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1. Introduction

Highly oscillatory systems arise commonly in aerospace control and other high technol-
ogy fields, and their modeling potentially calls for hyperbolic partial differential equations.
For practitioners this rises the question whether such infinite-dimensional oscillatory mod-
els are convenient for control, or whether they are better advised to continue to rely on
more traditional finite-dimensional approximations based e.g. on identification routines,
or reduced-order models.

The answer may depend on whether H∞-control strategies, fairly well-established for
finite-dimensional systems, may still be brought to work for such infinite-dimensional
systems. Here we understand H∞-control as of embedding the system G in a generalized
plant P and solving a multi-objective optimization problem of the form

minimize max
i∈S
‖Twizi(P,K)‖∞

subject to max
i∈H
‖Twizi(P,K)‖∞ ≤ 1,

K ∈ K stabilizes G
(1)

with wi → zi designer-chosen robustness or performance channels built into P , divided
into soft i ∈ S and hard i ∈ H constraints, and where K is a designer-specified class of
structured, typically conveniently implemented finite-dimensional controllers; cf. [1]. The
purpose of this note is to demonstrate that while the infinite-dimensional line encounters
no principled difficulties for parabolic equations, hyperbolic systems may still be handled
reliably under suitable precautions.

The main obstruction to frequency analysis and controller synthesis of hyperbolic sys-
tems is that they exhibit an infinity of poles arranged on vertical strips in the complex
plane. When unstable, this prevents use of standard tools like the Nyquist test or the
use of the system spectral abscissa [2], often used to find stabilizing controllers. But even
when this string of poles is on the stable half plane, proximity to the imaginary axis still
leads to strange behavior causing difficulties in synthesis. Finite-dimensional approxima-
tions of such systems G inevitably miss high frequency resonant poles with non-negligible
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magnitude, which is why practitioners may have a point in considering these G unrealis-
tic. If the use of hyperbolic equations for control is to pass muster, it has to demonstrate
its ability to provide practical controllers which are robust with regard to such highly
oscillatory modes.

When systems of PDEs are considered, the distinction between hyperbolic and parabolic
equations is no longer helpful, and a better way to describe the situation is to distinguish
between sectorial and non-sectorial operators, or semi-groups. When the operator is not
sectorial, then the mentioned difficulties caused by poles with arbitrary high frequencies
close to the imaginary axis are felt, while in a sectorial system exceedingly high frequency
dynamics die out quickly. Here we present a general algorithmic approach capable to
deal with such non-sectorial systems, and then demonstrate its ability by controlling a
Timoshenko and an Euler-Bernoulli beam.

The structure of the paper is as follows. We present our algorithm in Section 2 and com-
ment on the individual steps in the subsections, highlighting potential difficulties caused
by non-sectorial pole pattern. In the sequel, we use two studies, boundary control of a
cantilever Timoshenko beam, and piezo-electric control of an Euler-Bernoulli beam, to
demonstrate the mentioned difficulties with these hyperbolic systems. Section 3 briefly
presents the cantilever Timoshenko beam model, where we prepare three settings, un-
damped, viscous damping, and Kelvin-Voigt damping. This leads to 2× 2 MIMO-control
problems. Section 4 recalls the Euler-Bernoulli beam model, controlled by a collocated
piezoelectric sensor-actuator pair, again with the options undamped, viscous, and Kelvin-
Voigt damping. H∞-synthesis for the Timoshenko beam is discussed in Section 5, and
for the Euler-Bernoulli beam in Section 6, showing how the mentioned difficulties can be
overcome. Conclusions are drawn in Section 7.

2. Algorithmic scheme

In [3, 4, 5, 6, 7], we have developed a general frequency-based approach to H∞- or
H2-control based on (1), which can be presented as follows:

Algorithm: H∞-control of infinite-dimensional systems G
1: Steady-state. Compute steady state of non-linear system Gnl, shift it to origin, and

obtain linearization G.
2: Transfer function. Compute transfer function G(s).
3: Controller structure. Choose practical controller structure K and find initial

controller K0 ∈ K stabilizing the loop (G,K0).
4: Plant. Embed G into plant P with closed-loop performance and robustness specifi-

cations. Possibly give special attention to strong non-linearity in Gnl.
5: Optimize. Use non-smooth optimization to solve the multidisk H∞-optimization

program (1), maintaining stability of the loop (G,K) at iterates K ∈ K . Obtain
optimal structured H∞-controller K∗ ∈ K .

6: Simulation. Simulate linear closed loop (G,K∗) to verify whether robustness and
performances are satisfactory. If not, modify plant P and specifications, and go back
to step 5.

7: Non-linear simulation. Simulate non-linear closed loop (Gnl, K
∗) to verify whether

design is satisfactory.

We would naturally hope that this scheme remains to a large degree general, with only
minimal amendments in a given particular case. This is indeed the case for sectorial sys-
tems as for instance seen with parabolic PDEs. The scheme become more case-dependent
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when the pole pattern is not sectorial, and in particular, when hyperbolic partial differ-
ential equations contribute to the dynamics.

In the remainder of this section, we go through the steps of the algorithm, discuss their
implementation, and comment on the challenges caused by non-sectorial dynamics.

2.1. Comments on Step 2. We start by noticing that step 2 is not always available
analytically. Rather shall we have to compute G(s) using the numerical solution of an
elliptic boundary value problem for a sufficiently dense set sν = jων of frequencies. More
formally, if a boundary control system is given under the form

G :

 ẋ = Ax
Px = u
y = Cx

(2)

with suitable operators A,P,C, see [9, Sect. 3.3], then computation of a single G(s) is
obtained by applying the Laplace transform to (2) and solving the elliptic boundary value
problem

G(s) :

 sx(s) = Ax(s)
Px(s) = u(s)
y(s) = Cx(s)

(3)

for a large set of sν = jων . This may be time consuming, but can be performed off-line in
a pre-computation phase. This step will be explained via examples in our experimental
section.

The numerical solution of the complex boundary value problem (3) may eventually
encounter numerical difficulties for frequencies ω beyond a certain high frequency limit
ω. When the open-loop system has sufficient roll-off, values G(jω) beyond ω are usually
irrelevant, but for non-sectorial systems ω̄ may be very large. In that case it is crucial
that roll-off in L = GK be generated by the controller, so that Nyquist test and H∞-norm
estimates remain reliable. Some knowledge of ω is needed for the theoretical estimates in
[3]. Note, however, that even in the difficult neutral case the limit ω gives a much better
resolution than the one we may hope to reach by approximations (E,A,B,C,D) based
on finite elements or finite differences. We may also understand ω as an indicator of up
to what resolution the infinite-dimensional system may be reliably simulated. In addition
to having to accept such a cut-off frequency ω, there is also the challenge to not miss
resonant frequencies in the range [0, ω] in a highly oscillatory system.

2.2. Comments on Step 3. A difficulty may arise in step 3 of the algorithm. Since
the chosen controller structure K is motivated by practical considerations like imple-
mentability, simplicity, experience with distributed control architectures, it may be hard
to obtain a certified initial stabilizing controller K ∈ K for G, as this has to be proved
for G in infinite dimensions.

