Generic Fréchet－differentiability of convex functions on small sets

By
Dominikus Noll

1．Introduction．It is well－known that a continuous convex real－valued function φ defined on a Banach space E is Fréchet－differentiable at each point of a dense G_{δ}－subset of E provided that E is an Asplund space，which means e．g．that its dual E^{\prime} has the Radon－Nikodým property（see［1］）．In this note we shall prove an analogue of this result in the case where φ is a convex function defined on a small subset C of E, E an Asplund space．Here a set C in a Banach space E is called small when it has no interior points．

Let E be a Banach space，C a convex subset of $E, \varphi: C \rightarrow \mathbb{R}$ a convex function．For $x \in C$ ，the subdifferential $\partial \varphi(x)$ of φ at x is

$$
\partial \varphi(x)=\left\{f \in E^{\prime}: f(y-x) \leqq \varphi(y)-\varphi(x) \text { for all } y \in C\right\}
$$

In contrast with the case where x is an interior point of C ，this set may be empty，and －even when it is known to be nonempty－may be unbounded．

Definition．Let E be a Banach space and let C be a convex subset of E not contained in a closed hyperplane．Let $\varphi: C \rightarrow \mathbb{R}$ be a convex function．φ is called Fréchet－differentiable at $x \in C$ if there exists $f_{x} \in \partial \varphi(x)$ satisfying

$$
\lim _{\substack{t \rightarrow 0 \\ t>0}} \sup _{\|z\| \leq 1}\left|\frac{1}{x+z \in C} ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 口 𧘇 ~(\varphi(x+t z)-\varphi(x))-f_{x}(z)\right|=0 .
$$

In this case we use the notation $\varphi^{\prime}(x)=f_{x}$ ．
Notice that the assumption that C is not contained in a closed hyperplane of E is necessary to ascertain the uniqueness of the Fréchet－derivative $\varphi^{\prime}(x)$ ，should it exist．

For $x \in C$ we denote by $K(C, x)$ the cone over C at x ，i．e．the set of directions z having $x+t z \in C$ for some $t_{0}>0$ and all $0<t<t_{0}$ ．Then our definition may be rephrased by saying that φ is Fréchet－differentiable at $x \in C$ if $\frac{1}{t}(\varphi(x+t z)-\varphi(x))-f_{x}(z)$ tends to $0(t \rightarrow 0, t>0)$ uniformly over all $z \in K(C, x)$ having $\|z\| \leqq 1$ ．

2．Existence of subgradients．It is known that the subdifferential $\partial \varphi(x)$ of a convex function φ is nonempty when x is an interior point of its domain C ．If C is small，however， $\partial \varphi(x)$ may be empty throughout C ，although it is known（see［3］）that $\partial \varphi(x)$ is nonempty
on a dense subset of C in the case where C is closed and φ is lower semi-continuous on C (or rather when $\varphi: E \rightarrow \overline{\mathbb{R}}$, extended by $\varphi(x)=\infty$ for all $x \notin C$, is lower semi-continuous in the usual sense). For our present attempt, however, we shall need some information concerning the question when $\partial \varphi(x)$ is nonempty on a large subset of C in the sense of category. This is provided by the following

Proposition. Let E be a Banach space and let C be a convex subset of E which is a Baire space in its induced topology. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semi-continuous convex function. Then the following statements are equivalent:
(i) There exists a dense relatively open subset G of C such that $\partial \varphi(x)$ is nonempty for every $x \in G$;
(ii) There exists a dense relative $G_{\boldsymbol{\delta}}$-subset G_{1} of C such that $\partial \varphi(x)$ is nonempty for every $x \in G_{1}$;
(iii) There exists a dense Baire subset G_{2} of C such that $\partial \varphi(x)$ is nonempty for every $x \in G_{2}$;
(iv) There exists a dense relatively open subset G of C such that φ is locally Lipschitz at every $x \in G$;
(v) There exists a dense subset D of C such that φ is locally Lipschitz at every $x \in D$.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear. We prove (iii) \Rightarrow (iv). For $r \in \mathbb{N}$ define a convex function $\varphi_{r}: E \rightarrow \mathbb{R} \cup\{-\infty\}$ by

$$
\begin{equation*}
\varphi_{r}(z)=\inf \{\varphi(x)+r\|y\|: x \in C, z=x+y\} \tag{1}
\end{equation*}
$$

