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By 
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1. Introduction. It is well-known that  a cont inuous convex real-valued function q) 
defined on a Banach space E is Fr6chet-differentiable at each point  of a dense G~-subset 
of E provided that  E is an Asplund space, which means e.g. that  its dual  E '  has the 
R a d o n - N i k o d ) m  proper ty  (see [1]). In  this note we shall prove an analogue of this result 
in the case where ~p is a convex function defined on a small subset C of E, E an Asplund 
space. Here a set C in a Banach space E is called small when it has no interior  points. 

Let E be a Banach space, C a convex subset of E, ~0 : C ~ P, a convex function. F o r  
x ~ C, the subdifferential ~o (x) of ~0 at x is 

~q~(x) = { f e E ' : f ( y  - x) < q0(y) - qo(x) for all y E  C}. 

In contras t  with the case where x is an interior  point  of C, this set may be empty, and 
- even when it is known to be nonempty  - may  be unbounded.  

D e f i  n i t i o n. Let E be a Banach space and let C be a convex subset of E not  
contained in a closed hyperplane.  Let ~o:C ~ N be a convex function, q~ is called 
Fr6chet-differentiable at x e C if there exists f ,  e 8(p (x) satisfying 

sup 12- (cp (x + t z) -- cp (x)) -- f~ (z) = lira O. 
t-~o II zll_-<l l 

t>O x+tz~C 

In this case we use the nota t ion qo' (x) = fx. [ ]  

Notice that  the assumption that  C is not  contained in a closed hyperplane of E is 
necessary to ascertain the uniqueness of the Fr6chet-derivative q)' (x), should it exist. 

F o r  x ~ C we denote by K (C, x) the cone over C at x, i.e. the set of directions z having 
x + t z  ~ C for some t o > 0 and all 0 < t < t o. Then our definition may be rephrased by 

saying that  qo is Fr~chet-differentiable at x e C if 1_ (~o (x + t z )  - q~ (x)) - f x ( z )  tends to 
t 

0 (t ~ 0, t > 0) uniformly over all z ~ K (C, x) having II z II =< 1. 

2. Existence of subgradients. It  is known that  the subdifferential ~q0 (x) of a convex 
function ~p is nonempty  when x is an interior  point  of its domain  C. If C is small, however, 
~q~ (x) may  be empty throughout  C, a l though it is known (see [3]) that  ~q~ (x) is nonempty  
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on a dense subset  of  C in the case where  C is c losed and  ~0 is lower  semi -con t inuous  on 
C (or r a the r  when  ~p: E -~ IR, ex tended  by  ~o (x) = 0o for all  x d~ C, is lower  semi-cont in-  
uous  in the usual  sense). F o r  ou r  presen t  a t t empt ,  however ,  we shal l  need some in forma-  
t ion  concern ing  the ques t ion  when  ~q~ (x) is n o n e m p t y  on a large  subset  of C in the sense 
of ca tegory .  This  is p r o v i d e d  by  the fol lowing 

Proposi t ion.  Let  E be a Banach space and let C be a convex subset of  E which is a Baire 
space in its induced topology. Let  ~p : C --* ~ be a lower semi-continuous convex function. 
Then the following statements are equivalent: 

(i) There exists a dense relatively open subset G of  C such that ~q) (x) is nonempty for 
every x ~ G ; 

(ii) There exists a dense relative G6-subset G 1 of  C such that ~(p (x) is nonempty for every 
x ~  Ga; 

(iii) There exists a dense Baire subset G 2 of  C such that Oq~ (x) is nonempty for every 
x ~ G2; 

(iv) There exists a dense relatively open subset G of  C such that cp is locally Lipsehitz at 
every x ~ G; 

(v) There exists a dense subset D of  C such that q~ is locally Lipschitz at every x ~ D. 

P r o o f. The  impl ica t ions  (i) ~ (ii) and  (ii) ~ (iii) are clear.  We p rove  (iii) ~ (iv). F o r  
r ~ N define a convex funct ion ~o r : E ~ R u { - ~ }  by  

(1) % (z) = inf  {~0 (x) + r H y II : x e C, z = x + y}.  