If G has only a finite number np of unstable poles, a finite-dimensional reduced-order
approximation for stability Gr of G accurate in the unstable part is typically available.
This is for instance the case for systems satisfying the spectrum decomposition condition
[9, 10]. Then we may use the following heuristic: Compute a stabilizing controllerK0 ∈ K
for Gr, and use the Nyquist test together with knowledge of np to check whether K0 also
stabilizes G. This has good chances of success in practice, [3, 7, 5, 4, 6]. Note that the
requirement that Gr be accurate in the unstable part may render it useful for stabilization,
but better approximations Gperf are typically required when performances and robustness
have to be addressed.

The true difficulty in step 3 occurs if the open loop system is not sectorial and has
infinitely many unstable poles, typically located in a vertical strip of the right half plane.
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Then no finite-dimensional approximation Gr of G for control is available, because any
such approximation has to be exact in the unstable part. Here traditional PDE control
techniques may offer ways to find theoretically stabilizing control laws, which may then
be used as starting points in optimization. In the case of our studies stability results are
for instance [11, 12, 13, 14, 15, 16, 17, 18] for the Timoshenko beam, and [19, 20, 21, 22]
for the Euler-Bernoulli beam.

Assume for instance that a simple stabilizing controller K0 for G or Gnl based on a
Lyapunov argument is known. Then we proceed as follows: We consider the stable closed
loop G0 = (G,K0) along with candidate controllers K satisfying K0 +K ∈ K . Since we
have stability loop equivalence (G,K0 + K) ' ((G,K0), K) = (G0, K), we can hope to
approximate G0 = (G,K0) by a stable finite-dimensional system G0,stab, and apply the
above method to the structure K ′ = K − K0. If K ′ ∈ K ′ stabilizing G0,stab is found
and certified to stabilize G0 via the Nyquist test, then K = K ′ +K0 ∈ K is the solution
of step 3, as it stabilizes G. For hyperbolic systems the role of the pre-stabilizer K0 is
to shift the string of vertical poles to the left half plane, from where on the frequency
methods may bear.

2.3. Comments on Step 5. In order to perform optimization in step 5, structured
controllers K ∈ K are represented by a finite set of tunable parameters, which we express
by the notation K(x) for x ∈ Rk. Due to non-smoothness of the H∞-norm, program (1)
is then addressed by a non-smooth optimization technique, supplemented by a method
to maintain closed-loop stability of the iterates (G,K(x)). In finite dimensions the latter
may be arranged by the spectral abscissa α(Acl) of the closed-loop system matrix. This
takes the form of a mathematical programming constraint, α (Acl(x)) ≤ −ε for some small
ε > 0, where Acl(x) is the system matrix of the loop (G,K(x)). See [23, 2]. However, this
function is usually not available for infinite-dimensional plants.

In cases where a finite-dimensional approximation Gperf for performance can be used, we
may follow standard lines, as now implemented in the hinfstruct [24, 25] and systune
[26, 27] MATLAB functions. The optimal H∞-controller K∗ ∈ K will in the end undergo
verification with the true infinite-dimensional model as in [3].

When no finite-dimensional approximation Gperf of G for control of robustness and
performances is available, or when the available ones hit computationally intractable
dimensions, the truly infinite-dimensional frequency domain optimization procedure of
[3] is required. Here closed-loop stability of iterates is verified using the Nyquist test as
explained in [3]. In addition, a repelling technique is required to prevent iterates from
repeatedly trying to go outside the hidden domain of stabilizing K(x). The fact that
the Nyquist test may be brought to work here is rendered possible by the preliminary
stabilization step, which gives np = 0. When initially np =∞, we cannot use the Nyquist
test. Step 5 is critical if a very large number of frequencies sν = jων is required to
represent the system.

2.4. Comment on Lyapunov stability. When np = ∞ preliminary stabilization re-
quires a Lyapunov function, which in PDE boundary or distributed control often derives
from physical knowledge under the form of an energy functional E(X,K), depending on
K ∈ K and a string of parameters X. When the Lyapunov property of E can be ex-
pressed as a mathematical programming constraint g(X,K) ≤ 0, then it can in principle
be included in (1). This may give rise to a more stringent stability constraint, e.g. when
g(X,K) ≤ 0 implies exponential stability of the loop (G,K). However, this method is
limited by the fact that in realistic situations the number of additional variables gathered
in X may grossly exceed the number of truly relevant unknowns x in K(x), rendering the
numerical method difficult. This occurs already for finite-dimensional LTI systems, when
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typically X determines a quadratic Lyapunov function x>Xx and stability is turned into a
Bilinear Matrix Inequality (BMI) g(X,K) � 0 [28]. In that case, the number of unknown
parameters in X is of the order (n+ nK)2 for n the order of the system and nK the order
of K. In practice, this may lead to BMIs with several thousands of entries X, even when
k the number of decision variables x in K stays way below 100. Choosing sparse X is not
a valid option in practice, as demonstrated in [29, 30], as this leads to severe conservatism
in stability, performance and robustness specifications. Furthermore, numerical testing
indicates that decision variables x and Lyapunov variables X often differ by several orders
of magnitudes, which makes BMI optimization for control highly ill-conditioned.

2.5. Comments on Steps 6 and 7. Simulation of the linearized system is standard
when a finite-dimensional approximation is available. When G(s) is computed formally
or by a succession of boundary value problems, then simulation may be based on the
inverse Laplace transform [31, 32].

For non-linear simulations a state-space approach is inevitable, and here a problem
occurs if no finite-dimensional state-space model Gperf capturing the unstable part of G is
available, or if the discrepancy between linear simulations based on Gperf and those based
on G is significant. Then it will be hard to decide whether a detected instability or loss
of performance is caused by non-linearity, or has numerical reasons caused by instability
of the open-loop state-space model.

2.6. Comment on stability. For linear systems stability in the H∞-sense is absence
of unstable poles in tandem with boundedness of the closed-loop system on jR. There
is much to suggest that this is the most natural form of stability due to its physical
relevance. Namely, it means that if we open the loop at two arbitrary break points w
and z and add a L2 source signal at w, then we will still receive a L2-signal at z. For
finite-dimensional systems this notion of internal stability implies exponential stability,
but this need no longer be the case in infinite dimensions. However, we have the following
quite satisfactory substitute:

Proposition 1. Suppose the closed-loop (G,K) is H∞-stable, K is finite-dimensional,
and G is exponentially stabilizable and detectable. Then the closed loop is exponentially
stable.

Proof: This follows because K is also exponentially stabilizable and detectable, hence
by Staffans [33, Lemma 8.2.7] so is the loop (G,K), and then by a result of Morris [34,
Theorem 5.2], (G,K) is even exponentially stable. �

Note that exponential stabilizability and detectability may be certified with infinite-
dimensional controllers which need not be practical. The analogue statement concerning
strong stability is

Proposition 2. Suppose the closed loop (G,K) is H∞-stable, K is finite-dimensional,
and G is strongly stabilizable and detectable. Then the closed loop is strongly stable.

