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MIXED H,/H,, CONTROL VIA NONSMOOTH OPTIMIZATION*
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Abstract. We present a new approach to mixed Ha/H output feedback control synthesis. Our
method uses nonsmooth mathematical programming techniques to compute locally optimal Hs/Hoo-
controllers, which may have a predefined structure. We prove global convergence of our method and
present tests to validate it numerically.
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1. Introduction. Mixed Hy/H,, output feedback control is a prominent exam-
ple of a multiobjective design problem, where the feedback controller has to respond
favorably to several performance specifications. Typically in Ho/H synthesis, the
H, channel is used to enhance the robustness of the design, whereas the Hy channel
guarantees good performance of the system. Due to its importance in practice, mixed
Hy/H,, control has been addressed in various ways over the years, and we briefly
review the main trends.

The interest in Hs/Hy synthesis was originally piqued by three publications
[22, 23, 27] in the late 1980s and early 1990s. The numerical methods proposed
by these authors are based on coupled Riccati equations in tandem with homotopy
methods, but the numerical success of these strategies remains to be established.
With the rise of linear matrix inequalities (LMIs) in the later 1990s, different strate-
gies which convexify the problem became increasingly popular. The price to pay for
convexifying is either a considerable conservatism, or controllers with a large state
dimension [29, 25].

In [45, 47, 48] Scherer developed LMI formations for Hy/Ho, synthesis for full-
order controllers [48] and reduced the problem to solving LMIs in tandem with non-
linear algebraic equalities [48, 45]. In this form, Ha/H,, problems could in principle
be solved via nonlinear semidefinite programming techniques like specSDP [24, 40, 50]
or Pennon [31, 32, 36], if only these techniques were suited for medium or large size
problems. Alas, one of the disappointing lessons learned in recent years from investi-
gating BMI (bilinear matrix inequality) and LMI problems is that this is just not the
case. Due to the presence of Lyapunov variables, whose number grows quadratically
with the system size [14, p. 20ff], BMI and LMI programs quickly lead to problem
sizes where existing numerical methods fail.
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MIXED Hy/Ho CONTROL VIA NONSMOOTH OPTIMIZATION 1517

Following [3, 4, 5, 7, 6], we address Ho/H, synthesis by employing a new strategy
which avoids the use of Lyapunov variables. This leads to a nonsmooth and semi-
infinite optimization program, which we solve with a spectral bundle method, inspired
by the nonconvex spectral bundle method of [37, 38] and [3, 5]. Important forerunners
[19, 41, 28] are based on convexity and optimize functions of the form A; 0 A with affine
A. We have developed our method further to deal with typical control applications like
multidisk [6] and multifrequency band synthesis [7], design under integral quadratic
constraints (IQCs) [4, 9, 8], and loop-shaping techniques [2, 1].

The structure of the paper is as follows. The problem setting is given in section 2.
Computing the Hy and H, norms is briefly recalled in sections 3 and 4. The algorithm
and its rationale are presented in section 5. Global convergence is established in
section 6. The implementation is discussed in section 7, and numerical test examples
are discussed in section 8. Our terminology follows [17, 30, 52].

2. Problem setting. We consider a plant in state space form:

z A ‘ B, Bs B x

Zoo Coo ‘ Dy 0 Do Weo
(2.1) P 29 - Cy ‘ 0 0 Do, wy |’

Y C ‘ Dy Dy 0 U

where x € R™~ is the state, u € R™ is the control, y € R is the output, we — 2o
is the H,, performance channel, and wy — 2z, is the Hs performance channel. We
seek an output feedback controller:

TK

y b

(2.2) K: [ K ] -
u
where xx € R™¥ is the state of the controller, such that the closed-loop system,
obtained by substituting (2.2) into (2.1), satisfies the following properties:
1. Internal stability. K stabilizes P exponentially in closed-loop.
2. Fized Hs, performance. The H,, performance channel has a prespecified
performance level || Ty, —.. (K)|loo < Yoo-
3. Optimal Hy performance. The Hy performance ||T,,— ., (K)|2 is minimized
among all K satisfying properties 1 and 2.
We will solve the Hs/H,, synthesis problem by way of the following mathematical
program:

A By
Crx Dk

minimize  f(K) 1= || Tw,—2, (K)||3

(2.3)
subject to  g(K) := [[Tw. -z (K)”2 < ’7207

where Ty, 2, (K, 8) denotes the transfer function of the Hy closed-loop performance
channel, while T, ., (K, s) stands for the H,, robustness channel. Notice that
f(K) is a smooth function, whereas g(K) is not, being an infinite maximum of max-
imum eigenvalue functions. The unknown K is in the space R(x+nu)x(nxtny) g
the dimension n = (ng +ny)(nk +ny,) of (2.3) is usually small, which is particularly
attractive when small or medium size controllers for large systems are sought. Notice
that as a BMI or LMI problem, Hy/H,, synthesis (2.3) would feature n2 additional
Lyapunov variables, which would arise through the use of the bounded real lemma.
See, e.g., [46, 14].
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1518 P. APKARIAN, D. NOLL, AND A. RONDEPIERRE

Remark. Naturally, the approach chosen in (2.3) to fix the H, performance and
optimize Hy performance is just one among many other strategies in multiobjective
optimization. One could just as well optimize the H,, norm subject to an Hy norm
constraint, or minimize a weighted sum or even the maximum of both criteria. Other
ideas have been considered, and even game theoretic approaches exist [35].

3. The H; norm. In program (2.3) we minimize composite functions f = ||-||30
Ty 2y, Where || - ||2 denotes the Hy norm. Let us for brevity write Ty := Ty, ., for
the Hs transfer channel in (2.1). The corresponding plant P? is obtained by deleting
the ws column and the zo, line in P. The objective function can be written as

+oo
FU) = T ) B = o [ TolTa(, ) Ta( K. ) o

Algorithmically it is convenient to compute function values using a state space real-
ization of P%:

Ca

o (sI—A) By B].

P2(s)=[ ! Dz“]

Dy 0

Introducing the closed-loop state space data,

A+ BDgC BCk

AK) = B C Ag

, Ba(K) =

By + BD Dy
Br D,y ’

Co(K) =[Co+ D2yDrC D2,Cr |, D2(K) = Do,DrDys =0,

we assume either Dy, = 0 or Dyp = 0, or that the controller K is strictly proper,
to ensure finiteness of the Ho norm. Then a realization of the closed-loop transfer
function 75 is given as

Ty(K, 5) = Ca(K)(sT — A(K)) ' Ba(K)
and (see, e.g., [21]) the objective function f may be rewritten as
FUK) = Te(Ba(K)T X(K) Bo(K)) = Te(Ca(K) Y (K) Ca(K)T),
where X (K) and Y (K) are the solutions of two Lyapunov equations:
(3.1) AK)TX(K) + X(K)A(K) + Co(K)TC2(K) = 0,
AK)Y(K) + Y (K)AK)T + B2 (K)B2(K)T = 0.

As observed in [43, section 3], one proves differentiability of the objective f over
the set D of closed-loop stabilizing controllers K. In order to write the derivative
f/(K)dK in a gradient form, we introduce the gradient Vf(K) of f at K defined by

F(K)dK = To[Vf(K)"dK],

meaning that V f(K) is now an element of the same matrix space as K. These results
lead to the following lemma, which is an extension of [43, Theorem 3.2].

LEMMA 3.1. The objective function f is differentiable on the open set D of
closed-loop stabilizing gains. For K € D, the gradient of f at K is

Vf(K)=2[B"X(K)+ D3,Co(K)] Y (K)C" +2B" X(K)Ba(K)D)y,
where X (K) and Y (K) solve (3.1).
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4. The H,, norm. The next element required in (2.3) is the constraint function
g=1"1% oTw..—-.,a composite function of the H,, norm. To compute it we will
use a frequency domain representation of the H., norm. Let us for brevity write
T =Ty —~_. The corresponding plant is P°°, obtained by deleting the ws column
and the zs line in P. The constraint function g may be written as

9(K) = max 7(Tw(K,jw))’ = max A (To(K, jw)" Too(K, jw)) ,
w€[0,00] w€[0,00]
where 7 is the maximum singular value of a matrix, and A; is the maximum eigenvalue
of a Hermitian matrix. We rewrite this as

9(K) = max g(K,w), g(K,w) =X\ (Too(vaw)HToo(vaw)) .
w€e[0,00]
Then it is clear that g(K) is nonsmooth with two possible sources of nonsmoothness,
the infinite maximum and the maximum eigenvalue function, which is convex but
nonsmooth. We present two basic results, which allow us to exploit the structure of
g algorithmically. The following can be found in several places; see, e.g., [12, 11].

LEMMA 4.1. Let K be closed-loop stabilizing. Then g(K) = || T (K)||%, < 00, and
the set of active frequencies at K, defined as Q(K) = {w € [0,00] : g(K) = g(K,w)},
is either finite or Q(K) = [0, 00].

The case Q(K) = [0, 00] is when the closed-loop system is all-pass. It may very
well arise in practice; for instance, full order (n, = ng) optimal H., controllers are
all-pass; see [26]. A similar result holds for full-order Hs/H, control; see [20]. But
we never observed it in cases where the order of the controller ng < n, is way smaller
than the order of the system.

