
A PROXIMITY CONTROL ALGORITHM TO MINIMIZE
NONSMOOTH AND NONCONVEX SEMI-INFINITE MAXIMUM

EIGENVALUE FUNCTIONS

PIERRE APKARIAN∗† , DOMINIKUS NOLL∗ , AND OLIVIER PROT∗

Abstract. Proximity control is a well-known mechanism in bundle method for nonsmooth op-
timization. Here we show that it can be used to optimize a large class of nonconvex and nonsmooth
functions with additional structure. This includes for instance nonconvex maximum eigenvalue func-
tions, and also infinite suprema of such functions.

Key words. Nonsmooth calculus, nonsmooth optimization, Clarke subdifferential, spectral
bundle method, maximum eigenvalue function, semi-infinite problem, H∞-norm.

1. Introduction. Proximity control for bundle methods has been known for a
long time, but its use is too often restricted to convex optimization, where its full
strength cannot be gauged. As we shall demonstrate, as soon as the management
of the proximity control parameter follows the lines of a trust region strategy, many
nonconvex and nonsmooth locally Lipschitz functions can be optimized. In contrast, in
the convex case, the proximity control parameter can usually be frozen, which suggests
that under convexity the full picture is not seen, and something of the essence is
missing to understand this mechanism. The method we discuss here will be developed
in the context of a specific application, because that is where the motivation of our
work arises from, but we will indicate in which way the method can be generalized to
much larger classes of functions.

The application we have in mind is optimizing the H∞-norm, which is structurally
of the form

f(x) = sup
ω∈[0,∞]

λ1 (F (x, ω)) ,(1)

where F : Rn × [0,∞] → Sm is an operator with values in the space Sm of m × m
symmetric or Hermitian matrices, equipped with the scalar product X •Y = Tr(XY),
and where λ1 denotes the maximum eigenvalue function on Sm. We assume that F
is jointly continuous in the variable (x, ω) and of class C2 in the variable x, so that
F ′′(x, ω) is still jointly continuous. Here derivatives always refer to the variable x.
Our exposition will show how these hypotheses can easily be relaxed. The program
we wish to solve is

min
x∈Rn

f(x),(2)

where f has the form (1).
The approach presented here was originally developed in the context of eigen-

value optimization, and [9] gives an overview of the history. The bases for the present
extension to the semi-infinite case were laid in [3, 5, 2, 47, 12, 6, 7]. Our method is
inspired by Helmberg and Rendl’s spectral bundle method [28], where large semidef-
inite programs arising as relaxations of quadratic integer programming problems are
developed. Helmberg and Rendl optimize a convex eigenvalue function of the form

†ONERA-CERT, AV. EDOUARD BELIN, 31055 TOULOUSE, FRANCE
∗UNIVERSITÉ PAUL SABATIER, INSTITUT DE MATHÉMATIQUES, 31062

TOULOUSE, FRANCE

1

λ1(A(x)), where A : Rn → Sm is affine. This method has also antecedents in classical
bundling, like Lemaréchal [37, 38, 39, 40] or Kiwiel [34, 35, 33]. Extensions of the
convex case to include bound constraints are given in [26].

Optimization of the H∞-norm is an important application in feedback control
synthesis, which has been pioneered by E. Polak and co-workers. See for instance
[41, 42, 45] and the references given there. Our own approach to optimizing the
H∞ norm is developed in [5, 2, 6]. A version for maximum eigenvalue functions is
presented in [9].

The structure of the paper is as follows. After some preparation in sections 2 and
3, the core of the algorithm is explained in section 5. The algorithm is presented in
section 7. Convergence proofs for the inner and outer loop follow in sections 8 and 9.
Numerical experiments in H∞-synthesis are presented in Section 10.

2. Preparation. Observe that our objective function has the form

f(x) = max
ω∈[0,∞]

f(x, ω),(3)

where each f(x, ω) = λ1 (F (x, ω)) is a composite maximum eigenvalue function. Re-
call that the maximum eigenvalue function λ1 : Sm → R is the support function of
the compact convex set

C = {Z ∈ Sm : Z � 0,Tr(Z) = 1},

where � 0 means positive semidefinite. In other words,

f(x) = max
ω∈[0,∞]

max
Z∈C

Z • F (x, ω).(4)

Due to compactness of C and [0,∞], the suprema in (4) are attained. This suggests
introducing an approximation of f in a neighbourhood of x, which is

φ(y, x) = max
ω∈[0,∞]

λ1 (F (x, ω) + F ′(x, ω)(y − x))(5)

= max
ω∈[0,∞]

max
Z∈C

Z • (F (x, ω) + F ′(x, ω)(y − x))

where the derivative F ′(x, ω) refers to the variable x. As (5) uses a Taylor expansion
of the operator F in a neighbourhood of x, we expect φ(y, x) to be a good model of
f for y near x. This is confirmed by the following

Lemma 1. Let B ⊂ Rn be a bounded set. Then there exists a constant L > 0
such that

|f(y)− φ(y, x)| ≤ L‖y − x‖2

for all x, y ∈ B.
Proof. By Weil’s theorem we have

λm(E) ≤ λ1(A+ E)− λ1(A) ≤ λ1(E)

for all matrices A,E ∈ Sm. We apply this with A = F (y, ω) and A+ E = F (x, ω) +
F ′(x, ω)(y − x). Now observe that by hypothesis on F there exists L > 0 such that

sup
z∈B

sup
ω∈[0,∞]

‖F ′′(z, ω)‖ ≤ L.

2

This proves E = O(‖y−x‖2), uniformly over x, y ∈ B and uniformly over ω ∈ [0,∞].

The following is a specific property of the H∞-norm, which can be exploited
algorithmically. A proof can be found in [13] or [12].

Lemma 2. The set Ω(x) = {ω ∈ [0,∞] : f(x) = f(x, ω)} is either finite, or
Ω(x) = [0,∞].

We call Ω(x) the set of active frequencies. A system where Ω(x) = [0,∞] is called
all-pass. This is rarely encountered in practice.

For later use let us mention a different way to represent the convex model φ(y, x).
We introduce the notations

α(ω,Z) = Z • F (x, ω) ∈ R, g(ω,Z) = F ′(x, ω)?Z ∈ Rn.

and we let

G = co {(α(ω,Z), g(ω,Z)) : ω ∈ [0,∞], Z ∈ C} ,

where co(X) is the convex hull of X. Then we have the following equivalent repre-
sentation of the model:

φ(y, x) = max{α+ g>(y − x) : (α, g) ∈ G}.(6)

3. Tangent program. Suppose x is the current iterate of our algorithm to be
designed. In order to generate trial steps away from x, we will recursively construct
approximations φk(y, x) of φ(y, x) of increasing quality. Using the form (6) we will
choose suitable subsets Gk of the set G and define

φk(y, x) = max{α+ g>(y − x) : (α, g) ∈ Gk}.(7)

Clearly φk ≤ φ, and a suitable strategy will assure that the φk get closer to the model
φ as k increases. Once the model Gk is formed, a new trial step yk+1 is generated by
solving the tangent program

min
y∈Rn

φk(y, x) + δk

2 ‖y − x‖2,(8)

where δk > 0 is the proximity control parameter, which will be adjusted anew at each
step k. Here we make the implicit assumption that solving (8) is much easier than
solving the original problem.

Suppose the solution of (8) is yk+1. Following standard terminology in nonsmooth
optimization, yk+1 will be called a serious step if it is accepted to become the new
iterate x+. On the other hand, if yk+1 is not satisfactory and has to be rejected, it is
called a null step. In that case, a new model Gk+1 is built, using information from the
previous Gk, and integrating information provided by yk+1. The proximity parameter
is updated, δk → δk+1, and the tangent program is solved again. In other words, the
construction of the Gk in (7) is recursive.

In order to guarantee convergence of our method, we have isolated three basic
properties of the sets Gk. The most basic one is that φk(x, x) = φ(x, x) = f(x), and
this is covered by the following:

Lemma 3. Let ω0 ∈ Ω(x) be any of the active frequencies at x. Choose a nor-
malized eigenvector e0 associated with the maximum eigenvalue f(x) = λ1(F (x, ω0))
of F (x, ω0), and let Z0 := e0e

>
0 ∈ C. If (α(ω0, Z0), g(ω0, Z0)) ∈ Gk, then φk(x, x) =

φ(x, x) = f(x). �

3

A second more sophisticated property of our model φk(·, x) is that it is improved at
each step by adding suitable affine support functions of φ(·, x), referred to as cutting
planes. Suppose a trial step yk+1 away from x is computed via (8), based on the
current model φk(·, x) with approximation Gk and proximity control parameter δk. If
yk+1 fails because the progress in the function value is not satisfactory (null step), we
add an affine support function of φ(·, x) to the next model φk+1(·, x). This will assure
that the bad step yk+1 will be cut away at the next iteration k + 1, hopefully paving
the way for something better to come. What we have in mind is made precise by the
following:

Lemma 4. Let ωk+1 ∈ [0,∞] and Zk+1 ∈ C be where the maximum (5) for the
solution yk+1 of (8) is attained, that is,

φ(yk+1, x) = Zk+1 •
(
F (x, ωk+1) + F ′(x, ωk+1)(yk+1 − x)

)
.