Proof: The proof again uses [33, Lemma 8.2.7], which guarantees that the loop (G,K)
is strongly stabilizable and detectable when the components are. When the loop is H∞-
stable, we infer now using [33, Theorem 8.2.11 (ii)] that the closed loop is then also
strongly stable. �
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3. First study: Cantilever Timoshenko beam

Our first study uses a Timoshenko beam model [11], [35, § 5.2] of the form

ρ
∂2w

∂t2
−K∂w2

∂x2
+K

∂φ

∂x
= f

Iρ
∂2φ

∂t2
− EI ∂

2φ

∂x2
+K

(
φ− ∂w

∂x

)
= g

(4)

where w(x, t) is the total deflection, φ(x, t) the angle of rotation, ρ the mass per unit
length, Iρ the mass moment of inertia of the cross-section, E Young’s modulus, I the
moment of inertia of the cross section, G the modulus of elasticity in the shear, A the
cross-sectional area, k a constant depending on the shape of the beam cross-section, and
K = kGA, all assumed constant. The right hand sides f(x, t), g(x, t) are used to represent
external and internal damping.

The beam is clamped on the left and vibrates freely on the right, with the possibility
to use feedback acting at the tip on bending moment and shear to stabilize and attenuate
disturbances causing vibrations. This leads to the boundary conditions

w(0, t) = 0, φ(0, t) = 0

K
∂w

∂x
(L, t)−Kφ(L, t) = U1(t)

EI
∂φ(L, t)

∂x
= U2(t)

(5)

where L is the length of the beam. Control U1 of shear and U2 of bending use as measured
outputs the speed of rotation and distortion at the tip position

y1(t) = wt(L, t), y2(t) = φt(L, t).(6)

For the source terms we consider three scenarios, the undamped case

f = 0, g = 0,(7)

external (or viscous) damping, caused for instance by friction with a surrounding medium
like air resistance,

f(x, t) = −dwwt(x, t), g(x, t) = −dφφt(x, t),(8)

and internal, or Kelvin-Voigt, damping

f(x, t) = −Dw (φtx(x, t)− wtxx(x, t)) ,
g(x, t) = −Dw (φt(x, t)− wtx(x, t)) +Dφφtxx(x, t).

(9)

In the undamped case the system is unstable with infinitely many poles arranged ver-
tically in the right half plane, so that preliminary stabilization is required to start our
method. The authors of [11] show that a simple proportional control law of the form

U1(t) = −αwt(L, t) + u1(t), U2(t) = −βφt(L, t) + u2(t)(10)

with α > 0, β > 0 leads to a stable systems with new controls u1, u2. In the terminology
of the algorithm this is the pre-stabilizing controller K0 of step 3, and the pre-stabilized
system is G0 = (G,K0). G0 is now amenable to our technique, which means that if
a structured control law K ∈ K is sought, then we can apply the algorithm to the
class K ′ = {K ′ : diag(−α,−β) + K ′ ∈ K }. This is used to optimize performance and
robustness of the controller.
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Figure 1. Open-loop poles of (4), (5), computed via the real-rational
model Gr with N = 500. From left to right: both types of damping,
KV-damping only, viscous damping only, no damping.

According to our general procedure the transfer function of the pre-stabilized system
(4), (10) is now computed by solving a succession of elliptic boundary value problems

Kw′′ = ρs2w +Kφ′ − f
EIφ′′ = Iρs

2φ+K(φ− w′)− g
w(0, s) = 0, φ(0, s) = 0

Kw′(L, s)−Kφ(L, s) + αsw(L, s) = u1(s)

EIφ′(L, s) + βsφ(L, s) = u2(s)

y1(s) = sw(L, s), y2(s) = sφ(L, s)

(11)

which for given s = jω has to be solved twice, with u1 = 1, u2 = 0, and u1 = 0, u2 = 1,
using a solver like bvp4c of [36].

For the purpose of comparison and assessment of our method this potentially infinite-
dimensional 2 × 2 transfer matrix function G(s) is matched with a formally computed
transfer function Gf (s), which we obtain by exploiting the special structure of the Timo-
shenko beam system. Starting with case (7), eliminating φ from the Laplace transformed
system (11) leads to a fourth order equation

w′′′′ = p(s)w′′ + q(s)w

with primes denoting spatial derivatives, where in the undamped case

p(s) = s2/a+ s2/b, q(s) = −(s2 + c)/b · s2/a

so that eigenvalues are obtained as

λi(s) = ±
√

1
2
p(s)± 1

2

√
p(s)2 + 4q(s), i = 1, 2, 3, 4,

leading to w(x, s) =
∑4

i=1Ai(s)e
λi(s)x. Going back gives

φ(x, s) =
(c− bs2/a)w′(x, s) + bw′′′(x, s)

s2 + c
,

hence φ(x, s) =
∑4

i=1
(c−bs2/a)λi+bλ

3
i

s2+c
Ai(s)e

λi(s)x. Substituting the four boundary conditions
at x = 0 and x = L leads to a 4× 4 linear system for the coefficients A1(s), . . . , A4(s), to
be solved for every s with right hand sides [0, 0, 1, 0] and [0, 0, 0, 1]. Similar computations
are used for the two types of damping, where the expressions of p(s), q(s) are suitably
adapted.

For comparison, we also use a finite-difference approximation based on a finite-volume
approach [37], which leads to a descriptor system (E,A,B,C, 0). Note that straightfor-
ward finite-difference schemes fail here, as they are not stability preserving and develop
spurious unstable modes for large N . Comparison of the various transfer functions are
shown in Figs. 2-4.
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Remark 1. Using numerical data from [11], computation of the spectrum of A shows good
agreement with the results of a model analysis applied directly to the PDE. Presently the
approximation Gr = (E,A,B,C, 0) turns out stable, which as we know is indispensable
for its use in control design. Comparison of the three ways to compute the transfer matrix
are shown in Fig. 4. We observed that all methods agree over a wide range of frequencies,
with deviations located in the high frequency range which, to some extent, must be taken
into account when designing the controllers.
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Figure 2. Timoshenko beam. 2×2 Bode magnitude plot. Formal method
(red), finite-dimensional approximation with N = 500 (blue). Viscous
damping (upper part) dw = dφ = 0.1, α = 0.5, β = 0.1. Closed loop
spectral abscissa −0.0280. KV-damping (lower part), Ds = Db = 0.0002,
α = 0.5, β = 0.1. Closed loop spectral abscissa −0.0487.

We end this section by addressing briefly the stability aspects. A good survey is given
in [38]. The undamped case is already covered by [11], and their technique is easily seen
to extend to the viscous damping case. We have the following

Proposition 3. Let K be a finite-dimensional controller which stabilizes the Timoshenko
beam G in (4) with boundary conditions (5) and no damping, or with viscous damping
(8), in the H∞-sense. Then the loop (G,K) is even exponentially stable.

