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The theory of generic differentiability of convex functions on Banach 
spaces is by now a well-explored part of infinite-dimensional geometry. All 
the attempts to solve this kind of problem have in common, as a working 
hypothesis, one special feature of the finite-dimensional case. Namely, 
convex functions are always considered to be defined on convex sets with 
nonempty interior. But typically, a convex set in a Banach space does not 
have interior points even when it is not contained in a closed hyperplane. 
So this raises the problem of expounding a theory of differentiability of 
convex functions defined on small sets, i.e., sets without interior points. In 
our paper [N2] we have made an attempt to solve this problem, discussing 
questions of generic Frechet-differentiability of convex functions on small 
sets. In the present paper we deal with problems of generic Gateaux- 
differentiability in this context. 

1. MAXIMAL SUBGRADIENTS 

In the following let E be a normed space and let C be a convex subset 
of E not contained in a closed hyperplane. For fixed x E C let K(C, x) 
denote the convex cone with vertex at the origin consisting of all vectors 
zEE having x+&EC for small t>O. 

DEFINITION. Let cp : C + aB be a convex function. q is called 
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(1) Gateaux-differentiable at x E C if there exists a continuous linear 
functional ,f, E E’ satisfying 

l/E f (cp(x + tz) - q(x)) =f,(z, 

for all zEK(C, .x); 

(2) Frechet-differentiable at x E C if there exists f, E E’ satisfying 

lim sup 
rjo ZEK(CX) 

f(~(x+f;)-a)--f,(z) =o. 

II 2 II G 1 

Notice that Frtchet-differentiability of cp at x implies Gateaux-differen- 
tiability. Moreover, if cp is Gbteaux-differentiable at x E C, then its derivative 
f, at x is uniquely determined in view of the fact that C is not part of a 
closed hyperplane. So the notation q’(x) =f, is justified in both cases. 

It is worth noting that our definition generalizes the classical concepts of 
differentiability of convex functions. This follows from the fact that for an 
interior point x of C the cone K(C, x) is all of E. 

It is well known that a continuous convex function cp is Gateaux- 
differentiable at an interior point x of its domain C if and only if its 
subdifferential @(x) at x contains a unique element. It is easy to see that 
this characterization does not remain valid for boundary points of C, when 
our notion of differentiability is used. So what we shall first be interested 
in is a substitute for the subdifferential characterization of GAteaux- 
differentiability. 

PROPOSITION 1. Let E be a normed space and let C be a convex subset 
of E not contained in a closed hyperplane. Let cp : C + R be a convex function 
and let x E C be fixed. Suppose that either 

(i) there exists a neighbourhood U of x in C such that &p(y) is non- 
empty on U and cp 1 U extends to a convex and lower semi-continuous function 
$:E+Ru{oo}, or 

(ii) there exists a neighbourhood U of x in C and a dense subset D of 

U such that ‘acp( y) # @ on D and cp 1 U extends to a lower semi-continuous 
function on E and is continuous on U. 

Then the following statements are equivalent: 

(1) cp is Gateaux-differentiable at x; 

(2) arp(x) is nonempty and contains a unique maximal element with 
respect to the order induced by K(C, x). 
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Proof. Assume (1). We consider the sublinear operator dp(x; ) defined 
on K(C, x) with 

dq(x; z) = jif, f (cp(x + tz) - q(x)). 

Note that acp(x; ) is well-defined in view of 8&x) # 0. Moreover, the 
elements of 8cp(x) are precisely the continuous linear support functionals of 
&Q(x; ). But q is GPteaux-differentiable at x, so acp(x; ) = q’(x) holds on 
K(C, x). This implies f(z) < @(x)(z) for all z E K(C, x) and all f~ 89(x), 
proving that q’(x) is the unique maximal element of &,D(x) with respect to 
the order induced by K(C, x). 

Now assume (2). Let us first consider the case where cp is a Lipschitz 
function, which consequently extends to a convex Lipschitz function on E. 
But then a&x; ) is as well Lipschitz and consequently also extends to a 
convex Lipschitz function on E. Suppose now that fX E@(X) is maximal 
with respect to the order induced by K(C, x). We claim that arp(x; ) =f; 
holds on K(C, x). Clearly we have f, < acp(x; ) on K(C, x). Suppose we 
had f,(z) < &p(x; z) for some ZE: K(C, x). By Hormander’s theorem 
d&x; ) may be approximated from below by continuous linear support 
functionals (see [Ho]). So there exists f~ E’, f d 13cp(x; ) on K(C, x) such 
that f(z) >fX(z). But note that f~ 13rp(x), and this contradicts the maxi- 
mality off, in @I(X). This implies f, = &(x; ) on K(C, x), from which we 
deduce that q is Gbteaux-differentiable at x with derivative f,. This ends 
the proof in the case where cp is Lipschitz on C. 