If (α(ωk+1, Zk+1), g(ωk+1, Zk+1)) ∈ Gk+1, then we have φk+1(yk+1, x) = φ(yk+1, x).
We need yet another support function to improve the model, and this is usually

called the aggregation element. The idea is as follows. As we keep updating our
approximation and Gk, we expect our model φk(·, x) to get closer to f . The easiest
way to assure this would seem to let the sequence increase: Gk ⊂ Gk+1, so that
previous attempts (null steps) are perfectly memorized. However, this would quickly
lead to overload. To avoid this, we drive φk toward φ in a more sophisticated way by
a clever use of the information obtained from the null steps. As we have seen, adding
a cutting plane avoids the last unsuccessful step yk+1. This could be considered a
reality check, where φk is matched with φ. What is further needed is relating φk+1

to its past, φk, and this is what aggregation is about.
According to the definition of yk+1 as minimum of the tangent program (8) we

have 0 ∈ ∂φk(yk+1, x) + δk(yk+1− x). The way φk is built in (7) shows that this may
be written as

0 =
r∑

i=1

τ∗i g
∗
i + δk(yk+1 − x)(9)

for certain τ∗i ≥ 0 summing up to 1, and (α∗i , g
∗
i) ∈ Gk. We let

α∗ =
r∑

i=1

τ∗i α
∗
i , g∗ =

r∑
i=1

τ∗i g
∗
i ,(10)

and keep (α∗, g∗) ∈ Gk+1. Notice that this pair belong indeed to G by convexity, and
because Gk ⊂ G.

Altogether, we have now isolated three properties, which our approximations Gk

have to satisfy:
(G1) Gk contains at least one pair (α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) is an

active frequency, Z0 = e0e
>
0 for a normalized eigenvector e0 of F (x, ω0) asso-

ciated with λ1 (F (x, ω0)).
(G2) For every null step yk+1, Gk+1 contains a pair (α(ωk+1, Zk+1), g(ωk+1, Zk+1)),

where ωk+1, Zk+1 satisfy φ(yk+1, x) = Zk+1•[F (x, ωk+1)+F ′(x, ωk+1)(yk+1−
x)].

(G3) If δk(x − yk+1) ∈ ∂φk(yk+1, x) for a null step yk+1, then Gk+1 contains the
aggregate pair (α∗, g∗) satisfying (9) and (10).

4

As we shall see, these properties guarantee a weak form of convergence of our method.
Practical considerations, however, require richer sets Gk which in general are no longer
finitely generated. The way these are built is explained in the next section. To
conclude, we state the consequences of the three axioms in the following

Lemma 5. Axioms (G1) - (G3) guarantee that φk(x, x) = φ(x, x) = f(x), that
φk+1(yk+1, x) = φ(yk+1, x), that φk+1(yk+1, x) ≥ φk(yk+1, x), and that relation (9) is
satisfied.

4. Solving the tangent program. Our numerical experience shows that it is
useful to generate approximations Gk larger than what is required by the minimal
axioms (G1) - (G3). More precisely, we will keep the procedures in (G2) and (G3),
but improve on (G1).

Consider the case where the set Ω(x) of active frequencies is finite. We let Ωk be
a finite extension of Ω(x), enriched along the lines discussed in [5]. For every ω ∈ Ωk,
we allow all sets Zω ∈ C of the form

Zω = QωYωQ
>
ω , Yω � 0, Tr(Yω) = 1,(11)

where the columns of Qω are an orthonormal basis of some invariant subspace of
F (x, ω), containing the eigenspace associated with the maximum eigenvalue. This
assures axiom (G1), because ω0 ∈ Ωk at all times, and because e0 belongs to the span
of the columns of Qω0 . Similarly, to force (G2), for every null step yk+1 we simply
have to keep ωk+1 ∈ Ωk+1 and let the normalized eigenvector ek+1 of F (x, ωk+1) +
F ′(x, ωk+1)(yk+1 − x) associated with λ1 be in the span of the columns of Qωk+1 .
Then

Gk = {(α(ω,Zω), g(ω,Zω)) : ω ∈ Ωk, Yω � 0,Tr(Yω) = 1} ∪ {(α∗, g∗)},(12)

where (α∗, g∗) is the aggregate from the previous sweep k − 1. Notice that co(Gk) 6⊂
co(Gk+1) in general, because the active frequencies change at each step.

Let us now pass to the more practical aspect on how setting up and solving the
tangent program (8) at each step. Writing the tangent program in the form

min
y∈Rn

max
(α,g)∈co(Gk)

α+ g>(y − x) +
δk
2
‖y − x‖2

we can use Fenchel duality to swap the min and max operators. The then inner
infimum over y is unconstrained and can be computed explicitely, which leads to
y = x− δ−1

k g. Substituting this back gives the following form of the dual program

max
(α,g)∈co(Gk)

α− 1
2δk
‖g‖2.

This abstract program takes the following more concrete form if we use the sets Gk

in (12):

maximize
∑

ω∈Ωk

Yω •Q>ωF (x, ω)Qω + τα∗ − 1
2δk

∥∥∥∥∥ ∑
ω∈Ωk

F ′(x, ω)?
[
QωYωQ

>
ω

]
+ τg∗

∥∥∥∥∥
2

subject to τ ≥ 0, Yω � 0
τ +

∑
ω∈Ωk

Tr(Yω) = 1

5

The reader will recognize this as a semidefinite program. The return formula takes
the explicit form

yk+1 = x− 1
δk

(∑
ω∈Ωk

F ′(x, ω)?
[
QωY

∗
ωQ

>
ω)
]
+ τ∗g∗

)
,(13)

where (Y ∗, τ∗) is the dual optimal solution.
Finally, if we assume that the multiplicity of each maximum eigenvalue is 1, we

may further simplify the dual program. This is most often the case in practice. Indeed,
in this case the matrices Zω = eωyωe

>
ω are of rank 1, so in particular yω = 1 is scalar.

In other words, we have a finite set of αω = e>ωF (x, ω)eω and gω = F ′(x, ω)?eωe
>
ω ,

ω ∈ Ωk, to which we add the aggregate element (α∗, g∗), and where ωk required for
the last cutting plane is included in Ωk to assure (G2). Arranging this finite set into
a sequence r = 1, . . . , Rk, we can write φk as

φk(y, x) = max
r=1,...,Rk

αr + g>r (y − x),

where Rk = |Ωk|+ 1.
Solving the tangent program at stage k can now be obtain by convex duality. We

have the primal form of (8):

min
y∈Rn

max
r=1,...,Rk

αr + g>r (y − x) + δk

2 ‖y − x‖2.

Standard convex duality shows that the concave dual of this is

maximize
Rk∑
r=1

τrαr −
1

2δk

∥∥∥∥∥
Rk∑
r=1

τrgr

∥∥∥∥∥
2

subject to
Rk∑
r=1

τr = 1

0 ≤ τr ≤ 1, r = 1, . . . , Rk

with unknown variable τ . The return formula to recover the solution of the primal
from the solution of the dual is

yk+1 = x− 1
δk

Rk∑
r=1

τ∗r gr,

where τ∗ is the optimal solution of the dual.

5. Management of the proximity parameter. At the core of our method
is the management of the proximity control parameter δk in (8). In order to decide
whether the solution yk+1 of (8) can be accepted as the new iterate x+, we compute
the control parameter

ρk =
f(x)− f(yk+1)

f(x)− φk(yk+1, x)
,

which relates our current model φk(·, x) to the truth f . If φk(·, x) is a good model of
f , we expect ρk ≈ 1. But we accept yk+1 already when ρk ≥ γ, (serious step), where
the reader might for instance imagine γ = .25. We say that the agreement between

6

f and φk is good when ρk ≥ Γ, where Γ = .75 makes sense, and we call it bad when
ρk < γ. So we accept steps which are not bad. Notice that bad includes in particular
those cases where ρk < 0. As the denominator in ρk is always > 0, ρk < 0 corresponds
to those cases where yk+1 is not even a descent step for f .

The question is what we should do when yk+1 is bad (null step). Here we compute
a second control quotient

ρ̃k =
f(x)− φ(yk+1, x)
f(x)− φk(yk+1, x)

which compares the models φ and φk. Introduce a similar parameter γ̃ ∈ (0, 1), where
γ < γ̃, but typically only slightly. We say that agreement between φ and φk is bad
if ρ̃k < γ̃, and not bad otherwise. Our decision is now as follows. If ρk < γ and also
ρ̃k < γ̃, then we keep the proximity control parameter unchanged and rely on cutting
planes and aggregation, being reluctant to increase δk prematurely. Instead we rely
on driving φk closer to φ, hoping that this will also bring it closer to f . On the other
hand, when ρk < γ, but ρ̃k ≥ γ̃, then we are in the more delicate situation where φk

is already reasonably close to φ, yet our trial steps do not work because φ itself is too
far from f . Here it will not suffice to drive φk even closer to φ. We also need to bring
φ(·, x) closer to f . This could only be achieved by tightening proximity control, that
is, by increasing δk. This is what is done in step 7 of the algorithm. Notice however
that even here we continue driving φk toward φ via cutting planes and aggregation,
so this process is never stopped.