~o r is cal led the inf imal  convo lu t i on  of ~o and  r tl II, no t ed  ~o * r li II. I t  is k n o w n  tha t  ei ther  
q~r ---- - o o  or  ~or is finite everywhere ,  and  in the la t ter  case is Lipschi tz  wi th  Lipschi tz  
cons t an t  r. The  coinc idence  set C~ of ~o and  % is 

(2) C~ = {x e C: ~q~ (x) n rB' 4= 0}, 

where  B' denotes  the dua l  uni t  ball.  F o r  a de ta i led  discuss ion of the funct ions % we refer 
to [4]. 

Let  U be any  re la t ively  open  and  n o n e m p t y  subset  of C. By (2) and  (iii), the set 
U (cr  c~ u )  is of the second  ca tegory  in U. ~0 being lower  semi -con t inuous  on  C, the sets 

r > l  

C, = {x ~ C : (p (x) = % (x)} are c losed in C, hence for  some r, C~ c~ U mus t  have non-  
e m p t y  in te r ior  in C. Therefore  U con ta ins  some  n o n e m p t y  re la t ively  open  subset  Vv such 
tha t  cp = % on Vv, so tha t  q~ is Lipschi tz  on  Vv with Lipschi tz  cons t an t  r. But  now 
Go = U { vv: u 4= 0 re la t ively  open  in C } is an open  dense subset  of C such tha t  r is 
loca l ly  Lipschi tz  a t  every x ~ Go. This  p roves  (iv). 

Trivial ly (iv) implies  (v). P rov ing  tha t  (v) implies  (i) remains .  Let  D be given as in the 
s t a t emen t  of  (v) and  let x ~ D be fixed. Let  U be a convex and  re la t ively  open  ne ighbour -  
h o o d  of x in C such tha t  r [ U is Lipschi tz  wi th  cons tan t  r ~ N ,  say. Let  ~9 = q~ ] U, 
~ --- ~, * r It II the inf imal  convo lu t i on  of O and  r II II. We c la im tha t  ~ and  ~r  coincide  on  
U. Assume  the cont ra ry .  Then  there exists z ~ U having  Ip~ (z) < ~ (z). Hence  there  exists 
x e U and  y e E with  z = x + y such tha t  ~ (x) + r II Y II < ~' (z), equivalent ly ,  

(3) 0 (z) - ~ (x) > r II z - x II 2' 
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This contradicts the fact that ~ is Lipschitz on U with constant r, so r = ~r on U is 
proved. 

We have proved that ~0 and ~, coincide on U. This implies 8~r(Y) c 8q~ (y) for every 
y ~ U since the notion of a subdifferential is a local one. But notice that ~ is globally 
defined and hence satisfies 8~r(y) 4 = 0 everywhere. This proves 8q~ (y) 4= 0 on U. Since 
x ~ D and U were chosen arbitrarily, the proof of (i) is complete. [ ]  

R e m a r k s. 1) We do not need any category assumption on the set D in statement (v). 
But actually we do need a category assumption in statement (iii), i.e. the existence of a 
dense subset of points x having ~0 (x) 4: ~b does not imply local Lipschitz. Indeed, let us 

consider the following example. Let C c 12 be the cube [ I  - n ' n  and define 

qo(x) = ~ 2-"~o,(x,) ,  
n = l  

where q0, is the convex real function defined by the lower part of the circle with radius 
1In and centre 0. Then ~o is continuous on C but is nowhere locally Lipschitz, since every 
nonempty relatively open subset U of C contains a point x such that [x,[ = l /n for some 
n. Nevertheless, 8q)(x) is nonempty on a dense subset D of C. In fact, 8~0 (x) will be 
nonempty if the sequence x is eventually "away from 1/n" so that the derivatives ~o', (x,) 
provide an 12 sequence. 

2) Notice that lower semi-continuity of q~ : C ~ R does not mean that the function 
~b: E ~ R w {~}  defined by ~ [ C  = q), ~ (x) = oo otherwise, is lower semi-continuous in 
the usual sense. Both notions coincide if the set C is closed, but in general, lower 
semi-continuity of qo[ C is a weaker statement. 