Proof: It follows from [11] that G can be exponentially stabilized by the proportional
controlK0 = diag(α, β) in (10), and we writeG0 = (G,K0) for the loop. The proof is given
for the undamped case, but is seen to carry over to the case of a global viscous damping (8).
Let K = K ′+K0, then we have to show that the loop (G0, K

′) ' (G,K0 +K ′) = (G,K) is
exponentially stable. SinceK ′, as a finite-dimensional system, is exponentially stabilizable
and detectable, it remains to prove that G0 is exponentially stabilizable and detectable,
as the result will then follows from [39] in tandem with [33, Lemma 8.2.7].
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Figure 3. Timoshenko beam. 2×2 Bode magnitude plot. Formal method
(red), finite-dimensional approximation with N = 500 (blue). KV damping
only (upper part) Ds = Db = 0.0002, α = 0, β = 0. Closed loop spectral
abscissa −1.7090e−04. KV and viscous damping (lower part) α = 0, β = 0.
Closed loop spectral abscissa −0.0264.

Figure 4. Bode magnitude plot of Kelvin-Voigt damped Timoshenko
beam. Finite-dimensional approximation with N = 100 blue, succession
of boundary value problems (green), formal method (red).

Since G0 is exponentially stable, it is also exponentially stabilizable, so it remains to
prove that G0 is exponentially detectable. As G0 now satisfies the spectrum decompo-
sition assumption [9, Theorem 5.2.6], it follows from [9, Theorem 5.2.11] that in order
to check exponential detectability, it suffices to show that ker(sI − A) ∩ ker(C) = {0},
where A is the generator, C the output operator of G0. This can be done in the frequency
domain. We have to show that the system (11) with u1 = 0, u2 = 0 and observed outputs
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y1(s) = sw(L, s) = 0 and y2(s) = sφ(L, s) = 0 for every s ∈ C+ has only the trivial
solution (w, φ) = (0, 0). This leads to an overdetermined linear system for the coefficients
A1(s), . . . , A4(s), where we have to satisfy not only the boundary conditions w(0) = 0,
φ(0) = 0, u1 = 0, u2 = 0, but also the two conditions on the outputs

∑4
i=1 sAi(s)e

λiL = 0

and
∑4

i=1 s
(c−bs2/a)λi(s)+bλi(s)

3

s2+c
Ai(s)e

λi(s)L = 0. These 6 conditions for the 4 unknowns can
only be satisfied when Ai(s) = 0, i = 1, 2, 3, 4. �

Stability under KV-damping is discussed in [40] and [41], where the authors allow parts
of the material to be elastic, others visco-elastic, giving natural conditions under which the
system is exponentially open loop stable. From the point of view of robust control design
these cases represent the same level of difficulty, so in our experiments we concentrate on
the case of global KV-damping, where verification by alternative methods remains easier.
In this particular case, the system is guaranteed open-loop stable.

4. Second study: Cantilever Euler-Bernoulli beam

Our second study considers piezo-electric control of a thin cantilever beam, where the
Euler-Bernoulli beam model may be considered adequate. As a variety of methods for this
problem have been collected over the years, this is again an instance where our method
can be evaluated. The equation is of the form
(12)

EI
∂4w(x, t)

∂x4
+ρA

∂2w(x, t)

∂t2
+cv

∂w(x, t)

∂t
+ckv

∂5w(x, t)

∂t∂4x
= Ka (δ′(x− x2)− δ′(x− x1))u(t)

with boundary conditions

(13) w(0, t) = 0, wx(0, t) = 0, wxx(L, t) = 0, wxxx(L, t) = 0,

where L is the length of the beam, which is clamped at x = 0 and free at x = L, E is
Young’s modulus, I the moment of inertia of the beam, ρ its density, A the beam cross
section, and where the constant Ka depends on width, thickness and piezoelectric strain
constant of the actuator, with u(t) representing the applied voltage. Coefficients cv, ckv
stand for viscous and Kelvin-Voigt damping. The values 0 < x1 < x2 < L indicate the
left and right end of the sensor/actuator pair. The measured output is

y(t) = Ks (wx(x2, t)− wx(x1, t))

for a constant Ks now depending on properties of the sensor. The goal is to compute
a finite-dimensional simply structured controller u = Ky which stabilizes the structure
and, in addition, allows to attenuate the induced vibrations.

While the transfer functionG(s) can again be computed to arbitrary precision asG(s) =
y(s)/u(s) by solving a succession of complex elliptic boundary value problems

(14) (EI + ckvs)w
′′′′(x, s) + (ρAs2 + cvs)w(x, s) = Ka (δ′(x− x2)− δ′(x− x1))u(s)

with boundary conditions

w(0, s) = 0, w′(x, s) = 0, w′′(L, s) = 0, w′′′(L, s) = 0

and
y(s) = Ks(w

′(x2, s)− w′(x1, s)),

we evaluate the results using alternative ways to get G(s). This includes diagonalization
and expanding G(s) into a series of eigenfunctions, and a classical Ansatz with w(x, s) =∑4

i=1Ai(s)e
λi(s), λi(s) the eigenvalues of (14), fitting the Ai(s) through the boundary

conditions; see [42].



H∞ CONTROL 11

10 -1 100 101 102 103 104 105
-100

-80

-60

-40

-20

0

20

40

60
Euler-Bernoulli viscous damping

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

-500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

-300

-200

-100

0

100

200

300

Figure 5. Euler-Bernoulli beam. Left: Transfer functions computed via
elliptic boundary value problems (magenta), semi-formal method (red),
diagonalization (green) and descriptor system (blue) (N = 400). Mid-
dle: Poles of descriptor system compared to theoretical poles (blue) cv =
0.156, ckv = 0. Right: Poles for cv = 0.156, ckv ∈ {0, 0.0001, 0.001, 0.002}

A finite-dimensional stability preserving approximation based on a descriptor system
obtained from a finite-volume type discretization is discussed in [22]. On the right hand
side we have approximated δ(· − xi) using a Gaussian φ(· − xi) centered at xi, which
gives δ′(· − xi) as φ′(· − xi). Comparisons of these transfer functions are shown in Fig. 5.
Note again that the straightforward second-order difference scheme fails, as it introduces
spurious modes which get unstable as N = hL increases.

Realistic models for the Euler-Bernoulli beam should include damping, and in our
experiment we concentrate on the viscous damping case, as from the automatic control
point of view this is the severest case. As stressed in [20], design of an appropriate control
law in tandem with an optimal choice of the sensor/actuator positions is the key to a
successful vibration suppression in a smart structure. The authors of [20] give a good
overview on previous attempts based on various controller structures such as LQG, PID
or simple proportional control laws. Presently we address this problem via structured
H∞-control.

The viscous damped system is open-loop stable, [42], while stabilization of the un-
damped beam is for instance discussed in [43, 44, 45], where the authors use a non-
realizable D-controller to stabilize the loop, which corresponds to the tip load damping
of [42]. In [46] the authors use an infinite-dimensional observer.

