pk_gn ≤ ‖G−D‖pk_gn + |||D|||∞ ≤ 2p1/2nσH1 + p1/2σ(D) ≤ (2n+ 1)p1/2‖G‖∞

using the fact that σH1 ≤ ‖G‖∞ and σ(D) ≤ ‖G‖∞. Here |||D|||∞ is the maximum row
sum norm maxi

∑
j |dij|, which is the `∞ − `∞ induced matrix norm satisfying |||D|||∞ ≤

p1/2σ(D). Altogether, we have proved the following estimates for the H∞- and peak-gain
norms stated in [61]:

Theorem 3. Let G be a stable real-rational system with n poles, p inputs and m outputs.
Then

m−1/2‖G‖∞ ≤ ‖G‖pk_gn ≤ (2n+ 1)p1/2‖G‖∞.

A large variety of synthesis experiments based on the peak-gain norm ‖G‖pk_gn has
been presented in [61], so that our experiments here may focus on L1-disturbances.

5.4. Noise as perturbation. In this section we consider the case w ∈ L2, G ∗ w ∈ L∞,
where we can rely on [30]. Consider for instance ‖G‖(∞,2)(2,2) = λmax(CQC

T ), where
Q � 0 is the unique solution of the Lyapunov equation AQ + QAT + BBT = 0. This
norm can be optimized directly using a technique similar to [62].

Organization of the applications

In the following, we present applications illustrating the use of the Kreiss system norm
for both analysis and feedback control design. The methods are general and can be
applied to a wide range of nonlinear controlled systems. It should be emphasized that in
all tests the results are certified a posteriori, since Kreiss norm optimization itself relies
on a heuristic. The material is organized as follows:

Section 6: Kreiss norm minimization is applied to control nonlinear dynamics with
periodic orbits:
• a two-dimensional limit cycle (Section 6.1),
• a four-dimensional periodic orbit (Section 6.2).

Section 7: Nonlinear regimes in the Lorenz model are considered, including chaotic
(Section 7.1) and fixed points dynamics (Section 7.2). These are investigated
using:
• the QC approach (Sections 7.1.1, 7.2.1),
• Kreiss norm minimization (Sections 7.1.2, 7.2.2).
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6. Applications to nonlinear dynamics with periodic orbit attractors

6.1. Study of 2nd-order dynamics with limit cycle attractor. We start with the
model of Brunton and Noack [63], which is a low-order illustration of a dynamic mech-
anisms known in oscillator flow, observed for instance on a larger scale in Navier-Stokes
equations, see also [4]. Examples of this type include fluid flow around a cavity or a
cylinder [64, 65]. The model is of the form

ẋ =

[
σu −ωu
ωu σu

]
x+Bww +Bu, x ∈ Rn, n = 2

w = φ(x)
y = Cx

, (16)

with Bw := I, B := [0 g]T C := [0 1],

φ(x) := αu‖x‖2
[
−βu −γu
γu −βu

]
x ,

and αu, βu > 0. Signals u and y are control input and measured output, respectively. It
is easy to verify that the triple (A,B,C) is stabilizable and detectable.

Unlike transitional amplifier flows, oscillator flows are characterized by an unstable
fixed point at the origin and a globally attractive limit cycle, here with radius

√
σu/αuβu.

This is shown in Fig. 1 for two initial conditions inside and outside the asymptotic limit
cycle for data αu = 1, βu = 1, ωu = 1, γu = 0, σu = 0.1 and g = 1.

The goal is to compute a feedback controller u = K(s)y with two main design re-
quirements. Firstly, K has to stabilize the origin, often called the base flow. Secondly,
trajectories trapped in the limit cycle should be driven back to the origin with limited
oscillations. Additional insight into this model in terms of fluid flow interpretation can
be found in [63].

In order to mitigate the effects of nonlinearity, we minimize the Kreiss system norm in
closed loop. This leads to the following min-max constrained program

minimize max
δ∈[−1,1]

∥∥∥JT (sI − (1−δ1+δ
Acl(K)− I

))−1
J
∥∥∥
∞

subject to K robustly stabilizing, K ∈ K
α(Acl(K)) ≤ −η
‖W (s)GK(I +GK)−1‖∞ ≤ 1 .

