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Abstract. The classical Frank and Wolfe theorem states that a quadratic function
which is bounded below on a convex polyhedron P attains its infimum on P . We inves-
tigate whether more general classes of convex sets F can be identified which have this
Frank-and-Wolfe property. We show that the intrinsic characterizations of Frank-and-
Wolfe sets hinge on asymptotic properties of these sets.
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1. Introduction

The classical Frank and Wolfe theorem [5, 4] states that a quadratic function q which is
bounded below on a convex polyhedron P attains its infimum on P . It is known that this
result has consequences with regard to the existence of solutions to linear complementarity
problems [6]. Here we investigate ways in which the Frank and Wolfe theorem can be
extended.

A first line is to go beyond polyhedra and ask whether there are more general classes
of Frank-and-Wolfe sets, that is, convex sets F with the property that every quadratic
function q which is bounded below on F attains its infimum on F . What one would like
to obtain is an internal characterization of Frank-and-Wolfe sets via geometric properties,
or likewise, verifiable sufficient conditions for the Frank-and-Wolfe property. In response
we will characterize Frank-and-Wolfe sets as those convex sets which do not admit conic
asymptotes in a sense to be made precise here.

A variant of the same question concerns the larger class of convex sets F with the
property that every quadratic function q which is bounded below on F , and which is in
addition convex or quasiconvex on F , attains its infimum on F . It turns out that this
class has a nice internal characterization. It consists of those convex sets that do not have
affine asymptotes in the sense of Klee [9].

A second idea to extend the Frank and Wolfe theorem would be to go beyond quadratics
and look for more general classes of functions f attaining their finite infimum on polyhedra
P . For instance, do higher degree polynomials f have this property? It turns out that
without convexity this line has little hope for success, as shown by the quartic function
f(x) = x2

1+(1−x1x2)
2, which has infimum 0 on the plane, but does not attain its infimum

there. Positive results can at best be expected for convex polynomial functions f . For
instance, Rockafellar [12, Cor. 27.3.1] shows that a convex polynomial f which is bounded
below on a polyhedron P attains its infimum on P . Other variations of this theme are
for instance Perold [11], Hirsch and Hoffman [7], or Belousov and Klatte [2].

The structure of the paper is as follows. In Section 2 we define Frank-and-Wolfe sets
and variants and obtain first basic properties. Section 3 establishes the link between the
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Frank-and-Wolfe property and the absence of f-asymptotes in the sense of Klee. In Section
2 we consider the Frank-and-Wolfe property within the class of Motzkin decomposable
sets, where one expects key information to be provided by the recession cone. Section 5
characterizes Frank-and-Wolfe sets by the absence of q-asymptotes, a geometric notion
we define in Section 5. In the final Section 6 we obtain an application to generalized
complementarity problems.

Notations

We generally follow Rockafellar’s book [12]. The closure of a set F is F . The Euclidean
norm in Rn is ∥ · ∥, and the Euclidean distance is dist(x, y) = ∥x− y∥. For subsets M,N
of Rn we write dist(M,N) = inf{∥x− y∥ : x ∈ M, y ∈ N}. A direction d with x+ td ∈ F
for every x ∈ F and every t ≥ 0 is called a direction of recession of F , and the cone of all
directions of recession is denoted as 0+F .

A function q(x) = 1
2
xTAx + bTx + c with A = AT ∈ Rn×n, b ∈ Rn, c ∈ R is called

quadratic. The quadratic q : Rn → R is quasiconvex on a convex set F ⊂ Rn if the
sublevel sets of q ↾ F : F → R are convex. Similarly, q is convex on the set F if q ↾ F is
convex.

2. Frank and Wolfe sets

We call a convex set F in Rn Frank-and-Wolfe if every quadratic function q : Rn → R
which is bounded below on F attains its infimum on F . For short we say that F is a
FW -set. In the same vein we call the convex set F quasi-Frank-and-Wolfe if the property
holds for every quadratic q which is in addition quasiconvex on F . For short, such sets
are called qFW -sets.

Formally we may also consider convex sets F where the property holds for every qua-
dratic q which is convex on F . We temporarily call those cFW -sets. Ultimately this class
will turn out equivalent to quasi-Frank-and-Wolfe sets, i.e., cFW = qFW.

Clearly every bounded closed convex set is Frank-and-Wolfe, so the disquisition is only
useful in studying unbounded convex sets. Trivially FW -sets are qFW, and qFW -sets are
cFW. The classical theorem of Frank and Wolfe [5] says that every convex polyhedron P
is a FW -set. Our first observation is the following.