Let us now consider the more general cases (i) and (ii). For n E N let (P,, 
denote the infimal convolution of cp and n 11 11, noted qPn = cp q n II 11. 
Notice that either (P,, = - cc or (P,, is finite everywhere and is Lipschitz with 
constant n. The latter is the case, e.g., when &J(Y) n nl?’ # Qr for some 
y E C, where I?’ denotes the dual unit ball (see [HU] for the properties of 
the functions cp,). The coincidence set C, of cp and cpI is just 

(see [HU]). Now assume that fXe &I(X) is maximal with respect to the 
order induced by K( C, x). Let )I f, II d n, then we have q(x) = p,,(x) for all 
r > n. This implies 

d%(X) = accp, I C)(x) = Mx) 

for all r 3 IZ. Since f, E @,(x), r > n, we deduce that f, is maximal in 
J(cp, ( C)(x) with respect to the order induced by K( C, X) for all r 2 n. From 
the first part of the proof of (2) + (1) we therefore deduce that f, = 
(cp, ( C)’ (x) holds for all r 3 n. 
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Let us now assume property (i). Let z E K(C, x) be fixed and choose t > 0 
such that x + tz E U. This implies 8cp(x + t,-) # @. Choose r > n such that 
acp(x+ tz) contains an element of norm not exceeding r. This implies 
cp(x)=cp,(x), cp(x+ tz)= cp,(x+ tz), r>n. Since acp(x)# 0, cp is locally 
Lipschitz at x along the ray x + R + z. Hence, choosing t > 0 small enough 
and r large enough, we may assume that also cp(x + sz) = cp,(x + SZ) for all 
0 < s < t. But this implies 13cp(x; z) = @,(x; z), hence 8cp(x; Z) =fJz). Since 
ZE K(C, x) was chosen arbitrarily, this proves the claim in case (i). 

Finally, consider the case where (ii) is satisfied. By assumption there 
exists a dense subset D of U such that 3q(y) # 0 for y E D. Let 
D* = {ze E: x + tz E D for some t > 0}, then D* is dense in K(C, x). We 
claim that acp(x; ) =f, is true on D*. Let ZE D*, xs tz~ D for t >O. 
This implies @(x + tz) # 0, so the above reasoning readily implies 
drp(x; z) =f’(z). Finally, observe that dq(x; ) is continuous on K(C, x) as 
a consequence of the fact that cp) U is continuous. Since D* is dense in 
K(C, x), we derive 8&x; ) =f, on K(C, x). 1 

COROLLARY 1. Let E be a normed space and let cp : E -+ [w u { rxj } be a 
lower semi-continuous convex function. Let C be the domain of cp and 
suppose cp 1 C is continuous. Let x E C be fixed. Then the following statements 
are equivalent : 

(1) cp is Gateaux-differentiable at x; 

(2) Q(x) is nonempty and contains a unique maximal element with 
respect to the order induced by K(C, x). 

Proof: By a result of Ekeland [E] there exists a dense subset D of C 
such that &p(y) is nonempty over D. Therefore the condition (ii) in 
Proposition 1 is satisfied and the result follows. 1 

Remark. Proposition 1 clearly generalizes the classical statement that a 
continuous convex function cp is Gsteaux-differentiable at an interior point 
x of its domain if and only if acp(x) contains a unique element. 

2. GENERIC GATEAUX-DIFFERENTIABILITY 

In this section we obtain a generalization of the well-known results on 
generic GBteaux-differentiability by Stegall [Sl, S2] to the case of convex 
functions defined on small sets. First let us recall a definition. 

A Banach space E is called of class (S) if the following condition is 
satisfied: Whenever X is a Baire topological space and 0 : X -+ 2E’ is a set- 
valued operator which is upper semi-continuous with respect to a(E’, E) 
and has nonempty convex and o(E’, E)-compact values, then 0 admits a 
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selector 9: X+ E’ which is continuous at the points of a dense G,-subset 
of x. 