3. The main result. In this section we prove our main result on the existence of 
Fr6chet-derivatives for convex functions on small sets. 

Theorem. Let  E be an Asplund space and let C be a convex G~-subset of  E not contained 
in a closed hyperplane. Let  ~p : C -~ ]R be a lower semi-continuous convex function such that 
~p is locally Lipschitz on a dense subset o f  C. Then there exists a dense G~-subset G of  C 
such that 

(i) q~ has a Fr~chet-derivative qY (x) = fx at every x ~ G; 
(ii) Whenever x ~ G, q~' (x) = fx, then f~ is a maximal subgradient of  q~ at x in the sense 

that given any further f ~ ~(p (x), f (z) <= fx (z) holds for all z ~ K (C, x). 

P r o o f. Let r be any integer such that % = q~ * r [I [I is finite. Since q~r is a continuous, 
convex function defined on E, the subdifferential mapping x ~ 8tp, (x) is known to be a 
set-valued, monotone operator having nonempty, convex and a (E', E)-compact values in 
E '  which is upper semi-continuous with respect to the norm topology on E and the 
topology a (E', E) on E' (see [1] or [2] for definitions). Since C is a Baire space with the 
relative topology, it follows from a result of Christensen and Kenderov [2, Theorem 1.3] 
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that  there exists a dense G0-subset G r of C such that  for every x ~ G r there exists 
fx, r ~ ~cPr (x) such that  

~for  every ~ > 0 there exists a ne ighbourhood U of x in C such that  
(4) ~for  every y e U we have 

( i n f {  [rf~,r -- g ] l : g  ~ ~(P,.(Y)} < 5. 

Let G O be an open dense subset of C on which ~o (x) 4= 0 and let G = G o n (-] G r. We 
claim that  G fulfills the requirements of the theorem, r--> ~ 

Let us first prove that  given x e G r , f x , ,  is the Fr6chet-derivative of Or [ C in the sense 
of our definition. Suppose this is not  true and find vectors z, e E, [1 z, II < 1, and t,  > 0, 
t ,  ~ 0 having x + t,  z, E C such that  

(5) ~ ( ( p r ( x  + t . z , , )  - oPt(x)) - f x , , ( z . )  > 5  

holds for some e > 0. fx ,  r being a subgradient  of (fir at x, this actually implies 

1 
(6) t - ( ( p r ( x  + t . z . )  - (fir(x)) - L , r ( z . )  > e.  

Choose f ,  e 8~or(x + t ,z . ) ,  then we find 

1 
f . ( z . )  - f ~ , r ( z . )  > ~, ( % ( x  + t . z . )  - -  (Pr(X)) --  f~ , r (Z . )  > ~, 

which gives us jlf, -- f~,r  II > 5. Since x + t . z .  ~ x, this contradicts  Proper ty  (4) of the 
functional f~.r, Hence fx, r is in fact the Fr6chet-derivative of q)r at x ~ Gr. 

Next observe that  for fixed x e G, there exists a ne ighbourhood U of x in C such that  
(P = q)r = %+ ~ . . . .  holds on U. Since C is not  contained in a hyperplane,  this implies 
f~.~ = f~,r+ 1 . . . .  = :fx. Since ~o = (Pr on U and (p'r (x) = f~, this implies the desired rela- 
t ion (p' (x) = f~, the definition of the Fr6chet-derivative being a local one. Hence (i) is 
proved. 

In order  to prove (ii), it will again be sufficient to show that for fixed x E G~, f (z) < f~,r (z) 
will hold for all z e K (C, x). Indeed, taking into account the formula 

(7) ~%(x) = ~o (x) n r B '  

(see [4]) and the fact that  the sequence f~,r, r = 1, 2 , . . .  is eventually constant  for x e G, 
it is clear that  f~ will be maximal  in the sense of statement (ii), once the corresponding 
maximal i ty  of f~,r in ~(Pr (X) is proved. 

Let x ~ Gr be fixed. Let f ~ O%(x) and suppose there exists z e K ( C ,  x)  satisfying 

(8) f ( z )  - f~ , .  (z) = : e > O. 