(17)

Here K ∈ K means that the controller has a prescribed structure, which could be a PID,
observed-based or low-order controller, a decentralized controller, as well as any control
architecture assembling simple control components. The robust stability constraint on
K in (17) demands stability of the entire set of matrices

{
1−δ
1+δ

Acl − I : δ ∈ [−1, 1]
}
, and

in particular, for δ = 0 that of Acl(K). Matrix J is a restriction matrix to the space
of physical plant states since transient amplification of controller states is not relevant.
We have J := In with n the plant state dimension for a static feedback controller and
J := [In, 0n×nK ]T for an nK-order output-feedback controller (see also example 5). In
terms of dimension, we have n = 2, nK = 3 when K is a 3rd-order controller, pz = 2 since
z = x, mw = 2 for w = φ(z), and p = m = 1. The overall state dimension is therefore
N = n + nK + nW = 7 in closed loop for a 3rd-order controller and 2nd-order filter W .
The latter is used to weigh the noise to measurement transfer T := GK(I +GK)−1.

The notation α(·) refers to the spectral abscissa, and the constraint α(Acl) ≤ −η in
(17) therefore imposes a convergence rate to the origin for the linear dynamics in closed
loop. In our experiments we have chosen η = 0.1.
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Figure 1. Limit cycle attractor of Brunton and Noack model

These constraints are readily implemented from the closed-loop nonlinear system:

ẋcl = Aclxcl +Bw,clφcl(xcl), xcl := [xT , xTK ]T , (18)

where

Acl :=

[
A+BDKC BCK

BKC AK

]
, φcl(xcl) := φ(x), Bw,cl := J = [I2, 02×nK ]T , (19)

and where the controller dynamics are{
ẋK = AKxK +BKy, xK ∈ RnK

u = CKxK +DKy
. (20)

We exclude high-gain feedback in the high-frequency range by adding a constraint on the
complementary sensitivity function ‖WT‖∞ ≤ 1, where W is a high-pass weighting filter
W (s) := (1e06s2 + 1e04s+ 24.99)/(s2 + 10000s+ 2.5e07).

Program (17) was solved for controller orders: 0, 1 and 3. All controllers achieve nearly
the same Kreiss norm of 1.005, but differ in terms of the remaining performance/robustness
constraints. This is seen by plotting transient amplifications versus time in Fig. 2. Peak
values M0(J

T (sI − Acl)
−1J) are all close to 1.10 with ‖JTJ‖ = 1 as lower bound, see

Proposition 2.
The static controller K = −0.20 gives a spectral abscissa of α(Acl) = −1.9899e-04

with badly damped modes and a strong roll-off violation of ‖WT‖∞ = 20.03. The 1st-
order controller K(s) = (0.001071s− 2.247)/(s+ 1.483) meets the roll-off constraint and
achieves a decay rate constraints α(Acl) = −0.393. As expected, the 3rd-order controller
K(s) = (−0.008068s3 − 6.391s2 + 83.2s− 1673)/(s3 + 27.97s2 + 252.8s + 1333) provides
the best results in terms of decay rate α(Acl) = −0.811.

Simulations in closed loop for identical initial conditions are given in Fig. 3. Controllers
are switched on at t = 50 seconds when the limit cycle is well engaged. The static
controller leads to a spiral trajectory barely converging to the origin, a stint which is
overcome by increasing the controller order.

Global stability of the origin is established in appendix A.

6.2. Study of fourth-order dynamics with 4D periodic orbit attractor. The
fourth-order model of Brunton and Noack is described as
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Figure 2. From left to right, time evolution of transient amplification for
static, 1st-order and 3rd-order controller
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Figure 3. From left to right, closed-loop free responses for static, 1st-order
and 3rd-order controller

 ẋ = Ax+Bww +Bu, x ∈ Rn, n = 4
w = φ(x)
y = Cx

, (21)

with
φ(x) := (αu(x

2
1 + x22)A5 + αa(x

2
3 + x24)A6))x

where

A := diag
([

σu −ωu
ωu σu

]
,

[
σa −ωa
ωa σa

])
, Bw := I, B := [0 g 0 g]T , C := [1 0 1 0],

A5 := diag
([
−βuu −γuu
γuu −βuu

]
,

[
−βau −γau
γau −βau

])
, A6 := diag

([
−βua −γua
γua −βua

]
,

[
−βaa −γaa
γaa −βaa

])
,

with data given in [63]. In this application, we have n = 4, nK = 1 for a 1st-order
controller, pz = 4 since z = x, mw = 4 for w = φ(z), and p = m = 1. The overall state
dimension is therefore n+ nK + nW = 4 + 1 + 2 = 7 for a 2nd-order filter W .
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The open-loop dynamics are characterized by an unstable fixed point at the origin
and an attractive 4D periodic orbit. A 1st-order controller is computed to minimize the
Kreiss norm as in program (17). The roll-off filterW is unchanged. The optimal controller
K(s) := (0.03538s− 0.5306)/(s+ 0.667) achieves a Kreiss norm of 1.004 with decay rate
and roll-off constraints all met.

