Arch. Math., Vol. 54, 487492 (1990) 0003-889X/90/5405-0487 $ 2.70/0
© 1990 Birkhduser Verlag, Basel

Generic Fréchet — differentiability of convex functions
on small sets

By

DomINIKUS NOLL

1. Introduction. It is well-known that a continuous convex real-valued function ¢
defined on a Banach space E is Fréchet-differentiable at each point of a dense G;-subset
of E provided that E is an Asplund space, which means e.g. that its dual E’ has the
Radon-Nikodym property (see [1]). In this note we shall prove an analogue of this result
in the case where ¢ is a convex function defined on a small subset C of E, E an Asplund
space. Here a set C in a Banach space E is called small when it has no interior points.

Let E be a Banach space, C a convex subset of E, ¢: C — R a convex function. For
x € C, the subdifferential 0¢p (x) of ¢ at x is

o) ={feE:f(y—x) < p(y) — @) forall yeC}.

In contrast with the case where x is an interior point of C, this set may be empty, and
— even when it is known to be nonempty — may be unbounded.

Definition. Let E be a Banach space and let C be a convex subset of E not
contained in a closed hyperplane. Let ¢: C - R be a convex function. ¢ is called
Fréchet-differentiable at x e C if there exists f, € O (x) satisfying

. 1
lim sup |—(p(x+tz)— @(x)— f.(2)|=0.
-0 ||lzll=1 |

t>0 x+tzeC

In this case we use the notation ¢'(x)=f,. [

Notice that the assumption that C is not contained in a closed hyperplane of E is
necessary to ascertain the uniqueness of the Fréchet-derivative ¢’ (x), should it exist.

For x € C we denote by K (C, x) the cone over C at x, i.e. the set of directions z having
x + tze Cfor some t, > 0 and all 0 < ¢ < t,. Then our definition may be rephrased by

saying that ¢ is Fréchet-differentiable at x e C if % (@ (x +t2) — @(x)) — f,.(2) tends to
0 (t - 0, t > 0) uniformly over all z € K(C, x) having ||z| < 1.
2. Existence of subgradients. It is known that the subdifferential 8¢ (x) of a convex

function ¢ is nonempty when x is an interior point of its domain C. If C is small, however,
0¢ (x) may be empty throughout C, although it is known (see [3]) that ¢ (x) is nonempty
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on a dense subset of C in the case where C is closed and ¢ is lower semi-continuous on
C (or rather when ¢: E — IR, extended by ¢ (x} = oo for all x ¢ C, is lower semi-contin-
uous in the usual sense). For our present attempt, however, we shall need some informa-
tion concerning the question when 08¢ (x) is nonempty on a large subset of C in the sense
of category. This is provided by the following

Proposition. Let E be a Banach space and let C be a convex subset of E which is a Baire
space in its induced topology. Let ¢: C — R be a lower semi-continuous convex function.
Then the following statements are equivalent:

(i) There exists a dense relatively open subset G of C such that 8¢ (x) is nonempty for

every x e G;

(i) There exists a dense relative Gz-subset G, of C such that d¢ (x) is nonempty for every
xeGy;

(@iil) There exists a dense Baire subset G, of C such that d¢ (x) is nonempty for every
x € Gy;

(iv) There exists a dense relatively open subset G of C such that ¢ is locally Lipschitz at
every x € G; '

(v) There exists a dense subset D of C such that ¢ is locally Lipschitz at every x € D.

Proof. The implications (i) = (ii) and (ii) = (iii) are clear. We prove (iii) = (iv). For
r e N define a convex function ¢,: E > Ru {— o} by

@) @, () =inf{o(x) +r|yl:xeC,z=x+ y}.

@, 18 called the infimal convolution of ¢ and r || ||, noted ¢ * r || ||. It is known that either
@, = — o0 or ¢, is finite everywhere, and in the latter case is Lipschitz with Lipschitz
constant r. The coincidence set C, of ¢ and ¢, is

2 C,={xeC:dpx)nrB *+0},

where B’ denotes the dual unit ball. For a detailed discussion of the functions ¢, we refer
to [4].

Let U be any relatively open and nonempty subset of C. By (2) and (iii), the set
{) (C,nU)is of the second category in U. ¢ being lower semi-continuous on C, the sets
rz1
G ={xeC:¢(x) = ¢,(x)} are closed in C, hence for some r, C, n U must have non-
empty interior in C. Therefore U contains some nonempty relatively open subset ¥ such
that ¢ = @, on WV, so that ¢ is Lipschitz on ¥, with Lipschitz constant r. But now
Go = {J {Vy: U = 0 relatively open in C} is an open dense subset of C such that ¢ is
locally Lipschitz at every x € G,. This proves (iv).