Lemma 1. Every cFW-set is closed, hence so are qFW- and FW-sets.

Proof: Consider x ∈ F , then q(·) = ∥ · −x∥2 is quadratic convex and its infimum on F
is 0. Since by hypothesis this infimum is attained, we must have x ∈ F . □

Another useful property of Frank-and-Wolfe sets is the following.

Proposition 1. Affine images of cFW-sets are cFW-sets. Similarly, affine images of
qFW-sets are qFW, and affine images of FW-sets are FW. In particular, affine images of
cFW-sets, qFW-sets and FW-sets are closed.

Proof: Closedness of the affine image of a cFW -set F under an affine image follows
from the first part of the statement in tandem with Lemma 1. To prove the first part let
F be a cFW -set and T : Rn → Rm an affine operator. Let F̃ = T (F ). We show that F̃

is cFW. Let q̃ : Rm → R be quadratic and convex on F̃ , and suppose it is bounded below
on F̃ with infimum γ. Then q = q̃ ◦ T is quadratic and convex on F , and bounded below
on F with the same infimum γ. By the hypothesis on F the infimum γ of q is attained
at x0 ∈ F , and then clearly q̃ attains its infimum γ on F̃ at Tx0.
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Similarly, if q̃ is quasiconvex on F̃ , then q is quasiconvex on F . Therefore the other
two statements follow as well. □

Yet another elementary property of FW -sets is the following

Proposition 2. Suppose F is a FW-set, and let F ′ be a closed convex set containing F
such that F ′\F is bounded. Then F ′ is FW. The analogous statement holds for qFW-sets.

Proof: Suppose q is a quadratic function with finite infimum γ′ on F ′. Then q has also
a finite infimum γ on F , where obviously γ ≥ γ′. There are two cases. If γ = γ′, then
we choose x ∈ F where γ is attained, and then γ′ is also attained at x. On the other
hand, if γ′ < γ, then infx∈F ′ q(x) = infx′∈F ′\F q(x′). Since F ′ \ F is bounded, there exists
x′ ∈ F ′ \ F ⊂ F ′ where the infimum γ′ is attained. □

3. F-asymptotes

Following Klee [9], an affine manifold M in Rn is called an f-asymptote of the closed
convex set F if F ∩M = ∅ and dist(F,M) = 0. The link between f-asymptotes and the
Frank-and-Wolfe property is given by the following

Theorem 1. Let F be a convex set in Rn. Then the following statements are equivalent:
(i) Every quadratic function q which is quasiconvex on F and bounded below on F

attains its infimum on F . That is, F is qFW.
(ii) Every quadratic function q which is convex on F and bounded below on F attains

its infimum on F . That is, F is cFW.
(iii) F is closed and has no f-asymptotes.

Proof: The implication (i) =⇒ (ii) is clear. Consider (ii) =⇒ (iii). We have to
show that F is closed and has no f-asymptotes. Closedness follows readily from Lemma
1. Now let M be an affine manifold with dist(F,M) = 0. We have to show that M is
not an f-asymptote of F . Suppose M = y + U for a direction space U and some y ∈ U⊥.
Let P be the orthogonal projection on U⊥, then P (M) = {y} and M = P−1(y). Since
dist(F,M) = 0, there exist sequences xk ∈ F , zk ∈ M , such that dist(xk, zk) → 0. Then
dist(Pxk, P zk) ≤ dist(xk, zk) → 0, but Pzk = y for every k, hence dist(Pxk, y) → 0, so the
sequence Pxk converges to y. Now since F has property (ii), its affine image P (F ) is closed
by Proposition 1, so y ∈ P (F ). Pick x ∈ F with y = Px, then x ∈ F ∩ P−1(y) = F ∩M ,
so that F ∩M ̸= ∅. This shows that F does not have f-asymptotes.