It has been proved by Stegall [Sl ] that all weakly compactly generated 
Banach spaces, and hence in particular all separable Banach spaces, are of 
class (S). Here we obtain the following generalization of Stegall’s result 
stating that the spaces of class (S) are weak Asplund spaces. 

THEOREM 1. Let E he a Banach space of class (S) and let C be a convex 
subset of E which is not contained in a closed hyperplane. Suppose that C is 
a Baire space in the induced topology. Let cp: C + R! be a lower semi-con- 
tinuous convex function and suppose there exists a dense Gs-subset G, of C 
such that for every y E G, the subdtfferential acp( y) is nonempty. Then there 
exists a dense G6-subset G of C such that cp is Gateaux-differentiable at 
every x E G. 

Proof. Let us first consider the case where q is Lipschitz on C and 
therefore extends to a convex Lipschitz function $ on E. The operator 
a+: c+2E’ is known to be upper semi-continuous with respect to the 
norm topology on C and the weak star topology a(E’, E) on E’. Moreover, 
all/ has nonempty convex and o(E’, E) compact values. By the definition 
of the spaces of class (S) there exists a selector x -fX for a$ which is 
continuous with respect to the norm topology on C and a(E’, E) on E’ at 
the points of a dense G,-subset G of C. We claim that fre a+(x) is the 
Gateaux-derivative of I,$ 1 C = cp at x whenever x E G. Indeed, for fixed x E G, 
fr is maximal in acp(x) with respect to the order induced by K(C, x). For 
suppose there exists f E dq(x) having 

f(z) -fJz) = : E > 0 

for some z E K(C, x). Choose t, > 0 such that x + tz E C for 0 < t < t,. Since 
f ,+,,Ea~(x+tz)cacp(x+tz), o<tGtO, the monotonicy of the operator 
a9 implies 

(fx+ fi -f )(tz) 2 03 

SO we find f,, Jz) -f,(z) 3 E for all 0 < t < t,, contradicting the continuity 
of y -+ f, at x. So f, is actually maximal in acp(x). By Proposition 1, case 
(ii), we derive that q’(x) = f, holds for x E G. 

Let us now consider the general case. Let qn = cp 0 n 11 (I. For every n 
let G, be a dense G,-subset of C such that cp,\C is Gateaux-differentiable 
at every XEG,. For XEG, let fry,, denote the Gateaux-derivative 
(cpn I Cl’ (x). 

We claim the existence of an open dense subset G, of C such that ‘p is 
locally Lipschitz at every x E G,. Indeed, let U be a relatively open and 
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nonempty subset of C. By assumption we have c?cp(~,) # 0 on a dense 
G,-subset GO of C, which implies G,, c U,:= , C,,. Here C,, = (Z E C: cp(:) = 
V,,(Z)) (see the proof of Proposition 1 and [HU]). We deduce that 
lJ,“= , (C,, n U) is of the second category in C. This implies int(C,, n U) # 0 
for some n, since C, is closed in C. Here int refers to the interior relative 
to C. Choose V,,, nonempty and relatively open in C and contained in 
C, n U. Then cp is Lipschitz on V(; with constant n. Setting 
G, = U { V,:: U # 0 open in C} finally provides a dense open subset of C 
such that q is locally Lipschitz at every x in G,. 

Let G = G, n n,T= r G,,, then G is a dense G&-subset of C. We prove that 
G fulfills the requirements of our theorem. Indeed, let x E G be fixed and 
choose a neighbourhood I/ of x in C such that cp = (P,, = cp,, + , = . holds 
on U. This clearly implies ,f,, ,1 =f,,,, + , = = : fY on C. Thereforef, is the 
Glteaux-derivative of cp at x. 1 

As we have pointed out already, the Gateaux-differentiability of a convex 
function at a boundary point of its domain does not necessarily imply the 
uniqueness of the subdifferential. The uniqueness of arp(x) at a differen- 
tiability point x may be obtained, however, if x is a nonsupport point of 
the domain C. 

PROPOSITION 2. Let E he a Banach space of class (S) and let C he a 
convex subset qf E which has at least one nonsupport point. Suppose C is a 
Baire space in the induced topology and let cp: C -+ R he a c0nve.x lower 
semi-continuous function having nonempty subdifferential on a dense Gd- 
subset of C. Then there exists a dense G&-subset G of C such that ,for every 

XE G, cp is Gateaux-differentiable at x with unique subdtfferential @(x) = 
{cp’(x)>. 