Finally, if a serious step is accepted with ρk > Γ, we can take confidence in
our model, and this is where we relax proximity control by reducing δk for the next
sweep. This is arranged in step 4 of the algorithm. It may therefore happen that
by a succession of such successful steps δk approaches 0. This in indeed the ideal
case, which in a trust region context corresponds to the case where the trust region
constraint becomes inactive.

Even though this is well-known, it is useful to compare the proximity control
model (8) to the trust region approach

minimize φk(y, x)
subject to ‖y − x‖ ≤ tk

(14)

where tk is the trust region radius. Indeed, following [30, II, Prop. 2.2.3, p. 291]
solutions of (8) and (14) are in one-to-one correspondence in the sense that if yk+1

solves (14) such that the constraint is active with Lagrange multiplier λk > 0, then
yk+1 solves (8) with δk = λk. Conversely, if yk+1 solves (8) with proximity parameter
δk, then it solves (14) with tk = ‖yk+1 − x‖. It is now clear that increasing δk
corresponds to decreasing tk, and conversely.

6. Recycling subgradients. Apart from the management of the proximity con-
trol parameter there is yet another important difference between convex and noncon-
vex programs. Namely, in convex bundling the working model φk(·, x) is not thrown
away if a serious step x→ x+ is taken. Indeed, affine support functions or aggregates
of f which have been found during the inner loop at x are still useful at x+, because
they remain affine minorants of f . This is no longer the case if f is non-convex. In
order to recycle some of the information from iteration x to the next step x+, we have
to exploit the specific structure of our objective (2). Indeed, let m(y) = α+g>(y−x)
be one of the planes which contribute to the working model φk(·, x) at x. Then either

7

α = α(ω,Z) and g = g(ω,Z), or α = α∗, g = g∗ in case of an aggregate. In the first
case we have g = F ′(x, ω)∗Z for some Z ∈ C. If we put

g+ = F ′(x+, ω)∗Z, α+ = Z • F (x+, ω),

then the plane m+(y) = α+ + g+>(y − x+) is the recycled version of m(·) at the
new point x+. For aggregate planes this is more complicated, even though principally
possible, as we need to de-aggregate what was aggregated previously.

7. The algorithm. In this section we present our algorithm.

Proximity control algorithm for minx∈Rn maxω∈[0,∞] f(x, ω)

Parameters 0 < γ < γ̃ < Γ < 1.
0. Initialize outer loop. Choose initial x such that f(x) <∞.
1. Outer loop. Stop at the current x if 0 ∈ ∂f(x). Otherwise compute Ω(x)

and continue with inner loop.
2. Initialize inner loop. Choose initial approximation G1, which contains at

least (α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) and e0 is normalized eigenvector
associated with λ1(F (x, ω0)). Possibly enrich G1 as in (12) via finite extension
Ω1 ⊃ Ω(x). Initialize δ1 > 0. If old memory element for δ is available, use it
to initialize δ1. Put inner loop counter k = 1.

3. Trial step. At inner loop counter k for given Gk and proximity parameter δk,
solve tangent program

min
y∈Rn

φk(y, x) +
δk
2
‖y − x‖2.

The solution is yk+1.
4. Test of progress. Check whether

ρk =
f(x)− f(yk+1)

f(x)− φk(yk+1, x)
≥ γ.

If this is the case, accept trial step yk+1 as the new iterate x+ (serious step).
Compute new memory element:

δ+ =

{
δk
2

if ρk > Γ

δk otherwise
and go back to step 1. If ρk < γ continue with step 5 (null step).

5. Cutting plane. Select a frequency ωk+1 where φ(yk+1, x) is active and pick
a normalized eigenvector ek+1 associated with the maximum eigenvalue of
F (x, ωk+1) + F ′(x, ωk+1)(yk+1 − x). Assure Ωk+1 ⊃ Ω(x) ∪ {ω0, ωk+1} and
that ek+1 is among the columns of Qωk+1 , e0 among the columns of Qω0 .
Possibly enrich Gk+1 as in (12) by adding more frequencies to Ωk+1.

6. Aggregation. Compute aggregate pair (α∗, g∗) via (9), (10) based on yk+1,
and keep (α∗, g∗) ∈ Gk+1.

7. Proximity control. Compute control parameter

ρ̃k =
f(x)− φ(yk+1, x)
f(x)− φk(yk+1, x)

.

Update proximity parameter δk as

δk+1 =
{
δk, if ρ̃k < γ̃
2δk if ρ̃k ≥ γ̃

Increase inner loop counter k and go back to step 3.

8

8. Finiteness of inner loop. We have to show that the inner loop terminates
after a finite number of updates k with a new iterate yk+1 = x+. This will be proved
in the next two Lemmas.

Lemma 6. Suppose the inner loop creates an infinite sequence yk+1 of null steps
with ρk < γ. Then there must be an instant k0 such that the control parameter ρ̃k

satisfies ρ̃k < γ̃ for all k ≥ k0.
Proof. Indeed, by assumption none of the trial steps yk+1 passes the acceptance

test in step 4, so ρk < γ at all times k. Suppose now that ρ̃k ≥ γ̃ for an infinity of
times k. Then according to step 7 the proximity parameter δk is increased infinitely
often, meaning δk →∞.

Using the fact that yk+1 is the optimal solution of the tangent program gives
0 ∈ ∂φk(yk+1, x) + δk(yk+1 − x). Using convexity of φk, we deduce that

−δk(yk+1 − x)>(x− yk+1) ≤ φk(x, x)− φk(yk+1, x)

Using φk(x, x) = f(x), assured by keeping ω0 ∈ Ωk and Z0 ∈ Ck at all times (Lemma
3), we deduce

δk‖yk+1 − x‖2

f(x)− φk(yk+1, x)
≤ 1.(15)

Now we expand

ρ̃k = ρk +
f(yk+1)− φ(yk+1, x)
f(x)− φk(yk+1, x)

≤ ρk +
L‖yk+1 − x‖2

f(x)− φk(yk+1, x)
(using Lemma 1)

≤ ρk +
L

δk
(using (15))

Since L/δk → 0, we have lim sup ρ̃k ≤ lim sup ρk ≤ γ < γ̃, which contradicts ρ̃k ≥ γ̃
for infinitely many k.

So far we know that if the inner loop turns forever, this implies that ρk < γ and
ρ̃k < γ̃ from some counter k0 onwards. We show that this cannot happen, by proving
the following

Lemma 7. Suppose ρk < γ and ρ̃k < γ̃ for all k ≥ k0. Then 0 ∈ ∂f(x).
Proof. 1) Step 7 of the algorithm tells us that we are in the case where the

proximity parameter is no longer increased, and remains therefore constant. Let us
say δ := δk for all k ≥ k0.

2) For later use, let us introduce the function

ψk(y, x) = φk(y, x) + δ
2‖y − x‖2.

As we have seen already, the necessary optimality condition for the tangent program
imply

δ‖yk+1 − x‖2 ≤ f(x)− φk(yk+1, x).

Now remember that in step 6 of the algorithm, and according to axiom (G3), we have
kept the aggregate pair (α∗, g∗) ∈ Gk+1. By its definition (9), (10) we have

φk(yk+1, x) = α∗ + g∗>(yk+1 − x).
9

Defining a new function

ψ∗k(y, x) := α∗ + g∗>(y − x) + δ
2‖y − x‖2

we therefore have

ψ∗k(yk+1, x) = ψk(yk+1, x) and ψ∗k(y, x) ≤ ψk+1(y, x),(16)

the latter because (α∗, g∗) ∈ Gk+1, so that this pair contributes to the new models
φk+1, ψk+1. Notice that ψ∗k is a quadratic function. Expanding it at yk+1, therefore
gives

ψ∗k(y, x) = ψ∗k(yk+1, x) +∇ψ∗k(yk+1, x)(y − yk+1) + δ
2 (y − yk+1)>(y − yk+1),

where ∇ψ∗k(y, x) = g∗ + δ(y − x) and ∇2ψ∗k(y, x) = δI. We now prove the formula

ψ∗k(y, x) = ψ∗k(yk+1, x) + δ
2‖y − yk+1‖2.(17)

Indeed, we have but to show that the first-order term in the above Taylor expansion
vanishes at yk+1. But this term is

∇ψ∗k(yk+1, x)>(y − yk+1) =

=
[
g∗ + δ(yk+1 − x)

]>
(y − yk+1)

= g∗>(y − yk+1) + δ(yk+1 − x)>(y − yk+1)
= δ(x− yk+1)>(y − yk+1) + δ(yk+1 − x)>(y − yk+1) (using (9),(10))
= 0,

and so formula (17) is established. Therefore

ψk(yk+1, x) ≤ ψ∗k(yk+1, x) + δ
2‖y

k+2 − yk+1‖2 (using (16) left)

= ψ∗k(yk+2, x) (using (17))
≤ ψk+1(yk+2, x) (using (16) right)
≤ ψk+1(x, x) (yk+2 is minimizer of ψk+1)
= f(x).

