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SEQUENTIAL COMPLETENESS AND SPACES WITH THE 
GLIDING HUMPS PROPERTY 

Dominikus Noll 

Introduction. In [2] Bennett and Kahon proved the following property of the B K -  
space ~ of bounded (real or complex) sequences: Given any separable FK--space F 
containing c o such that F n  ~ is dense in ~ , o n e  actually has ~ c F .  The 
method of proof leading to this result is based on a detailed analysis of ~ and its 
subspaces using two-norm convergence. 

In the present paper we obtain the following generalization of the Bennett/Kalton 
result, using a different approach. We prove that for every BK-AB-space E having 
the so--called strong gliding humps property, the following is true: Given any 
separable FK-space F containing ~ such that F n E is dense in E ,  one has E c 
F. 

The method of proof we use to establish this result consists in checking the 
following two properties satisfied by every BK-AB-space E having the strong gl i -  
ding humps property. Firstly, (i) every dense subspace D of E necessarily satisfies 
Dl3 = E 13 , and secondly, (ii) the topology o(EI3,E) is sequentially complete. 
Combining these facts yields the sequential completeness of o(Dl3,D) and therefore 
permits applying Kalton's closed graph theorem to the inclusion mapping (D,x(D,D~)) 

F, where F is a separable FK-space containing cI) such that D = F n E is 
dense in E. 

Both properties (i) and (ii) are of interest in themselves. Proving the sequential 
completeness of weak topologies of the form o(E~,E) involves techniques familiar in 
bounded consistency theory. We refer to [3] for a survey of these techniques. In fact, 
our present approach derives sequential completeness of the topology o(El3,E) from 
a weak form of the gliding humps property for the multiplier space M(E), closely 
related to the corresponding properties of M(E) considered in [3] and [8]. On the 
other hand, property (i) is related to the circle of problems connected with the 
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Wilansky property, considered in [1], [4], [5,6,7], [10]. Recall that a BK-space  E 
containing  9 is said to have the Wilansky property if every dense FK-subspace F 
of E satisfying F 13 = E ~ must coincide with E, i.e. F = E. So BK-AB-spaces  
with the strong gliding humps property are far from having the Wilansky property, but 
surprisingly enough satisfy a separable version of  the Wilansky property, namely, for 
every separable FK-space  F containing  9 such that D = F n E satisfies D 13 = 
E ~, one has E c F. In the final part of  our paper we discuss this circle of problems. 
We end up with various examples concerning the Wilansky property, its separable 
version, and the gliding humps property. 

1. Preliminaries. 
In general our terminology is based on the book [11]. The sections of a sequence x 
o are noted Pk x ,  k =  1 , 2  .... In the following we list some of the notions of 
particular interest in our present investigation. 

A sequence (z n) of vectors ~ o from  9 is called a block sequence if there exists 
a strictly increasing sequence (kj) of  integers such that z n is of the form 

n n n 
z = ( o  . . . . .  o ,  Zkn.l+l . . . . .  Zkn 

n ~ .  
Let t = (zn) be a block sequence. Then ~ ( t )  denotes the sequence space 

g,(t) = { Z ~,nzn: (~n) e ~ } ,  
n 

summation being understood in the coordinatewise sense. Analogously we use the 

notation Co(t). 
Let E be a BK--space containing O. E is called null for block sequences (see [4]) 

if, given any block sequence t = (zn), the relation Co(t) c E implies z n -~ o (n -~ ~) 
in E. 

The following result was proved in [4] and will again be of use in the present paper. 

Lemma 1. Let X be a BK-space containing ~,  and let E = X T be endowed with 
the T-dual norm (see [11, p. 158]). Suppose E is separable. Then it is null for block 
sequences.O 

Let E be a BK-space  containing O. Then E is said to have the strong gliding 
humps property if, given any block sequence (z n) bounded in E, there exists a 

n k 
sequence (nk) of indices having Z z e E ,  where summation is understood in the 

k 
coordinatewise sense. 