It remains to prove the implication (iii) =⇒ (i). We will prove this by induction on
the dimension n of F . For dimension n = 1 the implication is clearly true, because any
quadratic function q : R → R which is bounded below on a closed convex set F ⊂ R
attains its infimum on F . Suppose therefore that the result is true for dimension n − 1,
and consider a quadratic function q : Rn → R which is quasiconvex on F and bounded
below on F . Assume without loss that the dimension of F is n, i.e., F has nonempty
interior, as otherwise the result follows directly from the induction hypothesis. Let γ =
inf{q(x) : x ∈ F} > −∞, and fix α > γ. If the sublevel set Sα := {x ∈ F : q(x) ≤ α}
is bounded, then by the Weierstrass extreme value theorem the infimum of q over Sα is
attained. But this infimum is also the infimum of q over F , so in that case we are done.
Assume therefore that Sα is unbounded. Since q is quasiconvex on F , the set Sα is closed
convex, which means Sα has a direction of recession d, that is, a direction with x+td ∈ Sα

for every t ≥ 0 and every x ∈ Sα (see e.g. [12, Theorem 8.4]). Fix x ∈ Sα. Expanding q
at x+ td ∈ Sα gives

γ ≤ q(x+ td) = 1
2
xTAx+ bTx+ c+ tdT(Ax+ b) + 1

2
t2dTAd ≤ α
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for every t ≥ 0, and this implies dTAd = 0. Substituting this back gives

γ ≤ q(x+ td) = 1
2
xTAx+ bTx+ c+ tdT(Ax+ b) ≤ α,

for every t ≥ 0. That implies dT(Ax+ b) = 0. But the argument is valid for every x ∈ Sα.
By assumption F has dimension n, so Sα has nonempty interior, meaning x + ϵB ⊂ Sα

for some ϵ > 0, with B the unit ball. That shows Ad = 0. Going back with this into
dT(Ax+ b) = 0 shows dTb = 0, too. Altogether we have shown

(1) q(x+ td) = q(x) for every x ∈ Sα and every t ≥ 0.

Since q is a quadratic function and Sα has nonempty interior, this implies q(x+td) = q(x)
for every x ∈ Rn and every t ∈ R.

Now let P be the orthogonal projection onto the hyperplane H = d⊥. Then q̃ := q ↾ H
is quadratic on the (n − 1)-dimensional space H and takes the same values as q due to
(1). In particular, q̃ = q ↾ H is bounded below on the qFW -set F̃ = P (F ). Since q is
quasiconvex on F , q̃ is quasiconvex on F̃ . Therefore q̃ attains its infimum on F̃ by the
induction hypothesis, since dim(F̃ ) = n − 1, and then q, having the same values, also
attains its infimum on F . □

Remark 1. From the implication (iii) =⇒ (i) it is clear that for a quadratic function
q bounded below on F to attain its infimum on F , it is sufficient to have just one of
its sublevel sets Sα with α > γ = infx∈F q (x) convex, a condition which is weaker than
quasiconvexity on F . An even weaker condition suffices, namely, the existence of a not
necessarily convex sublevel set Sα and a direction d ∈ Rn with the following property:
For every x ∈ Sα there exists tx ∈ R such that x+ td ∈ Sα for every t ≥ tx.

Remark 2. Yet another equivalent condition which we could add to the above list is
(iv) P (F ) is closed for every orthogonal projection P .
Indeed (ii) =⇒ (iv) is Proposition 1, and (iv) =⇒ (ii) is implicit in the proof of (ii)

=⇒ (iii) above. For the equivalence of (iii) and (iv) see also [9].

Corollary 1. Frank-and-Wolfe sets have no f-asymptotes. □
We end this section by indicating that the converse of Corollary 1 is not true. Put

differently, the absence of f-asymptotes does not characterize Frank-and-Wolfe sets. Or
put again differently, there exist quasi-Frank-and-Wolfe sets, which are not Frank-and-
Wolfe.

Example 3.1. We construct a closed convex set F without f-asymptotes, which is not
Frank-and-Wolfe. We use Example 2 of [10], which we reproduce here for convenience.
Consider the optimization program

minimize q(x) = x2
1 − 2x1x2 + x3x4

subject to c1(x) = x2
2 − x3 ≤ 0

c2(x) = x2
2 − x4 ≤ 0

x ∈ R4

then as Lou and Zhang [10] show the constraint set F = {x ∈ R4 : c1(x) ≤ 0, c2(x) ≤ 0} is
closed convex, and the quadratic function q has infimum γ = −1 on F , but this infimum
is not attained.

Let us show that F has no f-asymptotes. Note that F = F1×F2, where F1 = {(x1, x3) ∈
R2 : x2

1 − x3 ≤ 0}, F2 = {(x2, x4) ∈ R2 : x2
2 − x4 ≤ 0}. Observe that F1

∼= F2, and that
F1 does not have asymptotes, being a parabola. Therefore, F does not have f-asymptotes
either. This can be seen from the following
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Proposition 3. Suppose F1, F2 do not have f-asymptotes. Then neither does F1 × F2

have f-asymptotes.