This proves that the sequence ψk(yk+1, x) is monotonically increasing and bounded
above by f(x), so it converges to some limit ψ∗ ≤ f(x). Since the term δ

2‖y
k+2 −

yk+1‖2 is squeezed in between two terms with the same limit ψ∗, we deduce δ
2‖y

k+2−
yk+1‖2 → 0. Since the sequence yk is bounded, namely,

‖yk+1‖ ≤ ‖x‖+ δ−1
1 max

ω∈[0,∞]
‖F ′(x, ω)?‖,

by formula (13), we deduce using a geometric argument that

‖yk+2 − x‖2 − ‖yk+1 − x‖2 → 0.(18)

Recalling the relation φk(y, x) = ψk(y, x)− δ
2‖y − x‖2, we finally obtain

φk+1(yk+2, x)− φk(yk+1, x)
= ψk+1(yk+2, x)− ψk(yk+1, x)− δ

2‖y
k+2 − x‖2 + δ

2‖y
k+1 − x‖2 → 0,(19)

10

which converges to 0 due to convergence of ψk(yk+1, x) proved above, and property
(18).

3) Let ek+1 be the normalized eigenvector associated with the maximum eigen-
value of F (x, ωk+1)+F ′(x, ωk+1)(yk+1−x), which we pick in step 5 of the algorithm.
Then gk = F ′(x, ωk+1)∗ek+1e

>
k+1 is a subgradient of φk+1(·, x) at yk+1. That means

g>k (y − yk+1) ≤ φk+1(y, x)− φk+1(yk+1, x).

Using φk+1(yk+1, x) = φ(yk+1, x) from Lemma 5 therefore implies

φ(yk+1, x) + g>k (y − yk+1) ≤ φk+1(y, x).(20)

Now observe that

0 ≤ φ(yk+1, x)− φk(yk+1, x)
= φ(yk+1, x) + g>k (yk+2 − yk+1)− φk(yk+1, x)− g>k (yk+2 − yk+1)
≤ φk+1(yk+2, x)− φk(yk+1, x) + ‖gk‖‖yk+2 − yk+1‖ (using (20))

and this term tends to 0 because of (19), boundedness of gk, and because yk+1 −
yk+2 → 0. We conclude that

φ(yk+1, x)− φk(yk+1, x) → 0.(21)

4) We now show that φk(yk+1, x) → f(x), and therefore also φ(yk+1, x) → f(x).
Suppose on the contrary that η := f(x) − lim supφk(yk+1, x) > 0. Choose 0 < θ <
(1− γ̃)η. It follows from (21) that there exists k1 ≥ k0 such that

φ(yk+1, x)− θ ≤ φk(yk+1, x)

for all k ≥ k1. Using ρ̃k < γ̃ for all k ≥ k1 gives

γ̃(φk(yk+1, x)− f(x)) ≤ φ(yk+1, x)− f(x)
≤ φk(yk+1, x) + θ − f(x).

Passing to the limit implies γ̃η ≥ η − θ, contradicting the choice of θ. This proves
η = 0.

5) Having shown φ(yk+1, x) → f(x), we now argue that we must have yk+1 → x.
This follows from the definition of yk+1, because

ψk(yk+1, x) = φk(yk+1, x) + δ
2‖y

k+1 − x‖2 ≤ ψk(x, x) = f(x).

Since φk(yk+1, x) → f(x) by part 4), we have indeed yk+1 → x. To finish the proof,
observe that 0 ∈ ∂ψk(yk+1, x) implies

δ(x− yk+1)>(y − yk+1) ≤ φk(y, x) − φk(yk+1, x)
≤ φ(y, x)− φk(yk+1, x)

for every y. Passing to the limit implies

0 ≤ φ(y, x)− φ(x, x),

because the left hand side converges to 0 in vue of yk+1 → x. Since ∂φ(x, x) = ∂f(x),
we are done.

11

9. Convergence of outer loop. All that remains to do now is piece things
together and prove global convergence of our method. We have the following

Theorem 8. Suppose x1 ∈ Rn is such that {x ∈ Rn : f(x) ≤ f(x1)} is compact.
Then every accumulation point of the sequence xj of serious iterates generated by our
algorithm is a critical point of f .

Proof. Let xj be the sequence of serious steps. We have to show that 0 ∈ ∂f(x̄)
for every accumulation point x̄ of xj . Suppose at the jth stage of the outer loop the
inner loop accepts a serious step at k = kj . Then xj+1 = ykj+1. By the definition of
yk+1 as minimizer of the tangent program (8) this means

δkj

(
xj − xj+1

)
∈ ∂φkj

(xj+1, xj).

By convexity this can be re-written as

δkj

(
xj − xj+1

)> (
xj − xj+1

)
≤ φkj (x

j , xj)− φkj (x
j+1, xj) = f(xj)− φkj (x

j+1, xj),

the equality φkj (x
j , xj) = f(xj) being true by Lemma 3. Since xj+1 = ykj+1 was

accepted in step 4 of the algorithm, we have

f(xj)− φkj
(xj+1, xj) ≤ γ−1

(
f(xj)− f(xj+1

)
.

Altogether

δkj
‖xj − xj+1‖2 ≤ γ−1

(
f(xj)− f(xj+1)

)
.

Summing over j = 1, . . . , J − 1 gives

J−1∑
j=1

δkj
‖xj − xj+1‖2 ≤ γ−1

J−1∑
j=1

f(xj)− f(xj+1) = γ−1
(
f(x1)− f(xJ)

)
.

By hypothesis, f is bounded below on the set of iterates, because the algorithm is of
descent type on the serious steps. Since the f(xJ) are bounded by hypothesis, this
implies convergence of the series

∞∑
j=1

δkj‖xj − xj+1‖2 <∞.

In particular δkj
‖xj − xj+1‖2 → 0. We now claim that gj = δkj

(
xj − xj+1

)
→ 0.

Suppose on the contrary that there exists an infinite subsequence j ∈ N of N
where gj = δkj

‖xj − xj+1‖ ≥ η > 0. Due to summability of δkj
‖xj − xj+1‖2 we must

have xj − xj+1 → 0 in that case. That in turn is only possible when δkj → ∞. We
now construct another infinite subsequence N ′ of N such that δkj →∞, j ∈ N ′, and
such that the doubling rule to increase δk in step 7 of the inner loop of the algorithm
was applied at least once before xj+1 = ykj+1 was accepted. To construct N ′, we
associate with every j ∈ N the last j′ ≤ j where the δ-parameter was doubled while
the inner loop was turning, and we let N ′ consists of all these j′, j ∈ N . It is possible
that j′ = j, but in general we can only assure that

2δkj′−1
≤ δkj′ and δkj′ ≥ δkj′+1

≥ · · · ≥ δkj ,

so that N ′ is not necessarily a subset of N . What counts is that N ′ is infinite, that
δkj →∞, (j ∈ N ′), and that the doubling rule was applied for each j ∈ N ′.

12

Let us say that at outer loop counter j ∈ N ′ it was applied for the last time in
the inner loop at δkj−νj

for some νj ≥ 1. That is, we have δkj−νj+1 = 2δkj−νj
, while

the δ parameter was frozen during the remaining steps before acceptance in the inner
loop, i.e.,

δkj
= δkj−1 = · · · = δkj−νj+1 = 2δkj−νj

.(22)

Recall from step 7 of the algorithm that we have ρk < γ and ρ̃k ≥ γ̃ for those k where
the step was not accepted and the doubling rule was applied. That is,

ρkj−νj
=

f(xj)− f(ykj−νj+1)
f(xj)− φkj−νj (ykj−νj+1, xj)

< γ

and

ρ̃kj−νj =
f(xj)− φ(ykj−νj+1, xj)

f(xj)− φkj−νj
(ykj−νj+1, xj)

≥ γ̃.

By (22) we now have

1
2δkj

(
xj − ykj−νj+1

)
∈ ∂φkj−νj (y

kj−νj+1, xj).

Using φkj−νj
(xj , xj) = f(xj) and the subgradient inequality for φkj−νj

(·, xj) at
ykj−νj+1 gives

1
2δkj

(
xj − ykj−νj+1

)> (
xj − ykj−νj+1

)
≤ φkj−νj (x

j , xj)− φkj−νj (y
kj−νj+1, xj)

= f(xj)− φkj−νj
(ykj−νj+1, xj).