Trivially (iv) implies (v). Proving that (v) implies (i) remains. Let D be given as in the
statement of (v) and let x € D be fixed. Let U be a convex and relatively open neighbour-
hood of x in C such that ¢ |U is Lipschitz with constant re NN, say. Let ¢ = ¢| U,
Y, = = r | || the infimal convolution of y and r || ||. We claim that iy and ¥, coincide on
U. Assume the contrary. Then there exists z € U having , (z) < ¥ (z). Hence there exists
xe U and y € E with z = x + y such that y(x) + r | y|| < ¥ (2), equivalently,

) Y@ -y >rlz—x]|:
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This contradicts the fact that \ is Lipschitz on U with constant r, so y =, on U is
proved.

We have proved that ¢ and y, coincide on U. This implies 0y, (y) < 0¢ () for every
y € U since the notion of a subdifferential is a local one. But notice that y, is globally
defined and hence satisfies 3y, (y) = @ everywhere. This proves 0o (y) + ® on U. Since
x € D and U were chosen arbitrarily, the proof of (i) is complete. [

Remarks. 1) We do not need any category assumption on the set D in statement (v).
But actually we do need a category assumption in statement (iii), i.e. the existence of a
dense subset of points x having 0¢ (x) + ¢ does not imply local Lipschitz. Indeed, let us

consider the following example. Let C <[, be the cube [ [— %,%—J and define
¢:C >R by neN

()= 3 270, (x),

where ¢, is the convex real function defined by the lower part of the circle with radius
1/n and centre 0. Then ¢ is continuous on C but is nowhere locally Lipschitz, since every
nonempty relatively open subset U of C contains a point x such that |x,| = 1/n for some
n. Nevertheless, 0 (x) is nonempty on a dense subset D of C. In fact, ¢ (x) will be
nonempty if the sequence x is eventually “away from 1/n” so that the derivatives ¢ (x,)
provide an [, sequence.

2) Notice that lower semi-continuity of ¢: C — IR does not mean that the function
@:E - Ry {0} defined by @|C = ¢, ¢ (x) = o0 otherwise, is lower semi-continuous in
the usual sense. Both notions coincide if the set C is closed, but in general, lower
semi-continuity of ¢ | C is a weaker statement.

3. The main result. In this section we prove our main result on the existence of
Fréchet-derivatives for convex functions on small sets.

Theorem. Let E be an Asplund space and let C be a convex Gg-subset of E not contained
in a closed hyperplane. Let ¢ : C — IR be a lower semi-continuous convex function such that
¢ is locally Lipschitz on a dense subset of C. Then there exists a dense Gssubset G of C
such that

() @ has a Fréchet-derivative ¢’ (x) = f, at every x € G;
(i) Whenever x € G, ¢’ (x) = f,, then f, is a maximal subgradient of ¢ at x in the sense
that given any further f € 0 (x), f (z) £ f..(2) holds for all ze€ K(C, x).

Proof. Letrbe any integer such that ¢, = ¢ = r || || is finite. Since ¢, is a continuous,
convex function defined on E, the subdifferential mapping x — 98¢, (x} is known to be a
set-valued, monotone operator having nonempty, convex and o (E’, E)-compact values in
E’ which is upper semi-continuous with respect to the norm topology on E and the
topology o (E’, E) on E’ (see [1] or [2] for definitions). Since C is a Baire space with the
relative topology, it follows from a result of Christensen and Kenderov {2, Theorem 1.3]
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that there exists a dense G;-subset G, of C such that for every x € G, there exists
f+., €00, (x) such that

)

for every y e U we have
inf {Ilf,,—gl:g€00,(»)} <e.

Let G, be an open dense subset of C on which 3¢ (x) =@ and let G = G, [} G,. We
claim that G fulfills the requirements of the theorem. rzl

Let us first prove that given x € G,, f, , is the Fréchet-derivative of ¢, | C in the sense
of our definition. Suppose this is not true and find vectors z, € E, ||z,| =1, and ¢, > 0,
t, = 0 having x + ¢, z, € C such that

{for every ¢ > 0 there exists a neighbourhood U of x in C such that

©)

L (@0 et taz) = 0, () = fop (2|2

holds for some ¢ > 0. f, , being a subgradient of ¢, at x, this actually implies

1
(6) ?((Pr (X + thn) - (P,-(X)) _f;c,r(zn) g €.
Choose f, € 3¢, (x + t,z,), then we find

Ja(@) = Jor @) 2 (0, (x 4 1,2,) — @, (X)) = [, (24) Z &,

1
4
which gives us || f, — f..,| = & Since x + t,z, — x, this contradicts Property (4) of the
functional f, ,. Hence f, , is in fact the Fréchet-derivative of ¢, at x€ G,.