We consider an interesting class of  spaces of this type. Let (kj) be a strictly 
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increasing sequence of integers. Now let 

E= x~co: I l x l l=supl lPkX-ek  Xltn < ' } ,  
n n-1 

where II Itn as any monotone norm ( cf. [11, p.104] ) on the finite dimensional space 
of all vectors of the form Pkn x - Pkn_l x. Clearly every such E is a BK-space  with 

the norm II [I, and these spaces have the strong gliding humps property. Choosing for 
(kj) a proper subsequence of  the integers and setting II 11 n = II lie for instance 
provides examples where the sequence (nk) arising in the definition of the strong 
gliding humps property has to be chosen as a proper subsequence of  the integers. 

2. Dense Subspaces. 
In this section we establish property (i) for the class of BK-AB-spaces  having the 
strong gliding humps property. 

Theorem 2. Let E be a BK-AB-space with the strong gliding humps property, and 
let D be a dense linear subspace of  E containing ~ .  Then D 7 = E 7 , and hence 
D[5 = E[5, is satisfied. 

Proof. As D is dense in E ,  the coincidence of ) '-duals implies the coincidence of  
the [5-duals. Indeed, suppose D)' = E)' has been proved. Let a e D[5 . Define fn  ~ 

n 

E' by fn(X) = ~ a . x . .  Then in view of a e E)' the sequence (fn) is pointwise 
i=1 t t ' 

bounded and, because of a e D ~ , pointwise converges on the dense subspace D of  
E . The Banach-- Steinhaus Theorem therefore implies the convergence of (fn) on 

E ,  which means a e E ~ . Hence it suffices to establish the first statement. 
Let a a D)'. This means that the triangular matrix A whose n - th  row is 

a 1 , a 2 . . . . . . . . . . .  a n , o ,  o ....... 

maps the space D to ~ .  It therefore suffices to show that the rows of A are 
uniformly bounded in the y-dual  norm , i.e. K = sup [I Pn a II 7 < o. ( cf. [11, 

n 
p.159] ). Indeed, if this has been proved, then A turns out to be a continuous 
operator D --~ ~ with respect to the topology of the space E on D. This follows by 
considering the estimate 

l(AX)nl = l ( Pna,X ) f = t ( Pna,PnX ) ] 
< sup I P n a ' e k x )  ] 

k 

--- tl x tie II en a II)' ( definition of II II)') 
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g .  II x liE. 

But then A extends to a continuous linear operator E -~ ~ , and the latter is still 

represented by the matrix A ,  which means that A maps E to g**, i.e. a ~ E Y . 

Assume on the contrary that sup II Pn a[Iy = **, and choose a sequence (n k) of 
n 

integers such that II Pnka I1~, ~ ** (k -~ 0.). Now let B be the infinite matrix whose 

k--th row is 

a I / II Pnka I1.~ . . . . . .  ank / II Pnka I1~, o ,  o ....... 

Then B maps D to c o , s i n c e f o r  x ~ D  we have 

(Bx) k = (AX)nk / II enka  liT' 

Notice that B is continuous as an operator D ~ c o in view of 

I (sX)k I = I ( Pnka,x } I / I1 P n ~  I1~ - II x liE, 

hence extends to a continuous operator E -~ c o , and the latter is still represented by 

the matrix B. So B maps E to c o . 
Let (mk) be a subsequence of (n k) chosen in such a way that I[ Pmk_l a I]y / 

II Pmk a [[y -~ o (k -~ 00). Then the matrix C whose k - th  row is 

o . . . . .  o ,  amk_l+l  / [[ Pmka Ily . . . . .  amk /II emka  IIy, o ,  o ....... 

still maps E to c o. This follows by considering the equality 

(Cx) k = (BX)mk - ( Pmk.1 a , x > / II Pmka liT. 

Here the last term tends to o (k -~ **) in view of the estimate 

I (emk.la,x) ] _< [[Pmk.la[I v.  [Ixl[ e. 