Proof: By Theorem 1 there exists a dense G,-subset GO of C such that 
cp is Gsteaux-differentiable at every x E G,. Since C has at least one non- 
support point, a result of Phelps [P] tells that the nonsupport points of C 
form a dense G&-subset G, of C. Let G= G, n G,, then G fulfills the 
requirements of the theorem. Indeed, let x E G, then q’(x) is maximal in 
drp(x) with respect to the order induced by K(C, x). But notice that K(C, x) 
is dense in E as a consequence of the fact that x is a nonsupport point of 
C (see [K]). This implies the uniqueness of Jcp(x) since the order induced 
by K(C, x) reduces to equality. 1 

COROLLARY 2. Let E be a separable Banach space and let C be a convex 
subset of E not contained in a closed hyperplane. Suppose C is a Baire space 
in the induced topology and let cp : C -+ R be a lower semi-continuous convex 
function satisfying dq(x) # 0 on a dense G,-subset of C. Then there exists 
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a dense G,-subset G of C such that cp is GLiteaux-differentiable at every x E G 
with unique subdifferential &p(x) = (cp’(x)}. 

Proof E is of class (S) by Stegall’s theorem. Moreover, an old result of 
Klee’s [K, H] states that C, being separable, has at least one nonsupport 
point. 1 

Remark. The result of Ekeland quoted above tells that a lower semi- 
continuous convex function cp has nonempty subdifferential acp(x) on a 
dense subset of its domain C. In general, however, this set is of the first 
category in C. Since we are interested in results on generic Gateaux- 
differentiability of cp, the theorem of Ekeland is of no help. What we need 
is a description of the situation when acp(x) is nonempty generically. In 
[N2] we have obtained the answer to this problem. It states that acp(x) is 
nonempty generically on a convex Baire set C if and only if cp is locally 
Lipschitz at the points of a dense subset of C. Moreover, the reasoning in 
the proof of Theorem 1 shows that this dense set may in fact be chosen to 
be open in C. 

3. CS-CLOSED SETS 

Our main Theorem 1 gives some information on the differentiability of a 
convex function defined on a convex subset of a Banach space which need 
not have interior points but is assumed to be Baire in the induced topol- 
ogy. In the following we show that one may even gain some information 
on the differentiability of convex functions defined on a fairly larger class 
of convex sets in Banach spaces, namely, the class of CS-closed sets in the 
sense of Jameson [J]. Recall that a convex set C-in a Banach space E is 
called CS-closed if every convergent series C,“= 1 2,x,, x, E C, 0 d I, 6 1, 
C,“=, 2, = 1, converges to an element of C. Clearly every closed convex 
subset of E is CS-closed. Fremlin and Talagrand [FT] have proved that 
every convex G,-set in a Frtchet space is CS-closed, so the class of 
CS-closed sets is fairly large. 

EXAMPLE. A CS-closed set which is of the first category in itself. Let 
E = 1’ and let C be the order cone corresponding to the lexicographic order 
on E, i.e., 

C={xEI’:Xl= ... =x,~l=o,x,#o*x,>o}. 

Then C is CS-closed, but it is of the first category in itself, for we have 
C = U,:, = I C,,, , where 

C .,,={XEl’:X,= ..~=x,P,=O,x,>l/m}, 

and the sets C,,, have no interior points relative to C. 



538 DOMINIKUS NOI,L 

Let C be a convex cone with vertex 0 in E. We consider a new topology 
on C, called the cone topology and noted cr, by taking as a base of 
neighbourhoods of x E C with respect to 0 the sets 

V(x,E)= {JGC: /I y-xl1 <E,?‘-XEC}, 

E >O. This topology has been introduced by Saint-Raymond [SR] in a 
special case and has been further investigated in [Nl]. Its merits are to 
be found in the following. 

PROPOSITION 3. Let C he a CS-closed convex cone with vertex 0 in 
the Banach space E. Then C is a Baire space when endowed with its cone 
topology a. 