The following result was already used in [5, 6]. It allows us to compute Clarke
subgradients of the H., norm and its composite function g. To represent it, we find
it convenient to introduce the notation

To(K,s) G33(K,s) ] _ l Coo(K) ]

G53 (K, s) x o | GI=AE) T [ Bo(K) B]

Dy *

Doo(K) Docu ]

where the closed-loop state space data (A(K), Boo(K),Coo(K), Do (K)) are given by

A+ BDrgC BCk
BxC Ag

Coo(K) = [ Coo + DocuDkC  DocuCi |, Doo(K) = Doo + DoouDi Do

A(K) = ; Bo(K) =

Baso + BDgDyoo
Bi Dyoo ’

LEMMA 4.2 (see [5, section IV], [13, p. 304]). Suppose K is closed-loop stabilizing
and Q(K) is finite. Then the Clarke subdifferential of g at K is the set

Ig(K) = Oy Y = (Yo)ueax), Yo = 0, Y Tr(Yy)=1Y, €S>,
weQ(K)

where 1, is the multiplicity of M (Teo (K, jw)? Too (K, jw)), and where

. . o A
Oy = Y 2Re(GH(K, jw)Tw (K, jw)" QuYLQIGB(K, jw)) .
weQ(K)
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1520 P. APKARIAN, D. NOLL, AND A. RONDEPIERRE

Here the columns of the m xr,, matriz Q,, form an orthonormal basis of the eigenspace
of Too (K, jw) Ty (K, jw) € S™ associated with its mazimum eigenvalue.

Remark. Notice that the result extends to the all-pass case by replacing convex
combinations over a finite set 2(K) by Radon probability measures on [0, 00]. This
may still be exploited algorithmically, should the case of an all-pass system ever arise
in practice. Since this never occurred in our tests, this line is not investigated here.

5. Nonsmooth algorithm. In this central section we present our main result, a
nonsmooth and nonconvex optimization method for program (2.3). In subsection 5.1
we will have a look at the necessary optimality conditions for program (2.3). The
algorithm is elaborated and presented in subsections 5.2-5.4. The convergence proof
will follow in section 6.

As the reader will notice, our method can be applied to a larger class of programs
with a structure similar to (2.3). In consequence, during what follows we aim at a
certain level of generality. In particular, to comply with the more standard notation in
optimization, we denote the decision variable as x € R", where n = (ng + ny,)(nx +
ny) in our previous terminology. This means vectorization of the matrix variable
previously denoted K.

5.1. Optimality conditions. Following an idea in [42], we address program
(2.3) by introducing a progress function:

(5.1) F(y;z) =max {f(y) — f(z) — plg(z) — 2]+ [9(y) — 73] — [9(x) — 2]+ 1}

where p > 0 is a fixed parameter. All we need to know about f is that it is of class
C?, while g is assumed to be of the form
g(x) = max g(x,w)= max A\ (G(z,w)),
w€e[0,00] w€e[0,00]

with G : R™ x [0, 00] — S™ of class C? in the variable x € R™, and jointly continuous
in (x,w). This is in accordance with our previous terminology, where G(z,w) =
Too (K, jw) T, (K, jw) with © = vec(K), and where m = n,_ or m = n,,_, and
where n = (ng + ny)(nKx +n,). We have the following preparatory lemma.

LEMMA 5.1. (1) If z € R"™ is a local minimum of (2.3), then Z is also a local
minimum of F(-;Z). In particular, this implies 0 € 01 F (T; T).

(2) If T satisfies the F. John necessary optimality conditions for program (2.3),
then 0 € 1 F(Z; T).

(3) Conversely, suppose 0 € O F(Z;Z) for some T € R™. Then we have the
following possibilities: Fither

(i) g(z) > 42, in which case T is a critical point of g, called a critical point of

constraint violation, or

(i) g(%) <2, in which case ¥ satisfies the F. John necessary optimality condi-

tions for program (2.3). In addition, there are two subcases: Fither

(a) T is a Karush-Kuhn—Tucker (KKT) point of (2.3), or

(b) Z fails to be a KKT point of (2.3). This could only happen when g(z) =
72, and at the same time 0 € dg(Z).

Proof. (a) Let us prove statement (1). Notice that F(Z;Z) = 0. We therefore
have to show F'(z;Z) > 0 for x in a neighborhood of Z. If z is feasible in (2.3), i.e.,
9(z) < 7%, then F(z;2) = max{f(z) — f(2);g(x) — 7%} = f(z) — f(z) > 0 for
z in a neighborhood of . Here we use the fact that z, being optimal, is feasible,
so [g(Z) —v%]+ = 0. On the other hand, when z is infeasible, we find F(x;z) >
g(z) — % > 0. This settles statement (1).
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(b) To prepare the remaining statements, let us first notice that 0 € 9, F(Z; )
is equivalent to the following condition: There exists 0 < ¢ < 1 such that 0 =
tf'(z)+ (1—1t)¢ for some ¢ € dg(Z), where both branches of F(Z; Z) have to be active
as soon as 0 < £ < 1. The latter allows one to distinguish the cases g(z) > % and
9(Z) <%

() First consider the case g(Z) > 72 . Here the left-hand branch of F(Z; %), being
strictly negative, cannot be active, which means ¢ = 0. In consequence, 0 € 9g(Z).
This is the case of a critical point of constraint violation, so it proves (i) in (3).

(d) Next consider the case g(z) < 4% . In order to show that Z satisfies the F. John
necessary optimality conditions, it remains to check complementarity. If g(z) = 72,
there is nothing to prove, so assume g(Z) < ~%. Then the right-hand branch of
F(Z; %) is negative, so it cannot be active, meaning that (1 —¢) = 0. Since this is the
Lagrange multiplier for the constraint, this proves the first part of statement (3)(ii).

(e) It remains to distinguish the two cases (ii)(a) and (ii)(b). Let us see in which
cases an F. John critical point can fail to satisfy the KKT conditions. That concerns
the case where £ = 0, and at the same time g(z) < ~%. But g(Z) < 42, is impossible
here, because the right-hand branch of F(Z;Z) has to be active. Then it turns out
that g(z) = 72, and 0 € dg(Z) is the only case where KKT fails. It may be considered
as the limiting case of a critical point Z of constraint violation. This settles all cases
in statement (3).

(f) Finally, to prove statement (2), let Z satisfy the F. John necessary opti-
mality conditions for (2.3). From (b) we immediately see that it also satisfies 0 €

Remark. (1) Lemma 5.1 shows why we should search for points Z satisfying
0 € 01 F(z;Z). It also indicates that minimizing F' leads to so-called phase I/phase II
methods (see [42, section 2.6]). Namely, as long as iterates stay infeasible, the right-
hand term in F' is dominant, so reducing F' reduces constraint violation. This corre-
sponds to phase I. Once a feasible iterate has been found, phase I terminates success-
fully, and iterates will henceforth stay feasible. This is where phase II begins and f
is optimized.

(2) Condition (i) above addresses the case where phase I fails because iterates
get stuck at a limit point & with value g(Z) > 42, which is a local minimum (a crit-
ical point) of g alone. A first-order method may get trapped at such points, and in
classical mathematical programming second-order techniques are used to avoid them.
Here we are working with a nonsmooth program, where second-order methods are
difficult to come up with (see, however, [38], where such a method is discussed, and
also [11, 39]). Fortunately, in Hy/H, control, feasible iterates are usually available,
so phase I can even be avoided. Notice also that case (ii)(b) may be considered the
limiting case of (i).

(3) In [44] Sagastizabal and Solodov use a different progress function, referred
to as an improvement function, which does not feature the penalty term pufg(x) —
72, ]+. Since this term equals 0 in phase II, both criteria lead essentially to the
same steps in phase II, and differences could occur only in phase I. Now observe
that with the improvement function, every step has to be a descent step for both
the objective f and the constraint g. In contrast, in our approach, when reducing
constraint violation, a slight increase in f not exceeding u[g(x) — 72, ]+ is granted.
This helps the algorithm in not being trapped at infeasible local minima of f alone,
and is therefore a possible advantage. Naturally, the difficulty of local minima of g
alone (local minima of constraint violation) remains with both criteria. We will come
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1522 P. APKARIAN, D. NOLL, AND A. RONDEPIERRE

back to this issue in section 7.5, where numerical results are discussed. It turns out
that a sound choice of p is important and gives better numerical results.

5.2. First local model. In this section we introduce a local model for F' in a
neighborhood of the current iterate x. Let us first introduce an approximation of g
in a neighborhood of x by linearizing the operator y — G(y,w) around x:

(5:2) gly;z) = max A (G(x,w) + G'(2,w)(y — 7))

w€e[0,00]

!/
= Dax maxZe (G(z,w) + G (z,w)(y — 2)),
where C = {Z € S™ : Z = 0,tr(Z) = 1}, and where the derivative G’'(z,w) refers to
the variable x. Notice that g(z;x) = g(x). By Taylor’s theorem we expect g(y;z) to
be a good approximation of g(y) for y in a neighborhood of z.
We now obtain an approximation of F' in a neighborhood of x by introducing the
following:

(5.3)

F(y;@) = max {f'(x)(y — 2) — ulg(x) = )43 (955 2) = 73] = l9(@) =23+ } -
Notice that F(z;z) = F(x;2), and that F(y;x) is close to F(y;x) for y close to .
The following result renders these statements exact.

LEMMA 5.2. Let B C R"™ be a bounded set. Then there exists L > 0 such that for
all x, y € B,

l9(y) — G(y; )| < Llly —z|* and |F(y;2) — F(y;2)| < Llly — ||

Proof. By Weyl’s theorem we have A, (E) < A\(A+ E) — A (A) < A\ (F) for all
matrices A, E € S™. We apply this to A = G(y,w) and A+FE = G(z,w)+G'(z,w)(y—
x). Then E = O(|ly — z||?), uniformly over x,y € B and uniformly over w € [0, ],
which is a compact set. Here we use the fact that the operators G(-,w) are of class
C? in z and jointly continuous in (z,w). More precisely

sup  sup ||G"(z,w)| < oco.
w€el0,00] z€co(B)

This proves |g(y) — §(y; )| < L1l|y — z||* for some Ly > 0 and all z,y € B.