Using the definition of  the 7 - dual norm (cf. [11, p. 159]), we find vectors x (k) ~ E 
having II x (k) liE -< 1 and 

r k xlk) 
[ i=lY~ a i . ] > ~"  [I Pmka II r ,  

where r k is an appropriate index satisfying r k < rn k . In the cases where we have 
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mk_ l < r k < m k let 

= , . . . . .  x ( k )  , , x ( k )  x k (o  o mk_l+l ... r k ' ~ 1 7 6  .... ), 

then the sequence (x k) is bounded in E by the AB property. Notice that 

( P r k a , x  k )  = ( Prka , x  (k) ) - ( e m k _ l a , x  (k) }, 

so we find 

for k 

I ( Prka, xk )l > ~ '  I1 Pmka lly 

sufficiently large in view of the fact that 

( emk_la,  x (k) > / II Pmka I1~ -~ o (k ~ ~*), 

In particular, the relation mk. 1 < r k <_ m k is valid for k sufficiently large. Let Pk = 

sign ( P a ,  x k ). Using the fact that E has the strong gliding humps property, we 
r k 

find a sequence (k.) of integers having 
k. 

2 = Y. Pk. XJ ~ 
J J 

where summation is understood in the coordinatewise sense. We claim that C2 ~ c , o 
the desired contradiction. Indeed, we have 

(C~C)k.j = Pk i ( Prkia, x ki >/ll Pmkia I1~ - > 1/4 

This ends the proof of Theorem 2. 0 

We end this section with the following structural result for the class of B K - A B -  
spaces having the strong gliding humps property. 

Proposition 3. Let E be a BK-AB-space having the strong gliding humps property. 
Then r is dense in E 7 with respect to the y-dual norm. In particular, E 7 is null 
for block sequences. 

Proof. The second part of the statement follows from the first part together with 
Lemma 1. So it suffices to check the first part of the statement. 

Let y e E Y be fixed. We prove that a certain sequence (Pny) of sections of y 

converges to y in the T -  dual norm. Assume the contrary, i.e. 

[I Pn y -  y Ily > e 
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for all n and some e > o. Using the definition of the 
vectors x (n) ~ E having 11 x (n) [IE < 1 and 

r 
n 

] ~ YiX~ n)[  >- el2, 
i=n 

y -- dual norm we choose 

where r n >. n. Inductively define a sequence (nj) by setting nj+ 1 

Let (x k) be the block sequence defined by 

(n k) x (nk  ) 
= ,... ,... ,0,0,...), x k ( o  , O , X n k  , nk+l.1 

then (x k) is bounded in E and we have 

= r  +1 .  
n .  
J 

[ ( y , x  k ) = 

k e ~. Let 9k = slgn 
sequence (kj) having 

nk+ 1-1 (nk) 
[ .Y~ YiXi I >- e/2, 

, =n k 

( y ,  x k ). Using the strong gliding humps property we find a 

k.  
= ~ 9  x J ~ E (pointwisesum). 

J 
Obviously we have Yc.y ~ bs ,  contradicting .~ e E, y ~ E Y. This proves the result. 0 

Corollary 4. Let X be a BK-space containing  9 such that E = X 7 has the strong 
gliding humps property. Then E is a dual Banach space, namely E = F', where 
F=EV. 0 

3. Sequential completeness. 
In this section we derive a criterion for the sequential completeness of  a weak 
topology of the type r In particular we obtain condition (ii) for the class of 
B K - A B - s p a c e s  having the strong gliding humps property. First we need a definition. 