φ_{r} is called the infimal convolution of φ and $r\|\|$, noted $\varphi * r\| \|$. It is known that either $\varphi_{r} \equiv-\infty$ or φ_{r} is finite everywhere, and in the latter case is Lipschitz with Lipschitz constant r. The coincidence set C_{r} of φ and φ_{r} is

$$
\begin{equation*}
C_{r}=\left\{x \in C: \partial \varphi(x) \cap r B^{\prime} \neq \emptyset\right\}, \tag{2}
\end{equation*}
$$

where B^{\prime} denotes the dual unit ball. For a detailed discussion of the functions φ_{r} we refer to [4].

Let U be any relatively open and nonempty subset of C. By (2) and (iii), the set $\bigcup_{r \geq 1}\left(C_{r} \cap U\right)$ is of the second category in $U . \varphi$ being lower semi-continuous on C, the sets $r \geqq 1$ $C_{r}=\left\{x \in C: \varphi(x)=\varphi_{r}(x)\right\}$ are closed in C, hence for some $r, C_{r} \cap U$ must have nonempty interior in C. Therefore U contains some nonempty relatively open subset V_{U} such that $\varphi=\varphi_{r}$ on V_{U}, so that φ is Lipschitz on V_{U} with Lipschitz constant r. But now $G_{0}=\bigcup\left\{V_{U}: U \neq \emptyset\right.$ relatively open in $\left.C\right\}$ is an open dense subset of C such that φ is locally Lipschitz at every $x \in G_{0}$. This proves (iv).

Trivially (iv) implies (v). Proving that (v) implies (i) remains. Let D be given as in the statement of (v) and let $x \in D$ be fixed. Let U be a convex and relatively open neighbourhood of x in C such that $\varphi \mid U$ is Lipschitz with constant $r \in \mathbb{N}$, say. Let $\psi=\varphi \mid U$, $\psi_{r}=\psi * r\| \|$ the infimal convolution of ψ and $r\left\|\|\right.$. We claim that ψ and ψ_{r} coincide on U. Assume the contrary. Then there exists $z \in U$ having $\psi_{r}(z)<\psi(z)$. Hence there exists $x \in U$ and $y \in E$ with $z=x+y$ such that $\psi(x)+r\|y\|<\psi(z)$, equivalently,

$$
\begin{equation*}
\psi(z)-\psi(x)>r\|z-x\| \tag{3}
\end{equation*}
$$

This contradicts the fact that ψ is Lipschitz on U with constant r, so $\psi=\psi_{r}$ on U is proved.

We have proved that φ and ψ_{r} coincide on U. This implies $\partial \psi_{r}(y) \subset \partial \varphi(y)$ for every $y \in U$ since the notion of a subdifferential is a local one. But notice that ψ_{r} is globally defined and hence satisfies $\partial \psi_{r}(y) \neq \emptyset$ everywhere. This proves $\partial \varphi(y) \neq \emptyset$ on U. Since $x \in D$ and U were chosen arbitrarily, the proof of (i) is complete.

Remarks.1) We do not need any category assumption on the set D in statement (v). But actually we do need a category assumption in statement (iii), i.e. the existence of a dense subset of points x having $\partial \varphi(x) \neq \emptyset$ does not imply local Lipschitz. Indeed, let us consider the following example. Let $C \subset l_{2}$ be the cube $\prod_{n \in \mathbb{N}}\left[-\frac{1}{n}, \frac{1}{n}\right]$ and define
$\varphi: C \rightarrow \mathbb{R}$ by $\varphi: C \rightarrow \mathbb{R}$ by