Proof: We write F1 × F2 = (F1 × Rn) ∩ (Rn × F2). Suppose M is an f-asymptote
of F1 × F2, then by Klee [9, Theorem 4] the flat M contains either an f-asymptote N1

of F1 × Rn, or it contains an f-asymptote N2 of Rn × F2. Assume without loss that M
contains N1. Let P be the projection on the first coordinate, then P (N1) is an affine
manifold, and it is easy to see that it is an f-asymptote of F1. □

Example 3.2. Let F be the epigraph of f(x) = x2+exp(−x2) in R2. Then q(x, y) = y−x2

is bounded below on F , but does not attain its infimum, so F is not FW. However, F has
no f-asymptotes, so it is qFW. □

4. Motzkin decomposable sets

The proof of the classical Frank-and-Wolfe theorem [5] exploits the fact that a poly-
hedron P can be decomposed as P = C + D, where C is a polytope, and D a convex
polyhedral cone. This rises the question whether the Frank and Wolfe theorem may be
extended to other classes of convex sets F with this type of decomposition. We recall the
following

Definition 1. A nonempty closed convex set F in Rn is called Motzkin decomposable if
there exists a compact convex set C and a closed convex cone D such that F = C +D.
We call (C,D) a Motzkin decomposition of F . □

We start with a disclaimer. Not all Motzkin decomposable sets are Frank-and-Wolfe.

Example 4.1. We put D = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1x2 − x2
3 ≥ 0}, then D is a closed

convex cone, hence is trivially Motzkin decomposable. But D is not Frank-and-Wolfe. In
fact, it is not even quasi-Frank-and-Wolfe, as we now show. Indeed, define q : R3 → R by
q(x) = x2

1 + (x3 − 1)2, then q is quadratic convex and bounded below by 0. In fact, γ = 0

is the infimum of q on D, because q
(

1
k
, (k+1)2

k
, 1 + 1

k

)
= 2

k2
→ 0, but 0 is not attained on

D. In view of Theorem 1, the cone D must have f-asymptotes. □

Example 4.2. In the same vein consider the quadratic function q : R3 −→ R defined as
q (x, y, z) := (x− 1)2−y+z and the ice-cream cone F :=

{
(x, y, z) ∈ R3 : z ≥

√
x2 + y2

}
.

Clearly q ≥ 0 on F since z ≥ y for every (x, y, z) ∈ F. But the infimum of q on F is 0,
since

(
1, k,

√
1 + k2

)
∈ F and

q
(
1, k,

√
1 + k2

)
=

√
1 + k2 − k −→ 0,

and this infimum is not attained, as for (x, y, z) ∈ F, one has either x ̸= 1 or z ≥√
1 + y2 > y, which both imply q (x, y, z) > 0.
The orthogonal projection of F onto the hyperplane

H :=
{
(x, y, z) ∈ R3 : y + z = 0

}
is not closed. To see this, notice that the orthogonal projection P on H is given by
P (x, y, z) =

(
x, y−z

2
, z−y

2

)
. Consider again

(
1, k,

√
1 + k2

)
∈ F , then P

(
1, k,

√
1 + k2

)
=(

1, k−
√
1+k2

2
,
√
1+k2−k

2

)
∈ P (F ), but its limit (1, 0, 0) does not belong to P (F ), because

P−1 (1, 0, 0) = {(x, y, z) ∈ R3 : x = 1, y = z} does not intersect F. □
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These examples raise the question whether a Motzkin decomposable set F is Frank-
and-Wolfe as soon as its recession cone 0+F is Frank-and-Wolfe. A similar question can
be asked for quasi-Frank-and-Wolfe sets. For the latter class things have been simplified
due to Theorem 1, and we have the following answer.

Proposition 4. Let F be a Motzkin decomposable set. Then F is quasi-Frank-and-Wolfe
if and only if its recession cone 0+F is quasi-Frank-and-Wolfe.

Proof: 1) Suppose 0+F is qFW. Assume contrary to what is claimed that F has an
f-asymptote M . Write M = y + U for the direction space U of M and y ∈ U⊥. Let P be
the orthogonal projection onto U⊥. Then M = P−1(y). Observe that P (F ) is not closed.
Indeed, there exist xk ∈ F , yk ∈ M , with dist(xk, yk) → 0. Therefore Pxk → y. But
y ̸∈ P (F ), because if y = Px for some x ∈ F , then x ∈ F ∩ P−1(y) = F ∩M , which is
impossible due to F ∩M = ∅.