This could also be written as

δkj‖xj − ykj−νj+1‖2

f(xj)− φkj−νj
(ykj−νj+1, xj)

≤ 2.(23)

Substituting (23) into the expression ρ̃kj−νj gives

ρ̃kj−νj = ρkj−νj +
f(ykj−νj+1)− φ(ykj−νj+1, xj)
f(xj)− φkj−νj (ykj−νj+1, xj)

≤ ρkj−νj
+

L‖xj − ykj−νj+1‖2

f(xj)− φkj−νj
(ykj−νj+1, xj)

(using Lemma 1)

≤ ρkj−νj +
2L
δkj

(using (23)).

Since ρkj−νj
< γ and L/2δkj

→ 0, (j ∈ N ′), we have lim supj∈N ′ ρ̃kj−νj
≤ lim supj∈N ′ ρkj−νj

≤
γ, contradicting ρ̃kj−νj ≥ γ̃ > γ for all j ∈ N ′. This proves our claim gj → 0 as
j →∞.

Let x̄ be an accumulation point of the sequence xj of serious iterates. We have
to prove 0 ∈ ∂f(x̄). Pick a convergent subsequence xj → x̄, j ∈ N . Observe that the
sequence xj+1 is also bounded, so passing to a subsequence of N if necessary, we may
assume xj+1 → x̃, j ∈ N . In general it could happen that x̃ 6= x̄. Only when δkj

,
j ∈ N , are bounded away from 0 can we conclude that xj+1 − xj → 0.

13

Now as gj = δkj
(xj −xj+1) is a subgradient of φkj

(·, xj) at ykj+1 = xj+1 we have

g>j h ≤ φkj (x
j+1 + h, xj)− φkj (x

j+1, xj)

≤ φ(xj+1 + h, xj)− φkj (x
j+1, xj) (using φkj ≤ φ)

for every test vector h. Now we use the fact that ykj+1 = xj+1 was accepted in step
4 of the algorithm. That means

γ−1
(
f(xj)− f(xj+1)

)
≥ f(xj)− φkj (x

j+1, xj).

Combining these two estimates gives

g>j h ≤ φ(xj+1 + h, xj)− f(xj) + f(xj)− φkj (x
j+1, xj)

≤ φ(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
.

Passing to the limit (using gj → 0, xj+1 → x̃, xj → x̄, f(x̄) = φ(x̄; x̄), and f(xj) −
f(xj+1) → 0 in the order named) shows

0 ≤ φ(x̃+ h; x̄)− φ(x̄; x̄)

for every h. This being true for every h, we can fix h′ and choose h = x̄ − x̃ + h′,
which then gives

0 ≤ φ(x̄+ h′; x̄)− φ(x̄; x̄).

As this is true for every h′, we have 0 ∈ ∂φ(·; x̄)(x̄), and hence also 0 ∈ ∂f(x̄).

10. Numerical Experiments. H∞ feedback controller synthesis was one of
the motivating application for the developpement of the proximity control bundle
algorithm presented in section 7. We consider a linear time invariant dynamical
system in the standard LFT formẋz

y

 =

A B1 B2

C1 D11 D12

C2 D21 D22

 ·
xw
u

 ,
where x ∈ Rnx is the state, y ∈ Rny the output, u ∈ Rnu the command input and
w ∈ Rnw , z ∈ Rnz the performance channel. To cancel direct transmission from input
u to output y, the assumption D22 = 0 is made. This is no loss of generality (see [49],
chapter 17).

Let K be a static feedback controller, then the closed loop state space data and
transfer function T (K, ·) read

(24)
{
ẋ = A(K)x+B(K)w
z = C(K)x+D(K)w ,

(25) T (K, jω) = C(K)(jωI −A(K))−1B(K) +D(K),

where

(26)
A(K) = A+B2KC2, B(K) = B1 +B2KD21

C(K) = C1 +D12KC2, D(K) = D11 +D12KD21.
.

14

Dynamic controllers can be addressed in the same way by prior augmention of the
plant (26), see e.g. [5].

In H∞ synthesis we compute K to minimize the H∞ norm of the transfer function
T (K, ·), that is,

‖T (K, ·)‖∞ := sup
ω∈[0,∞]

σ1(T (K, jω)),

see e.g. [49]. The standard approach to H∞ synthesis in the literature uses the
Kalman-Yakubovitch-Popov Lemma and leads to a bilinear matrix inequality (BMI)
[15]. Here we use a different and much more direct approach based on our proximity
control algorithm. The advantage of this is that Lyapunov variables can be avoided,
which is beneficial because they are a source of numerical trouble. Not only does
their number grow quadratically with the system order, they may also cause strong
disparity between the optimization variables [9]. The price to be paid for avoiding
them is that a difficult semi-infinite and non-smooth program has to be solved. To
synthesize a dynamic controller K of order nk ∈ N, nk ≤ nx, the objective f :
R(nk+nu)×(nk+ny) → R+ is defined as

(27) f(K) := max
ω∈[0,∞]

λ1(T (K, jω)AT (K, jω)) = ‖T (K, ·)‖2∞ ,

which is nonsmooth and non-convex with two sources of non-smoothness, the infinite
max operator, and the maximum eigenvalue function.

10.1. Computing the objective. Computation of the function value and the
subgradients in (27) presents the main difficulty. Fortunately this can be done in an
efficient way using the bisection algorithm [14, 44, 49] based on Hamiltonian calculus.
The objective f has the following nice property: either f(K,ω) has the same constant
value for all ω ∈ [0,∞], or the number of frequencies ω where the maximum is attained
is finite [12, 13]. In the sequel we call

Ω(K) := {ω ∈ [0,∞] : σ1(T (K, jω)) = ‖T (K, ·)‖∞}

the set of active frequencies. Now consider the matrix transfer function G defined by

(28) G(jω) :=
[
(jωI −A(K))−1B(K)

I

]A
M

[
(jωI −A(K))−1B(K)

I

]
,

with M =
[
M11 M12

M21 M22

]
, and the associated Hamiltonian

H :=
[
A(K)−B(K)M−1

22 M21 −B(K)M−1
22 B

>(K)
−M11 +M12M

−1
22 M21 −A>(K) +M12M

−1
22 B

>(K)

]
.

Theorem 9. Assume that A(K) has no imaginary eigenvalues and M22 ≺ 0,
then G(jω) is singular iff jω is an eigenvalue of H .

This result is the key element to compute the H∞ norm by computing eigenvalues
of H [44]. Let γ ≥ 0 satisfy the inequality σ1(D) < γ ≤ ‖T (K, ·)‖∞, and consider
the matrix

M =
[
C(K)>C(K) C(K)>D(K)
D(K)>C(K) D(K)>D(K)− γ2I

]
.

15

Then G(jω) = T (K, jω)AT (K, jω) − γ2I. Using Theorem 9, the frequencies ω ∈
[−∞,∞] satisfying

σ1(T (K, jω)) = γ

can now be computed by finding the purely imaginary eigenvalues jω of the Hamil-
tonian H . The bisection algorithm of [14] to compute the H∞ norm is based on
this property. The set of active frequencies Ω(K), needed for the computation of the
subgradients of f is also determined by this algorithm.

10.2. Convex model. A convex local model φ of f at the stability center K ∈
R(nk+nu)×(nk+ny) is defined as

φ(K+,K) = max
ω∈[0,∞]

λ1(T2(K,K+, jω)),

where

T2(K,Y, jω) := T (K, jω)AT (K, jω) + (T ′(K, jω)(Y −K))AT (K, jω)
+ T (K, jω)AT ′(K, jω)(Y −K),

T ′(K, ·) being the derivative of transfer function (25) with respect to controller K.
See [5] for a complete description of T ′(K, ·).

We need to explain how to compute φ(·,K) at a given K+. Notice that φ can not
be written directly as an H∞ norm of a transfer function, because λ1(T2(K,K+, jω))
can be negative. In order to use theH∞ norm computation algorithm, some additional
work is needed.

Lemma 10. Let k ∈ N and denote

Mk =
[
Ik Ik
Ik 0

]
∈ S2k.

Then Mk = P>k ∆kPk, where

∆k =
[
r1Ik 0
0 r2Ik

]
, Pk =

[
κ1Ik κ2Ik
−κ2Ik κ1Ik

]
,

with r1 = 1−
√

5
2 , r2 = 1+

√
5

2 , κ1 = cosα, κ2 = sinα, α = arctan
(

1+
√

5
2

)
.

Proof. Starting with matrixMk+1, we apply the following sequence of row/column
transpositions: row k/2 ↔ k − 1, column k/2 ↔ 1k − 1, row k/2 ↔ k/2 + 1, and
finally column k/2 ↔ k/2 + 1. The matrix obtained is[

Mk 0
0 M1

]
.

Repeating this process with the submatrices Mk, Mk−1, and so on, and finally we
obtain a block diagonal matrix, where each of the k+ 1 blocks equals M1. Hence Mk

has the two eigenvalues of M1, each with multiplicity k + 1.
Eigenvectors of Mk can now be obtained from those of M1.[

κ1Ik κ2Ik
−κ2Ik κ1Ik

] [
Ik Ik
Ik 0

] [
κ1Ik κ2Ik
−κ2Ik κ1Ik

]>
=
[

κ2
1 + 2κ1κ2Ik κ2

1 − κ2
2 − 2κ1κ2Ik

κ2
1 − κ2

2 − 2κ1κ2Ik κ2
2 − 2κ1κ2Ik

]
.