$$
\varphi(x)=\sum_{n=1}^{\infty} 2^{-n} \varphi_{n}\left(x_{n}\right)
$$

where φ_{n} is the convex real function defined by the lower part of the circle with radius $1 / n$ and centre 0 . Then φ is continuous on C but is nowhere locally Lipschitz, since every nonempty relatively open subset U of C contains a point x such that $\left|x_{n}\right|=1 / n$ for some n. Nevertheless, $\partial \varphi(x)$ is nonempty on a dense subset D of C. In fact, $\partial \varphi(x)$ will be nonempty if the sequence x is eventually "away from $1 / n$ " so that the derivatives $\varphi_{n}^{\prime}\left(x_{n}\right)$ provide an l_{2} sequence.
2) Notice that lower semi-continuity of $\varphi: C \rightarrow \mathbb{R}$ does not mean that the function $\bar{\varphi}: E \rightarrow \mathbb{R} \cup\{\infty\}$ defined by $\bar{\varphi} \mid C=\varphi, \bar{\varphi}(x)=\infty$ otherwise, is lower semi-continuous in the usual sense. Both notions coincide if the set C is closed, but in general, lower semi-continuity of $\varphi \mid C$ is a weaker statement.
3. The main result. In this section we prove our main result on the existence of Fréchet-derivatives for convex functions on small sets.

Theorem. Let E be an Asplund space and let C be a convex G_{δ}-subset of E not contained in a closed hyperplane. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semi-continuous convex function such that φ is locally Lipschitz on a dense subset of C. Then there exists a dense $\boldsymbol{G}_{\boldsymbol{\delta}}$-subset G of C such that
(i) φ has a Fréchet-derivative $\varphi^{\prime}(x)=f_{x}$ at every $x \in G$;
(ii) Whenever $x \in G, \varphi^{\prime}(x)=f_{x}$, then f_{x} is a maximal subgradient of φ at x in the sense that given any further $f \in \partial \varphi(x), f(z) \leqq f_{x}(z)$ holds for all $z \in K(C, x)$.

Proof. Let r be any integer such that $\varphi_{r}=\varphi * r\| \|$ is finite. Since φ_{r} is a continuous, convex function defined on E, the subdifferential mapping $x \rightarrow \partial \varphi_{r}(x)$ is known to be a set-valued, monotone operator having nonempty, convex and $\sigma\left(E^{\prime}, E\right)$-compact values in E^{\prime} which is upper semi-continuous with respect to the norm topology on E and the topology $\sigma\left(E^{\prime}, E\right)$ on E^{\prime} (see [1] or [2] for definitions). Since C is a Baire space with the relative topology, it follows from a result of Christensen and Kenderov [2, Theorem 1.3]
that there exists a dense G_{δ}-subset G_{r} of C such that for every $x \in G_{r}$ there exists $f_{x, r} \in \partial \varphi_{r}(x)$ such that

$$
\left\{\begin{array}{l}
\text { for every } \varepsilon>0 \text { there exists a neighbourhood } U \text { of } x \text { in } C \text { such that } \tag{4}\\
\text { for every } y \in U \text { we have } \\
\text { inf }\left\{\left\|f_{x, r}-g\right\|: g \in \partial \varphi_{r}(y)\right\} \leqq \varepsilon .
\end{array}\right.
$$

Let G_{0} be an open dense subset of C on which $\partial \varphi(x) \neq \emptyset$ and let $G=G_{0} \cap \bigcap_{r \geqq 1} G_{r}$. We
claim that G fulfills the requirements of the theorem.
Let us first prove that given $x \in G_{r}, f_{x, r}$ is the Frechet-derivative of $\varphi_{r} \mid C$ in the sense of our definition. Suppose this is not true and find vectors $z_{n} \in E,\left\|z_{n}\right\| \leqq 1$, and $t_{n}>0$, $t_{n} \rightarrow 0$ having $x+t_{n} z_{n} \in C$ such that

$$
\begin{equation*}
\left|\frac{1}{t_{n}}\left(\varphi_{r}\left(x+t_{n} z_{n}\right)-\varphi_{r}(x)\right)-f_{x, r}\left(z_{n}\right)\right| \geqq \varepsilon \tag{5}
\end{equation*}
$$

holds for some $\varepsilon>0 . f_{x, r}$ being a subgradient of φ_{r} at x, this actually implies

$$
\begin{equation*}
\frac{1}{t_{n}}\left(\varphi_{r}\left(x+t_{n} z_{n}\right)-\varphi_{r}(x)\right)-f_{x, r}\left(z_{n}\right) \geqq \varepsilon . \tag{6}
\end{equation*}
$$

