Generic Fréchet – differentiability of convex functions on small sets

By

DOMINIKUS NOLL

1. Introduction. It is well-known that a continuous convex real-valued function φ defined on a Banach space *E* is Fréchet-differentiable at each point of a dense G_{δ} -subset of *E* provided that *E* is an Asplund space, which means e.g. that its dual *E'* has the Radon-Nikodým property (see [1]). In this note we shall prove an analogue of this result in the case where φ is a convex function defined on a small subset *C* of *E*, *E* an Asplund space. Here a set *C* in a Banach space *E* is called small when it has no interior points.

Let *E* be a Banach space, *C* a convex subset of *E*, $\varphi : C \to \mathbb{R}$ a convex function. For $x \in C$, the subdifferential $\partial \varphi(x)$ of φ at x is

$$\partial \varphi(x) = \{ f \in E' : f(y - x) \leq \varphi(y) - \varphi(x) \text{ for all } y \in C \}.$$

In contrast with the case where x is an interior point of C, this set may be empty, and - even when it is known to be nonempty - may be unbounded.

Definition. Let E be a Banach space and let C be a convex subset of E not contained in a closed hyperplane. Let $\varphi: C \to \mathbb{R}$ be a convex function. φ is called Fréchet-differentiable at $x \in C$ if there exists $f_x \in \partial \varphi(x)$ satisfying

$$\lim_{\substack{t \to 0 \\ t > 0}} \sup_{\substack{x \mid t \leq 1 \\ x + tz \in C}} \left| \frac{1}{t} \left(\varphi \left(x + tz \right) - \varphi \left(x \right) \right) - f_x(z) \right| = 0.$$

In this case we use the notation $\varphi'(x) = f_x$. \Box

Notice that the assumption that C is not contained in a closed hyperplane of E is necessary to ascertain the uniqueness of the Fréchet-derivative $\varphi'(x)$, should it exist.

For $x \in C$ we denote by K(C, x) the cone over C at x, i.e. the set of directions z having $x + tz \in C$ for some $t_0 > 0$ and all $0 < t < t_0$. Then our definition may be rephrased by saying that φ is Fréchet-differentiable at $x \in C$ if $\frac{1}{t}(\varphi(x + tz) - \varphi(x)) - f_x(z)$ tends to $0 \ (t \to 0, t > 0)$ uniformly over all $z \in K(C, x)$ having $||z|| \leq 1$.

2. Existence of subgradients. It is known that the subdifferential $\partial \varphi(x)$ of a convex function φ is nonempty when x is an interior point of its domain C. If C is small, however, $\partial \varphi(x)$ may be empty throughout C, although it is known (see [3]) that $\partial \varphi(x)$ is nonempty

on a dense subset of C in the case where C is closed and φ is lower semi-continuous on C (or rather when $\varphi: E \to \overline{\mathbb{R}}$, extended by $\varphi(x) = \infty$ for all $x \notin C$, is lower semi-continuous in the usual sense). For our present attempt, however, we shall need some information concerning the question when $\partial \varphi(x)$ is nonempty on a large subset of C in the sense of category. This is provided by the following

Proposition. Let E be a Banach space and let C be a convex subset of E which is a Baire space in its induced topology. Let $\varphi : C \to \mathbb{R}$ be a lower semi-continuous convex function. Then the following statements are equivalent:

- (i) There exists a dense relatively open subset G of C such that $\partial \varphi(x)$ is nonempty for every $x \in G$;
- (ii) There exists a dense relative G_{δ} -subset G_1 of C such that $\partial \varphi(x)$ is nonempty for every $x \in G_1$;
- (iii) There exists a dense Baire subset G_2 of C such that $\partial \varphi(x)$ is nonempty for every $x \in G_2$;
- (iv) There exists a dense relatively open subset G of C such that φ is locally Lipschitz at every $x \in G$;
- (v) There exists a dense subset D of C such that φ is locally Lipschitz at every $x \in D$.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear. We prove (iii) \Rightarrow (iv). For $r \in \mathbb{N}$ define a convex function $\varphi_r : E \to \mathbb{R} \cup \{-\infty\}$ by

(1)
$$\varphi_r(z) = \inf \{ \varphi(x) + r \| y \| : x \in C, z = x + y \}.$$

 φ_r is called the infimal convolution of φ and $r \parallel \parallel$, noted $\varphi * r \parallel \parallel$. It is known that either $\varphi_r \equiv -\infty$ or φ_r is finite everywhere, and in the latter case is Lipschitz with Lipschitz constant r. The coincidence set C_r of φ and φ_r is

(2)
$$C_r = \{x \in C : \partial \varphi(x) \cap r B' \neq \emptyset\},\$$

where B' denotes the dual unit ball. For a detailed discussion of the functions φ_r we refer to [4].