Open-loop poles sk of (12) are obtained from standard semi-group theory, which gives
the relation

r4
k =

ρAs2
k + cvsk

EI + ckvsk
, 1 + cos(rkL) cosh(rkL) = 0

where the rkL are pre-computed with arbitrary precision. In tandem with [9, Thm. 5.2.6]
this formula shows that the undamped Euler-Bernoulli beam cannot be exponentially
stabilized by a finite-dimensional controller.

5. Feedback control of Timoshenko beam

In this section, we discuss how a finite-dimensional controller for the Timoshenko beam
can be designed. Physical parameters for (4) are chosen as

L = 1, ρ = 1, K = 1.5, Iρ = 2, E = 2.5, I = 3

adopted from [11], where for the pre-stabilizing control (10) the values α = β = 0.1
are chosen. Frequency responses of all possible combinations are shown in Fig. 12. We
study the cases undamped, viscous damping (dw = dφ = 0.5) with pre-stabilizer K0, and
Kelvin-Voigt damping (Ds = Db = 1e-4) with and without pre-stabilization. Cases with
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both types of damping (fourth of Fig. 12) are the easiest and will not be treated to save
space.

The design problem is formulated as a classical 2×2 reference tracking problem, where
the measured outputs, shear and bending moment, should follow in a decoupled fashion
reference inputs such as steps or ramps. Tracking performance requires minimizing a
weighted sensitivity function W1(s)S(s), where S = (I +GK)−1 and W1(s) is a low pass
filter specifying the frequency range on which tracking should be achieved. With tracking
error e = r− y, reference input r, and measured outputs y, this is shown in Fig. 6. Good
tracking requires a high-gain W1 at s = 0 to limit or eliminate errors in steady state, as
well as in a range ω ∈ [0, ωb], where ωb is the bandwidth to meet rise, settling time and
overshoot constraints.

G0

r
K G

K0

W1

e

z1

u
-

+

-

+

W2

z2

y

1

Figure 6. Feedback design interconnection.

In addition to tracking, the controller should also attenuate resonant modes in the high
frequency range. This is addressed by minimizing the transfer function from r to y. With
y = GK(I+GK)−1r this leads to minimizingW2(s)T (s), where T (s) := GK(I+GK)−1 is
the complementary sensitivity function andW2 is a high-pass filter, whose role is to specify
the frequency range where resonant modes are critical. Minimizing T has the additional
beneficial effect to improve robustness of the design against a loss of model fidelity. As
discussed in Section 3, exact and approximative methods agree at low frequencies, but
significant discrepancies are observed in the high frequency range. This clearly suggests
a high-pass filter W2. Namely, minimizing T in the high frequency range then generates
roll-off in the loop gain GK, thereby mitigating the effect of the infinitely many resonant
high frequency modes. This also facilitates computations, both for the Nyquist stability
test and for performance and robustness criteria. Further details on how the Nyquist
stability can be put to work are given in [3] and references therein.

5.1. Specific measures for the infinite dimension. For finite-dimensional systems
G(s), specifications based on S and T in tandem with closed-loop stability are usually
highly effective [47], especially when filters W1,W2 are properly chosen.

In infinite dimensions, G(s) is generally only known on a finite set of sample frequencies
sν = jων , even though this set can potentially be enlarged and refined when required.
This introduces an additional difficulty, to which we respond by adding further constraints,
which we now discuss.

Putting a bound on the disk margin [48, 49, 50] is a means to prevent the Nyquist plot
from getting too close to the critical point. This is expressed as ‖S‖∞ ≤ γ, where 1/γ is
the disk margin. This constraint has a repelling effect against stable poles crossing the
imaginary axis and becoming unstable.

Two further requirements are recommended. First, one aims at realistic implementable
controllers, which may be achieved by selecting classes K of simple low-order controllers.
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For controllers K ∈ K to be practical, however, we also enforce constraints on its dy-
namics. This may be translated into so-called disk constraints on eigenvalues |λi(K)| ≤ δ,
δ > 0, i = 1, . . . , nK , where nK is the order of K. More compactly, we write ρ(K) ≤ δ,
where ρ(.) denotes the spectral radius.

In the same vein, selecting sample frequencies ων clearly requires minimal knowledge
of the plant G, and the various methods discussed in Sections 3 and 4 should help finding
suitable discretizations. As we will see later in our experiments, the choice of frequency
samples must be based on the characteristics of the open-loop models and must also cope
with control design constraints in programs (1) or (15) mentioned above. But even when
the system G is ideally discretized, distortions may still occur outside the sets Ω. Those
are referred to as inter-sample distortions, inherent to any discretization approach. To
mitigate inter-sample effects, we propose to rule out too small damping in the controllers
dynamics. This may be written as a constraint ζ(K) ≥ µ, where ζ(.) is a max-function
on the damping of controller eigenvalues.

Putting all those together leads to the following optimization program, which is a special
case of (1):

minimize max{‖W1S‖∞,ΩS
, ‖W2T‖∞,ΩT

}
subject to ‖S‖∞,ΩD

≤ γ
ρ(K) ≤ δ
ζ(K) ≥ µ
K ∈ K stabilizes G

(15)

Here ‖M(s)‖∞,Ω is short for maxω∈Ω maxi σi(M(jω)) with σi denoting singular values.
Sample frequencies ΩS,ΩT are adapted to W1S and W2T , ΩD is adapted to the disk
margin constraint, and sampling ΩN to the Nyquist test. This gives extra flexibility and
can be exploited to reduce execution times and to address specific frequency bands.

Program (15) is solved using nonsmooth bundle or trust region optimization techniques,
[51, 7, 52, 53, 8]. However, a new element is required for infinite-dimensional closed-loop
stability. In finite dimensions this may be assured by a constraint α(Acl(K)) ≤ −ε on
the closed-loop spectral abscissa. In infinite dimension, particularly for non-sectorial
systems, this in no longer possible, as α(Acl) is not reliably computable. Instead we use
a workaround based on the Nyquist stability criterion, which we now explain.

As soon as G is pre-stabilized, closed-loop stability is maintained during optimization
over K ∈ K by keeping the winding number of f(s) = det(I +G(s)K(s)) at the correct
value. This requires that the number of unstable poles of iterates K ∈ K does not
change either. Presently this is assured since the damping constraint ζ(K) ≥ µ restricts
the search K ∈ K to stable controllers α(K) < 0, which means that the correct winding
number for closed-loop stability is 0. As soon as a step K+ = K+dK leads to an unstable
loop, recognized by a non-zero winding number, backtracking K+ = K+αdK, 0 < α < 1,
or tightening proximity control, are used to maintain stability. In the next step it is then
necessary to prevent the optimizer from tempting the direction dK again. As a rule this
may be achieved by using the closed-loop sensitivity function as a barrier, as has been
pointed out in [3]. One has just to be aware that ‖S(K)‖∞, while having a large peak
at points K where the closed-loop turns unstable, may show misleading small values for
points K+ farther beyond the point of instability, so does not behave in the same way as
say a log-barrier function. Our experiments indicate that this difficulty is avoided through
the combined use of the barrier and the Nyquist test.