Since F is Motzkin decomposable, there exist a compact convex C with F = C +0+F .
Then P (F ) = P (C) + P (0+F ), while P (F ) = P (C) + P (0+F ). Since P (F ) ̸= P (F ), we
deduce that P (0+F ) cannot be closed, and that means 0+F has an f-asymptote parallel
to U , contradicting the fact that 0+F is a qFW -set.

2) Conversely, suppose F is qFW, but that 0+F is not qFW. Then 0+F must have an
f-asymptote L by Theorem 1. Suppose L = y +W with W the direction space of L and
y ∈ W⊥. Let P be the orthogonal projection on W⊥, then again P (0+F ) is not closed.
Now by [8, Proposition 5] F has an f-asymptote parallel to W , and by Theorem 1 this
contradicts the fact that F is qFW. □

Remark 3. This result is no longer correct if one drops the hypothesis that F is Motzkin
decomposable. We take F = {(x, y) ∈ R2 : x > 0, y > 0, xy ≥ 1}, then F , being
a hyperbola, has f-asymptotes, but 0+F is the positive orthant, which does not have
f-asymptotes.

Proposition 4 is a strong incentive to look for similar criteria for the Frank-and-Wolfe
property in terms of 0+F . A first partial answer is the following generalization of the
classical Frank and Wolfe theorem.

Theorem 2. Let F be a Motzkin decomposable convex set, and suppose its recession cone
0+F is polyhedral. Then F is Frank-and-Wolfe.

Proof: Write F = C + 0+F for C compact convex. Now consider a quadratic function
q(x) = 1

2
xTAx+ bTx bounded below by γ on F . Hence

(2) inf
x∈F

q(x) = inf
y∈C

inf
z∈0+F

q(y + z) = inf
y∈C

(
q(y) + inf

z∈0+F
yTAz + q(z)

)
≥ γ.

Now observe that for fixed y ∈ C the function qy : z 7→ yTAz + q(z) is bounded below on
0+F by η = γ −maxy′∈C q(y′). Indeed, for z ∈ 0+F we have

yTAz + q(z) ≥
(
q(y) + inf

z′∈0+F
yTAz′ + q(z′)

)
− q(y)

≥ inf
y∈C

(
q(y) + inf

z′∈0+F
yTAz′ + q(z′)

)
−max

y′∈C
q(y′)

≥ γ −max
y′∈C

q(y′) = η.

Since qy is a quadratic function bounded below on the polyhedral cone 0+F , the inner
infimum is attained at some z = z(y). This is in fact the classical Frank and Wolfe
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theorem on a polyhedral cone. In consequence the function f : Rn → R ∪ {−∞} defined
as

f(y) = inf
z∈0+F

yTAz + q(z),

satisfies f(y) = yTAz(y) + q(z(y)) > −∞ for y ∈ C, so the compact set C is contained
in the domain of f . But now a stronger result holds, which one could call a parametric
Frank and Wolfe theorem, and which we shall prove in Lemma 2 below. We show that
f is continuous relative to its domain. Once this is proved, the infimum (2) can then be
written as

inf
x∈F

q(x) = inf
y∈C

q(y) + f(y),

and this is now attained by the Weierstrass extreme value theorem due to the continuity
of q + f on the compact C. Continuity on C is now a consequence of the following

Lemma 2. Let D be a polyhedral convex cone and define

f(c) = inf
x∈D

cTx+ 1
2
xTGx,

where G = GT. Then dom(f) is a polyhedral convex cone, and hence f is continuous
relative to dom(f).

Proof: If xTGx < 0 for some x ∈ D, then dom(f) = ∅, so we may assume for the
remainder of the proof that xTGx ≥ 0 for every x ∈ D. Clearly then,

dom(f) =
{
c : cTx ≥ 0 for every x ∈ D such that xTGx = 0

}
.

Now by the Farkas-Minkowski-Weyl theorem (cf. [12, Thm. 19.1] or [13, Cor. 7.1a]) the
polyhedral cone D is the linear image of the positive orthant of a space Rp of appropriate
dimension, i.e. D = {Zu : u ∈ Rp, u ≥ 0}. This implies

dom(f) = {c : cTZu ≥ 0 for every u ≥ 0 such that uTZTGZu = 0}.