16

Using κ2
1 − κ2

2 − 2κ1κ2 = 0, and κ1 = cosα, κ2 = sinα, we deduce

1− tan2 α− tanα = 0, hence tanα ∈

{
1−

√
5

2
,
1 +

√
5

2

}

Choosing α = arctan
(

1+
√

5
2

)
gives the desired result, while the other case corresponds

to a diagonal matrix with eigenvalues in decreasing order.
Writing the transfer function T2(K,Y, ·) in the factorized form

T2(K,Y, jω) =
[

T (K, jω)
T ′(K, jω)(Y −K)

]A [
I I
I 0

] [
T (K, jω)

T ′(K, jω)(Y −K)

]
,

Lemma 10 leads to

(29) T2(K,Y, jω) = T3(K,Y, jω)A
[
−I 0
0 I

]
T3(K,Y, jω),

where T3(K,Y, ·) is the transfer function defined by

T3(K,Y, jω) =
[√
−r1I 0
0

√
r2I

]
Pk

[
T (K, jω)

T ′(K, jω)(Y −K)

]
.

We denote A3, B3, C3, D3 the state space data of transfer function T3(K,Y, ·) and let
γ ∈ R such that

λ1(D>3 ΣD3) < γ ≤ max
ω∈[0,∞]

λ1(T2(K,Y, jω)).

Define

G3(jω) =
[
(jωI −A3)−1B3

I

]A
M3

[
(jωI −A3)−1B3

I

]
,

with

M3 =
[
C>3 ΣC3 C>3 ΣD3

D>3 ΣC3 D>3 ΣD3 − γI,

]
, and Σ :=

[
−I 0
0 I

]
.

Then with Theorem 9, the frequencies ω where λ1(T3(K,Y, jω)) = γ can be computed
from the eigenvalues of the associated Hamiltonian matrix. In consequence, the bi-
section algorithm of [14] can be generalized to compute the values of φ and also its
subgradients.

Remark 1. The fact that φ cannot be directly expressed as an H∞ norm appears
more clearly in factorisation (29), due to multiplication with non-positive matrix Σ.

10.3. Alternative convex model. The above construction shows that function
values and subgradients of φ can be computed using a bisection method similar to
the one used to compute the H∞ norm. However, the transfer function T3(K,Y, ·) is
formed by the parallel connection between T (K, ·) and T ′(K, ·), so its number of states
equals the sum of the number of states of T (K, ·) and T ′(K, ·). Since T (K, ·) has nx

states, T ′(K, ·) has 2×nx states, being the serial connection of two transfer functions
with nx states [5]. Hence, T3(K,Y, ·) has 3 × nx states, the associated Hamiltonian
matrix is then 3 times larger than that of the transfer function T (K, ·).

17

For a n×n matrix, the number of floating point operation to compute eigenvalues
is O(n3), as described in the LAPACK benchmark [1]. To compute φ, the compu-
tational cost for eigenvalue identification of the Hamiltonian matrix is then 27 times
the cost of the computation for the transfer function T (K, ·). In other words, φ(Y,K)
is 27 times more expensive than f(Y), because the cost for the factorization above is
approximately the same as the cost of the factorization needed to compute f . The use
of φ is therefore convenient only for small to medium order systems. When system
order is large, another convex model with lower computational cost has to be used.

A natural idea is to use a simplified version of φ by performing the frequency
maximization over an adequatly chosen subset of frequencies. We explain in which
way this can be arranged, so that the arguments in the proof of Theorem 8 remain
valid.

Consider the model

φ̃(Y,K) := max
ω∈Ω(K)∪Ω(Y)

λ1(T2(K,Y, jω)),

where Ω(K) is the set of active frequencies of f at K, Ω(Y) active frequencies of f at
Y . At least in the case where Ω(K) ∪ Ω(Y) is finite, φ̃ can be computed efficiently.
Unfortunately, φ̃ is not suited as a model for f , because it lacks continuity used at
the very end of the proof of Theorem 8. Namely, when Ki → K and Yi → Y , it may
happen that lim supi→∞Ω(Ki)∪Ω(Yi) 6⊃ Ω(K)∪Ω(Y), because it is well-known that
the number of active peaks and also the eigenvalue multiplicity at each peak may
increase brusquely as we pass to the limit.

Assuming in the following that all Ω(K), Ω(Y) encountered by our algorithm are
finite, we can arrange a different but still practical way to define a model, which has
the desired semi-continuity property. Let us use the following notation. For any set
Ω with Ω(K) ∪ Ω(Y) ⊂ Ω ⊂ [0,∞] define

φΩ(Y,K) = sup
ω∈Ω

λ1 (T2(K,Y, jω)) .

Then φ = φ[0,∞] and φ̃ = φΩ(K)∪Ω(Y). The first Ω is too large (CPU), the second too
small (lack of continuity). We need something intermediate, which we call Ω(K,Y),
and which will have a weak form of continuity. We will then put

φ̄(Y,K) := φΩ(Y,K)(Y,K) = sup
ω∈Ω(Y,K)

λ1 (T2(K,Y, jω)) .

Then φ̄(Y,K) = φΩ(Y,K)(·,K) ≥ φΩ(K)∪Ω(Y)(·,K) = φ̃(·,K), and therefore φ̄(K,K) =
φ̃(K,K) = f(K). What we need to ascertain when defining Ω(Y,K) is that Ω(K) ∪
Ω(Y) ⊂ lim supi→∞Ω(Yi,Ki) for Ki → K, Yi → Y . Then the argument at the end
of the proof of Theorem 8 remains valid.

This can be arranged in the following way. Let f(K) > 0 and, fixing 0 < θ <
1, choose a tolerance level θf(K) < f(K). Now let Ωe(K) be an extended set of
frequencies which contains the peaks ω ∈ Ω(K), but also an additional sample of
frequencies ω in the range θf(K) ≤ λ1 (K,K, jω)) ≤ f(K). Ωe(K) could be a gridding
of the set {ω : θf(K) ≤ λ1 (K,K, jω)) ≤ f(K)}, which is a finite union of open
intervals. The gridding should be arranged to depend continuously on K, and such
that it contains all local maxima of the curve ω 7→ λ1 (T2(K,Y, jω)) in that frequency
range. The idea is that as Ki → K, some of these secondary peaks Ωe(Ki) will
become peaks at K, so that Ω(K) ⊂ lim supi→∞Ωe(Ki). Put differently, knowledge

18

of the secondary peaks in the band θf(Ki) < f(Ki) for i sufficiently large allows
to anticipate the peaks at K. Now use a similar construction for Y letting Ωe(Y)
be a gridding of the set {ω : θ supω∈Ω(Y) λ1 (T2(K,Y, jω)) ≤ λ1 (T2(K,Y, jω)) ≤
supω∈Ω(Y) λ1 (T2(K,Y, jω))}. Finally put Ω(Y,K) = Ωe(Y) ∪ Ωe(K). Notice that
ways to estimate secondary peaks have been discussed in [12]. Numerical experience
shows that these secondary peaks need not be computed with a very high accuracy.
It suffices that the accuracy increases as these local maxima get closer to the global
maximum of the frequency plot, and this is usually easy to arrange.

In order to guarantee convergence of our algorithmic scheme when φ̄ is used
instead of φ, we need to ascertain that the estimate of Lemma 1 remains valid. But
this is guaranteed at all trial points Y visited during the iteration simply by having
Ω(Y) ⊂ Ω(K,Y). The uniformity of the constant L follows from Weyl’s theorem used
in the proof of Lemma 1.

10.4. Implementation and initialisation. We have implemented the prox-
imity control bundle algorithm (PC) for H∞ output feedback controller synthesis in
Matlab. Both the ideal model φ and its approximation φ̄ = φΩ(Y,K) have been used
to compare performance. For comparison we have included two software tools for H∞
synthesis. The first is the linesearch method (LS) described in [5], where descent di-
rection are derived from enhanced subgradient information. The second one is HIFOO
from [16], based on the gradient sampling method of [17].

The same stopping criteria have been used for LS and PC. The algorithm is
stopped if descent of objective and steplength are too small, i.e.

f(K)− f(K+) < ε(|f(K)|+ 1) and
∥∥K −K+

∥∥ < ε(‖K‖+ 1),

where ε > 0 is a tolerance parameter, fixed to 1e− 5 in all numerical tests. Stopping
in HIFOO is rather different. We have therefore fixed the numerical tolerance for its
stopping criterion to the same value ε.

LS allows to compute a criticality measure θ, deduced from its tangent program
[2]. This criticality measure has been used a posteriori to measure criticality of
synthesized controllers in the static synthesis case.

There is also another stopping criterion for PC used to avoid entering the inner
loop at near optimal points K, where it may perform a large number of trial steps,
only to end with a serious step with negligeable progress. This stopping criterion is
based on the tangent program. The algorithm is halted if

f(K)− φ̄(K+,K) < ε2,

where number ε2 is chosen small to stop only when the algorithm is stuck in null
steps. In our test we have set ε2 = 0.01× ε.