Despite the apparent complexity of the dynamics, experience shows that it is possible
to bring points of the periodic orbit back to the origin with a fairly large class of linear
controllers. As an instance, a controller designed using a mixed-sensitivity approach
[66, p. 141] with weight W1 := 0.001s+5

s+0.05
for S and W as above for T also drives points

from the periodic orbit to the origin. A 1st-order controller of this type was obtained as
K(s) := (34.31s+168.1)/(s+32.47) with a closed-loop Kreiss constant of 1.54. Simulations
show that closed-loop trajectories undergo large deviations before heading back to the
origin. See Fig. 4. This remains risky, as attractors when still present may capture
trajectories. The controller based on the Kreiss norm corrects such undesirable transients
as corroborated in Figs. 4 and 5, where worst-case transients have been plotted. Finally,
all controllers globally stabilize the origin and this can be established as was done for the
2nd-order system in appendix A.

7. Applications to nonlinear dynamics with chaos and fixed points

In this section, we consider suppression of undesirable nonlinear regimes such as chaos
and fixed points for the Lorenz model.

7.1. Study of the Lorenz system with chaotic attractor. The Lorenz system [67]
has three coupled first-order nonlinear differential equations

 ẋ1 = p(x2 − x1)
ẋ2 = Rx1 − x2 − x1x3
ẋ3 = −bx3 + x1x2 ,

(22)

where p, R, and b are given parameters. In this study, we will use p = 10 and b = 1, while
R will be varied to illustrate different nonlinear asymptotic regimes. To begin with, we
take R = 28, where the Lorenz model has three unstable fixed points with coordinates

(0, 0, 0), (
√
R− 1,

√
R− 1, R− 1), (−

√
R− 1,−

√
R− 1, R− 1) . (23)

For any initial condition x(0) = x0, a repelling effect of these fixed points is observed and
trajectories are quickly captured by a chaotic attractor of double-scroll type, shown in
Fig. 6.

Our feedback goal is therefore suppression of the chaotic attractor and stabilization of
the origin through various feedback control strategies. We complement (22) by adding ac-
tuation and sensing, letting B = [0, 1, 0]T and discussing several cases C, where (A,B,C)
is stabilizable and detectable. The Lorenz model is then rewritten as ẋ = Ax+Bww +Bu, x ∈ Rn, n = 3

w = φ(x)
y = Cx ,

(24)

where u is the control input, y the measurement output. Matrix A collects the linear
terms in (22), φ(x) := [−x1x3, x1x2]T the nonlinearity, and Bw := [02×1, I2]

T . As observed
before, the origin is unstable in the absence of feedback.

In this example, n = 3, pz = 3 since z = x, mw = 2 for w = φ(z) and m = 1. The
number of measurements p depends on the control strategy used. We get p = 1 when a



KREISS SYSTEM NORM 19

Figure 4. Brunton and Noack model. Free open- and closed-loop re-
sponses projected in (x1, x2, x3)-space with 1st-order controllers. Top:
Kreiss controller. Bottom: mixed-sensitivity controller.

single measurement is used and p = 3 for full state measurement y = x. As before, we
also investigate various controller orders nK .

When a linear feedback controller u = K(s)y is used with{
ẋK = AKxK +BKy, xK ∈ RnK

u = CKxK +DKy ,
(25)

the Lorenz model in closed loop becomes:

ẋcl = Aclxcl +Bw,clφcl(xcl), xcl := [xT , xTK ]T , (26)
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Figure 5. Brunton and Noack model. Transient amplifications. Left:
Kreiss controller. Right: mixed-sensitivity controller.

Figure 6. Double-Scroll chaotic attractor of the Lorenz model
Response to state initial condition.

where

Acl :=

[
A+BDKC BCK

BKC AK

]
, φcl(xcl) := φ(x), Bw,cl := [02×1, I2, 02×nK ]T . (27)

7.1.1. Chaos dynamics: design with the QC approach . Here we assess the stability prop-
erties of the closed loop (26) using the Lyapunov Quadratic Constraints (QC) approach
of [22, 21, 68].