Proof Let (G,) be a sequence of open dense sets in (C, cr) and let U be 
a nonempty, a-open set in C. Choose x, E Un G, and some E, > 0 having 
b’(x,,~~)cUnG,. Now V(x,,s1)nG,#12(. Let x2 be chosen in this 
intersection. Choose sZ > 0, s2 < s,/2 such that V(x,, Q) c V(x,, E,) n G,, 

etc. This yields a sequence (x,) in C and a sequence (E,) with E,<E,, ,/2 
and V(x,, E,) c V(x,-, , E, i) n G,, x,, - x,~, E C. Clearly (x,,) converges 
to some x E E. Since C is CS-closed, we deduce x E C, and moreover x E 
U n fl,“= , G,. This proves the result. [ 

This observation permits us to prove the following theorem on the 
differentiability of a convex function defined on a CS-closed set in a 
Banach space. 

THEOREM 2. Let E be a Banach space such that E x R is of class (S) and 
let C be a CS-closed convex subset of E not contained in a closed hyperplane. 
Let cp : C + R be a convex function which is locally Lipschitz at the points oj 
a relatively open dense subset of C. Then there exists a dense subset D of C 
such that cp is Griteaux-differentiable at every x E D. 

Proof Let us first consider the case where C is a CS-closed convex cone 
with vertex 0 in E. Clearly it suffices to prove the statement for every cp I U, 
where U is a relatively open subset of C such that cp is Lipschitz on U. So 
let us assume that cp itself is a Lipschitz map. It consequently extends to a 
convex Lipschitz map ij on E. 

Proposition 4 tells us that C is a Baire space when endowed with its cone 
topology 0. The subdifferential mapping a$ being upper semi-continuous 
with respect to the norm topology on C and the weak star topology on E’, 
this is also true with respect to the cone topology 0 on C and the weak star 
topology on E’. Applying the definition of the spaces of class (S), we 
obtain a dense G,-subset D of (C, a) and a selector x -f, for a$ which is 
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continuous with respect to 0 on C and a(,!?, E) on E' at every x E D. We 
claim that this implies 

(*I 

for every z E C, when x E D. Indeed, suppose we had 

for some z E C, E > 0, and all t > 0. This implies 

Jr+ ,z(z) afx(z) + E 

for t > 0, a contradiction since x + tz converges to x in the cone topology 
and since x E D. This proves (*). 

Let us now consider the general case. Again we may restrict ourselves to 
the situation where cp is Lipschitz on C. Now let ? denote the convex cone 
with vertex (0,O) in E x 58 generated by C x { 1 }, i.e., 2; = R + (C x { 1 }). Let 
ij: c + R be the sublinear operator defined by 4(1x, 1) = Jq(x), 2 2 0, 
x E C. cp being Lipschitz, we deduce that @ is locally Lipschitz at points 
(Ax, A), x E C, 2 > 0, in view of the estimate 

I @(fk 2) - @(PYLy, PII G P II dx) - cp(Y)ll+ II cpb)ll IA-P I. 

Therefore the first part of our proof may be applied in view of the fact that 
E x R is again of class (S) and C is a CS-closed convex cone. This provides 
a dense subset B of c such that S, satisfies property (*), i.e., for all 
(lx, i) E B there exists fci.X,lj E (E x 02) satisfying 

!$ f (@(tnx2 n) + l(PYLy, PL)) - @Cnx9 n)) =f(j.x.Z)(PYLy, PI (**I 

for p 2 0, y E C. Since $ is sublinear, differentiability in this restricted sense 
at some (ix, A) E c clearly implies differentiability at every (px, p), p > 0. 
So we may and will assume that b is radial, i.e., (Ax, I) E b for some A > 0 
implies @LX, II) E b for all p > 0. 

Let D denote the subset of C consisting of all vectors z such that 
(z, 1) E 8. Then D is dense in C. We prove that rp is Gateaux-differentiable 
at every x E D. Let x E D be fixed. Then fcX, I ) 5 (E x R)’ admits a representa- 
tion .L, I) =.L + yx for some f, E E' and some scalar yX. Notice that 
yX = q(x) -fJx), which may be seen by inserting (x, 1) in formula (**). 
We prove that f, is the Gateaux-derivative of cp at x. 