Let U be any relatively open and nonempty subset of C. By (2) and (iii), the set $\bigcup_{r\geq 1} (C_r \cap U)$ is of the second category in U. φ being lower semi-continuous on C, the sets $C_r = \{x \in C : \varphi(x) = \varphi_r(x)\}$ are closed in C, hence for some r, $C_r \cap U$ must have nonempty interior in C. Therefore U contains some nonempty relatively open subset V_U such that $\varphi = \varphi_r$ on V_U , so that φ is Lipschitz on V_U with Lipschitz constant r. But now $G_0 = \bigcup \{V_U : U \neq \emptyset \text{ relatively open in } C\}$ is an open dense subset of C such that φ is locally Lipschitz at every $x \in G_0$. This proves (iv).

Trivially (iv) implies (v). Proving that (v) implies (i) remains. Let D be given as in the statement of (v) and let $x \in D$ be fixed. Let U be a convex and relatively open neighbourhood of x in C such that $\varphi \mid U$ is Lipschitz with constant $r \in \mathbb{N}$, say. Let $\psi = \varphi \mid U$, $\psi_r = \psi * r \parallel \parallel$ the infimal convolution of ψ and $r \parallel \parallel$. We claim that ψ and ψ_r coincide on U. Assume the contrary. Then there exists $z \in U$ having $\psi_r(z) < \psi(z)$. Hence there exists $x \in U$ and $y \in E$ with z = x + y such that $\psi(x) + r \parallel y \parallel < \psi(z)$, equivalently,

(3)
$$\psi(z) - \psi(x) > r ||z - x||$$

488

This contradicts the fact that ψ is Lipschitz on U with constant r, so $\psi = \psi_r$ on U is proved.

We have proved that φ and ψ_r coincide on U. This implies $\partial \psi_r(y) \subset \partial \varphi(y)$ for every $y \in U$ since the notion of a subdifferential is a local one. But notice that ψ_r is globally defined and hence satisfies $\partial \psi_r(y) \neq \emptyset$ everywhere. This proves $\partial \varphi(y) \neq \emptyset$ on U. Since $x \in D$ and U were chosen arbitrarily, the proof of (i) is complete. \Box

R e m a r k s. 1) We do not need any category assumption on the set D in statement (v). But actually we do need a category assumption in statement (iii), i.e. the existence of a dense subset of points x having $\partial \varphi(x) \neq \emptyset$ does not imply local Lipschitz. Indeed, let us consider the following example. Let $C \subset l_2$ be the cube $\prod_{n \in \mathbb{N}} \left[-\frac{1}{n}, \frac{1}{n} \right]$ and define $\varphi: C \to \mathbb{R}$ by

$$\varphi(x) = \sum_{n=1}^{\infty} 2^{-n} \varphi_n(x_n),$$

where φ_n is the convex real function defined by the lower part of the circle with radius 1/n and centre 0. Then φ is continuous on C but is nowhere locally Lipschitz, since every nonempty relatively open subset U of C contains a point x such that $|x_n| = 1/n$ for some n. Nevertheless, $\partial \varphi(x)$ is nonempty on a dense subset D of C. In fact, $\partial \varphi(x)$ will be nonempty if the sequence x is eventually "away from 1/n" so that the derivatives $\varphi'_n(x_n)$ provide an l_2 sequence.

2) Notice that lower semi-continuity of $\varphi: C \to \mathbb{R}$ does not mean that the function $\overline{\varphi}: E \to \mathbb{R} \cup \{\infty\}$ defined by $\overline{\varphi} | C = \varphi, \overline{\varphi}(x) = \infty$ otherwise, is lower semi-continuous in the usual sense. Both notions coincide if the set C is closed, but in general, lower semi-continuity of $\varphi | C$ is a weaker statement.

3. The main result. In this section we prove our main result on the existence of Fréchet-derivatives for convex functions on small sets.

Theorem. Let E be an Asplund space and let C be a convex G_{δ} -subset of E not contained in a closed hyperplane. Let $\varphi : C \to \mathbb{R}$ be a lower semi-continuous convex function such that φ is locally Lipschitz on a dense subset of C. Then there exists a dense G_{δ} -subset G of C such that

- (i) φ has a Fréchet-derivative $\varphi'(x) = f_x$ at every $x \in G$;
- (ii) Whenever $x \in G$, $\varphi'(x) = f_x$, then f_x is a maximal subgradient of φ at x in the sense that given any further $f \in \partial \varphi(x)$, $f(z) \leq f_x(z)$ holds for all $z \in K(C, x)$.