A particularity of the Lorenz system is the so-called lossless property

xTclBw,clw = 0 for all xcl, w = φ(x) , (28)

which holds globally in state space. The QC approach to stability analysis now relies
on the existence of a Lyapunov function V (xcl) = xTclXclxcl, with Xcl a positive definite
matrix, such that

V̇ (xcl) ≤ −εV (xcl), ε > 0
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for all xcl, w such that the quadratic constraint in (28), when disregarding w = φ(x),
holds. This is clearly a sufficient possibly conservative condition because of the chosen
quadratic in V (xcl), and also because the specific dependence of w on the states x is
ignored. Using a S-procedure argument [21, 27] to aggregate the lossless constraint (28),
this is rewritten as

V̇ (xcl) + µ0x
T
clBw,clw ≤ −εV (xcl)

for all xcl, w, where µ0 is a S-procedure parameter (sometimes called a Lagrange mul-
tiplier), which here is unsigned, as the constraint (28) is an equality. The following
equivalent matrix inequality constraints are obtained:[

ATclXcl +XclAcl + εXcl XclBw,cl + µ0Bw,cl

BT
w,clXcl + µ0B

T
w,cl 0

]
� 0, Xcl � 0 . (29)

We have the following:

Theorem 4. There exist a linear time-invariant controller (25) such that the sufficient
global stability conditions (29) hold, if and only if there exist solutions X = XT and
Y = Y T in R(n−nφ)×(n−nφ) to the following LMIs:

NT
C

(
AT
[
X 0
0 I

]
+

[
X 0
0 I

]
A+ ε

[
X 0
0 I

])
NC ≺ 0

NT
B

(
A

[
Y 0
0 I

]
+

[
Y 0
0 I

]
AT + ε

[
Y 0
0 I

])
NB ≺ 0

X 0 I 0
0 I 0 I
I 0 Y 0
0 I 0 I

 � 0 ,

(30)

where NC and NB are bases of the null space of C and BT , respectively.
Moreover, the controller order is determined by the rank of In−nφ − XY with nφ the

vector dimension of the nonlinearity.

Proof: See appendix B.

Note that Theorem 4 applies to any nonlinear system with similar structure for which
(28) holds.

For the Lorenz model, we have a loss of rank of at least nφ = 2, the vector dimension
of the nonlinearity. For the QC approach this means that controllers can have order at
most n − nφ = 1. For problems with nonlinearity of dimension n, the plant order, only
static output feedback controllers can be computed. In that case the BMI (38) reduces
to the LMI feasibility problem:

(A+BKC)T + (A+BKC) ≺ 0 ,

or equivalently, to minimization of the numerical abscissa ω(A + BKC), defined as
ω(M) := 1/2λmax(M + MT ). This is in line with the results in [21] for transitional
flow studies. On the other end, when nφ = 0, the plant is linear and the controller can
be of full order. The last step is construction of the controller given X and Y from (30),
which is standard and found in [69].

Application to the Lorenz model with x− 1-measurement, yields a 1st-order controller
K(s) = −(306.5 + 2809)/(s + 0.1044). Simulation in closed loop is shown in Fig. 7 (top
left corner). The feedback controller is switched on after 15 seconds, when the chaotic
regime is well engaged.
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Characterization of state-feedback controllers is easily derived from the second projec-
tion LMI in (30), or using u = Kx and C = I in the BMI (29):

(A+BK)T diag(X, I) + (.)T ≺ −ε diag(X, I), X � 0 , (31)

or equivalently, using a congruence transformation diag(Y, I) = diag(X, I)−1, on the left-
and right-hand sides of the first matrix inequality in (31)

(A+BK) diag(Y, I) + (.)T ≺ −ε diag(Y, I), Y � 0 . (32)

The constraint (32) is turned into an LMI feasibility program using the standard change
of variable V := K diag(Y, I):

A diag(Y, I) +BV + (.)T ≺ −ε diag(Y, I), Y � 0 . (33)

All LMI characterizations derived so far can be solved by standard convex SDP software
as LMILab [58] or SeDuMi [70]. Solving (33) for the Lorenz model yields a globally sta-
bilizing state-feedback controller K = V diag(P11, I) = [−154, 400.245, 0]. A simulation is
shown in Fig. 7 top right.