Moreover, f is of class C2, so that by Taylor’s formula there exists Ly > 0 such
that |f(y) — f(z) — f'(z)(y — 2)| < Lelly — ||* uniformly over z,y € B. With
L = max{Lq, Ly} we obtain

|F(y; @) — Fly;2)| < max {|f(y) - f(x) = f'(@)(y — 2)]: 19(y) — Gy 2)[}
<Llly-=z* O

It is convenient to represent the local model (5.2) differently. Let us introduce
(@, 2) = [Z o Glo,w) —72] —[o(z) —72)s €R, 6w, Z) = C'(w,w)"Z € R,

where dependence on the point x is suppressed for convenience. Then the right-hand
branch of F'(y;x) may be written as the envelope of cutting planes,

[G(y; 2) = 7%] = [9(x) =72 )+ = sup sup a(w, Z) + ¢(w, 2)" (y — @),
w€el0,00] ZEC
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Adding the left-hand branch of F(y; ) by introducing

ao = —pulg(a) —1%)e, b0 = f(x),
we can introduce
G =co({(a(w,2),p(w,2)) :w € [0,00], Z € C} U {(cx0, ¢0)}) -
Then the local model F(y; ) may be written as

(5.4) F(y;x) = max{a + ¢" (y — ) : (o, ¢) € G}.

The advantage of (5.4) over (5.3) is that elements («, ¢) of G are easier to store than
elements (w, Z) € [0,00] x C. Also, as we shall see, it is more convenient to construct
approximations Gy of G. This is addressed in the next section.

5.3. Second local model and tangent program. Suppose x is the current
iterate of our algorithm to be designed. In order to generate trial steps away from
x, we will recursively generate approximations Fy(y;x) of F(y;x), referred to as the
working models. Using (5.4), these will be of the form

(5.5) Fi(y;w) = max{a + ¢ (y - 2) : (2, 9) € Gy},

where G, C G. In particular, Fy,(y;z) < F(y;z), with exactness Fy,(z;z) = F(z;2) =
F(z;z) = 0 at y = x. Moreover, our construction presented below ensures that
Blﬁk(x;x) C O1F(z;z) for all k and that the F}, get closer to F as k increases. In
tandem with the proximity control management described in section 6, this will also
ensure that the Fj get closer to the true F. Once the set Gi is formed, a new trial
step y**! is computed via the tangent program:

. in F(y; |y — 22
(5.6) min k(yi) + Sy —

Here 6, > 0 is the so-called proximity control parameter, which is specified anew at
each step. How this should be organized will be explained in section 6.
Notice that by convexity y**! is a solution of (5.6) as soon as

(5.7) 0 € 0 Fp(y*thz) + 6k (y" T — 2).

The first question is, what happens if the solution of the program (5.6) is y**1 = 2?7
LEMMA 5.3. Suppose y*+1 = x is the solution of the tangent program (5.6). Then
0€ 0 F(z;z).
This is indeed clear in view of (5.7), because we get 0 € 9y Fy,(x; ), which implies
0 € O1F(x;x) by the property 81ﬁk(x;a:) C O F(x;x) of a working model. The
conclusion is that as soon as 0 € 0y F(z;z), then 0 ¢ 81ﬁk(x;x), and the trial step
y**1 will always offer something new. In particular, if 0 & 0 F(x, ), then we know
for sure that ﬁk(yk“;x) < ﬁ(x,x) = 0, so that there is always a progress predicted
by ﬁk.
_Remark. In light of Lemma 5.3 it may seem natural to confine the test 0 €
O1F(z; x) (step 2 of the algorithm) to the first instance of the tangent program k = 1.
Indeed, if 0 € alﬁl(m;x), then the first tangent program will detect this and return

y? = z, in which case we quit. However, notice that this does not work the other
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way round. If 0 € &, F(x;z), then the tangent program based on Fj, may still find
yktl # x, in which case we would not necessarily stop the inner loop. Only when
O Fy(2;2) = O F(x; ) are we certain that y**! = x. In other words, if we wish to
confine the test in step 2 of the algorithm to the first instance of the tangent program
in step 4, we have to use the full subdifferential oy Fy (z;z) = 01 F(x;x). As soon as
y? # then the inner loop is entered, and this condition is no longer required for the
following Fy. In any case, letting 01 Fi(x;2) = 01 F(x;x) does not pose a numerical
problem if 91 F(x; x) is not exceedingly large.

From now on we assume 0 ¢ 0, F(z, ). The solution y**! of (5.6) is then predict-
ing a decrease of the value of the progress function (5.1) at y**1. This gives y**! the
option to improve over the current iterate  and become the new iterate 1. For this
to happen, we have to make sure that Fj is a good model of F' in the neighborhood
of z.

According to standard terminology, when y**! is accepted as the new iterate z+,
it is called a serious step, while trial points y**1 which are rejected are called null
steps. If y**1 is a null step and has to be rejected, we use it to improve the model
Gr+1 at the next sweep.

Let us now show in detail how to construct the sets G,. We choose them of the
form

(5.8) Gr=co(GoUGLUGE), k=12,...,

where we refer to Gy as the subgradient elements, to G; as the cutting planes, and
to G as the aggregate element. The first property concerns Gy, which is held fixed
during the iteration k.

LEMMA 5.4. Let wy € Q(x) be any of the active frequencies at x. Choose a nor-
malized eigenvector ey associated with the maximum eigenvalue g(x) = A\ (G(z,wp)) of
G(z,wo), and let Zy := egel € C. If we let (ag, o) € Go and (a(wo, Zo), ¢(wo, Zo)) €
Go, and if Go C Gy, then we have Fy(x;x) = F(x;x) = 0 at all times k.

In practice it is useful to enrich the set Gy so that it contains the subdifferential
O1F(x;x) at . This can be arranged in those cases where (z), the set of active
frequencies, is finite. For every w € Q(z) let r, > 1 be the eigenvalue multiplicity
of A1 (G(z,w)). Let the r, columns of @, be an orthonormal basis of the maximum
eigenspace of G(z,w). Then put

Go = co ({(a(w, Z.), 0w, Z,)) s w € Ux), Z, = QTY,Q.,

(5.9) Yo €5,Y, = 0,Tx(Y,) = 1} U {(ao,¢o>}).

We observe that this set is not finitely generated, but can be handled as a semidefinite
programming constraint via the matrices Y,,. However, for our convergence proof it
would be sufficient to keep just the one element required by Lemma 5.4 in Gj.

Let us now look at the cutting plane sets G. Here we use a recursive construction.
Suppose the solution y**! of tangent program (5.6) based on the latest model Gy, is a
null step. Then we need to improve the next model G 1, and this is done by including
a cutting plane in the new set G |, which cuts away the unsuccessful trial step Thans

LEMMA 5.5. Let y**1 be the solution of tangent program (5.6) at stage k and
suppose y*+1 is a null step. Suppose the right-hand branch of (5.3) is active at
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y**1 and let wpry € [0,00] and Zyy1 € C be one of the pairs where the maxi-
mum (5.2) is attained, that is, g(y**1;z) —v& — [9(z) — Y4+ = (wkr1, Zes1) +
P(wrt1, Zi1)T (WP — ). If we keep ((wit1, Zrs1), d(Wha1, Zes1)) € Giyys then

Fpi (y*h2) = Fy* ).

Remark. (1) Following standard terminology, we refer to this procedure as the
cutting plane element. In fact, adding wiy1 and Zi1 to the approximations at the
next step k + 1 will cut away the unsuccessful null step y**1, paving the way for a
better **2 at the next sweep.

(2) If the right-hand branch in (5.3) is not active, it suffices to have the pair
(a0, @0) € Gry1. As we keep this in Gy anyway, no action on cutting planes is required
in this event; i.e., we may have G¢_ | = 0.

In practice it will be useful to enrich the set G, by what we call anticipating
cutting planes. Let us again consider the case of a finite set Q(z). We select a finite
extension €. (z) of 2(z) along the lines described in [5]. We let

(5.10)

Gly1 =co ({(a(wk+17 Zi+1)s P(Wit1, Zi+1)) }

U{(a(w, Z,), 9w, Z,)) s w € Qe(2) \ Qz), Zo = QLYQu, Y = 0, Tr(Y,,) = 1}),

where the columns of @, are an orthonormal basis of some invariant subspace of
A1 (G(z,w)). Notice that for w € Q.(x) \ Q(x), the support planes belonging to
(a(w, Z,), d(w, Z,)) are indeed different in nature from those retained in Gy, because
they will not be exact at y = . We may have a(w, Z,,) < 0, so these planes resemble
cutting planes, which are exact at the null steps y*+1.

Notice that convergence theory requires only (o(wg+t1, Zk+1), d(Wk+t1, Zi+1)) €
Gy for the element of Lemma 5.5.

Remark. Notice that the planes in Gy are exact at x, while genuine cutting
planes are exact at the null steps y*T1. Anticipated cutting planes need not be exact
anywhere, but we have observed that they often behave similarly to true cutting
planes and can help to avoid a large number of unsuccessful null steps.

We need yet another process to improve the model Gy, 1, which in the nonsmooth
terminology is referred to as aggregation, and which is needed in order to avoid storing
an increasing number of cutting planes. Suppose that the solution y**1 of the old
tangent program (5.6) based on Gy, is a null step. By the optimality condition we have
0 € Oy Fy(yF 1 2) + 8, (y*+! — z). Using the representation (5.4) and the form (5.8),
we find (ag, o) € Go, (pt1,¢r+1) € G5, and (o}, ¢;) € G; together with convex
coefficients 79 > 0, 7,41 > 0,75 > 0, 79 + 741 + 7 = 1, such that

0 = 7000 + Thr1Pk+1 + T Ok + Ok (y* T — ).
We put ap = 1000 + Tkr1041 + Thagp €R, ¢ = 1000 + Thr10k+1 + T ) € R
and keep (a1, 95, 1) € Gj, 1, calling it the aggregate element. Notice that we have

(jy1, Pry1) € G by convexity. Altogether, this shows

(5.11) 0=gfys + oy —a).
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LEMMA 5.6. Keeping the aggregate element (o, 5, 1) in the new Gy | ensures
that Fy1 (y*™';2) > Fp(y**Y 2) and that (5.11) is satisfied.