For H∞ synthesis models from the COMPLeiB library [36] have been used: four
aircraft models (AC2, AC10, AC14, and AC18), three helicopter models (HE4, HE6,
and HE7), one jet engine mode (JE1), and one distillation column model (BDT2).
State dimensions of these plants are given in Table 1 and range from small to large.
The optimal full-order H∞ performance γ̄∞ has been computed for each plant using
the MATLAB hinfric solver to give a strict lower bound for the locally optimal gains
computed by the algorithms.

For static H∞ synthesis the four methods have been compared. To allow a fair
comparison, the same initial stabilizing controller has been used to start each algo-
rithms. Notice however that HIFOO uses a random multistart strategy, so in each run

19

three new initial points are generated from random perturbations of K0. Then the
best result of these four runs is chosen. In contrast, LS and PC perform only one
run not using any random perturbations. For dynamic synthesis we only compare the
proximal bundle method with model φ̄ to HIFOO.

Finding an initial stabilizing controller is sometimes intricate. Here we use soft-
ware based on spectral abscissa optimization developped in [10].

10.5. Results. Results for static H∞ synthesis are displayed in Table 2. The
final performance γ∞, CPU time T, and criticality measure |θ| are given for each of
the four methods. For LS and PC the number of outer steps it and mean time by
iteration CPU are given. CPU in and it in are respectively the mean inner iteration,
CPU time for PC algorithm, and total number of inner iterations. As can be seen on
this Table, the use of model φ is much more costly to compute than φ̄ = φΩ(Y,K). For
small sized system this difference is slight, but becomes important for larger plants
like BDT2.

Results of PC bundle method with model φ and φ̄ are very close except for the
HE4, where the use of true model φ leads to a better result. It seems that PC
needs fewer outer and inner iterations often with better quality if the model φ is
used. This is not the case for HE6 and can be explained by the fact that here the
algorithm gets stuck at some ill-conditioned point, where subgradient information is
not trustworthy, leading to many inner iterations with only a small progress in f . In
a general, the global computation time for PC with model φ is much larger than with
the approximate model φ̄, while it is still faster than HIFOO for half of the experiments.

Controller synthesis with LS is very fast and gives good results on AC2 and AC18.
However on most examples LS stops earlier than for the other methods, leading to
controllers with slightly worse H∞ performance. This behavior can be explained by
the fact that LS is not suited to handle situation where the first singular values of
transfer function coalesce. This is explained in [5], where for numerical simplifications
the authors made the assumption that the maximal singular value is simple. As can
be seen in Figure 1, this assumption is not true for the controller synthesized with
LS. Coalescence of singular values also occurs for HE6, AC14 and AC18, indicating
that it may not be a rare phenomenon.

HIFOO performed similar to PC on HE4, HE6 and AC2, while in all other examples
the best results were obtained with PC. Moreover, HIFOO was much slower than PC-φ̄
for all examples, except for AC2.

Table 3 shows results for dynamic controller synthesis of order 0 < nk ≤ nx.
Performance and CPU were compared between PC-φ̄ and HIFOO for each model.
Results are encouraging, PC-φ̄ is fast and computes controllers which outperform
HIFOO for most examples. Only BDT2 caused trouble, as the PC algorithm got stuck
in the inner loop.

Conclusion. We have presented a proximity control bundle algorithm to opti-
mize the H∞-norm or other nonsmooth criteria which are infinite maxima of max-
imum eigenvalue functions [4, 8]. Global convergence of the algorithm was proved.
The method was tested on examples in feedback control design and shown to have
good performance compared to the linesearch method of [5] and HIFOO [16].

Acknowledgement. The authors acknowledge financial support from Agence
Nationale de Recherche (ANR) under contract SSIA−NV−6 Controvert, from Agence
Nationale de Recherche (ANR) under contract NT05− 1−43040 Guidage, and from
Fondation de Recherches pour l’Aéronautique et l’Espace under contract Survol.

20

plant nx nz nw ny nu γ̄∞
AC2 5 5 3 3 3 0.111495
HE4 8 12 8 6 4 22.838570
AC18 10 5 3 2 2 5.394531
HE6 20 16 6 6 4 2.388637
HE7 20 16 9 6 4 2.611759
JE1 30 8 30 5 3 3.882812
AC14 40 11 4 4 3 100
BDT2 82 4 2 4 4 0.234014

Table 1
State dimensions of the models used in numerical experiments. Performance γ̄∞ of the full-

order H∞ controller is shown on the right and gives a lower bound for the tests in Tables 2 and
3.

 0

 5

 10

 15

 20

 25

 30

 35

 0.0001 0.001 0.01 0.1 1 10 100 1000

G
a
in

Frequency ω

HE4 static synthesis, first singular values

θγ

γ

Fig. 1. HE4 singular value plot of LS method synthesized controller. Selected frequencies
ω ∈ Ωe(K) above the threshold θγ < γ are shown.

REFERENCES

[1] E. Anderson et al. , LAPACK’s user’s guide, Society for Industrial and Applied Mathematics,
Philadelphia, 1992.

[2] P. Apkarian, D. Noll, Nonsmooth optimization for multidisk H∞ synthesis. European J.
Control, vol. 12, no. 3, 2006, pp. 229 – 244.

[3] P. Apkarian, D. Noll, Controller design via nonsmooth multi-directional search. SIAM J.

21

plant, method γ∞ it it in CPU CPU in T |θ|
HE4, LS 34.25801 46 - 1.53e-2 - 0.70 8.8e-3
HE4, PC-φ̄ 23.58456 154 1078 1.02e-2 2.20e-2 25.28 5.7e-3
HE4, PC-φ 23.02933 128 1297 1.43e-2 4.94e-2 65.93 1.9e-3
HE4, HIFOO 22.83907 - - - - 36.67 3.7e-3
HE6, LS 462.52976 289 - 1.91e-2 - 5.52 4.3e-2
HE6, PC-φ̄ 192.35793 548 692 1.14e-2 2.09e-2 20.02 1.2
HE6, PC-φ 192.35718 599 1165 1.48e-2 8.39e-2 106.71 2.7e-4
HE6, HIFOO 192.35881 - - - - 128.78 1.1e-3
AC2, LS 0.11149 57 - 1.24e-2 - 0.71 7.2e-7
AC2, PC-φ̄ 0.11149 147 43 6.20e-3 1.16e-2 1.41 1.3e-4
AC2, PC-φ 0.11149 143 43 6.53e-3 4.48e-2 2.86 1.4e-4
AC2, HIFOO 0.11149 - - - - 0.74 1.7e-6
AC14, LS 104.93211 51 - 5.10e-2 - 2.60 6.3e-4
AC14, PC-φ̄ 102.64676 73 325 2.84e-2 4.12e-2 15.45 1.9e-3
AC14, PC-φ 102.55853 72 227 2.68e-2 2.73e-1 64.00 5.7e-4
AC14, HIFOO 106.36521 - - - - 291.92 2.6
AC18, LS 10.71487 30 - 1.90e-2 - 0.57 6.2-02
AC18, PC-φ̄ 10.70115 68 296 1.00e-2 1.84e-2 6.11 3.8e-2
AC18, PC-φ 10.71141 45 224 1.07e-2 5.41e-2 12.58 3.7e-2
AC18, HIFOO 27.23054 - - - - 13.32 3.8e-4
BDT2, LS 0.82903 70 - 2.72e-1 - 19.04 8.8e-5
BDT2, PC-φ̄ 0.67307 811 1393 8.93e-2 1.01e-1 214.18 7.5e-5
BDT2, PC-φ 0.67301 769 1361 8.98e-2 1.73 2430.00 8.9e-5
BDT2, HIFOO 0.82050 - - - - 1154.26 1.1e-3

Table 2
Static H∞ synthesis. Four methods have been compared on 6 plants. The columns show final

objective value γ∞, number of iterations it, number of inner iterations it in, mean iteration time
CPU, mean inner iteration time CPU in, total synthesis time T, and criticality measure |θ|. All cpu’s
are in seconds.

plant nk γ∞ PC-φ̄ γ∞ HIFOO T PC-φ̄ T HIFOO
HE6 1 187.42768 187.42745 22.25 102.50
HE6 2 16.44215 19.93352 46.50 168.80
HE6 3 10.03032 10.07088 106.61 175.25
HE7 6 2.87754 10.21527 106.90 403.21
AC10 2 7.63791 10.49584 1165.19 215.59
JE1 5 5.67469 33.67678 252.06 591.40
BDT2 6 5.08779 4.97796 3732.23 3150.41

Table 3
Dynamic H∞ synthesis. For each of the 7 models, PC-φ̄ and HIFOO are compared. γ∞ is the

objective value reached by the method, T the total synthesis CPU in seconds.