Let X be a sequence space containing  9 . Then X is said to have the weak 
gliding humps property if, given any x ~ X and any block sequence (x k) having 
x = ~ x i (pointwise sum), every sequence (nk) of integers admits a subsequence 

i 
(ink) such that 

m k 
.~ = Z x ~ X (pointwise sum). 

k 
The following Lemma indicates the relation of the weak gliding humps property of a 

space X to the type of gliding humps properties of the multiplier space M(X) 
considered in bounded consistency theory (cf. [3, 8]). 
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Lemma 5. Let X be a sequence space containing  9 . Suppose that either (i) the 
multiplier space M(X) has the gliding humps property in the sense of [3, 8], or (ii) 
X is a BK-AB-space having the strong gliding humps property. Then X has the 
weak gliding humps property. 

Proof. First consider the case where statement (i) is valid. Let x = Y~ x n for a 
n 

block sequence (xn). Let (kj) be the corresponding sequence of integers (cf. section 
n 1). Define the vectors yn by setting y~ = 1 for kn_ 1 < k < k n , Yk = o otherwise. 

Then yn ~ M(X), [I yn ilbv = 2, n ~ ~. Let (nk) be any fixed sequence of integers. 
Applying the fact that M(X) has the gliding humps property now provides a 
subsequence (mk) of (nk) having 

m k 
= Y. y ~ M(X). 

k 
m k m k m k 

Since x .y  = x , we derive 2 = Y~ x ~ X .  This proves the result in case (i). 
k 

Case (ii) is clear. ~) 

Our main interest in the weak gliding humps property lies in the following 

Theorem 6. Let X be a sequence space containing  9 and having the weak 
gliding humps property. Then cr(X~,X) is sequentially complete. 

Proof. Let (y(n)) be a Cauchy sequence in c(X~,X) . Let y denote its c o -  
ordinatewise limit. We first prove that y e X 7. Assume on the contrary that 

n 
(~.= xi Yi )n=l is unbounded for some x e X. We define strictly increasing sequences 

( ~ ) ,  (kj),  (rj) of integers having the following properties: 

k .  j -  1 kt 
(cr ~-1 < ~ and I ~ x i yi [ >-" j + y~ ~" ] xi Yi [ ; 

i=~_ 1 t=l i=rt. 1 
k .  

(~) Z Ix i ['lYi Y i  [ < 2"j; 
i=l 

(7) k. < r. and 
J J 

s 
Z x i yi(n) l 

i=r 
< 2 "j forall  s > r > ~ , n  = 1 . . . . .  ~ .  

Suppose n I . . . .  ~-1 ' kl  . . . . .  kj. 1 , and r I . . . .  rj_ 1 have been constructed 

satisfying (a) - (7). First we find kj > rj. 1 such that 
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j -  1 kt 
I x iY i  I > J + y* Y" I x  i y i  I 

i = ~ .  1 t=l  i=rt_ 1 

is satisfied. This is possible in view x . y  ~ bs. Now observe that y(n) -~ Y pointwise. 
This permits selecting nj in accordance with (13). Finally, having regard of the fact 

(n) 
that x . y  ~ c s ,  n = 1 . . . . .  nj ) ,  we certainly find an index rj > kj such that (y) 
is valid. 

Let us now define the vectors x i ~  9 by setting 

i ( . . . . .  x . , o , o  .... ) .  x = o . . . . .  o ,  Xri_l kt 

Then the weak gliding humps property for X provides a sequence (js) having 

2 = Z x J S e x .  
$ 

(%)  
We claim that the sequence ( :~ , y ) , s ~ ~, is unbounded, a contradiction 
with the fact that (y(n)) is Cauchy in (~(X~,X). Writing j = Js we have 

k .  k .  (.j) : %.) : %.) 
Z x i y i  = y" Yci(Yi Y i  ) + y YciYi + Z Yc i i=l  i=l  i=l  i=kj+l  Yi 

= a j  + Bj + ~ .  