To conclude this section, let us outline how the tangent program based on the
forms (5.4) and (5.8) is solved. Notice first that elements of Gy U G5 have the same
form (a(w, Z,), d(w, Z,)), where w € Q.(z) for some finite extension of Q(z), and
Z, = QTY,Q, for some Y, = 0, Tr(Y,,) = 1. To this we add the aggregate element
(a, #7), and the element (o, ¢o) coming from the left-hand branch of F. This means,
after relabeling the finite set Q. (z) as {w1,...,wp}, we can write (5.6) in the form

o {oo+ o500~ mos e o0 (0)-+6,00)7 (o)

b
apin + 6Fay =)} + Fly o1,

where o, (Y,.) = a(wr, Z,, ), etc., and where the aggregate element (af, ¢5 ) is relabeled
(cpt1, ¢p+1). Replacing the maximum over the three branches by a maximum over
the convex hull of the three does not change the value of this program. Using Fenchel
duality, we may then swap the min and max operators. Then the inner minimum can
be computed explicitly, which leads to the expression

1 p
yk+1 =r - — TO¢O + ZTT¢T(YT) + TP+1¢17+1 ’
6k r=1

where (7,Y) is the dual variable. Substituting this back into the dual program, using
linearity of ¢(Y) in Y, and rewriting 7,.Y,. as a new matrix Y, with Tr(Y;) = 7, leads
to the dual program

p 2

. 1 -
maximize Toag + Tz::l ar(Yr) + Tpy10p41 — %, Togo + ; ¢ (Yy) + Tpr1dp+1
p+1
subject to 79 > 0,741 > 0,Y, =0, and 79 + ZTr(YT) + Tp+1 = 1,
r=0

which we recognize as the concave form of a semidefinite program (SDP), as soon as
we write ¢, (Y;) in its original form G'(z,w,)* Q% Y, Q., . The return formula becomes

1/, - -
(5.12) yk“ =T — a <7'0 ¢o + Z (br(YT ) + Tp+1¢p+1>7
r=1

where the dual optimal solution is (73, Y7, ..., Y, ,7,,1). Notice that this SDP is
usually of small size, so that solving a succession of these programs seems a satisfactory
strategy.

To conclude, we consider the case of particular interest in which the eigenvalue
multiplicity of all matrices involved is 1, or where we decide to keep only one eigen-
vector for each leading eigenvalue. If A\;(G(z,w)) has eigenvalue multiplicity r, = 1,
the matrices @, are just column vectors e,,, where e, is the normalized eigenvector
associated with A (G(z,w)) and Y,, = 1. Similarly, for the latest cutting plane we
then have @, = e,, for the normalized eigenvector of A\ (G(z,w)+G'(z,w)(y**+! —z)).
In this case the sets Go, Gy, are finite, and so Gy, itself is a polyhedron co{(aq, ¢o), ...,
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(apt1, ¢pt+1)}, where card(Qe(x)) = p. In this case the dual program is a convex
quadratic program which can be solved very efficiently:

p+1 2

maximize E TrOly —

p+1

Z Tr@r

p+1
subject to 7, >0,r=0,...,p+ 1, and ZT,. =1,
r=0
: : olition —* okl P+l
with dual optimal solution 7%, and the return formula is y = 6k DT

5.4. The algorithm. In this section we present the nonsmooth spectral bundle
algorithm for program (2.3).

6. Management of the proximity parameter. In this section the conver-
gence proof of Algorithm 1 will be given.

To begin with, let us explain the management of the proximity control parameter
in steps 5 and 8. Notice that there are two control mechanisms, governed by the
control parameters py and p. In step 5, test parameter pj compares the current
model F}, to the truth F. The ideal case would be p;, & 1, but we accept y#t! = zi+!
much earlier, namely, if pi > 7, where the reader might for instance imagine v = i.
Let us call 4*! bad if pr, < 7. So null steps are bad, while serious steps are not bad.
Imagine further that I' = %; then steps y**! with pj, > I' are good steps. In the good

case the model ﬁk seems very reliable, so we can relax proximity control a bit at the
next outer step. This is arranged by memorizing §* = 65 /2 in step 5 of the algorithm.

It is more intriguing to decide what we should do when p;, < 7, meaning that y*+!
is bad (a null step). Here we need the second control parameter py in step 8 to support
our decision. Adopting the same terminology, we say that the agreement between F
and Fy, is bad if pp < 7. If this is the case, we keep 0rp+1 = O unchanged, being
reluctant to increase the é-parameter prematurely, and continue to rely on cutting
planes and aggregation, hoping that this will drive Fk closer to F (and also to F)
and bring home the bacon in the end. On the other hand, if p, > 7, then we have to
accept that driving F}, closer to F alone will not do the job, simply because F itself
is too far from the true F'. Here we need to tighten proximity control by increasing
Og+1 = 20y, at the next sweep. This is done in step 8 and brings F' closer to F'.

Remark. Notice that the control parameters p, and pg in steps 5 and 8 are well
defined because we enter the inner loop only when 0 ¢ 0, F(z;x), in which case we
have Fj(y*+1:z) < Fy(z;z) = 0.

6.1. Finiteness of inner loop. Let x be the current iterate of the outer loop.
We start our convergence analysis by showing that the inner loop terminates after a
finite number of updates k with a serious step y*T! = 2T. This will be proved in the
next three lemmas.

Recall that y**1 is the solution of the tangent program (5.6) and may be obtained
from the dual optimal solution by the return formula (5.12), which is of the form

1
Yt =g — — [ nof (x) + Z 17.G (z,w)* Z,
O weENe(x)

for a finite extension Q. (z) of Q(x) and for certain Z,, € C. Since the sequence ¢y in
the inner loop is nondecreasing, we have the following lemma.
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Algorithm 1. Proximity control algorithm for the Hs/H o, program (2.3).

Parameters: 0 <y <y <I <1

1:

Initialize outer loop. Find initial #! such that f(z') < oo and g(x!) < co. Put
outer loop counter j = 1.

Outer loop. At outer loop counter j, stop at the current iterate z7 if 0 €
01 F(27;27). Otherwise compute 2(27) and continue with inner loop.

Initialize inner loop. Choose approximation G; of G as in (5.8), where G
contains (a(wo, Zo), ¢(wo, Zo)) for some fixed wy € Q(27) and Zy = egel’, where
ep is a normalized eigenvector associated with A1 (G(z7,wy)). Possibly enrich Gy
asin (5.9). Initialize Gf = 0, G = 0, but possibly enrich using anticipated cutting
planes (5.10). Initialize proximity parameter §; > 0. If memory element 6% for §
is available, use it to initialize 6;. Put inner loop counter k£ = 1.

Trial step. At inner loop counter k for given approximation G and proximity
control parameter 6; > 0, solve tangent program:

- . S ,
in F cd “k _ J2
min Yy a?) + lly —2 1<,

whose solution is y**+1.
Test of progress. Check whether

F(yF 1 2d)

R
Fy(yrt+1; 29)

Pk

If this is the case, accept trial step y**! as the new iterate z9+! (serious step).
Compute new memory element §* as:

-
=190 9 if pp > 1T,

6  otherwise.

Increase outer loop counter 5 — j + 1, and go back to step 2. If p < ~, continue
inner loop with step 6 (null step).

Cutting plane. Select a frequency wy.; where g(y**! 27) is active and pick
a normalized eigenvector ey associated with the maximum eigenvalue of G(z7,
wi1)+ G (27, wig1) (YT —a7). Put Zy1 = epqref, and assure (a(wit1, Zi+1),
¢(Wrt1, Zrv1)) € Gj 4. Possibly enrich Gi_ | by anticipating cutting planes as in
(5.10).

Aggregation. Keep aggregate pair (o, , ¢741) asin (5.11) in G ;.
Proximity control. Compute control parameter

_ F(yMad)
pr==——"">.
Fi(yF+t;a9)

Update proximity parameter 6 as

5. — 4 o ifpp <yandpp <7,
L= 26, if pr, <~ and pr > 7.

Increase inner loop counter k£ and go back to step 4.
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LEMMA 6.1. The solutions y*+1 of (5.6) satisfy

(6.1 I < el + 87 (/@) + e 16" @)1 ) < o

)

We are now ready to prove finite termination of the inner loop. Our first step is
the following.

LEMMA 6.2. Suppose the inner loop turns forever and creates an infinite sequence
YR+ of null steps with py < . Then there must be an instant ko such that the control
parameter py satisfies pr < for all k > k.

Proof. Indeed, by assumption none of the trial steps y*+! passes the acceptance
test in step 5, so pr < v at all times k. Suppose now that py > 7 for inifinitely many
times k. Then according to step 8 the proximity control parameter 8y is increased
infinitely often, meaning 6 — oo.

Using the fact that y**! is the optimal solution of the tangent program (5.6) gives
0 € 0 Fx(y*1; z) + 8, (y* T — x). Using convexity of Fj(-;x), we deduce that

8 (y* ! — )T (2 — Y™t < F(ay2) — Fr(y™ ).