Next observe that for fixed x € G, there exists a neighbourhood U of x in C such that
¢ =@,= @, =...holds on U. Since C is not contained in a hyperplane, this implies
fer=Ffer+1=...=:f,. Since ¢ = ¢, on U and ¢, (x) = f,, this implies the desired rela-
tion ¢’ (x) = f,, the definition of the Fréchet-derivative being a local one. Hence (i) is
proved.

In order to prove (ii), it will again be sufficient to show that for fixed xe G,, f(z) £ .., (2)
will hold for all ze K(C, x). Indeed, taking into account the formula

7 0, (x) = 0@ (x) 1B’

(see [4]) and the fact that the sequence f, ,, r = 1, 2, ...is eventually constant for x € G,
it is clear that f, will be maximal in the sense of statement (ii), once the corresponding
maximality of f, , in 8¢, (x) is proved.

Let x € G, be fixed. Let f € 0¢,(x) and suppose there exists z € K (C, x) satisfying

(8) f@ — fi, (2 =:¢>0.

Recall that the set-valued operator O¢, is locally bounded (see [7] or [1]). Hence there
exists a neighbourhood U of x in C such that 9¢,(U) is contained in some closed ball B
in E’ with centre 0. Choose t, > 0 such that x + rze U holds for all 0 <t < t,. Let
g, € 0, (x + tz). Using the monotonicy of the subdifferential mapping d¢,, we find that

© 9:(2) = f(2) 2 0.
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This gives us

9:(2) = £, = 9.(0) = f (&) + [ (2) = £, (2)

= 0 + e = ¢.

This proves that 0¢,(x +tz)c {heE:h(z)2 e+ f,,(2)} =:K for 0 <t<t, But
¢, (x + tz) is as well contained in B for 0 <t < t, by the choice of U. Now K n B is
convex and o (E’, E) - compact and does not contain f, ,. Consequently, the separation
theorem gives us some y € E, 6 > 0 having

(10 fer () >629(y),9eKnB.

Consequently, fx,r(y) >0 g gt(y): O<t< th hence ” y ” fo,r -9 ” > 55 hence “fx,r — G “
> d/|lyll, a contradiction with (4). This proves the claimed maximality of f , in
Op,(x) O

4. Uniqueness of subgradients. Dealing with convex functions on small sets, we may not
expect that existence of the Fréchet-derivative of ¢ at x € C in the sense of our definition
implies the uniqueness of the subdifferential 0¢ (x) of @ at x, as it naturally does in the
case where x is an interior point of C. Nevertheless, statement (ii) of our theorem tells that
d¢ (x) has a unique maximal subgradient on a dense Gsubset of C, where maximality
refers to the order induced by K (C, x). The question as to whether a generic subset of C
may be found on which 8¢ (x) is singleton, depends, as it turns out, rather on the set C
than on the function ¢ defined on C. Indeed, suppose for x € C there exists f € E', f + 0
satisfying f (y) < f(x) for all y € C. Then no convex function ¢ defined on C will have a
unique subgradient at x, for we may, given any subgradient g for ¢ at x, produce a new
one by taking g + f. Clearly, this phenomenon cannot occur in the case where x is a
non-support point for the set C. This raises the question whether convex sets have
sufficiently many non-support points. In the case where E is a separable Banach space,
the answer to this question is in the positive. Klee [5] proves that every separable convex
set C which is not contained in a closed hyperplane has non-support points and that the
set of non-support points is a dense G, in C. In the non-separable case, there exist closed
convex sets not sited in a closed hyperplane but having no non-support points. Neverthe-
less, it has been proved by Phelps [6] that once the set of non-support points is known
to be nonempty, it is always a dense G, in C. This permits us to state the following

Corollary. Let E be an Asplund space and let C be a convex G4-subset of E having at least
one non-support point. Let ¢ : C — R be a lower semi-continuous convex function which is
locally Lipschitz on a dense subset of C. Then there exists a dense Gg-subset G of C such
that for every x € G, O (x) contains a unique element f, which is the Fréchet-derivative of
@ at x.

Proof. Since C has a non-support point, it may not be contained in a closed
hyperplane. Consequently, by the theorem, there exists a dense Ggsubset G, of C such
that conditions (i) and (ii) from the theorem are satisfied. By the result of Phelps, we
may find a dense G;-subset G of G, consisting of non-support points. We claim that
dp(x) = {f,} for all xeG. Indeed, let xe G, f€dp(x), then condition (i) implies
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f(2) = f.(2)for all z € K (C, x). But notice that, x being a non-support point of C, the cone
K (C, x) is dense in E (see [5]). Clearly this implies f < f, on E, hence f =f,. [
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