Here the first term on the right side converges to o (s -~ **, j = js ) in view of (~) 
and 

kj (~) kj  (nj) _ 2- j 
I a j l  = I Z 2 i (Yi -Yi ) l  <- X I x i l   9 [Yi  - Y i l  <  9 

i=1 i=1 

Also the third term converges to o (s -~ ~* , j = js ) when we observe that 2 k 
holds for kj + 1 < k < rj+l-1 (j = js  ) , which means that 

k 
oo ** ( ~ )  ** t +1 (r~) 2- t 

[ ~ I = I 5". "~iYi [ <- ~ [ y x iY i  I <- ]~ ~ o 
i=~+ 1 t = j + l  i = r  t t = j + l  

= O 

in view of property (y) . Finally, the term [ Bj [ 
view of the estimate 

tends to ~* ( s - ~ , j = j s )  in 

kj j -  1 kt 
[ B j [  > [ ~ x i Y i l  - Y. Y~ [ x i Y i [  > j, 

i=rj .  1 t=l  i=rt_ 1 
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(j = j s  ) , where we use (o0 and the fact that "~k = Xk holds for rj. 1 < k < k . ,  I -2 i ] 

< I x i I otherwise. This proves our claim y ~ X ~. 
Let us. now prove that for fixed x e X the series Y~x i Yi converges and that its 

value is just l i m  Y~x i y l  n) . Assume the contrary. In view of y e X ~t this means that 
n--4~ 

there exists a strictly increasing sequence (ink) of integers such that 

m k 
a := l i ra  Y~ x i Y  i 

k-~** i=1 

exists but is different from b := lirn Y~ x i y l  n) . Passing to a subsequence of (mk)  if 
n 

necessary, we may assume that 

rn  
r 2" k (1) [ Y'. xi  Yi I <- (r > k) 

i = m k + l  

is satisfied. Now we define strictly increasing sequences (nj) , (kj) , (rj) of integers 
as follows. 

( n l )  2 - I .  Let k 1 = l .  Choose  n 1 such that I x 1 I Y l " Y l [ < Then choose r 1 
such that 

m 
s y ln  ) _ 2" I I 2 x i I < 

i=m +1 
F 

holds for n = 1 . . . . .  n I and for all r > r I s > r. 

Suppose k 1 . . . . .  4 - 1  ' n l  . . . . .  '~-1 ' r l  . . . . .  ~ -1  

kj j -1 ~ a = m r . Then choose in such way that 

k .  
j (nj) _ 2.j .  

(2) 5" I xi  ] " l Yi  " Yi I < 
i=1 

have been constructed. Let 

Finally choose rj > rj. 1 so that 

m 
s . (n) 2- j (3) I Z xi Yi I <- 

i=m +1 
F 

holdsfor n = 1 . . . . .  n j ,  r > ~ ,  s > r. 

Suppose the sequences have been defined. For fixed i e }t let 

x i = ( o  . . . . .  O , X k . + l  . . . . .  x k , o , o  . . . .  ) .  
l i + l  
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Applying the definition of  the weak gliding humps property to the sequence of  even 
integers, we obtain a sequence (js) such that 

x  90 = 5". e X ( pointwise sum ) .  
S 

We derive the desired contradiction by proving that the sequence ( .~, y(n) > is not 
convergent. 

First we consider the sequence < i ,  y (5)  > , where j = 2j s - 1 . Here we have 

. (5)  kj (5) k j+ l (5.) ~ (5) 
T. ~i Yi = ~ ~i Yi + Y. Yci Yi + ~ :ci i=1 i=l i = k j + l  i=~+1+ 1 Yi 

=:J + 9  
Notice that "Xk = ~  holds for kj < k <_ k.+l ( j= 2 J s - 1 ) ,  so we have B j =  o in 
this case. Moreover, we have 

0, t t + 2  (5) 
[ 9 1  < 2 I Y. x iY  i [ < 

t=j i = k t + l + l  

where we use the fact that on the blocks 
agrees with x or is identically o .  

k j  

Z 2  "t --~ o (s -~ o* , j = 2Js - 1 )  , 
t=j 

kt+l+l  . . . . .  kt+ 2 the sequence .~ either 

Finally, let c .'= l im T~ xi Yi ' which exists in view of  (1) and the fact that kj 
j-~** i=1 

{ m t " t e  ~l } . We prove that Aj ~ c  ( s - ~ * , j  = 2 J s - 1 ) .  Indeed, we have 

k .  
: (5) I a j - c l  <- I 2 ~ i ( Y i  Y i ) i  + 2 ~ i Y i l  

i=1 i=k.+l 
J 

Here the first term on the right side is _< 2 "J in view of (2) and 12i1< I x i l ,  
k .  