Now observe that if u ≥ 0 satisfies uTZTGZu = 0, then it is a minimizer of the quadratic
function uTZTGZu on the cone u ≥ 0, hence ZTGZu ≥ 0 by the Kuhn-Tucker conditions.
Therefore we can write the set P = {u ∈ Rp : u ≥ 0, uTZTGZu = 0} as

P =
∪

I⊂{1,...,p}

PI ,

where the PI are the polyhedral convex cones

PI = {u ≥ 0 : ZTGZu ≥ 0, ui = 0 for all i ∈ I, (ZTGZu)j = 0 for all j ̸∈ I}.

For every I ⊂ {1, . . . , p} choose mI generators uI1, . . . , uImI
of PI . Then,

dom(f) =
{
c : cTZu ≥ 0 for every u ∈ P

}
(3)

=
{
c : cTZu ≥ 0 for every u ∈

∪
I⊂{1,...,p} PI

}
=
∩

I⊂{1,...,p}
{
c : cTZu ≥ 0 for every u ∈ PI

}
=
∩

I⊂{1,...,p}
{
c : cTZuIj ≥ 0 for all j = 1, . . . ,mI

}
.

Since a finite intersection of polyhedral cones is polyhedral, this proves that dom(f) is a
polyhedral convex cone. To conclude, continuity of f relative to its domain now follows
from [12, Thm. 10.2], since f is clearly concave and upper semicontinuous. □
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Remark 4. The proof includes the case when xTGx > 0 for every x ∈ D \ {0}. In that
case one has PI = {0} for every I ⊂ {1, ..., p}, and therefore {c : cTZu ≥ 0 for every u ∈
PI} = Rn, so that the equality (3) still holds and reduces to dom(f) = Rn.

Remark 5. We refer to Banks et al. [1, Thm. 5.5.1 (4)] or Best and Ding [3] for a related
result in the case where G ⪰ 0. For the indefinite case see also Tam [14].

Remark 6. The example in Remark 3 shows that Theorem 2 is no longer true if F is not
Motzkin decomposable.

A second partial answer to the question whether the Frank-and-Wolfe property of 0+F
implies that of F is given in the following

Proposition 5. Let F have a Motzkin decomposition of the form F = P + 0+F with P
a polytope. If 0+F is Frank-and-Wolfe, then so is F .

Proof: Consider a quadratic q which is bounded below on F . Splitting the infimum
according to (2), we see as in the proof of Theorem 2 that every qy : z 7→ yTAz + q(z) is
quadratic and bounded below on 0+F , and since 0+F is Frank-and-Wolfe by hypothesis,
the inner infimum in (2) is attained at z(y) ∈ 0+F . As in the proof of Theorem 2 define
f(y) = infz∈0+F qy(z) = qy(z(y)), then f is the infimum of the family of affine functions
y 7→ yTAz+q(z) on the polytope P , hence is lower semi-continuous on P by [12, Theorem
10.2]. But then y 7→ q(y) + f(y) is lower semi-continuous on P , and by compactness of P
the outer infimum y ∈ P in (2) is therefore attained. □

We conclude the section about Motzkin decomposable sets with the following observa-
tion.

Proposition 6. Let F be a Motzkin decomposable qFW-set. Let T : Rn → Rm be a linear
operator. Then T (0+F ) is closed in Rm.

Proof: Let F = C + 0+F with C convex compact, then T (F ) = T (C) + T (0+F ). By
Lemma 1 the set T (F ) is closed, and this implies closedness of the recession cone 0+T (F )
by [12, Theorem 8.2]. But now (T (C), T (0+F )) is a Motzkin decomposition of T (F ),
hence T (0+F ) = 0+T (F ) by [8, Prop. 6]. That proves the claim. □

5. q-Asymptotes

The discussion in Section 3 shows that the absence of f-asymptotes is only a necessary
condition for the Frank-and-Wolfe property. In this section we shall develop a related
concept of asymptotes, where we replace affine (flat) surfaces by quadratic surfaces. We
start with the following

Definition 2. A quadric in Rn, also called a quadratic surface or a conic, is a set of the
form Q = {x ∈ Rn : xTAx+ 2bTx+ c = 0} with A = AT ̸= 0. □
Definition 3. A nonempty closed set A is said to be asymptotic to the nonempty closed
convex set F if A ∩ F = ∅ and dist(F,A) = 0. □

If A is an affine subspace of Rn, then A is asymptotic to F iff it is an f-asymptote in
the sense of Klee [9] and in the sense of Section 3. Now we can give the central definition
of this section.