The Nyquist test gives a stability certificate as soon as it can be proved that between two
sample frequencies ων and ων+1, the closed curve γν obtained by concatenating the true
Nyquist arc {f(ω) : ω ∈ [ων , ων+1]} with the segment [f(ων+1), f(ων)] does not encircle
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the origin. This can for instance be arranged when a prior bound on the variation f ′(ω)
of f(ω) = det(I + K(jω)G(jω)) can be provided. We call a function L[ω−, ω+] a first-
order bound if L[ω−, ω+] ≥ |f ′(ω)| for all ω ∈ [ω−, ω+]. Then any sampling ων satisfying
L[ων , ων+1](ων+1 − ων) ≤ |f(ων)| + |f(ων+1)| gives a provable certificate of stability via
the Nyquist test. See [3, Lemma 3], and Algorithm 1 of that reference how to construct
the ων . Even when no rigorous bound L[·, ·] is available, numerical bounds usually give
excellent results. Note that the bound comes into play only for those parts of the Nyquist
contour which are relatively close to the origin.

The Nyquist test has precedence over all other functions in (15). Clearly, objectives
and constraints need not be computed when the Nyquist test fails at K+ = K + dK,
which speeds up computations.

Appropriate sampling with certificate ΩS, ΩT and ΩD forW1S, W2T and S required for
the constraints and max objective of (15) is also described in [3, Lemma 3]. We also write
ΩN for sampling for the Nyquist criterion. In practice, it makes sense to take the same
sampling grid ΩN = ΩD, because the disk margin and the Nyquist test are equivalent
measures of singularity, that is, σ(S(jω)−1) = σ(I + G(jω)K(jω)) = 0 if and only if
det(I +G(jω)K(jω)) = 0.

Note that undersampling ΩS and ΩT may lead to underestimating the values of the
H∞-norms in the cost function of (15), but is less critical than undersampling ΩN , which
may put stability at stake.

In our experiments, we have adopted two strategies to deal with the beam tracking
problem. The first one is based on deriving a reduced-order approximation of the beam
dynamics giving a descriptor state-space model (E,A,B,C,D). The second uses the idea
of [3], which avoids approximations and relies on frequency domain data of the beam
obtained from (11). This is more in line with data-driven control techniques [54, 55, 56],
even though we have the possibility to supplement additional data if required. It leads
to sampled data {G(jω) : ω ∈ Ω} for a finite Ω ⊂ [0,∞]. Both strategies have been
discussed in Section 2.

5.2. Undamped Timoshenko beam. We start with the case of the undamped Timo-
shenko beam, which is certainly the most challenging, numerically and in terms of feedback
design. A reduced-order model retaining 20 resonant modes, that is, of order 40 and ex-
act data are compared in Fig. 7 left. These models (E,A,B,C, 0) and {G(jω) : ω ∈ Ω}
essentially differ in the high frequency range, where the reduced-order model disregards
resonant modes.

Good tracking and decoupling properties would dictate using integral action in the
controller. This is not possible here, however, because measurements are of derivative
type. In response we use a pseudo-integrator 1/(s+ε), directly included into the structure
of the controller as K := 1/(s + ε)K̃, where K̃ is the optimized portion, while ε = 1e-3
remains fixed. This can also be directly embedded into the cast (15) by the substitutions
G← G/(s+ε). Constraints onK now turn into constraints on K̃. As structural constraint
we choose K̃ ∈ K8, the set of 8th-order controllers, a choice motivated by preliminary
testing. This leaves 54 tunable parameters or optimization variables x corresponding to
tridiagonal state-space realizations. Those realizations do not limit generality and are less
costly than full state-space forms. Note that including a pseudo-integrator which plays
the role of a pre-compensator into the plant G is reminiscent of the loopshaping approach
[57, 58].

Designs based on a reduced-order state-space model and on the infinite-dimensional
model use the same cast (15) to allow comparison. With a state-space model G, program
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(15) can be solved using systune [26, 59, 60], whereas its data-based variant has to rely
on the more recent technique in [3].

Weightings for tracking W1 and roll-off W2 shown in Fig. 7 middle are

W1(s) :=
0.05s+ 0.9987

s+ 0.0009987
, W2(s) :=

1000s+ 2

s+ 2000
.

A disk margin of 1/γ with γ = 0.7 is specified, which leads to the constraint ‖S‖∞ ≤ 1/0.7.
Due to plant zeros at the origin, it is not possible to minimize the sensitivity function
S at the zero frequency. The H∞ norm ‖W1S‖∞ in (15) is therefore restricted to the
frequency band [10−3, ∞).

The controller radius constraint in (15) is set to δ = 100. Its minimal damping is set to
µ = 10−2. Taken together with the order limit K̃ ∈ K8 these constraints secure practical
and implementable controllers.

Design (15) based on frequency-domain data has to trade accuracy against execution
times. Frequency-domain sampling a system with an infinite number of resonances as
in Fig. 7 may seem daunting, because peak frequencies will almost certainly be missed.
As an example, 1e4 points were used to plot Fig. 7, and some plots in Sections 3 and
4 required even more points. In fact, as far as stability is concerned, it is sufficient to
increase the sampling density only in those frequency ranges where the controller gain is
significant. Clearly, frequency ranges where the loop gain GK is small do not contribute
much to the Nyquist stability criterion, as there det(I+GK) ≈ 1. This is easily devised by
taking into account the dynamics of the beam in Fig. 7 along with the design constraints.

In the present application, we distinguish 3 frequency intervals for the disk margin,
ΩD = Ω′D∪Ω′′D∪Ω′′′D in (15) and ΩN := ΩD for the Nyquist criterion. In the low frequency
range Ω′D = [1e-8, 1] rad/s, we have high gain control but dynamics are rigid, thus 300
linearly spaced samples suffice. In the mid frequency (crossover) range Ω′′D = [1, 15], we
have moderate gain control but resonant dynamics and it is enough to use 500 samples.
For higher frequencies Ω′′′D = [15, 1e3], we have low roll-off control with resonant dynamics.
We therefore cut down density to only 100 samples. These figures convey the general idea
that is followed repeatedly in the sequel.

Remark 2. In order to apply the certificates in [3], it is necessary to adapt the sampling
grids ΩS,ΩT ,ΩD,ΩN not only to G, but also to the controller K. Since K changes during
optimization, this could appear to be a major difficulty due to a large number of updates.
Theoretically this can be avoided by considering optimization with inexact data [61], or
by fixing the grid and re-checking the result in the end, using re-starts if the grid turned
out insufficient.

Fortunately, this is more a theoretical quest than a challenge in practice, as updates
due to varying K are rare. Presently we never had to stop-and-restart (15) with refined
sampling.

More significantly, it can be observed that running times fall from 2 hours for blind
sampling with 1e5 nodes to less than 2 minutes using the outlined strategy.

As mentioned earlier, soft objectives in (15) do not necessarily require very dense sam-
pling. In this application, we have used a linear spacing of 1e3 frequencies over the range
ΩS = [1e-3, 1e2] for tracking and ΩT = [1e-1, 1e3] for roll-off.