J 
whilst the second term tends to o in view of the convergence of  Y" Yci Yi " 

i=l 

Let us now consider the subsequence < 2 , y ( 5 ) )  , j = 2Js. We prove that it has 

a limit different from c , from which it readily follows that < Yc , y(n) ) is not 

convergent. Indeed, we have the same decomposition ( .~, y ( 5 ) )  = Aj + t~ + Cj,  
and we find as above that A j - ~ c ,  C j - ~ o  ( s - ~ * , j =  2j s ) . W e  prove that Bj 

converges to a limit different from o . Indeed, observe that we have 2k = Xk for 

kj < k <_. 4+  1 . This gives 
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k~+ 1 (~)  
= 2, x . y  i 

i=k . +1 z 
J 

k .  k .  

= Y~xiYi  ~ x iYi  - ~=I x i (y i  "Yi ) " ,.Y" i=1 i=1 i i=,~j + l + l xi Yi D 

Here the first term on the right side converges to b ,  the second term converges to a 
( s -, 0,, j = 2j s ) .  The third term converges to o in view of  (2) , and so does the 
fourth term as a consequence of  (3) . So Bj -~ b - a ~ o , which provides the 
desired contradiction. This completes our argument. <) 

Let us consider the following example ,  which was communicated to us by Prof. Dr. 
J. Boos, taken from the thesis of his student Dr. D. Seydel. Let X = rn ~ be the space 
of sequences taking only finitely many values. Then m ~ clearly has the weak gliding 

humps property, so c~(~,mo) is sequentially complete. But X = m ~ does not satisfy 
the following statement (*) considered in [3]. 

(*) X n W A c c B implies X n W  A c W B . 

To see this we choose for A the matrix Z1/2 

B = ( b n k  ) by setting bnk = 1 for n = k or n = k + 1 
otherwise. Then it is easy to see that m ~ n W A c c B , but 
contained in W B. 

Statement (*) implies the sequential completeness of  ~(X~,X) 

(cf. [12, p.125]),  and we define 

(k even), bnk = o 
m ~ n W A is not 

cf. [3] ), and (*) 
in turn is implied by the conditions imposed on the multiplier space M(X) in [3]. 
This indicates that these conditions are fairly stronger than the weak gliding humps 
property considered here .  

We consider another example, X = b s .  Here X does not have the weak gliding 

humps property, but nevertheless cr(bVo,bS ) is sequentially complete. Notice that bs 
even satisfies statement (*) .  

4. The main Lemma.  

In this section we prove a technical result, which plays the crucial role towards our 
result stated in the introduction. 

Lemma 7. Let E be a BK-space containing  9 , and let D be a dense linear 
subspace of  E containing ~ and satisfying D ~ = E ~. Suppose that E ~ is null for 
block sequences. Then ~(q),E) and ~(cI),D) have the same null sequences. 