The fact that the state-feedback controller does not use the x3-measurement suggests
that even simpler controller structures should be satisfactory, e.g. using static output
feedback in x1 or x2. For x1-measurement alone, we have C = [1, 0, 0] and the BMI
characterization is the same as in (31) with A + BKC replacing A + BK. For a scalar
K this is easily solved by sweeping an interval of K values and solving for the resulting
LMIs with K fixed. We obtain K = −27.01 with search interval [−100, 100]. Simulations
are displayed in Fig. 7, bottom left.

Similar results can be obtained with x2-measurement feedback alone. The gain value
is K = −27.01, and simulations are given in Fig. 7, bottom right.

7.1.2. Chaos dynamics: Kreiss norm minimization . We now investigate whether similar
results can be achieved with controllers minimizing the Kreiss system norm. Here we
follow a different strategy which is to decouple the linear dynamics ẋ = Ax from the
nonlinearity φ by way of mitigating transients due to initial conditions or L1 disturbances.
While this is a heuristic in the first place, it can of course in a second step be certified
rigorously using the same QC approach, now for analysis. This has the advantage that
BMIs are replaced by LMIs. In addition, the technique is applicable in a much more
general context beyond the Lorenz model as seen in sections 6.1 and 6.2 when the QC
approach turns out too conservative.

Controllers based on minimizing the Kreiss norm alone are computed through the fol-
lowing min-max program

minimize max
δ∈[−1,1]

∥∥∥JT (sI − (1−δ1+δ
Acl(K)− I

))−1
J
∥∥∥
∞

subject to K robustly stabilizing, K ∈ K ,
(34)

with the definitions already given for program (17).
Program (34) was solved for four controller structures: x1-measurement dynamic feed-

back, state feedback, static x1-measurement feedback, and x2-measurement feedback.
Controller gains were computed asK(s) = −(47.06s+715.7)/(s+17.95), [−41.07,−13.78, 0]
, −34.70 and −32.55, respectively. In each case a Kreiss constant of unit value with
M0(G) = 1 was achieved, meaning that the linear dynamics do no longer amplify tran-
sients in the Lorenz model. Note that unlike the matrix case, M0(G) = 1 cannot be
inferred directly from K(G) = 1, but can be certified a posteriori. Naturally, all con-
trollers have been tested for global stability of the Lorenz model, which for K fixed uses
the characterization in (29) and requires solving a convex SDP. Simulations are given in
Fig. 8.
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Figure 7. Suppression of Lorenz double-scroll chaotic attractor using QC approach
Top left: x1-measurement dynamic feedback, Top right: state feedback

Bottom left: : x1-measurement static feedback, Bottom right: : x2-measurement static
feedback

Open loop in blue: response to state initial condition. Closed loop in red: response
when controller is on.

7.2. Study of the Lorenz system with fixed points . For R < 1, the origin is the
only stable equilibrium of (22) and the Lorenz model is then globally stable. When the
Lorenz parameter is chosen as 1 < R < 17.5, the chaotic attractor disappears and is
replaced with fixed points. For instance, when R = 10, the Lorenz model has an unstable
fixed point at the origin and two stable fixed points given in (23). A typical illustration
of that situation is shown in Fig. 9. Trajectories with initial conditions arbitrarily close
to 0 are quickly captured by one of the fixed points.
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Figure 8. Suppression of Lorenz chaotic attractor using Kreiss norm min-
imization
Top left: x1-measurement dynamic feedback, Top right: state feedback

Bottom left: x1-measurement static feedback, Bottom right: : x2-measurement static
feedback

Open loop: blue curve, Closed loop: red curve.

Despite this quite different pattern of the attracting regime, synthesis proceeds along
similar lines as in section 7.1. We remove the undesirable fixed points and stabilize
the origin globally using static state-feedback, and dynamic and static output-feedback,
comparing QC approach and Kreiss norm minimization.

7.2.1. Fixed-point dynamics: design with the QC approach . As before, we start with
the QC approach. A state-feedback controller was computed as K = [−136.40, 0.24, 0].
Again the x3 measurement is not used. That leads us to computing static output feedback
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controllers given as K = −9.01 and K = −9.01 for the x1 and x2 measurements alone,
respectively. A dynamic 1st-order x1-measurement output feedback controller was com-
puted as K = −(288.5s+2807)/(s+0.104) based on Theorem 4. All computed controllers
globally stabilize the origin. This is illustrated in Fig. 10 for two initial conditions.