Reduced-order model Gr = (E,A,B,C, 0), controller Kr obtained from Gr, full fre-
quency data model G and controller K obtained through G are compared in Fig. 7.
For Kr and K, high gain is observed at low frequencies, low gain at high frequencies,
as required for good performance and roll-off, respectively. Multivariable Nyquist plots
associated with the reduced-order model and the infinite-dimensional model are shown in
Figs. 8 and 10. Stability is confirmed in all cases with zero winding numbers as required.
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We observe little differences between the two approaches, despite the relatively low order
of the state-space model, which may be attributed to the roll-off effect introduced by the
controller. Step response simulations in a similar configuration are displayed in Figs. 9
and 11 and indicate good agreement in terms of rise time and decoupling.

Simulations for the infinite-dimensional model were obtained using numerical Laplace
inversion based on the conventional Bromwich contour. Talbot’s idea of using deformed
contours [62, 31] is not exploited, but we noticed that shifting the Bromwich contour
along the x-axis, while preserving analyticity, can help improving accuracy.

Finally, it appears that both strategies compete on equal terms in this example. Sta-
bility, performance and robustness are nearly indistinguishable. A major advantage of
the direct frequency-domain approach being that the critical phase of devising a suit-
able reduced-order model along with post-certification in infinite dimension are entirely
bypassed. We will therefore favor this approach in the next applications.

10-3 10-2 10-1 100 101 102 103
-250

-200

-150

-100

-50

0

50
Singular Values

Frequency (rad/s)

S
in

g
u

la
r 

V
a

lu
e

s
 (

d
B

)

10-3 10-2 10-1 100 101 102 103
-60

-40

-20

0

20

40

60

M
a
g
n
it
u
d
e
 (

d
B

)

Bode Diagram

Frequency  (rad/s) 10-4 10-3 10-2 10-1 100 101 102 103
-150

-100

-50

0

50

100

150
Singular Values

Frequency (rad/s)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

Figure 7. Undamped Timoshenko beam. Left: singular values of infinite-
dimensional model G and reduced LTI model Gr of order 40. Middle:
weighting functions used in (15). Right: singular values of controllers Kr

based on reduced-order model (solid), and K based on infinite-dimensional-
model (dashed).
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Figure 9. Undamped Timoshenko beam. Closed-loop step responses with
controller based on reduced-order model. Two columns left: reduced-order
model. Two columns right: infinite-dimensional model

-2 0 2 4 6 8 10

#104

-6

-4

-2

0

2

4

6
#104

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2 4 6 8 10

#104

-6

-4

-2

0

2

4

6
#104

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 10. Undamped Timoshenko beam. Multivariable Nyquist for
infinite-dimensional design. Two left: infinite-dimensional model. Two
right: reduced-order model.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
-0.04

-0.02

0

0.02

0.04

0 5 10 15 20
-0.04

-0.02

0

0.02

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
-0.04

-0.02

0

0.02

0.04

0 5 10 15 20
-0.04

-0.02

0

0.02

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Figure 11. Undamped Timoshenko beam. Closed-loop simulations for
infinite-dimensional design. Two columns left: infinite-dimensional model.
Two columns right: reduced-order model.
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5.3. Timoshenko beam with damping. In this section, we consider the Timoshenko
beam with two types of damping, viscous, Kelvin-Voigt, and both together. Frequency
responses of the beam are shown in Fig. 12.

It is observed that viscous damping preserves the hyperbolic pole pattern of the un-
damped case. The difference is that resonances are significantly attenuated, in our ex-
ample by a factor of 10 dB when the pre-stabilizer K0 is on and 30 dB otherwise. This
is related to a uniform pole shift in the left half plane, see Section 3. With Kelvin-Voigt
damping, the hyperbolic pattern disappears, and poles in the left half plane take a para-
bolic form. Peaks fade out with increasing frequencies and vanish beyond 1e3 rad/s. High
frequency modes are much more damped than lower ones. See also Section 3. With both
viscous and Kelvin-Voigt damping a combination of both effects are observed in the pole
pattern.
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Figure 12. Timoshenko beam. First row: without pre-stabilizer. Second
row: with pre-stabilizer K0. From left to right: Undamped, viscous alone,
Kelvin-Voigt alone, viscous and Kelvin-Voigt.

5.3.1. Kelvin-Voigt damping with pre-stabilizer. We consider Kelvin-Voigt damping alone
and re-use Program (15) without change, because the low frequency peaks are identical
to those of the undamped case. Results are shown in Fig. 13. Similarly to the undamped
case, strong roll-off is achieved for ω > 1 rad/s with notch filtering of low frequency
resonances. Good rise times are attained with no more than 4% coupling of the responses.

5.3.2. Kelvin-Voigt damping without pre-stabilizer. Comparing frequency responses in the
3rd column of Fig. 12, we see that resonances are amplified by 30 dB when the pre-
stabilizer is off. This leads now to a much more complicated design problem, which
requires a review of objectives and constraints, the challenge being to enable the Nyquist
test during optimization. The cut-off frequency of performance weight W1 was reduced
from 1 to 0.5 rad/s. For the roll-off weight W2, we specified an attenuation of 15 dB at
1.88 rad/s corresponding to the 1st resonant mode. This lead to

W1(s) :=
0.05s+ 0.4994

s+ 0.0004994
, W2(s) :=

1000s+ 0.3343

s+ 334.3
.

The changes, however, proved insufficient, as bending of poles to parabolic shape in
Fig. 3 is fairly weak for the chosen ckv. It was necessary to increase the order of the
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controller from 8 to 10 for K̃, leading to the structure K := 1/(s + ε)K̃ with K̃ ∈ K10.
Also, the disk margin requirement in (15) had to be alleviated from 0.8 to 0.7 which is
equivalent to setting γ = 1/0.7 in program (15). Results are consistent with what we had
obtained so far except that lower quality performances are achieved. See Fig. 14.

5.3.3. Viscous damping alone. For viscous damping, frequency responses in Fig. 12 sug-
gest that better performance can be achieved. This is easily assessed by applying simple
changes to the performance filter W1. The DC gain of the filter is increased from 1e3 to
3.1623e3 corresponding to 10 dB amplification. Its cut-off frequency at 0 dB is increased
from 1 to 1.3 rad/s. Running again program (15) with the other constraints untouched
leads to the results in Fig. 15. The Nyquist criterion certifies exponential stability, based
on Proposition 1. The improvement in the rise time is from about 4 sec. (undamped and
Kelvin-Voigt damping) to 2 sec. with viscous damping dw = dφ = 0.5. Better decoupling
is also obtained.
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Figure 13. Timoshenko beam with Kelvin-Voigt damping alone and pre-
stabilizer. Two left: Nyquist plot. Middle: step responses. Right: singular
value plot of controller.
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Figure 14. Timoshenko beam with Kelvin-Voigt damping and no pre-
stabilizer. Two left: Nyquist plot. Middle: step responses. Right: singular
value plot of controller.
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Figure 15. Timoshenko beam with viscous damping alone. Two left:
Nyquist plot. Middle: step responses. Right: singular value plot of con-
troller.