Proof. Let r be any integer such that $\varphi_r = \varphi * r \parallel \parallel$ is finite. Since φ_r is a continuous, convex function defined on E, the subdifferential mapping $x \to \partial \varphi_r(x)$ is known to be a set-valued, monotone operator having nonempty, convex and $\sigma(E', E)$ -compact values in E' which is upper semi-continuous with respect to the norm topology on E and the topology $\sigma(E', E)$ on E' (see [1] or [2] for definitions). Since C is a Baire space with the relative topology, it follows from a result of Christensen and Kenderov [2, Theorem 1.3]

ARCH. MATH.

that there exists a dense G_{δ} -subset G_r of C such that for every $x \in G_r$ there exists $f_{x,r} \in \partial \varphi_r(x)$ such that

(4) $\begin{cases} \text{for every } \varepsilon > 0 \text{ there exists a neighbourhood } U \text{ of } x \text{ in } C \text{ such that} \\ \text{for every } y \in U \text{ we have} \\ \inf \left\{ \|f_{x,r} - g\| : g \in \partial \varphi_r(y) \right\} \leq \varepsilon. \end{cases}$

Let G_0 be an open dense subset of C on which $\partial \varphi(x) \neq \emptyset$ and let $G = G_0 \cap \bigcap_{r \ge 1} G_r$. We claim that G fulfills the requirements of the theorem.

Let us first prove that given $x \in G_r$, $f_{x,r}$ is the Fréchet-derivative of $\varphi_r | C$ in the sense of our definition. Suppose this is not true and find vectors $z_n \in E$, $||z_n|| \leq 1$, and $t_n > 0$, $t_n \to 0$ having $x + t_n z_n \in C$ such that

(5)
$$\left|\frac{1}{t_n}(\varphi_r(x+t_n z_n)-\varphi_r(x))-f_{x,r}(z_n)\right| \ge \varepsilon$$

holds for some $\varepsilon > 0$. $f_{x,r}$ being a subgradient of φ_r at x, this actually implies

(6)
$$\frac{1}{t_n}(\varphi_r(x+t_nz_n)-\varphi_r(x))-f_{x,r}(z_n)\geq \varepsilon.$$

Choose $f_n \in \partial \varphi_r(x + t_n z_n)$, then we find

$$f_n(z_n) - f_{x,r}(z_n) \ge \frac{1}{t_n} (\varphi_r(x + t_n z_n) - \varphi_r(x)) - f_{x,r}(z_n) \ge \varepsilon,$$

which gives us $||f_n - f_{x,r}|| \ge \varepsilon$. Since $x + t_n z_n \to x$, this contradicts Property (4) of the functional $f_{x,r}$. Hence $f_{x,r}$ is in fact the Fréchet-derivative of φ_r at $x \in G_r$.

Next observe that for fixed $x \in G$, there exists a neighbourhood U of x in C such that $\varphi = \varphi_r = \varphi_{r+1} = \dots$ holds on U. Since C is not contained in a hyperplane, this implies $f_{x,r} = f_{x,r+1} = \dots = :f_x$. Since $\varphi = \varphi_r$ on U and $\varphi'_r(x) = f_x$, this implies the desired relation $\varphi'(x) = f_x$, the definition of the Fréchet-derivative being a local one. Hence (i) is proved.

In order to prove (ii), it will again be sufficient to show that for fixed $x \in G_r$, $f(z) \leq f_{x,r}(z)$ will hold for all $z \in K(C, x)$. Indeed, taking into account the formula

(7)
$$\partial \varphi_r(x) = \partial \varphi(x) \cap r B'$$

(see [4]) and the fact that the sequence $f_{x,r}$, r = 1, 2, ... is eventually constant for $x \in G$, it is clear that f_x will be maximal in the sense of statement (ii), once the corresponding maximality of $f_{x,r}$ in $\partial \varphi_r(x)$ is proved.

Let $x \in G_r$ be fixed. Let $f \in \partial \varphi_r(x)$ and suppose there exists $z \in K(C, x)$ satisfying

(8)
$$f(z) - f_{x,r}(z) =: \varepsilon > 0.$$

Recall that the set-valued operator $\partial \varphi_r$ is locally bounded (see [7] or [1]). Hence there exists a neighbourhood U of x in C such that $\partial \varphi_r(U)$ is contained in some closed ball B in E' with centre 0. Choose $t_0 > 0$ such that $x + tz \in U$ holds for all $0 < t < t_0$. Let $g_t \in \partial \varphi_r(x + tz)$. Using the monotonicy of the subdifferential mapping $\partial \varphi_r$, we find that

(9)
$$g_t(z) - f(z) \ge 0.$$

Vol. 54, 1990

This gives us

$$g_t(z) - f_{x,r}(z) = g_t(z) - f(z) + f(z) - f_{x,r}(z)$$
$$\geq 0 + \varepsilon = \varepsilon.$$