Definition 4. The quadric Q = {x ∈ Rn : q(x) = xTAx+2bTx+ c = 0} is a q-asymptote
of the closed convex subset F of Rn if F∩Q = ∅ and dist(Q×{0}, {(x, q(x)) : x ∈ F}) = 0.
□
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The condition means F ∩Q = ∅, and that there exist xk ∈ F and yk with q(yk) = 0 such
that xk−yk → 0 and q(xk) → 0. This shows that the notion of a q-asymptote is invariant
under an affine change of coordinates in Rn, hence is a concept of affine geometry. The
condition could also be expressed as follows: The quadric Q× {0} in Rn+1 is asymptotic
to graphF (q) := graph(q) ∩ (F × R) in the sense of Definition 3.

Remark 7. If Q is a q-asymptote of F , then Q is clearly asymptotic to F , but the
converse is not true in general. To see this consider the following example. Let F =
{(x, y) ∈ R2 : x ≥ 0, y ≥ 0} be the positive orthant, and let q(x, y) = xy + 1, then
Q = {(x, y) ∈ R2 : q(x, y) = 0} = {(x, y) : xy = −1} is a hyperbola with F ∩Q = ∅. We
have dist(F,Q) = 0, because (− 1

n
, n) ∈ Q and (0, n) ∈ F , so Q is asymptotic to F in the

sense of definition 3. But Q is not a q-asymptote of F , because the sets

Q× {0} = {(x,− 1
x
, 0) : x ̸= 0}

and
graph(q) ∩ (F × R) = {(x, y, xy + 1) : x ≥ 0, y ≥ 0}

cannot be close. □
Remark 8. Consider the quadric

Q : q(x) = x2
1 + · · ·+ x2

n−1 = 0,

then Q = {x ∈ Rn : q(x) = 0} is the xn-axis. Suppose the xn-axis is an f-asymptote of a
closed convex set F . This is equivalent to Q being asymptotic to F . However, we argue
that Q is then even a q-asymptote of F in the sense of definition 4. Namely, we have

Q× {0} = {(0n−1, ξ, 0) : ξ ∈ R} ⊂ Rn+1

and

graph(q) ∩ (F × R) = {(x, q(x)) : x ∈ F} =

{(
x,

n−1∑
i=1

x2
i

)
: x ∈ F

}
.

Now given ϵ > 0 choose x ∈ F and t ∈ R such that ∥x− (0n−1, t)∥2 < ϵ2, which is possible
because dist(Q,F ) = 0. (Naturally, we could take t = xn). Then q(x) = x2

1+ · · ·+x2
n−1 <

ϵ2 and (xn − t)2 < ϵ2. Therefore

∥(0, t, 0)− (x, q(x))∥2 ≤ ∥x− (0n−1, t)∥2 + q(x)2 ≤ ϵ2 + q(x)2 < ϵ2 + ϵ4.

This shows the claim. We can generalize this to a proof that any flat M which is an
f-asymptote is also a q-asymptote when interpreted as a quadric:

Proposition 7. Let F be closed convex in Rn, and let Q = {x ∈ Rn : q(x) = 0} be a
quadric. Suppose Q is flat, that is, degenerates to an affine subspace. Then Q is a q-
asymptote of F in the sense of Definition 4 if and only if it is an f-asymptote of F in the
sense of [9]. Moreover, for any f-asymptote M of F there exists a quadric representation
of M as M = {x ∈ Rn : q(x) = 0}, and then M is also a q-asymptote of F .

Proof: The fact that Q is an affine subspace of dimension k ≤ n−1 means that one can
find affine coordinates in Rn such that Q has the form Q = {x ∈ Rn : x2

k+1 + · · · + x2
n =

0} = Rk × {0n−k}.
Since being a q-asymptote implies being asymptotic, and since for an affine subspace

this coincides with being an f-asymptote, we have but to prove the opposite implication.
Assume therefore that Q is an f-asymptote of F , i.e., F ∩ Q = ∅ and dist(F,Q) = 0.