Control and Optim., vol. 44, 2006, pp. 1923 - 1949.
[4] P. Apkarian, D. Noll, IQC analysis and synthesis via nonsmooth optimization. Systems and

Control Letters, vol. 55, no. 12, 2006, pp. 971 – 981.
[5] P. Apkarian, D. Noll, Nonsmooth H∞ synthesis. IEEE Trans. Autom. Control, vol. 51, 2006,

pp. 71 - 86.
[6] P. Apkarian, D. Noll, Nonsmooth optimization for multiband frequency domain control de-

sign. Automatica, vol. 43, no. 4, 2007, pp. 724 – 731.

22

[7] P. Apkarian, D. Noll, Nonsmooth structured control design with applications to PID loop-
shaping of a process. International Journal of Robust and Nonlinear Control, vol. 17, no.
14, 2007, pp. 1320 – 1342.

[8] P. Apkarian, D. Noll, O. Prot, Nonsmooth methods for analysis and synthesis with integral
quadratic constraints. ACC 2007, New Orleans, Conference Proceedings.

[9] P. Apkarian, D. Noll, O. Prot, Trust region spectral bundle method for nonconvex maximum
eigenvalue functions. SIAM J. on Optimization, accepted 2007.

[10] V. Bompart, Optimisation non lisse pour la commande des systèmes de l’aéronautique, Thèse
de l’université Paul Sabatier, Toulouse, 23 Novembre 2007.

[11] V. Bompart, P. Apkarian and D. Noll, Nonsmooth techniques for stabilizing linear systems.
American Control Conference (2007 ACC), Times Square, New York, NY.

[12] V. Bompart, D. Noll and P. Apkarian, Second-order nonsmooth optimization of the H∞
norm. Numerische Mathematik, vol. 107, no. 3, 2007, pp. 433 – 454.

[13] S. Boyd, V. Balakrishnan, A regularity result for the singular values of a transfer matrix
and a quadratically convergent algorithm for computing its L∞-norm. Systems and Control
Letters, vol. 15, 1990, pp. 1 - 7.

[14] S. Boyd and V. Balakrishnan and P. Kabamba, A bisection method for computing the H∞
norm of a transfer matrix and related problems. Mathematics of Control, Signals, and
Systems, vol. 2, 1989, pp. 207 - 219.

[15] S. Boyd, L. Elghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system
and control theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia,
1994.

[16] J.V. Burke, D. Henrion, A.S. Lewis and M.L. Overton, HIFOO - A MATLAB Package for
Fixed-Order Controller Design and H-infinity Optimization, In: Proceedings of ROCOND
2006, Toulouse, July 2006.

[17] J.V. Burke, A.S. Lewis, and M.L. Overton, A robust gradient sampling algorithm for non-
smooth, nonconvex optimization, SIAM J. Optim., vol. 15, 2005, pp. 751–779.

[18] B. M. Chen, H∞ control and its applications, vol. 235 of Lecture Notes in Control and Infor-
mation Sciences, Springer Verlag, New York, Heidelberg, Berlin, 1998.

[19] F. Clarke, Optimization and nonsmooth analysis. Canadian Math. Society Series, John Wiley
& Sons, New York, 1983.

[20] J. Cullum, W. Donath and P. Wolfe, The minimization of certain nondifferentiable sums
of eigenvalues of symmetric matrices. Math. Programming Studies, vol. 3, 1975, pp. 35 -
55.

[21] B. Fares, D. Noll and P. Apkarian, Robust control via sequential semidefinite programming.
SIAM J. Control and Optim. vol. 40, 2002, pp. 1791 - 1820.

[22] R. Fletcher, Semidefinite matrix constraints in optimization. SIAM J. Control and Optim.
vol. 23, 1985, pp. 493 - 513.

[23] A. Fuduli, M. Gaudioso and G. Giallombardo, A DC piecewise affine model and a bundling
technique in nonconvex nonsmooth optimization. Optimization Method and Software, vol.
19, 2004, pp. 89 - 102.

[24] A. Fuduli, M. Gaudioso and G. Giallombardo, Minimizing nonconvex nonsmooth functions
via cutting planes and proximity control. SIAM J. Optim. vol. 14, 2004, pp. 743 - 756.

[25] D. Gangsaas, K. Bruce, J. Blight and U.-L. Ly, Applications of modern synthesis to aircraft
control: Three case studies. IEEE Trans. Autom. Control, AC-31, 1986, pp. 995 - 1014.

[26] C. Helmberg, K.C. Kiwiel, A spectral bundle method with bounds. Math. Programming, vol.
93, 2002, pp. 173 - 194.

[27] C. Helmberg, F. Oustry, Bundle methods to minimize the maximum eigenvalue function.
Handbook of Semidefinite Programming. Theory, Algorithms and Applications. L. Van-
denberghe, R. Saigal, H. Wolkowitz (eds.), vol. 27, 2000.

[28] C. Helmberg, F. Rendl, Spectral bundle method for semidefinite programming. SIAM J.
Optimization, vol. 10, 2000, pp. 673 - 696.

[29] J.W. Helton, O. Merino, Coordinate optimization for bi-convex matrix inequalities. Proc.
Conf. on Decis. Control, San Diego, CA, 1997, pp. 3609 - 3613.

[30] J.-B. Hiriart-Urruty, C. Lemaréchal , Convex analysis and minimization algorithms, vol
I: and vol II: Advanced theory and bundle methods, vol. 306 of Grundlehren der mathema-
tischen Wissenschaften, Springer Verlag, New York, Heidelberg, Berlin, 1993.

[31] Y.S. Hung, A.G.J. MacFarlane, Multivariable feedback: A classical approach. Lect. Notes in
Control and Information Sciences, Springer Verlag, New York, Heidelberg, Berlin, 1982.

[32] L.H. Keel, S.P. Bhattacharyya and J.W. Howe, Robust control with structured perturba-
tions. IEEE Trans Autom. Control vol. 36, 1988, pp. 68 - 77.

[33] K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable optimization.

23

Math. Programming, vol. 46, 1990, pp. 105 - 122.
[34] K.C. Kiwiel, Methods of descent for nondifferentiable optimization, vol. 1133 of Springer Lect.

Notes in Math., Springer Verlag, 1985.
[35] K.C. Kiwiel, A linearization algorithm for computing control systems subject to singular value

inequalities. IEEE Trans. Autom. Control, AC-31, 1986, pp. 595 - 602.
[36] F. Leibfritz, COMPLeIB, COnstrained Matrix-optimization Problem LIbrary - a collection

of test examples for nonlinear semidefinite programs, control system design and related
problems. Tech. Report, Universität Trier, 2003.

[37] C. Lemaréchal, An extension of Davidson’s method to nondifferentiable problems. Math.
Programming Studies, Nondifferentiable Optimization, M.L. Balinski and P. Wolfe (eds.),
North Holland, 1975, pp. 95 - 109.

[38] C. Lemaréchal, Bundle methods in nonsmooth optimization. Nonsmooth Optimization, Proc.
IIASA Workshop 1977, C. Lemaréchal, R. Mifflin (eds.), 1978.

[39] C. Lemaréchal, Nondifferentiable optimization. Chapter VII in: Handbooks in Operations
Research and Management Sciences, vol. 1, 1989.

[40] C. Lemaréchal, A. Nemirovskii and Y. Nesterov, New variants of bundle methods. Math.
Programming, vol. 69, 1995, pp. 111 - 147.

[41] D. Mayne, E. Polak, Algorithms for the design of control systems subject to singular value
inequalities. Math. Programming Studies, vol. 18, 1982, pp. 112 - 134.

[42] D. Mayne, E. Polak and A. Sangiovanni, Computer aided design via optimization. Auto-
matica, vol. 18, no. 2, 1982, pp. 147 - 154

[43] D. Noll, P. Apkarian, Spectral bundle method for nonconvex maximum eigenvalue functions:
first-order methods. Math. Programming, Series B, vol. 104, 2005, pp. 701 - 727.

[44] P.A. Parrilo, On the numerical solution of LMIs derived from the KYP lemma. In Proceeding
of the 38th IEEE conference on Decision and Control, volume 3, pages 2334–2338, Phoenix,
Arizona, December 1999.

[45] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering
design. SIAM Review, vol. 29, 1987, pp. 21 - 89.

[46] E. Polak, Optimization: Algorithms and Consistent Approximations. Springer Series in Ap-
plied Mathematical Sciences, vol. 124, 1997.

[47] J.-B. Thevenet, D. Noll and P. Apkarian, Nonlinear spectral SDP method for BMI-
constrained problems: applications to control design. Informatics in Control, Automation
and Robotics I, J. Braz, H. Arajo A. Viera and B. Encarnaco (eds.), Springer Verlag, 2006,
pp. 61 - 72.

[48] P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable functions.
Math. Programming Studies, vol. 3. Nondifferentiable Optimization, M.L. Balinski, P.
Wolfe (eds.), North-Holland, 1975, pp. 145 - 173.

[49] K. Zhou, J. C. Doyle and K. Glover Robust and Optimal Control. Printice Hall, 1996.

24