Recall that  the set-valued opera tor  ~q~, is locally bounded (see [7] or [1]). Hence there 
exists a ne ighbourhood U of x in C such that  O%(U) is contained in some closed ball  B 
in E '  with centre 0. Choose t o > 0 such that  x + t z  ~ U holds for all 0 < t < t o. Let 
9t E ~(Pr (x + tz) .  Using the monotonicy  of the subdifferential mapping ~(p,, we find that  

(9) gt (z) -- f (z) > 0. 
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This gives us 

gt (z) - f~,, (z) = gt (z) - f (z) + f (z) - f~,r (z) 

>_ 0 + e = ~ .  
I 

This proves that ~ % ( x + t z )  c { h ~ E ' : h ( z ) > e + f ~ , r ( z ) } = : K  for 0 < t < t  o . But 
8~0r (x + t z) is as well contained in B for 0 < t < to by the choice of U. Now K n B is 
convex and o-(E', E) - compact  and does not contain fx,,. Consequently, the separation 
theorem gives us some y ~ E, 6 > 0 having 

(10) f ~ , ~ ( y ) > b > = g ( y ) , g ~ K n B .  

Consequently, f~,~ (y) > 5 > gt(Y), 0 < t < to, hence II Y II Ilf~,~ -- gt II > 6, hence IIf~,~ - gt [I 
> ~/IlYlI, a contradiction with (4). This proves the claimed maximality of f~,~ in 
aq,~(x). [] 

4. Uniqueness of subgradients. Dealing with convex functions on small sets, we may not 
expect that existence of the Fr~chet-derivative of ~p at x ~ C in the sense of our definition 
implies the uniqueness of the subdifferential ~9 (x) of 9 at x, as it naturally does in the 
case where x is an interior point of C. Nevertheless, statement (ii) of our theorem tells that 
~p (x) has a unique maximal subgradient on a dense G~-subset of C, where maximality 
refers to the order induced by K (C, x). The question as to whether a generic subset of C 
may be found on which ~9 (x) is singleton, depends, as it turns out, rather on the set C 
than on the function ~p defined on C. Indeed, suppose for x E C there exists f ~ E', f 4 = 0 
satisfying f (y) < f (x) for all y ~ C. Then no convex function ~p defined on C will have a 
unique subgradient at x, for we may, given any subgradient g for ~p at x, produce a new 
one by taking g + f. Clearly, this phenomenon cannot occur in the case where x is a 
non-support  point for the set C. This raises the question whether convex sets have 
sufficiently many non-support  points. In the case where E is a separable Banach space, 
the answer to this question is in the positive. Klee [5] proves that every separable convex 
set C which is not contained in a closed hyperplane has non-support  points and that the 
set of non-stipport points is a dense G~ in C. In the non-separable case, there exist dosed 
convex sets not sited in a closed hyperplane but having no non-support  points. Neverthe- 
less, it has been proved by Phelps [6] that once the set of non-support  points is known 
to be nonempty, it is always a dense G~ in C. This permits us to state the following 

Corollary. Let  E be an Asplund space and let C be a convex G~-subset of  E having at least 
one non-support point. Let  q) : C -~ ~ be a lower semi-continuous convex function which is 
locally Lipschitz on a dense subset of  C. Then there exists a dense G~-subset G of  C such 
that for every x ~ G, 8(p (x) contains a unique element f~ which is the Fr~chet-derivative of  
~o at x. 

P r o o f. Since C has a non-support  point, it may not be contained in a closed 
hyperplane. Consequently, by the theorem, there exists a dense G~-subset G o of C such 
that conditions (i) and (ii) from the theorem are satisfied. By the result of Phelps, we 
may find a dense G~-subset G of Go consisting of non-support  points. We claim that 
~q~(x) = {fx} for all x e G. Indeed, let x e G, f e ~(p(x), then condition (ii) implies 
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f ( z )  < fx(z)  for all z ~ K ( C ,  x). But notice that, x being a non-suppor t  point  of C, the cone 
K (C, x) is dense in E (see [5]). Clearly this implies f < f~ on E, hence f = fx. [ ]  
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