Figure 9. Lorenz model for 1 < R < 17.5
Unstable origin and two stable fixed points

7.2.2. Fixed-point dynamics: Kreiss system norm. Controllers with identical structure
were computed using Kreiss norm minimization. Dynamic 1st-order x1-measurement
output feedback, full state, x1-measurement and x2-measurement static feedback were
obtained as K = −(12.23s + 67.63)/(s + 5.541), K = [−4.47,−6.92, 0], K = −26.32 and
K = −11.53, respectively. All controllers were certified to stabilize the origin globally
through feasibility of the LMI (29). Simulations are shown in Fig. 11 and should be
compared to Fig. 10.

8. Conclusion

The idea to stabilize nonlinear systems in closed loop by mitigating transients of the
linearized closed loop was investigated, the rationale being that large transients are re-
sponsible for driving the nonlinear dynamics outside the region of local stability. Heuristic
approaches tailored to transients caused by noise, persistent perturbations, and finite con-
sumption disturbances were obtained, opening up new possibilities for analysis and control
of linear and nonlinear systems.

The time-domain worst case transient peak normM0(G) was identified as suitable to
assess transients caused by L1-disturbances. The Kreiss system norm K(G) was intro-
duced and studied as a frequency domain approximation ofM0(G), better suited for the
purpose of optimization due to its representation as a parametric robust control problem.
In each case the Kreiss-norm objective was effectively combined with other performance
and robustness specifications as used in practice, underlining its relevance. In our numer-
ical testing, Kreiss norm optimization was evaluated by matching it, in small to medium
size cases where possible, with a properly extended QC approach.

The Kreiss norm approach is particularly effective for plants with up to several hun-
dred states. This concerns the evaluation of Kreiss norm on the one hand, which has
polynomial complexity, but also feedback design, which is naturally more challenging,
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Figure 10. Suppression of fixed point attractors using QC approach
Top left: x1-measurement dynamic feedback, Top right: state feedback

Bottom left: : x1-measurement static feedback, Bottom right: : x2-measurement static
feedback

Open loop: blue curve. Closed loop: red curve.

but still manageable at such sizes. Future work may strive to enable Kreiss norm mini-
mization for large-dimensional plants, such as discretizations of realistic fluid flow models
or other PDE models. While challenging, this may be within reach when model sparsity
is exploited and specialized linear algebra is used. In contrast, LMI techniques and SOS
certificates such as seen in the application section are no longer viable options for such
huge dimensions.

Over the past two years our optimizer [56, 45, 44], available through systune in [58],
has been used regularly in industrial applications, see e.g. [71, 72, 73, 74, 75, 76, 77]. A
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Figure 11. Suppression of fixed point attractors using Kreiss norm minimization
Top left: x1-measurement dynamic feedback, Top right: state feedback

Bottom left: : x1-measurement static feedback, Bottom right: : x2-measurement static
feedback

Open loop: blue curve, Closed loop: red curve.

specific interest for practitioners is that it allows parametric robustness in tandem with
multi-objective synthesis and controllers of designer-chosen structure.



28 PIERRE APKARIAN1 AND DOMINIKUS NOLL2

Appendix A

We consider the closed-loop system (16) in polar coordinates

ṙ = σr − αβr3 + gKr sin2 φ

φ̇ = ω + αγr2 + gK cosφ sinφ
(35)

First observe that r(t) must be bounded. Indeed, we have ṙ ≤ 0 for

r2 ≥ σ + gK sin2 φ

αβ

which due to K < 0 means that states r with

r2 >
σ

αβ
=: r20

cannot be reached (from below). Namely if r(0) < r0, then the trajectory may never reach
values r(t) > r0, as this would require derivatives ṙ > 0 in between r0 and r(t) > r0. Even
when r(0) > r0, then ṙ < 0 on some [0, ε), so the trajectory decreases until r(t) = r0 is
reached, and then the previous argument shows that it cannot rebounce to values > r0.
In conclusion, the trajectories of the system are bounded.

Let us look for steady states (x∗, y∗). In the original (x, y)-system we have (with
r2 = x2 + y2)

0 = (σ − αβr2)x− ωy − αγr2y
0 = ωx+ αγr2x+ σy − αβr2y + gKy

and this can be written

A(r) :=

[
σ − αβr2 −ω − αγr2
ω + αγr2 σ − αβr2 + gK

] [
x
y

]
=

[
0
0

]
For this system to have a non-zero solution (x∗, y∗) 6= (0, 0), the determinant of the system
matrix A(r) must vanish, which leads to

(σ − αβr2)2 + gK(σ − αβr2) + (ω + αγr2)2 = 0.