Using ﬁk(x, x) = F(z;z) = 0, ensured by keeping (a(wo, Zp), ¢(wo, Zo)) € Go C Gy, at
all times (Lemma 5.4), we obtain
Sullyk+l — 2|12
(6.2) Sully™ —=lI”
—Fi(y*tz)

Next, applying Lemma 5.2 to the bounded set B = {y**! : k € N} U {x} gives
(6.3) Fy*™ha) — F(y* o) < Lly* — 2

for some L > 0 and every k € N. Now we expand the control parameters pi and py
as follows:

F(ythe) — Fy*+sa)

5 — o+ 4
Pk = Pk _F (gt z)
Llly*™*! — | L .
<pp+ —m—--<pp+ = using (6.3) and then (6.2)).
Pk _Fe(y ) Pk 5 (using (6.3) (6.2))

Since L/, — 0, we deduce limsup pi, < limsup pi < v < 7, which contradicts px, > 7
for infinitely many k. a

So far we know that if the inner loop turns forever, this implies px, < v and pr, < ¥
from some counter ky onwards. Our next lemma shows that this cannot happen. We
refer the interested reader to [18, Proposition 4.3, where essentially the same result
is proved. For the sake of completeness and the coherence of notation we give our
own proof below.

LEMMA 6.3. Suppose the inner loop turns forever and produces iterates y* 1 with
pr <7 and p <7 for all k > kog. Then 0 € 0, F(x;x).

Proof. (1) Step 8 of the algorithm tells us that from counter kg onwards we are
in the case where the proximity parameter is no longer increased. We may therefore
assume that it remains unchanged for k > kg, that is, 6 := &y for all k > k.
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(2) For later use, let us introduce the function

(y; x) = Fp(y; ) + 8y — |2

As we have seen already, the necessary optimality condition for the tangent program
implies

Syt — 2| < Fasz) — Fu(y*s2) = —Fu(y* s 2).

Now remember that in step 7 of the algorithm we keep the aggregate (a,’gﬂ, d)Z_H) €
Gr+1- Let us define the function

iy ) = ajg + G (v — ) + §lly — )|
We claim that
(6.4) Gy ) = gr(y T e) and (Y 2) < Y (v ).

Indeed, the inequality on the right is clear because (., #; ) is retained in Gy
and therefore contributes to the supremum building ¥+1. As for the equality on the
left, observe that the aggregate subgradient ¢j is the one which realizes the necessary
optimality condition for tangent program (5.6) at stage k. Now g (-;x) is just the
objective of this program, so the function 4} (-; ) must be exact at Thans

We now prove the relationship

(6.5) Gy e) = i T o) + Slly — oF T2
Indeed, notice that v} is a quadratic function, so expanding it gives
Gi(yi o) = V(™ a) + Vit o) (v — o* )
+3(y =y IV ) (y — ).

But V2¢;(y*T1;2) = 61, so in order to establish (6.5), we have but to show that
Vipy (y**1;2) = 0. To prove this observe that

VYR e) = g + 0 — )
= 5"t —2) + o —x) =0 (using (5.11)),

so (6.5) is proved. Using this and the previous relations gives

k(P e) < YRt e) + Sy - gt (using (6.4) left)
= iy e) (using (6.5))
< Yppr (Y5 2) (using (6.4) right)
< Ypg1(z; @) (y**2 is minimizer of 1y 1)

= Fy(z;2) = F(x;3) = 0.

This proves that the sequence 9y (y**1;z) is monotonically increasing and bounded
above, so it converges to some limit ¢* < F(z;2) = 0. Since the term 2 |[y*2 —y*+1||2
is squeezed in between two terms with the same limit ¢*, we deduce that

g”yk—ﬂ _ yk+1||2 = 0.
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+1

Since the sequence y**! is bounded by Lemma 6.1, we deduce using a geometric

argument that
(6.6) ly**2 — 2| = [ly**! —2|* — 0.
Recalling the relation FJ(y; x) = 1 (y; 2) — lly — z||?, we finally obtain
(6.7) Frpa (y" 25 2) = Fo(y* 5 2)
= Ve (V@) = oy @) = SllyE TR = P+ Sl - aff?,
which converges to 0 due to ¥, (y**1;z) — 1* proved above and property (6.6).

(3) Let (ags1,Pr+1) be the cutting plane element obtained from the null step

y**+1 which we retain in Gyy;. By construction this defines an affine support plane

of }~7( x) at y*+1. But on the other hand the pair (ag41, Pr+1) also contributes to
the building of the new model Fk+1( x); thus the new model must be exact at y**1,
because always Fk+1 < F, so the value of F is the best Fk+1 could possibly attain.
In other words, ¢y41 is also a subgradient of Fk+1( ;x) at yk+1

bha(y—y") < Fei(yiz) — Fra (" ).

Using Fj11(y*";2) = F(y*+1; z) we therefore have

. That means

(6.8) Fy* ™ a) + ¢t (v — o) < Fep(ys o).
Now observe that
0< F(y* o) - Fu(y* i)
= Py 2) + ol (2 — o) = By 2) — ol (07 — oY)
< P (075 2) = B 2) + o [y 2 — " (using (6.8)),

and this term tends to 0 because of (6.7) and the boundedness of ¢1, and because
yF+1 — yF+2 0. We conclude that

(6.9) ﬁ(ykﬂ; x) — ﬁk(yl’”l; z) — 0.

(4) We now show that Fj(y*t1;2) — F(x;2) = 0, and therefore by (6.9) also
F(y**1;2) — F(z;x) = 0. Suppose, contrary to the claim, that n := F(x;z) —

lim sup Fg(y*+1;2) > 0. Choose 0 < § < (1 —7)n. It follows from (6.9) that there
exists k1 > kg such that

Fy**2) —0 < FBu(y" 2
for all k > k;. Using pr < 7 for all k > k; gives
F(E(y* ) = Flzyz) < F(y*e) - F(as )
< Fo(y*sa) + 0 — Fla; ).

Passing to the limit implies 41 > 1 — 6, contradicting the choice of #. This proves
n = 0, as claimed.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1532 P. APKARIAN, D. NOLL, AND A. RONDEPIERRE

(5) Having shown Fy,(y**';z) — F(z;2) = 0, we now argue that we must have

y**t1 — x. This follows from the definition of y**!, because

Uiy ) = By z) + vt — xf)? < dlaiz) = Fasz) = 0.

Since Fj(y*™';z) — 0 by part (4), we have indeed y*t1 — 2. To finish the proof,
observe that 0 € 919 (y*1; x) implies

8z — T (y — y*Y) < Fy(y;2) — Fu(y* )
(6.10) < F(y;2) — Fyp(y**2)

for every y. Passing to the limit gives

0 < F(y;z) — F(x; z),
because the left-hand side in (6.10) converges to 0 in view of y**! — z, and since

Fr(y*+t:2) — F(x; ) by (3) above. Since 8y F(x;z) C &1 F(x; z), we are done. 0

6.2. Convergence of outer loop. Let us consider the sequence (z7);en of
serious steps generated by Algorithm 1. We want to show that 0 € 9, F(%;Z) for
every accumulation point Z of (z7);en. We start by proving that under reasonable
hypotheses, the sequence of serious iterates of our algorithm is bounded.

LEMMA 6.4. Suppose the following two hypotheses are satisfied:

(Hy) g is weakly coercive in the sense that if a sequence o7 satisfies |27 || — oo and
g(z7) > ~2,, then g(z7) is not strictly monotonically decreasing.

(Hy) f is weakly coercive on the level set {x € R™ : g(x) < 2} in the sense that if
27 is a sequence of feasible iterates with ||z7| — oo, then f(z7) is not strictly
monotonically decreasing.

Then the sequence x? of serious iterates with starting point ' generated by our algo-
rithm is bounded.

Proof. There are two cases to be discussed.

(a) Suppose the iterates are all infeasible g(z7) > 42 . In that case we use axiom
(Hy). Notice that in phase I we have g(z/T!) — g(27) < F(29%1,27) < 0, so the
sequence g(z7) is strictly decreasing. Then x7 is bounded by axiom (Hj).

(b) Suppose next that the iterates are feasible for j > jg. In phase II we have
F(a*1,29) = max{f(z9*1) — f(29), g(7+1) —12.} < 0, and hence f(29*) < f(ad)
for j > jo. Then by axiom (Hz) the sequence 7 could not be unbounded. d

Remark. Notice that axiom (Hs) is certainly satisfied if f is coercive in the usual
sense on the feasible set, that is, if f(27) — oo for feasible iterates with ||z7| — oo.
Similarly, (H;) could be replaced by the hypothesis that the set {z € R™ : 42 <
g(z) < g(z1)} is bounded.

We are now ready to prove convergence of the outer loop of Algorithm 1.

THEOREM 6.5. Let azioms (Hy) and (Ha) be satisfied. Then every accumulation
point T of the sequence of serious steps x7 generated by the algorithm satisfies 0 €
M F(Z;T). In particular, T is either a critical point of constraint violation or an
F. John critical point of the mized Hy/Ho program (2.3).

Proof. The second part of the statement follows from Lemma 5.1. Let us prove
0€ nF(z; 7).

(1) We first prove convergence F(z/T1;29) — 0 (j — oo). By construction, we
know that F(z/*1;27) <0 for every j € N. We now distinguish two cases.
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Case 1: there exists jo € N such that g(z7°) < ~% . From that index onwards we
have

F(a? ™ a7) = max { f(2771) = f(27);9(a7"1) =23} <0,

and hence f(2/t1) < f(27) and g(27) < 42. That means the sequence (f(z%));en
is monotone decreasing from jo onwards. For any accumulation point Z of (z7);e,
continuity of f shows that f(z) is an accumulation point of (f(z?));en, and by the
monotone sequences theorem, this implies f(z7) — f(z). Now for j > jo we have

F(a/t27) = max { f(271) = f(27);g(27t") =12},

and hence liminf; o F(z7T27) > limj_o f(27™!) — f(27) = 0. In tandem with
F(29+1;29) < 0 this clearly implies F(z7t1;27) — 0 (j — o).
Case 2: g(z7) > ~% for all j € N. Here

F(zh27) = max { f(«/T") — f(2?) — plg(2?) — 2] 9(a7 1) — g(a?)} < 0.