Choose $f_{n} \in \partial \varphi_{r}\left(x+t_{n} z_{n}\right)$, then we find

$$
f_{n}\left(z_{n}\right)-f_{x, r}\left(z_{n}\right) \geqq \frac{1}{t_{n}}\left(\varphi_{\mathbf{r}}\left(x+t_{n} z_{n}\right)-\varphi_{r}(x)\right)-f_{x, r}\left(z_{n}\right) \geqq \varepsilon,
$$

which gives us $\left\|f_{n}-f_{x, r}\right\| \geqq \varepsilon$. Since $x+t_{n} z_{n} \rightarrow x$, this contradicts Property (4) of the functional $f_{x, r}$. Hence $f_{x, r}$ is in fact the Fréchet-derivative of φ_{r} at $x \in G_{r}$.

Next observe that for fixed $x \in G$, there exists a neighbourhood U of x in C such that $\varphi=\varphi_{r}=\varphi_{r+1}=\ldots$ holds on U. Since C is not contained in a hyperplane, this implies $f_{x, r}=f_{x, r+1}=\ldots=: f_{x}$. Since $\varphi=\varphi_{r}$ on U and $\varphi_{r}^{\prime}(x)=f_{x}$, this implies the desired relation $\varphi^{\prime}(x)=f_{x}$, the definition of the Fréchet-derivative being a local one. Hence (i) is proved.

In order to prove (ii), it will again be sufficient to show that for fixed $x \in G_{r}, f(z) \leqq f_{x, r}(z)$ will hold for all $z \in K(C, x)$. Indeed, taking into account the formula

$$
\begin{equation*}
\partial \varphi_{r}(x)=\partial \varphi(x) \cap r B^{\prime} \tag{7}
\end{equation*}
$$

(see [4]) and the fact that the sequence $f_{x, r} r=1,2, \ldots$ is eventually constant for $x \in G$, it is clear that f_{x} will be maximal in the sense of statement (ii), once the corresponding maximality of $f_{x, r}$ in $\partial \varphi_{r}(x)$ is proved.

Let $x \in G_{r}$ be fixed. Let $f \in \partial \varphi_{r}(x)$ and suppose there exists $z \in K(C, x)$ satisfying

$$
\begin{equation*}
f(z)-f_{x, r}(z)=: \varepsilon>0 \tag{8}
\end{equation*}
$$

Recall that the set-valued operator $\partial \varphi_{r}$ is locally bounded (see [7] or [1]). Hence there exists a neighbourhood U of x in C such that $\partial \varphi_{r}(U)$ is contained in some closed ball B in E^{\prime} with centre 0 . Choose $t_{0}>0$ such that $x+t z \in U$ holds for all $0<t<t_{0}$. Let $g_{t} \in \partial \varphi_{r}(x+t z)$. Using the monotonicy of the subdifferential mapping $\partial \varphi_{r}$, we find that

$$
\begin{equation*}
g_{t}(z)-f(z) \geqq 0 \tag{9}
\end{equation*}
$$

This gives us

$$
\begin{aligned}
g_{t}(z)-f_{x, r}(z) & =g_{t}(z)-f(z)+f(z)-f_{x, r}(z) \\
& \geqq \quad 0 \quad \varepsilon \quad \varepsilon=\varepsilon .
\end{aligned}
$$

This proves that $\partial \varphi_{r}(x+t z) \subset\left\{h \in E^{\prime}: h(z) \geqq \varepsilon+f_{x, r}(z)\right\}=: K$ for $0<t<t_{0}$. But $\partial \varphi_{r}(x+t z)$ is as well contained in B for $0<t<t_{0}$ by the choice of U. Now $K \cap B$ is convex and $\sigma\left(E^{\prime}, E\right)$ - compact and does not contain $f_{x, r}$. Consequently, the separation theorem gives us some $y \in E, \delta>0$ having

$$
\begin{equation*}
f_{x, r}(y)>\delta \geqq g(y), g \in K \cap B . \tag{10}
\end{equation*}
$$