This quadratic equation in σ − αβr2 has no real solution for g2K2 − 4(ω + αγr2)2 < 0,
which gives the following

Proposition 4. Suppose −K < 2ω
g
. Then the only steady state of the closed-loop system

is (0, 0).

The origin is locally exponentially stable, so there exists a largest ball B(0, ρ) such that
all trajectories starting in B(0, ρ) converge to (0, 0). Suppose ρ < ∞, then there exists
(x0, y0) 6∈ B(0, ρ) such that the trajectory starting at (x0, y0) does not enter the ball
B(0, ρ). Since it is a bounded trajectory, the Poincaré-Bendixon theorem implies that it
must approach a limit cycle. For a limit cycle to exist, the system must admit a periodic
solution.

We therefore look for conditions which allow to exclude the existence of a periodic
solution. The Bendixon condition tells that this is the case when Px+Qy does not change
sign, where P,Q are the right hand sides of (16) with the loop u = Ky closed. We get

Px +Qy = 2σ − 4αβr2 + gK

and this has negative sign for K < −2σ
g
. We conclude the

Proposition 5. Suppose K ∈ R satisfies K < −2σ
g

and −K < 2ω
g
. Then (16) is globally

stabilized by the static controller u = Ky.
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A.1. Dynamic controllers. Consider the case of dynamic controllers. Closed-loop dy-
namics are obtained as follows (r2 = x2 + y2): ẋ

ẏ
ẋK

 =

(σ − αβr2) −(ω + αr2γ) 0
(ω + αγr2) (σ + gDK − αβr2) gCK

0 BK AK

 x
y
xK

 .

The equilibrium equations give xK = −A−1K BKy, assuming that AK is invertible. This
leads to [

(σ − αβr2) (ω + αr2γ)
(ω + αγr2) (σ − αβr2 + g(DK − CKA−1K BK))

] [
x
y

]
=

[
0
0

]
,

which as before, has (0, 0) as unique solution if and only if the system matrix is invertible.
The determinant quadratic equation in σ−αβr2 has no real solution and is thus non-zero
when

(g(DK − CKA−1K BK))2 − 4(ω + αγr2)2 < 0 ,

which is guaranteed when
|DK − CKA−1K BK | < 2ω/g .

Note the latter involves a constraint on the DC gain of the dynamic controller K(s) =
CK(sI − AK)−1BK +DK .

The polar form of these differential equations for (x, y) is obtained as

ṙ = σr − αβr3 + gDKr sin2 φ+ gCKxK sinφ

φ̇ = ω + αγr2 + gDK cosφ sinφ+ gCKxK cosφ

ẋK = AKxK +BKr sinφ

(36)

Assuming that AK is Hurwitz as is the case for all controllers based on the Kreiss
norm, the third equation in (36) gives us on every finite interval [0, t0] an estimate of the
form max0≤t≤t0 |xK(t)| ≤ cmax0≤t≤t0 r(t) for a constant c > 0 independent of t0. Indeed,
xK(t) = exp(tAK)x0 +

∫ t
0

exp((s− t)AK)BK sinφ(s)r(s)ds, hence from Young’s inequality
(with q = r =∞, p = 1), we get

max
0≤t≤t0

|xK(t)| ≤ c1 + ‖BK‖‖ exp(tAK)‖1 max
0≤t≤t0

r(t) ≤ c1 + c2 max
0≤t≤t0

r(t) ≤ c max
0≤t≤t0

r(t).

Therefore by the comparison theorem, (see Lemma 8 below), applied to the first equation
in (36), r(t) is bounded above by the solution of the equation ṙ = (σ+g|DK |+g‖CK‖c)r−
αβr3. The latter, however, is globally bounded, as the negative term −αβr3 dominates for
large r > 0. Having established global boundedness of r(t), we go back into the equation
ẋK = AKxK + BKr sinφ, from which we now derive global boundedness of xK , and so
altogether trajectories of (36) remain bounded.