This proves that $\partial \varphi_r(x + tz) \subset \{h \in E' : h(z) \ge \varepsilon + f_{x,r}(z)\} = : K$ for $0 < t < t_0$. But $\partial \varphi_r(x + tz)$ is as well contained in B for $0 < t < t_0$ by the choice of U. Now $K \cap B$ is convex and $\sigma(E', E)$ – compact and does not contain $f_{x,r}$. Consequently, the separation theorem gives us some $y \in E$, $\delta > 0$ having

(10)
$$f_{x,r}(y) > \delta \ge g(y), g \in K \cap B.$$

Consequently, $f_{x,r}(y) > \delta \ge g_t(y)$, $0 < t < t_0$, hence $||y|| ||f_{x,r} - g_t|| > \delta$, hence $||f_{x,r} - g_t|| > \delta/||y||$, a contradiction with (4). This proves the claimed maximality of $f_{x,r}$ in $\partial \varphi_r(x)$.

4. Uniqueness of subgradients. Dealing with convex functions on small sets, we may not expect that existence of the Fréchet-derivative of φ at $x \in C$ in the sense of our definition implies the uniqueness of the subdifferential $\partial \varphi(x)$ of φ at x, as it naturally does in the case where x is an interior point of C. Nevertheless, statement (ii) of our theorem tells that $\partial \varphi(x)$ has a unique maximal subgradient on a dense G_{δ} -subset of C, where maximality refers to the order induced by K(C, x). The question as to whether a generic subset of C may be found on which $\partial \varphi(x)$ is singleton, depends, as it turns out, rather on the set C than on the function φ defined on C. Indeed, suppose for $x \in C$ there exists $f \in E', f \neq 0$ satisfying $f(y) \le f(x)$ for all $y \in C$. Then no convex function φ defined on C will have a unique subgradient at x, for we may, given any subgradient q for φ at x, produce a new one by taking g + f. Clearly, this phenomenon cannot occur in the case where x is a non-support point for the set C. This raises the question whether convex sets have sufficiently many non-support points. In the case where E is a separable Banach space, the answer to this question is in the positive. Klee [5] proves that every separable convex set C which is not contained in a closed hyperplane has non-support points and that the set of non-support points is a dense G_{δ} in C. In the non-separable case, there exist closed convex sets not sited in a closed hyperplane but having no non-support points. Nevertheless, it has been proved by Phelps [6] that once the set of non-support points is known to be nonempty, it is always a dense G_{δ} in C. This permits us to state the following

Corollary. Let E be an Asplund space and let C be a convex G_{δ} -subset of E having at least one non-support point. Let $\varphi: C \to \mathbb{R}$ be a lower semi-continuous convex function which is locally Lipschitz on a dense subset of C. Then there exists a dense G_{δ} -subset G of C such that for every $x \in G$, $\partial \varphi(x)$ contains a unique element f_x which is the Fréchet-derivative of φ at x.

Proof. Since C has a non-support point, it may not be contained in a closed hyperplane. Consequently, by the theorem, there exists a dense G_{δ} -subset G_0 of C such that conditions (i) and (ii) from the theorem are satisfied. By the result of Phelps, we may find a dense G_{δ} -subset G of G_0 consisting of non-support points. We claim that $\partial \varphi(x) = \{f_x\}$ for all $x \in G$. Indeed, let $x \in G$, $f \in \partial \varphi(x)$, then condition (ii) implies

D. Noll

 $f(z) \leq f_x(z)$ for all $z \in K(C, x)$. But notice that, x being a non-support point of C, the cone K(C, x) is dense in E (see [5]). Clearly this implies $f \leq f_x$ on E, hence $f = f_x$. \Box

References

- R. D. BOURGIN, Geometric Aspects of Convex Sets with the Radon-Nikodým Property. LNM 993, Berlin-Heidelberg-New York 1983.
- [2] J. P. R. CHRISTENSEN and P. S. KENDEROV, Dense strong continuity of mappings and the Radon-Nikodým property. Math. Scand. 54, 70-78 (1984).
- [3] I. EKELAND, Nonconvex minimization problems. Bull. Amer. Math. Soc. 1, 443-474 (1979).
- [4] J. B. HIRIART-URRUTY, Lipschitz r-continuity of the approximate subdifferential of a convex function. Math. Scand. 47, 123-134 (1980).
- [5] V. L. KLEE, JR., Convex sets in linear spaces. Duke Math. J. 18, 443-466 (1951).
- [6] R. R. PHELPS, Some topological properties of support points of convex sets. Israel J. Math. 13, 327-336 (1972).
- [7] R. T. ROCKAFELLAR, Convexity properties of nonlinear maximal monotone operators. Bull. Amer. Math. Soc. 75, 74-77 (1969).

Eingegangen am 29. 9. 1988

Anschrift des Autors:

Dominikus Noll Mathematisches Institut B Universität Stuttgart Pfaffenwaldring 57 D-7000 Stuttgart 80