Consequently, $f_{x, r}(y)>\delta \geqq g_{t}(y), 0<t<t_{0}$, hence $\|y\|\left\|f_{x, r}-g_{t}\right\|>\delta$, hence $\left\|f_{x, r}-g_{t}\right\|$ $>\delta /\|y\|$, a contradiction with (4). This proves the claimed maximality of $f_{x, r}$ in $\partial \varphi_{r}(x)$.
4. Uniqueness of subgradients. Dealing with convex functions on small sets, we may not expect that existence of the Fréchet-derivative of φ at $x \in C$ in the sense of our definition implies the uniqueness of the subdifferential $\partial \varphi(x)$ of φ at x, as it naturally does in the case where x is an interior point of C. Nevertheless, statement (ii) of our theorem tells that $\partial \varphi(x)$ has a unique maximal subgradient on a dense G_{δ}-subset of C, where maximality refers to the order induced by $K(C, x)$. The question as to whether a generic subset of C may be found on which $\partial \varphi(x)$ is singleton, depends, as it turns out, rather on the set C than on the function φ defined on C. Indeed, suppose for $x \in C$ there exists $f \in E^{\prime}, f \neq 0$ satisfying $f(y) \leqq f(x)$ for all $y \in C$. Then no convex function φ defined on C will have a unique subgradient at x, for we may, given any subgradient g for φ at x, produce a new one by taking $g+f$. Clearly, this phenomenon cannot occur in the case where x is a non-support point for the set C. This raises the question whether convex sets have sufficiently many non-support points. In the case where E is a separable Banach space, the answer to this question is in the positive. Klee [5] proves that every separable convex set C which is not contained in a closed hyperplane has non-support points and that the set of non-support points is a dense G_{δ} in C. In the non-separable case, there exist closed convex sets not sited in a closed hyperplane but having no non-support points. Nevertheless, it has been proved by Phelps [6] that once the set of non-support points is known to be nonempty, it is always a dense G_{δ} in C. This permits us to state the following

Corollary. Let E be an Asplund space and let C be a convex G_{δ}-subset of E having at least one non-support point. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semi-continuous convex function which is locally Lipschitz on a dense subset of C. Then there exists a dense G_{δ}-subset G of C such that for every $x \in G, \partial \varphi(x)$ contains a unique element f_{x} which is the Fréchet-derivative of φ at x.

Proof. Since C has a non-support point, it may not be contained in a closed hyperplane. Consequently, by the theorem, there exists a dense G_{δ}-subset G_{0} of C such that conditions (i) and (ii) from the theorem are satisfied. By the result of Phelps, we may find a dense G_{δ}-subset G of G_{0} consisting of non-support points. We claim that $\partial \varphi(x)=\left\{f_{x}\right\}$ for all $x \in G$. Indeed, let $x \in G, f \in \partial \varphi(x)$, then condition (ii) implies
$f(z) \leqq f_{x}(z)$ for all $z \in K(C, x)$. But notice that, x being a non-support point of C, the cone $K(C, x)$ is dense in E (see [5]). Clearly this implies $f \leqq f_{x}$ on E, hence $f=f_{x}$.

References

[1] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property. LNM 993, Berlin-Heidelberg-New York 1983.
[2] J. P. R. Christensen and P. S. Kenderov, Dense strong continuity of mappings and the RadonNikodým property. Math. Scand. 54, 70-78 (1984).
[3] I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc. 1, 443-474 (1979).
[4] J. B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function. Math. Scand. 47, 123-134 (1980).
[5] V. L. Klee, JR., Convex sets in linear spaces. Duke Math. J. 18, 443-466 (1951).
[6] R. R. Phelps, Some topological properties of support points of convex sets. Israel J. Math. 13, 327-336 (1972).
[7] R. T. Rockafellar, Convexity properties of nonlinear maximal monotone operators. Bull. Amer. Math. Soc. 75, 74-77 (1969).

Eingegangen am 29.9. 1988
Anschrift des Autors:
Dominikus Noll
Mathematisches Institut B
Universität Stuttgart
Pfaffenwaldring 57
D-7000 Stuttgart 80