Hence (g(27));jen is monotonically decreasing. As in the first case, we prove that by
continuity of g, ¢(Z) is an accumulation point and so a limit point of (g(z?));en. We
deduce in the same way that F(z771;27) — 0.

(2) Suppose that at the jth stage of the outer loop the inner loop accepts a serious
step at k = k;. Then 29t = yki+1 By the definition of y**! as minimizer of the
tangent program (5.6), this means

Ok, (a:j — atj+1) € 81ﬁkj (zI Tt 29).
By the subgradient inequality this gives
8, (ch _ xj+1>T (mj _ mj+1) < ﬁkj (73 27) — ﬁkj (271 27) = _ﬁkj (z3H1; 29),

where ﬁkj (27;27) = F(27;27) = 0 by Lemma 5.4. Since 297! = y**1 was accepted
in step 4 of the algorithm, we have pg, > 7, i.e., —F, (27T 27) < =y~ F(27 % 27).
Altogether

0< 8, lla? — 272 <~ F(aI 0.

Since F(2/t!;27) converges to 0 by part (1), we deduce &, |27 — 271> — 0. We
claim that this implies ¢; = 6k, (z7 — 27%) — 0 (j — o0).

(3) Suppose on the contrary that there exists an infinite subsequence j € N of N
such that ||¢;|| = &k, [|a? —27T|| > 5 > 0 for some n > 0 and every j € N. Therefore

8rylla? — 272 > plla? — 271 > 0

for j € N, which implies (27 —2771);c s — 0. That is possible only when (Ok; )jen —
oco. We now argue that there exists yet another infinite subsequence N of N with
the property that éx, — oo, (j € N'), and such that in addition for each j € N, the
doubling rule to increase Oy, in step 7 of the algorithm was applied at least once before
27Tl = ¢kt was accepted by the inner loop. To construct N7, we associate with
every j € N the last outer-loop instant j' < j where the §-parameter was increased
at least once while the inner loop was turning, and we let A/" consist of all these 5/,
j € N. Tt could happen that 7/ = j, but in general we know only that

26kj1_1 S 6kj/ and 616]-/ Z 6kj/+1 2 e 2 6kJ

The latter ensures &, — oo, j' € N'.
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Let us say that for 7 € N’, the doubling rule was applied for the last time at
k;j — v; for some v; > 1. That is, we have 6;6_7_”].4_1 = 2(5kj_l,j, while the §-parameter
was frozen during the remaining steps before acceptance, i.e.,

(6.11) Ok; = Okj—1 =+ = Okj—v; 41 = 208,

Recall from step 7 of the algorithm that we have pp < v and pr > 7 for those k,
where the step was not accepted and the doubling rule was applied. That is,

F(27;29) — F(yki—vitl; i) F(yki—vitl, z)
Phyvy = —— _— .
Y F(ad;al) _ij*Vj <ykjiyj+1;xj) ij*ljj (ykjiijrl;x])
and
~ F(ad;27) — f(ykrl'ﬁl;xj) ﬁ(ykru_,-ﬂ;zj) )
pkj—l/j = R = Z ,-Y.

F(ai;a9) — Fy_y, (b5t 29)  Fy,_y, (ybo =it ad)

kj*l/j+1

By definition of y and according to (6.11), we now have

%(5]% (l‘j _ ykj—l/j-‘rl) e alﬁk}j—yj (ykj—uj-l-l;xj).

Using ﬁkj,,,j (v7;27) = F(27;27) = 0 and the subgradient inequality for ﬁkj,l,j (- 27)
at y*i it gives

; oanT R ~ P ~ . ;
%5kj (IJ _ yky V]Jrl) (IJ _ yky V]+1) < ij_uj (27;27) — ij_uj (ykJ VJH;IJ)

< —ﬁkj—u,- (yFs—vith; 47).
This could also be written as

o e A

(6.12) = — <
— By, (yhs vt )

Now we know from Lemma 6.4 that the set of serious iterates 27 is bounded. In
tandem with Lemma 6.1, which relates the norm of the null steps y**! to the norm
of #7, we deduce that the set B = {z7 : j € N}U{y**! 1 k =1,...,k;,j € N} is
bounded. Then Lemma 5.2 provides L > 0 such that

(6.13) [F(yP = al) — F(yb =t ad)| < Dflyh ot — 7|2
for all j € N”. Now expanding the expression py, _,, gives

F(ykj—uj+1; xj) _ ﬁ(ykj—yj-i-l; xj)

—ij,,/j (yhki—vitl, x7)

Phj—v; = Phj—v; +

L||27 — y*i—ritt|?

< Pki—v, i 1
P R () (sing (6:15)
2L
< Prj—v; + o (using (6.12)).
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Since p; < 7 and L/28, — 0 for the infinite subsequence j € N, we deduce
limsup; ey Prj—v; < Hmsup,epae pr;—v; < v <7, contradicting p; > 5 > « for the in-
finitely many j € A”. This proves that an infinite sequence j € N with [¢;] >n > 0
could not exist. The conclusion is that (¢;)jen = (6k, (27 — 27t1))jen converges to 0.
(4) Let T be an accumulation point of the sequence of serious steps x’ and pick
a convergent subsequence =7 — z, j € N'. We have to prove 0 € 01 F(z; ).
Since ¢; = 6k, (27 — 27%1) is a subgradient of Fy, (-, 27) at y* ™! = 271 we have

q’)JTh < kaj (7T hyad) — ﬁkj (71 27)
gﬁ(xj'H+h;xj)—ﬁkj(xj+1;xj) (using ﬁkj <F)

for every test vector h € R™. Now we use the fact that y**1 = 271 was accepted in
step 4 of the algorithm. That means

_ﬁkj (27T 27) < =y R(@I 1 2).
Combining these two estimates gives
(6.14) ¢Th < F(a?™ + hyal) — v F(2i 2l

for every test vector h. Now fix h’ € R™ and choose the test vector h? = 2/ —xJ+1 41/
for j € N. Substituting this in (6.14) we obtain

(6.15) S, llw? — 212+ ¢f B < F(2? +027) — 4y F (a7 ).

Now observe that 6y, ||/ — z/T1||* — 0 by part (2), and ¢; = 6, (27 — z7t!) — 0 by
part (3). This means that the left-hand side of (6.15) converges to 0. As for the terms
on the right, recall that F(z7t1;27) — 0 by part (1) of the proof. Finally, by joint
continuity of ﬁ(, -), the term ﬁ(xﬂ + h';27) converges to ﬁ(a‘c + 1’;Z). We conclude,
passing to the limit j € N7 in (6.15) and using ﬁ(f, z) =0, that

0< F(z+h';z) = F(z+h;z) — F(z; 7).

As this works for every h/ € R™, we have shown 0 € 81ﬁ (Z;Z), and hence also
0 e 81F(i‘; .’f) O

7. Implementation. Algorithm 1 has been implemented for both structured
and unstructured mixed synthesis, and we use the enriched versions of Gy and G}, to
speed up convergence. Notice that in some of the examples in section 8, the controller
has to be strictly proper to ensure well-posedness of the Hy norm. (Namely, Dy =0
in (2.2) when D5, and D, are nonzero in the plant (2.1).) In those cases the data in
(2.2) are no longer freely assigned, the parameterizations being K = K(Ak, Bx,Ck)
with a linear operator K. More general types of parameterizations would equally well
fit into our approach and are referred to as structural constraints on the controller.

7.1. Stopping criteria. Notice that Algorithm 1 is a first-order method, which
may be slow in the neighborhood of a local solution of (2.3). As in [5], we have there-
fore implemented termination criteria, which avoid pointless computational efforts
during the final phase, where iterates make minor progress. Our first stopping test
checks criticality 0 € 9 F(x; ) by computing

inf{||h|| : h € A F(x;2)} < €.
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FIG. 1. Ha/Hoo optimal static controllers K(voo) = (K1(Voo), K2(7Yo0)) € R? for the vehicular
suspension control problem. [||Too(Koo)|loos |Too(EK2)|loc] D Yoo — K (Yoo) continuously transforms
the Hso optimal gain K~ into the Ha optimal gain Ka.

Notice that this program is similar (but easier) than the SDP discussed in section 5.3,
because the linear terms in that cast are not needed.
A second test compares the progress of the local model around the current iterate:

(7.1) |F(z%; )| < ea.
Our third test compares the relative step length to the controller gains:
(7.2) lo* =z < es(1+ [|2]])-

For stopping, we require that either the first or the second and third to be satisfied.

7.2. Choice of the performance level v,,. In all test examples we first com-
pute (locally) optimal Ha- and Ho-controllers Ko and K. It is now trivial (see,
e.g., [10]) that the performance level v in program (2.3) has to satisfy

(7.3) [Toe (Koo)lloo < Yoo < [[To0 (K2)oo-

Indeed, the mixed Hy/Hy problem (2.3) is infeasible for voo < ||To0 (Koo )l/oo, While for
Yoo = || Too(K2)|loo the optimal Ha-controller K is also optimal for (2.3). Disregarding
complications due to (multiple) local minima, it would make sense, in a specific case
study, to consider the entire one-parameter family K (vyo) of solutions of (2.3) as
a function of the gain value -y, over the range (7.3), as this would transform K
continuously into Ky (see, e.g., Figure 1). In our tests we only compute K (7,) for
those values 7., which allow comparison to previous results in the literature.

Table 1 reports the problem dimensions n, ny, n, and the synthesized controller
orders ng. Columns 5 and 6 report ||Teo(Koo)|loo and ||Too(K2)|loo, which are the
bounds in (7.3), needed to choose 74, correctly. In column 4 we report ||T5(K32)||2,
because it gives a lower bound on the optimal value ||T2(K (vs0))l|2 of (2.3).