Let z E K(C, X) be fixed and choose to > 0 having x + tOz E C. Now let 
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0 < t < t,. Setting s = [/(to - t), we find f = .st,,/( 1 + s). Applying (**) to 
(x, 1 ) and (X + t,:, 1 ), we obtain 

l(iIn~(~((x, l)+s(x+t,z, 
1 

1 1) -4(-c 1)) =.t;,., ,(x + t,z, 11, 

since s tends to 0 as [JO. But notice that we have 

=fl@((x, l)+s(x+t,z, l))-@(X, l)]+(x+Iz);, 

so this quotient tends to 

This ends the proof of Theorem 2. 1 

Again we may ask for conditions under which cp is Gbteaux-differentiable 
on a dense subset of a CS-closed set such that, in addition, the subdifferen- 
tial is unique. 

PROPOSITION 4. Let E be a Banach space of class (S) and let C be a CS- 
closed convex subset of E having at least one nonsupport point. Let cp : C + R 
be a convex function which is locally Lipschitz at the points of a relatively 
open dense subset of C. Then there exists a dense subset D of C such that 
cp is Gciteaux-differentiable at every x E D with unique subdifferential. 

Proof: Suppose x is a nonsupport point of C. Then (x, 1) is a nonsup- 
port point of c, the convex cone with vertex (0,O) in E x R generated by 
Cx { 11. The result of Phelps quoted in Section 2 tells that the nonsupport 
points of zi therefore form a dense G,-subset of 2; with respect to the norm 
topology. But note that the set of nonsupport points is even dense in e 
with respect to the cone topology cr. Indeed, if (x, 1) is a nonsupport point 
of c, then so is every point of the form (Jy, A) + t(x, l), t > 0,’ hence every 
point (Ay, A) E c can be approximated by nonsupport points in the sense of 
the cone topology. Therefore the set of nonsupport points of (? is a dense 
G,-subset of c with respect to the cone topology. 

Passing through the proof of Theorem 2 once more, we may now start 
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with a dense subset b of c consisting of nonsupport points of c. Notice 
that this is not destroyed even when we replace i? by its radial hull. Letting 
D the set of x E C for which (x, 1) E b, we finally construct a dense subset 
of C consisting of nonsupport points of C, for which the statement of 
Theorem 2 is satisfied. But now the argument used in Proposition 2 shows 
that for every x E D, the subdifferential acp(x) is singleton. i 

Remark. It is not clear from our approach whether Theorem 2 is still 
valid in the Frechet case. Clearly a Frtchet version of (*) may be proved, 
but the “uniform nature” of the argument is destroyed in the second part 
of our proof. 

4. DIFFERENTIABILITY AT THE BOUNDARY 

So far we have been dealing with problems of generic differentiability of 
convex functions on sets without interior points. When applied to the 
classical case of a function whose domain actually has interior points, we 
just obtain the classical results on generic differentiability. So our approach 
does not give us any new information concerning the problem of existence 
of points of differentiability at the boundary of a convex set C when C has 
interior points. The following result shows that some information may be 
obtained concerning this question when a stronger continuity assumption 
is imposed on the function cp. First, however, we need a definition. 

A Banach space E is said to have Tech complete ball if its unit ball B 
is a Tech complete topological space when endowed with the weak 
topology (see [EW]). For a survey on this and related properties we must 
refer to [EW]. 

PROPOSITION 5. Let E be Banach space with tech complete ball and let 
C be a bounded convex body in E. Let cp : C -+ Iw be a convex function such 
that locally rp extends to a convex function $ on E such that II/ is continuous 
with respect to some compatible topology on E strictly weaker than the norm 
topology. Then there exists at least one boundary point x of C such that cp 
is Frechet-differentiable at x. 

Proof We may assume that cp itself extends to a convex function $ on 
E which is continuous with respect to the compatible topology r, 
a(E, E’) < r < )I 11. Since C is bounded, it is contained in some multiple of 
B, hence C is Tech complete with a(E, E’)J C. We claim that (C, r ( C) 
therefore is a Baire space. 

Since (C, a(E, E’)I C) is tech complete, there exists a sequence (U,) of 
weakly relatively open coverings of C such that U,, , relines U, and such 
that every filter 3 on C having 3 n U, # @ for every n has a cluster point 
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in C with respect to w  = a(& E’)I C. Now let (G,,) be a sequence of dense 
open subsets of (C, t) and let U be nonempty and r-open in C. Since r is 
F-linked to w, i.e., every x E C has a r-neighbourhood base consisting of VV- 
closed sets, there exists a nonempty r-open set U, such that U, is contained 
in some element of U, and such that the w-closure of U, is contained in 
U n G, . Similarly, there exists a nonempty r-open set U, contained in some 
element of U, such that the w-closure of U, is contained in U, n G,, etc. 
This provides a sequence (U,) of r-open sets such that U, is contained in 
some element of Ui and such that Ui is nonempty and its w-closure is con- 
tained in Ujp, n Gi. Let 3 be the filter generated by (U,). Then 3 n U,, is 
nonempty for every n, so 5 has a w-cluster point x E C. But now we must 
have x E U, for every n, since x is in the w-closure of each U,. This proves 
Unll,“,, G,ZO. 