Proof. Let (yn) be a null sequence in cr(O,D) . We have to show that (yn) is 

bounded in E ~ with respect to the ~--dual norm. For suppose this has been proved, 
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[[ yn [i 9 < M ,  say. Then for fixed x ~ E and e > o we choose .~ e D 

II x- ~ liE < e/2M. Then we find 

[ ( x , y n ) [  <- IIx-~llE" Ilynll~ + I ( ~ , y n ) l  
< e/2 + e/2 = e 

having 

for n sufficiently large. 
Suppose (yn) is not bounded in norm. Passing to a subsequence if necessary, we 

may assume that II yn I1~ - 2n  9 As ~ c D , we have yn -~ o coordinatewise. This 
permits selecting strictly increasing sequences (nj), (kj) of integers such that 

(i) II e~_l y~ I1~ - 2 J  ; 

(ii) y ~  has length < kj .  

n i n i 
Setting v i = y - Pki_l y therefore provides a block sequence (v i) which is still 

n .  
(r(~,D) null, but has [I vi lip >- 2 t _ 2 i . We may assume that n i > _ 2i. Let a i = 

1/11 vi lip, zi = o~i'vi. Then II z i IIf~ = 1. Since E ~ is null for block sequences, there 
exists a sequence (Xi) ~ c o such that 

z = ~. ~'i" zi ( pointwise sum ) 
l 

is not an element of  E 13 . We achieve a contradiction by proving z ~ D ~ . So let 
x e D  be fixed. Let k ~ N, andf ind  j having kj_ 1 < k <  k j ,  where (ki) is the 

sequence of  integers corresponding with the block sequence (z i) . Then we have 

k j - 1  ki k 
Y, x . z .  = E ~,i~xi Y. XsVi  + Y. ~ .o~.XsVJ 

i=1 l t i=1 s = k i . l + l  s s = k j _ l + l  j j s 

1 , vi 
J~i=l~' icxi(x  ) + ~ ( e k x - e ~ - l X  ~  

Here the f'~rst term on the right side converges ( k -~ ~*, kj. 1 < k < kj ) in view of 

( ~ . ) ~  e ,  ( x ,  v i ) -~ o .  The second term converges as well in view of  kj -~ o and 
the estimate 

[ ( egx-  e~_l  x , ~ j . v  / > I -< e [I x I[~[ 3 II ~J lip = 2 H x IIf~, 
where we use the fact that the norm II I1~ is monotone ( cf. ~11, p.159] ) . This 
ends the proof of  the Lemma. 0 
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5. Consequences. 
In this sections we obtain applications of our main Lemma. 

Theorem 8. Let E be a BK-AB-space having the strong gliding humps property. 
Let F be a separable FK-space containing  9 . Suppose F n E is dense in E. Then 
E c F .  

Proof. Let D = F n E , t h e n  D 13=E l holds by Theorem 2. Also  9 is dense in 
E Y by Proposition 3, and E Y is null for block sequences by Lemma 1. But clearly 
we must have E l = E Y here, so E l is null for block sequences. 

Since  9 is norm dense in E l , it follows from our main Lemma that the topologies 
o(E~;D) and o(EI,E) have the same null sequences. Consequently, they also have 
the same Cauchy sequences. But Theorem 6 tells that (~(E~,E) is sequentially 
complete, hence the same must be true for ~(Et ,D) .  

Sequential completeness of c(DI,D) = cy(EI,D) permits applying Kalton's closed 
graph theorem to the inclusion function t: (D, z(D,D~)) ---* F ( see [2] or [11, 
p.251] ), and this implies the continuity of ~. 

We claim that z(E,EP)JD " = z(Da9 l)  . Indeed, this follows since cs(EI,D) and 
o(E~,E) have the same convergent sequences, hence also have the same compact sets 
( see [11, p.252] ). But now t extends to a continuous linear operator 

~: (E, x(E,E~)) --~ F .  

From K-space reasons it is clear that ~ must again be the inclusion mapping, which 
means E c F ,  as desired. This ends the proof of Theorem 8.0 

Theorem 8 generalizes the Bennett/Kalton result stated in the introduction, since 
clearly has the strong gliding humps property. We mention another generalization of 
their result obtained by Snyder [9]. 

Following [1], a BK-space E containing  9 is said to have the Wilansky property 
if every dense FK-subspace F of E satisfying F l = E [3 must coincide with E, 
i.e. F = E .  We refer to [1, 4, 5, 6, 7, 10] for information concerning this notion. 