Notice that in columns ||T5(K3)||2 and ||Ts (Kso)|loo we would expect decreasing
values for a fixed example as ng increases. However, in CM4 the orders 0 and 50
give, respectively, 9.2645e-01 and 9.3844e-01, which is not as it should be, because
the order 50 controller is worse than the static controller. This phenomenon is due
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TABLE 1
Problem dimensions and bounds obtained from locally optimal Ho and H~o synthesis for the
test examples in section 8.

Problem | (na,ny,n) [ n [ [ T2(Ko)2 [ 11 Te0 (K2)lloo | [1To0 (Koo)lloo ]
Academic ex. [10] (2,1,1) 0 61 < 1
Academic ex. [49] (3,1,1) 3 7.748 23.586 9.5196

Vehicular (4,2,1) 0 32.416 6.3287 4.8602

suspension [51] 2 32.299 6.1828 4.8573
4 32.267 6.3260 4.6797
Four disks [27] (8,1,1) 2 0.5319 3.1658 0.31411
4 0.4767 2.6194 0.31393
8 0.3782 1.39 0.27537
From COMPI.ib:

AC14 (40,4, 3) 1 21.369 230.8318 104.15
10 8.1039 100.4121 100.11

20 7.5628 100.3566 100
BDT2 (82,4,4) 0 7.9389e-01 1.3167 0.67421
10 7.8877e-01 1.1386 0.72423
41 7.7867e-01 1.1302 0.77405
HF1 (130,1,2) 0 5.8193e-02 0.4611 0.44721
10 5.8151e-02 0.4617 0.44721
25 5.8149e-02 0.4613 0.44721
CM4 (240,1,2) 0 9.2645e-1 1.6546 0.81650
50 9.3844e-1 4.2541 0.81746

to the fact that in all cases ng < ng;, we only compute local minima of the H.
program, and similarly, of the Hs program. As ng increases, more local minima
appear, and it may be very difficult to improve the situation. This is obviously
very unsatisfactory, and appropriate procedures to initialize at a given order ng are
currently being investigated.

7.3. Initialization by a stabilizing controller. In all our test examples, we
use the techniques in [11] to compute a closed-loop stabilizing initial K°, which is
not necessarily feasible for (2.3). This allows us to test phase I of our method. Ko,
may always be chosen as a feasible initial iterate, so that phase I could in principle be
avoided, but we prefer to use various ways to initialize Algorithm 1. In the full-order
case ng = ng, Ky and K., are computed by algebraic Riccati equations (AREs)
as routinely available in the MATLAB control toolbox. In the reduced-order case
ng < Mg, things are more complicated, and minima are in general only local. The
locally optimal H.-controller K, is computed by the method of [5], which uses the
initial closed-loop stabilizing K© to initialize the procedure. Methods to compute Ko
in the reduced-order case nx < n, are discussed in [43]. Since the objective function
f(K) is not defined everywhere, standard software for unconstrained programming
may face difficulties, and we have implemented a Polak—Riviere conjugate gradient
method (with a special safeguard to stay in the set D of exponentially stabilizing
controllers) to compute K3. An alternative is of course to use Algorithm 1 with
Yoo SO large that 7o > || Too(K2)||2 can be ensured. But this is often slow, because
Algorithm 1 is a first-order method. This confirms the observation of the authors of
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F1G. 2. Full-order mized Ho/Hoo synthesis for the four disks problem: the values of the Ho
norm in relation to the number of serious steps are shown for four different values of the penalty
parameter p. Here we choose p € {0,0.1,0.5,10}. Vertical lines point out the instant at which the
iterates become feasible.

[43], who report slow convergence for H synthesis based on first-order (gradient-type)
methods and recommend using second-order methods instead.

7.4. Stability constraint. Notice that closed-loop stability of K is not a con-
straint in the usual sense of mathematical programming, because the set D of closed-
loop exponentially stabilizing K is an open domain. In the program (2.3), closed-loop
stability K € D is a hidden constraint, which may cause problems because the func-
tions f and g are not defined outside D. The strategy which we adopt here is to
compute an initial closed-loop stabilizing controller K € D and ignore the hidden
constraint during the optimization process. Since f(K°) < oo and g(K°) < oo, our
algorithm produces iterates K7 with f(K7) < co and g(K7) < oo at all times j, and
most of the time this ensures that K7 remains closed-loop stabilizing, i.e., K/ € D.

7.5. Choice of p. In [42, section 2.6] a similar progress function is discussed
for objectives which are maxima of finite or infinite families of smooth functions,
but a line search method is obtained. In both cases convergence theory works for
arbitrary values of the parameter p, so that no immediate insight into the choice of
1 is obtained. Yet in practice the choice of p may influence the actual performance
of the algorithm.

Figure 2 and Table 2 present the numerical results of our nonsmooth algorithm for
the four disks problem presented in section 8. After computing an initial stabilizing
controller K, the nonsmooth algorithm is run with four different values of the penalty
parameter pu, including the case p = 0 to compare with the improvement function of
[44].

As we can see in Table 2, for ; = 0 the algorithm fails to reach a feasible point.
This is indeed a case where we could identify the final K of phase I where g(K) > %
as a local minimum of f alone. Recall that when p = 0, every descent step of the
improvement function is a descent step of both f and g, and the algorithm then gets
trapped as soon as it reaches a local minimum of either f or g. Choosing u > 0
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TABLE 2
Data and numerical results of Ha/Hoo synthesis for the four disks for four different values of p.

] Problem \ Four disks [27] \
(Nas Ny, M) 8,1,1)
Yoo 0.6

o 0 0.1 0.5 10

Serious steps 43 24 53 36
[T (K (700)) |12 0.1795 0.2087 | 0.2054 | 0.2068
T (K (00)) |l oo 0.7411 0.6000 | 0.6000 | 0.6000

Stop test Tests (7.1) and (7.2) Criticality

allows a possible increase of the objective f during phase I, so that being trapped at
an infeasible local minimum of f alone can be avoided.

Among the choices p > 0 we have noticed that when g is not too small, the number
of iterations needed to reach a feasible point decreases as p increases. However,
choosing too large a p, as shown by the two last columns in Table 2, does not give the
best results either, so this trend seems to be true only for a certain range. Nothing
decisive can be proposed to date, but u of the same order of magnitude as the progress
function without the penalty term so far gave the best results in practice.

7.6. Choice of I'. The last issue we address is the choice of I, which is crucial,
because step 5 is the only place in the algorithm where the proximity parameter &
can be reduced. Too large a I' gives few reductions of §y, and since the latter is often
increased during the inner loop, this bears the risk of exceedingly large dy, causing
the algorithm to stop.

To illustrate this observation, we have run the four disks example in section 8 for
three different values I' € {0.4,0.6,0.8}; see Table 3. The results are illustrated in
Figure 3 and Table 3. We observe that the number of iterations increases with the
values of I'. The best numerical results were obtained for I' = 0.6, and this is the
value we retained for all the numerical tests. At least over a certain range one can
say that the larger I, the smaller the steps accepted as serious steps  — x, and the
more outer iterations are needed to reach the same Hs performance.

TABLE 3
Full-order mized Ha/Hx synthesis for the four disks problem for three different values of the
parameter T' € {0.4,0.6,0.8}.

’ Problem ‘ Four disks [27] ‘
(nz, Ny, Na) (8,1,1)
Yoo 0.6
I 0.5
T 0.4 0.6 0.8
Serious steps 36 53 T
I T2(K (700))|12 | 0.2062 | 0.2054 | 0.2106
(T (K (700 ) loe | 0.6000 | 0.6000 | 0.6000

8. Numerical experiments. In this section we test our nonsmooth algorithm
on a variety of Hy/H, synthesis problems from the literature.

8.1. Two academic examples. We first present two academic examples whose
models are described in [10] and [49, Example 1]. Notice that the first one is simple
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F1G. 3. Full-order mized Hao/Hoo synthesis for the four disks problem: the values of the Ho
norm versus the number of serious steps for three different values of the parameter I € {0.4,0.6,0.8}.

enough to allow explicit computation of static output feedback controllers u = Ky
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for Ho, Hy, and Hs/Hy synthesis. The problem data are given in Table 1.

Table 4 confirms that our proximity control algorithm successfully performs the
H,/H,, synthesis on the two considered examples. We not only improve the results
computed by the LMI approaches in [10] and [49], we even obtain the theoretical

values of the Hy and H,, norms.

TABLE 4

Results of Ho/Hoo synthesis for two academic examples.

’ Problem H Academic ex. [10] ‘ Academic ex. [49] ‘
(na, Ny, ) (2,1,1) (3,1,1)
1 10 1
ng 0 0 1 3
Yoo 2 1.2 1.2 23.6 12
Serious steps 6 8 14 83 56
1T2 (K (voo )2 1.5651 1.5735 1.5394 | 7.7484 | 10.4538
[T (K (00 )) [l oo 1.3416 1.2 1.2 | 23.591 | 12.0000
K(vs0) [ —0.8165] | [ —0.9458 ] Ky, Ky, Ky,
Stop test Criticality
(LMI) Hz norm - 1.5778 - 8.07 -
Explicit H2 norm - 1.5735 - 7.748 -
—2.5810 1.0823 —0.0623 —0.5097
—1.437 —0.8101 —0.5748 —1.5170 2.1121 1.6238
Kno= 0.8141 —0.4998 |’ Ky = —0.1396 —2.8266 —2.1852 1.7986
0.2724 —0.4702 —2.6967 0
—1.9113 —-0.7161 —1.8332 —0.0065
Kf3 - 0.6940 —4.4787 1.7584 —2.1896
0.5231 —3.2821 —3.0458 3.4518
—3.2830 1.1238 —2.6107 0
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TABLE 5
Mized Ha/Hoo synthesis for the vehicular suspension problem.