Since $ is r-continuous by assumption, the subdifferential mapping 
a$ : C + 2E’ is upper semi-continuous with respect to 7 1 C and a(,!?‘, E) on 
E’ and, moreover, has nonempty convex and o(E’, E) compact values. 
Therefore by the result of Christensen and Kenderov in [CK] there exist 
a r-dense G,-subset G of C and a selection x-f, for a$ which is con- 
tinuous with respect to T on C and the norm topology on E’ at the points 
x of G. Here we have made use of the fact that E, having Tech complete 
ball, is an Asplund space (see [EW]). Clearly this implies that cp = Ic/ 1 C is 
Frechet-differentiable at every x E G. It therefore remains to prove that G 
contains at least one norm-boundary point of C. 

Observe that aC, the norm boundary of C, is a G&-set in (C, w). 
Indeed, let OE C and let q be the Minkowski functional of C, then q is 
weakly lower semi-continuous and we have aC= {xe E: q(x) = 1) = 
n ((xd-:q(x)>i-i/+ n E N }. Consequently, dC is as well a G&-set in 
(C, 5). Suppose now we had aC n G = @. So C\X is a second category 
Fc-set in (C, r). This implies that it has nonempty interior in (C, T). Since 
r is a locally convex topology, there exists a nonempty convex and r-open 
set Vin E such that Vn Cc C\aC is nonempty. But this implies Vc C, for 
otherwise the set V, being convex, would contain some point of aC. So C 
has nonempty r-interior. Since C is norm-bounded by assumption, we 
derive that r = II 11. But this was excluded, so we obtain the desired 
contradiction. So G intersects dC. 1 

5. RADEMACHER'S THEOREM-CATEGORY VERSION 

In this final section we prove a category analogue of the classical 
Rademacher theorem in infinite-dimensional vector spaces. 

Let C be a convex body in a normed space E and let cp : X -+ Iw be any 
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function. Let x E IX be fixed. cp is called Frechet-differentiable at x if there 
exists f~ E’ satisfying 

The classical Rademacher theorem tells in particular that if cp is a Lipschitz 
mapping defined on a Lipschitzian manifold M in Iw” of dimension n - 1, 
then cp is differentiable in the above sense at the points x E M\N, where N 
is a subset of M having (n - 1)-dimensional Hausdorff measure 0. Dealing 
with convex functions, we shall be concerned only with Lipschitzian 
manifolds M of a very special kind, namely, with manifolds M = X, where 
C is a convex body in a Banach space. We obtain the following. 

PROPOSITION 6. Let E he an Asplund space and let C be a convex body 
in E. Let cp: C + R be a convex function satisfying arp(x) # 0 for every 
x E C. Then there exists a first category subset P of i3C such that cp ) X is 
FrPchet-differentiable at every x E X\ P. 

Proof: Using our standard reduction argument, we may restrict our 
considerations to the case where cp is a Lipschitz function on C and there- 
fore extends to a convex Lipschitz function I,+ on the whole space E. 

We consider the operator a$: X + 2E’. Using the result of Christensen 
and Kenderov [CK], we find a first category subset P of aC and a selec- 
tion .Y 4 f, for all/ on dC such that x + f, is continuous at every x E X\ P 
with respect to the norm topologies on aC\P and E’, respectively. We 
claim that for fixed x E X\P f, is a Frtchet-derivative for cp 1 X at x. 

Assume the contrary. Then there exists a sequence (2,) with (1 z, /I + 0, 
x + Z, E X, such that 

cp(x+z,)-~(x)-f,(z,)~:E I(z,II 

holds for some E > 0. Having regard of the inequality 

f,+,,(z,)>,(P(x+zn)-(P(x), 

we find that IIf,+..-fJ >E, and this contradicts the continuity of the 
mapping y-f,, at x. This proves the result. m 
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