6. Feedback control of Euler-Bernoulli beam

Much the same approach is considered for the Euler-Bernoulli beam. We capitalize
on previous results and use the method based on the infinite-dimensional model. The
formulation is now a SISO tracking problem. The cast (15) is unchanged in terms of
(γ, δ, µ), whereas the weighting filters in the objective function require adjustment. All
models were computed by solving complex elliptic boundary value problems (14) as in
Sections 2-4.

6.1. Viscous damping alone. We study the case of a strong viscous damping cv =
0.5079 alone. The Euler-Bernoulli model is to some extent less realistic and exhibits
resonant modes at higher frequencies, see Fig. 16 left and middle. Clearly, this can be
exploited to achieve a larger bandwidth and therefore better performance. Weights are
shown in Fig. 16 middle with transfer functions:

W1(s) :=
0.001s+ 2

s+ 0.002
, W1(s) :=

1000s+ 6

s+ 6000
.

Note that W1 specifies a bandwidth of 2 rad/s, which corresponds approximately to a
settling time of 1.5 seconds. Filter W2 reflects a roll-off constraint with crossover at 6
rad/s.

Solving (15) over K ∈ K5, the set of 5th-order controllers, gives the controller with
Bode diagrams in Fig. 16 right and transfer function:

K(s) :=
−0.0144s4 − 0.3585s3 − 54.58s2 − 9.669s− 173.8

s5 + 16.9s4 + 106.1s3 + 108.1s2 + 539.7s+ 3.678
.

Closed-loop stability is checked using the Nyquist criterion in Fig. 17. Open- and closed-
loop simulations are compared in the third and fourth plots of Fig. 17. Results all agree
with the design constraints. As before, program (15) was solved with ΩD = Ω′D∪Ω′′D∪Ω′′′D
and ΩN := ΩD for the Nyquist criterion. We have used 250 samples in the low frequency
range Ω′D = [1e-1, 1] rad/s, 200 samples in the mid frequency range Ω′′D = [1, 6] and 500
samples in Ω′′′D = [6, 1e3]. For ΩS and ΩT , we have used 1e3 frequencies over the range
[1e-1, 1e3].

6.2. Kelvin-Voigt damping. In this last study, we return to the cases discussed in
Section 4 and displayed in Fig. 5. We have moderate viscous damping cv = 0.156 and
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Figure 16. Euler-Bernoulli beam. Left: Bode diagram of infinite-
dimensional system. Middle: weighting functions used in program (15).
Right: Bode gain and phase diagrams of optimized controller.
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Figure 17. Euler-Bernoulli beam. Two leftmost: Nyquist plot. Third:
Open-loop step response. Right: Closed-loop step response.

Kelvin-Voigt dampings ckv ∈ {0, 1e-3, 2e-3}. For the 3 cases, the first resonant mode
appears around 0.5 rad/s. Performance requirements should therefore be reduced. The
cutoff frequencies at 0 dB are set to 0.5 and 1 rad/s forW1 andW2, respectively. Running
program (15) for all 3 cases leads to the results shown in Fig. 18. As before, stability
is assessed through Nyquist plots. We observe in the 3rd column that open-loop step
responses vary widely with the Kelvin-Voigt damping. The undamped case ckv = 0,
middle plot, exhibits almost persistent oscillations. This is consistent with the pole pattern
in the right plot of Fig. 5. Step responses in closed loop (right plots) are however
very similar. This is due to the fact that the pole pattern in Fig. 5 match in a low
frequency horizontal band [−10, 10] rad/s. This confirms, if such confirmation is still
needed, that low frequency resonances are the main limiting factor in feedback tracking
problems regardless of pole asymptotics. Controllers computed in this study are simple
state-space systems of order 5 and are available upon request. We note that our approach
is a major progress over existing procedures, which either use PDE control techniques,
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where optimizing K is impossible or controller structures are impractical, or rely on low-
order approximations such as finite elements, where high order dynamics are typically
ignored.
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Figure 18. Euler-Bernoulli beam. Viscous damping cv = 0.156, Kelvin-
Voigt dampings ckv ∈ {0, 1e-3, 2e-3} with colors red, blue and black. Two
leftmost: Nyquist plots. Third column: Open-loop step responses. Right:
Closed-loop step responses.

7. Conclusion

The main purpose of this note was to investigate whether, or to what extent, H∞-
control methods remain applicable in open loop systems with an infinity of open loop
poles arranged in vertical strips close to the imaginary axis. This challenging situation
occurs when models include hyperbolic PDEs, or in neutral systems. It may be con-
sidered unrealistic or non-physical, because such systems have no natural roll-off and
respond substantially to arbitrary high frequency stimuli. This extremal behavior is to
some degree defanged when sensor and actuator models are included, or when damping
is added to make models more realistic. We studied these effects exemplarily for a can-
tilever Timoshenko and an Euler-Bernoulli beam, where undamped or viscous damped
systems exhibit such non-sectorial pole pattern, while Kelvin-Voigt damping bends poles
to a more realistic sectorial shape. Surprisingly, our methods prove effective even in the
challenging neutral case. We synthesize finite-dimensional implementable H∞-controllers,
which attenuate high frequency stimuli in closed loop, introduce realistic roll-off, and still
act sufficiently fast, as required in a technically feasible controlled system. Synthesis is
based on a recent infinite-dimensional frequency-based optimization technique.

On closer look the question whether, or to what extent, the infinite dimension of G
hampers the choice of synthesis strategies, calling for elements one would not be inclined
to consider in a reduced-order model, has the following partial answer.

We had to enforce significant disk margins in closed loop, constraints on the dynam-
ics of K ∈ K and suitable roll-off in the high-frequency range in order to enable the
Nyquist test during optimization and to make our frequency-domain approach more re-
liable. This restricts the set of reachable controllers to some extent. However, in the
present beam studies this type of constraint did not seem totally unnatural and might be
opportune even in reduced-order models. Specifically, disk margins improve robustness
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of the loop and roll-off constraints attenuate measurement noise and high-frequency res-
onances. Constraints on K, on the other hand, are less conventional and are tied to our
frequency sampling technique.

A more severe restriction occurred in the Timoshenko study when the pre-stabilizer K0

was not available, as then the lack of roll-off in the system strongly limited the choice of
the synthesis strategy (see Section 5.3.2, and to a lesser degree, Section 6.2). Altogether,
this quest may require further investigation with other non-sectorial open-loop models.
A difficulty in the assessment is that in the literature comparison with finite element
or reduced-order synthesis, where these restrictions might not be on the agenda, often
disregards high frequency effects of the final controllers, by conducting simulations within
the reduced-order beam models only.

A detail to be mentioned is that in beam models velocity measurements seem to alleviate
functional analytic Lyapunov-based proofs for stabilization, but render synthesis harder
from a practical control point of view, as e.g. integral action and low frequency high gain
for good tracking are impeded.

Finally, the frequency-domain approach taken in this work offers a myriad of possible
extensions including the design of two-degree-of-freedom or multi-block controllers, as well
as of controllers dealing with robustness against parameter uncertainties or self-adjusting
to variations in PDE dynamics.
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