’ Problem ‘ Vehicular suspension controller design [51] ‘
(Nas Ny, ) (4,2,1)
nx 0 0 2 4
" 1 1 102 102
Yoo 10 5.225 5.225 5.225
Serious steps 502 155 496 157
1T2(K (v00)) 2 32.474 34.446 33.312 | 33.311
[ Too (K (Yo0)) |00 6.2641 5.2250 5.2250 | 5.2236
K(vs0) [ 37016 1473 ] | [ 41600 2393 ] Ky, Ky,
Stop test Criticality
0.0895 0.3310 0.7272 0.0644
Kfl = —0.0670 —0.1540 0.4871 —0.0103 | e+ 03,

0.7986 0.2764 0.1618 1.7366

—0.2156 —0.5614 —0.0012 0.0006  —0.0927 0.0817
0.0728 0.1511  —0.0042 0.0020 —0.5677 —0.0378
Ky, = 0.0010 —0.0003 0.0011 0.0044 0.0004 0.0005 | e+ 03
0.0044 —0.0018 —0.0006 —0.0018 0.0007 0.0005
0.4743 —0.2764 0.0004 0.0004 0.0922 1.7370

8.2. Vehicular suspension controller design. The model of the vehicular
suspension is described in [15] and [51]. We first focus on static Ha/H,, synthesis.
The H,, performance level in (2.3) is chosen as 7., = 5.225 and the optimal solution
we obtain is

K (ys0) = [ 41600 2393 ].

The H; norm computed by our algorithm is ||T2(K (7s0))|l2 = 34.446, compared
to 35.8065 obtained in [51], which gives an improvement of 3.8%. Moreover, the
Hoo performance is ||Ts (K (Vo0))||co = 5.2250, compared to 5.0506 obtained in [51].
This shows that the H,, constraint is not active in the heuristic [51], highlighting
the inevitable conservatism of the LMI approaches. In contrast, our method always
attains the constraint within the numerical precision.

These results are shown in Table 5, which also gives the results of Ho/Hy, syn-
thesis for dynamic controllers of order nx = 2,4. Notice that in the first column
of Table 5 by choosing the Ho, performance level 7o > 72 = ||Too(K2)| 0o, Where
|70 (K2)|loo is given in Table 1, the Ho/H, solution is close to the solution of the
Hj synthesis.

8.3. Four disks. The four disks model is originally described in [16] and has
previously been studied to evaluate reduced-order design methods. The open loop
plant is of order n, = 8 and has two stable poles.

We first focus on mixed Hs/Hs synthesis of full-order controllers in order to
compare our nonsmooth algorithm to the original Riccati equation approach in [27].
The results are presented in Table 6. We also give results of Hy/Ho, synthesis of
reduced-order controllers in Table 7.

As can be seen in Table 6, our method gives significant improvement over the
older results in [27] based on coupled Riccati equations. This highlights the reduction
of conservatism of our approach compared to Riccati and LMI methods.

8.4. COMPI.ib examples. The models in this section are from the COMPI.ib
collection [34]: aircraft model AC14, distillation tower BDT2, heat flow in a thin rod
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TABLE 6
Full-order mized Ha/Hoo synthesis for the four disks problem (nx = 8): the square Ha norm
is computed in order to compare our results to those in [27].

’ Problem ‘ Four disks [27]
(nmanwnu) (87171)

I 0.1 0.1 0.1 0.1 0.5

Yoo 1 0.9 0.8 0.7 0.52

Serious steps 35 17 29 49 39
172 (K (700)) I3 0.1558 | 0.1612 | 0.1707 | 0.1829 | 0.2299
1 Ts0 (K (7oo)) |l oo 1.000 | 0.9000 | 0.8000 | 0.7000 | 0.5200

Stop test Criticality
Square Ha norm in [27] 0.168 0.176 0.187 0.203 0.262
Hoo norm in [27] 0.855 0.797 0.732 0.661 0.511
Improvement | 7.26% [ 8.41% | 8.72% [ 9.90% | 12.25%
TABLE 7

Reduced-order mized Ha/Hoo synthesis for the four disks problem.

] Problem \ Four disks [27]
(na, Ny, ) 8,1,1)
I 1
Yoo 0.52
ng 2 4 6 7
Serious steps 23 18 30 47
I T2(K (voo))ll2 | 0.2321 | 0.2308 | 0.23041 | 0.2304
| Too (K (Y00)) oo 0.52 0.52 0.52 0.52
Stop test Criticality

HF1, and cable mass model CM4. They are originally designed for H., synthesis, so
an Hy channel was added as suggested by Leibfritz [33, 34]. The same channel is used
for both Hy and H., performance in example AC14, while we choose By = B, and
D> = 0 for the three other models. This way the Hy norm is well-posed.

In each example, we first choose the H., performance level 7., larger than
IToo(K2)||oo- In doing this we have to obtain an estimate of the optimal Hy per-
formance ||T2(K32)||2 given in Table 1. Numerical results are in Tables 8 and 9.

As an illustration, Figures 4 and 5 show the evolution of the Hy and H., norms,
for example, BDT2, during the first iterations.

In Figure 4 we observe phases I and II of the algorithm. As long as iterates remain
infeasible, descent steps to reduce constraint violation are generated, sometimes caus-
ing the objective to increase. As soon as the feasible domain g(z) < ~% is reached,
descent of the objective f begins, and iterates stay feasible.

Figure 5 shows the frequency plot w — Ay (Too(Ki,jw)HToc(Ki,jw)) of the H,
constraint during the first 6 iterations (serious steps) K;, i = 1,...,6, along with
the second eigenvalue \p. As can be seen, the maximum ||Ts (K;)||%, is sometimes
attained at a single marked peak w, while other cases feature rather a flat plateau in
the low frequency band. Multiple peaks appear usually at the end of the process, but
cannot be ruled out at any moment, as shown by the lower right plot, which has a

plateau where A; and Ay are close. Stars indicate frequencies kept in the extended set
Qe (K;).
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TABLE 8
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Results of mized Ha/Hoo synthesis for test examples from COMPIleib. Criticality is pointed out
by a x on the number of serious steps.

Problem ‘ (N, ny, Na) ‘ ng ‘ Yoo ‘ Serious steps ‘ |72 (K (Yo0)) |2 ‘ 1T o0 (K (Yo0)) || 0o ‘

AC14 (40,4, 3) 1 1000 300(max.) 21.370 231.31
10 1000 300(max.) 8.7813 101.26
1 200 263* 21.476 200
20 200 300(max.) 7.9879 100
BDT2 (82,4,4) 0 10 148* 8.0402e-01 1.0585
10 10 543* 7.6480e-01 1.1438
0 0.8 324* 7.9092e-01 7.9999e-01
10 0.8 404* 7.7146e-01 0.8000
41 0.8 115* 7.8882¢-01 0.8000
HF1 (130,1,2) 0 10 7 5.8193e-02 4.6087e-01
0 0.45 e 5.8795e-02 4.4999¢-01
10 0.45 e 5.8706e-02 4.5000e-01
25 0.45 33* 5.8700e-02 4.4993e-01
CM4 (240,1,2) 0 10 5% 9.2645e-01 1.6555
0 1 20* 9.8438e-01 1
25 1 15* 9.5330e-01 1.000
50 1 41* 9.4038e-01 1.000
TABLE 9

Static Ha/Hso output feedback controllers for examples from COMPIeib.

’ Problem ‘ Yoo ‘ K(vs0)
—0.6186 —0.1426 —0.5414 4.929
BDT2 10 0.6357 —0.5457 —3.851 16.85
—0.07527 0.2962  —1.287 6.601
0.9223 0.4668 —4.091 22.34
—0.9207 0.9647  —5.4243 9.8225
08 0.7452 —1.3280 —4.4241 —0.8141
—0.7119 2.1754 —10.226  14.3827
0.0887 1.7433 —13.4102 12.1358
HF1 10 [—0.1002 —1.1230 ]
0.45 [—0.2521 —1.116]
CM4 10 [ —0.5448 —1.3322 ]
1 [ —0.5146 —0.8073 ]

9. Conclusion. We have studied and tested a nonlinear mathematical program-
ming approach to the mixed Hs/Hso-controller synthesis problem. The importance
of this problem was recognized in the late 1980s, but approaches based on AREs
could not be brought to work satisfactorily. It is possible to characterize the optimal
H,/H-controller by way of the Q-parameterization, but as soon as the controller
has to satisfy additional structural constraints, such as, for instance, reduced-order
ng < ng, an analytic solution does not exist. In that situation convexity methods
based on LMIs and AREs are no longer suitable, and finding the globally optimal
solution is known to be N P-hard. As a consequence, we propose a strategy based on
local optimization, which comes with a weaker certificate, but has the benefit of work-
ing in practice. The problem being nonconvex, nonsmooth, and semi-infinite, we have
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1.15 T T T T T T T T T
110 -
+
1.05 1 -
1k 4
4+
L ++ i
0.95 + Rt
+ —+ o
++++ + oy
0.9 + 4 4
i +
0.85 - 4
i
++
o8- Tt =
0.75 . . . . . . . . .
o 5 10 15 20 25 30 35 a0 as 50

Fic. 4. Example BDT2: Ho norm during the first 50 iterations.

Fi1G. 5. Example BDT2: Largest and second largest eigenvalues versus frequency in logarithmic
scale, the first 6 iterations. Observe that the second eigenvalue Ao is strictly below the first one on
the range w < 10%, except for the bottom right plot, where coalescence on a low frequency band seems
to occur.

developed a nonsmooth constrained programming technique suited for the Hy/Ho
problem and other programs of a similar structure. The new method has been tested
on several benchmark studies and shown to perform better than existing methods.
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