Lemma 8. (See e.g. [78, Thm. 2.1, p. 93]). Suppose φ satisfies |φ(t, x) − φ(t, x′)| ≤
M |x− x′| for all t ∈ [t0, t1] and x, x′, and is jointly continuous. Let v(t) be an absolutely
continuous function such that v̇(t) ≤ φ(t, v(t)) for almost all t ∈ [t0, t1]. Then v(t) ≤ u(t)
on [t0, t1], where u(t) is the solution of u̇(t) = φ(t, u(t)) with initial value u(t0) satisfying
v(t0) ≤ u(t0). �

We are now in the situation addressed in [79, Corollary], which says that if a C1-function
V (x) can be found satisfying

V̇ (x) + V̈ (x) 6= 0 for all x 6= 0 (37)

then trajectories either converge x(t) → 0, or escape to infinity |x(t)| → ∞. Since
we have already ruled out the latter, we have then a certificate of global asymptotic
stability. For this model, we have used the more restrictive condition V̇ (x) < 0, with
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V (x) = V1(x) + V̇2(x) and V1, V2 are chosen as multivariate polynomials. See [80] for
details. The polynomials are then sought using sostools [81].

For both the 1st- and 3rd-order controllers, a solution was obtained with V1 and V2
sums of monomials of degree 2. For the simpler 1st-order controller, with xcl = (x, y, xK)
this reads

V1(xcl) = 2.556x2 − 1.389xy − 0.02803xxK + 2.897y2 − 3.846e-5yxK + 0.003159x2K

V2(xcl) = −0.2061x2 + 0.008941xy − 1.324e-6xxK − 0.1787y2 + 1.641e-5yxK − 0.008169x2K .

We have established that x(t)→ 0.

Appendix B

Since the first matrix in (29) has a zero principal sub-matrix, the corresponding row
and column terms should be zero for this matrix to be negative semi-definite. This leads
to XclBw,cl + µ0Bw,cl = 0 . Also, the (1, 1) sub-matrix should be negative semi-definite.
Using a partitioning in Xcl conformable to that of Bw,cl in (27), we have

Xcl =

 X X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 , with X ∈ R(n−nφ)×(n−nφ), X22 ∈ Rnφ×nφ , X33 ∈ RnK×nK

with nφ the vector dimension of the nonlinearity φ. This gives X12 = 0, X22 = −µ0I and
X23 = 0. Due to homogeneity of the problem, µ0 is set to −1, and since X22 should be
positive definite, we get X22 = I. Also, non-strict feasibility can be replaced with strict
feasibility by reducing ε if necessary. Summing up, assessing global stabilization with a
dynamic controller K(s) reduces to a specially structured Lyapunov inequality

ATclXcl +XclAcl + εXcl ≺ 0, Xcl =

 X 0 X13

0 I 0
XT

13 0 X33

 , Xcl � 0 . (38)

This is rewritten in the familiar form:

Ψ + P TΘQ+QTΘP ≺ 0, Xcl =

 X 0 X13

0 I 0
XT

13 0 X33

 , Xcl � 0 , (39)

with appropriate matrices Ψ, P , Q depending on X,A,B,C and controller data gathered
in

Θ :=

[
AK BK

CK DK

]
.

We can then apply the Projection Lemma [69] to eliminate Θ, which leads to LMI solv-
ability conditions. There exist controllers of order nK if and only if W T

P ΨWP ≺ 0 and
W T
QΨWQ ≺ 0, for some Xcl � 0. Introducing the inverse of Xcl as

Ycl := X−1cl =

 Y 0 Y13
0 I 0
Y T
13 0 Y33

 ,

and following [69], the two projection inequalities are computed as

NT
C

(
AT
[
X 0
0 I

]
+

[
X 0
0 I

]
A+ ε

[
X 0
0 I

])
NC ≺ 0

NT
B

(
A

[
Y 0
0 I

]
+

[
Y 0
0 I

]
AT + ε

[
Y 0
0 I

])
NB ≺ 0

(40)
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where NC and NB are bases of the null space of C and BT , respectively. Also, completion
of Xcl = Y −1cl � 0 and Xcl ∈ R(n+nK)×(n+nK) from X and Y is equivalent to [82, 69]

X 0 I 0
0 I 0 I
I 0 Y 0
0 I 0 I

 � 0, rank

(
In −

[
Y 0
0 Inφ

] [
X 0
0 Inφ

])
≤ nK . (41)

Clearly, the maximal rank is rank(I−Y X) ≤ n−nφ and determines the controller order.
Finally, for X and Y solutions to (40) and (41), the full matrix Xcl can be reconstructed
as well as controller state-space data (AK , BK , CK , DK) [69].
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