Let E be a BK-AB-space  having the strong gliding humps property. Suppose that, 
in addition, E has the Wilansky property. Then every dense FK-subspace F of E 
automatically satisfies F l = E l as a consequence of Theorem 2. Hence the 
Wilansky property implies the equality F = E for every dense FK-subspace F of 
E , which means that E has no proper dense FK--subspaces at all. Consequently, 
BK-spaces E having both, the strong gliding humps property and the Wilansky 
property are quite peculiar. Actually we do not even know of any BK-space E 
without proper dense FK-subspaces. Notice, however, that Theorem 8 tells that every 
t3K-AB-space E having the strong gliding humps property satisfies the following 
separable version of the Wilansky property, which we state as a definition. 
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A BK-space E containing ~ is said to have the separable Wilansky property if, 
given any separable FK-space F containing  9 such that D = F c~ E is dense in 
E ,  the relation D ~ = E 13 implies that E c F ( cf. [7] ). 

The following result may be obtained by slightly modifying the proof of Theorem 8 
above. 

Theorem 9. Let E be a BK-space containing  9 such that o(E~,E) is 
sequentially complete. Suppose <b is norm dense in E Y . Then E has the separable 
Wilansky property. 

Proof. Let F be a separable l~(---space containing  9 such that D = F n E is 
dense in E and D ~ = E ~" g is saris f i  ed. We have to prove E c F .  

Applying the main Lemma shows that o(O,D) and o(O,E) have the same null 
sequences. Since  9 is norm dense in E ~t , we must have E ~ = E "/, which means 
that ~(E~3,D) and ~(E[3,E) have the same null sequences. So c(E[~,D) = ~(D[3,D) 
is sequentially complete. But now we proceed as in the proof of Theorem 8, which 
finally gives us E c F. 0 

Remarks. 1) Modifying an example given in [1] shows that s does not even have 
the separable Wilansky property. Setting 

F = { x ~ g :  l im n Y. Xk exists } 
n-~ ** k >_2 n 

provides a proper dense separable FK-subspace of g containing  9 and satisfying 
F~=g~=g** .  

2) Also c0 does not have the separable Wilansky property. Here we choose 

F = {x~o~"  t im ( X 2 n - X 2 n . 1 ) e x i s t s } .  
n~oo 

Then F is a proper dense separable FK-subspace of co containing  9 and 
satisfying F ~ =  9  

3) Let fo be the space of all allmost null sequences ( cf. [3, 8, 12] ), then M(f o) 

has the gliding humps property, so ~(fo~fo ) = a(efo) is sequentially complete ( cf. 
[3], [8, w ). Consequently, by Theorem 9, fo has the separable Wilansky property, 
since ~ is dense in g .  But fo does not have the Wilansky property ( cf. [7, 
Theorem 2] ). Also notice that fo does not have the strong gliding humps property, 

for bs is dense in fo ( cf. [8, w ), but has [3-dual bs ~ = bv ~ ( ~ g ). 

4) Consider the space bs . Theorem 9 above implies that bs has the separable 
Wilansky property, since cr(bVo,bS ) is sequentially complete. Clearly bs does not 
even have the weak gliding humps property, but nevertheless every dense 
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FK-subspace F of bs satisfies F ~ = bv ~ . This may be deduced from the 
corresponding property of g** using the method of [1, w 

5) It would be interesting to have an example of a separable BK-space having the 
separable Wilansky property, but failing the general Wilansky property. 

6) In Theorem 9, instead of claiming ~ to be norm dense in E 7, it would be 
sufficient to make the assumption that  9 is norm dense in E ~ , and that the latter is 
null for block sequences. We do not know, however, whether the assumption of norm 
denseness of  9 in E ~ alone would be sufficient to obtain the statement of the 
Theorem, since norm denseness of  9 in E ~ does not imply that E ~ is null for 
block sequences. This may be seen by taking E = bv, E ~ = cs. 
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