We have to show that Q× {0} = {(x, 0) : x ∈ Q} is asymptotic to graph(q) ∩ (F × R) =
{(y, q(y)) : y ∈ F}. Clearly the two sets are disjoint. Splitting x = (x′, x′′), y = (y′, y′′) ∈
Rk × Rn−k, we have q(y) = y′′2k+1 + · · · + y′′2n = ∥y′′∥2. Now pick xr ∈ Q, yr ∈ F with
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dist(xr, yr) → 0 as r → ∞. Then xr = (x′r, x′′r) = (x′r, 0) and yr = (y′r, y′′r), hence
∥y′′r∥2 ≤ ∥xr − yr∥2 → 0, and this implies q(yr) = ∥y′′r∥2 → 0. Hence Q is a q-asymptote
of F , because it now follows that ∥(xr, 0)− (yr, q(yr))∥ → 0. □

This result shows that the notion of a q-asymptote is a natural extension of Klee’s
concept of f-asymptotes. We move from flat asymptotes to quadratic asymptotes. We are
now ready to state the principal result of this section.

Theorem 3. A convex set F is Frank-and-Wolfe if and only if it is closed and has no
q-asymptotes.

Proof: 1) Assume that there exists a quadratic function q : Rn → R which is bounded
below on F , but does not attain its infimum on F . We have to show that F has a q-
asymptote. Assume without loss that the infimum of q on F is 0. Since there exists x ∈ F
with q(x) > 0 and y ̸∈ F with q(y) = 0, the set Q = {x ∈ Rn : q(x) = 0} is a quadric in
Rn.

Note that if F is not qFW, then by Theorem 1 the set F has an f-asymptote, and
then has also a q-asymptote by Proposition 7. So we can assume that F is qFW, and by
Proposition 1 we therefore know that orthogonal projections of F are closed.

We clearly have F ∩Q = ∅, so we have to show that dist({(x, q(x)) : x ∈ F}, Q×{0}) =
0. Since the statement we have to prove is invariant under an affine change of coordinates
in Rn, we may assume that the quadric Q is given by one of the following equations:

(4) Q : q(x) =

p∑
i=1

x2
i −

r∑
i=p+1

x2
i + γ = 0, (p < r ≤ n)

where γ ∈ {0, 1} if Q is a center quadric with 0 as its center, or

(5) Q : q(x) =

p∑
i=1

x2
i −

r∑
i=p+1

x2
i + xr+1 = 0 (p ≤ r < n)

if Q is a paraboloid.
a) Let us first discuss the easier case of a paraboloid (5). Since q is a quadratic function,

it satisfies a Łojasiewicz inequality at infinity. In other words, following [15, Theorem 2.1]
there exist constants δ > 0, c > 0 and a Łojasiewicz exponent α > 0 at infinity such that
for every x ∈ Rn with |q(x)| < δ we have

|q(x)| ≥ c dist
(
x, Q̂

)α
,

where Q̂ = Q ∪Q1 with

Q = {x ∈ Rn : q(x) = 0} , Q1 =
{
x ∈ Rn : ∂

∂xr+1
q(x) = 0

}
.

This result uses the fact that q is a monic polynomial of degree m = 1 in the variable
xr+1. Since ∂/∂xr+1q(x) = 1, the set Q1 is empty, hence we obtain

|q(x)| ≥ c dist (x,Q)α

for |q(x)| < δ. Now choose a sequence xk ∈ F with q(xk) → 0. Then from some k onward,
q(xk) ≥ c dist(xk, Q)α → 0, which proves dist({(x, q(x)) : x ∈ F}, Q × {0}) = 0. This
settles the case where Q is a paraboloid.

b) Let us next consider the more complicated case where Q is a center quadric. Choose
a sequence xk ∈ F such that q(xk) → 0. We want to show dist(xk, Q) → 0, at least
for a subsequence. Assume on the contrary that dist(xk, Q) > d > 0 for every k. Write
xk = (ξk1 , . . . , ξ

k
n), and note that ∥xk∥ → ∞. We now have two principal cases.
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Case I is when (ξk1 , . . . , ξ
k
r ) → 0, while the part (ξkr+1, . . . , ξ

k
n) on which q given by (4)

does not depend satisfies ∥(ξkr+1, . . . , ξ
r
n)∥ → ∞. In this case we necessarily have r < n.

Case II is when there exists i ∈ {1, . . . , r} such that ξki → ξi ̸= 0 for a subsequence
k ∈ K, including the possibilities ξi = ±∞.

We start by discussing case II. Suppose ξi is finite and the signature of i is negative
(i.e. i ∈ {p+1, . . . , r}). Then there must also exist another index with positive signature
j ∈ {1, . . . , p} say, for which ξkj → ξj ̸= 0. (This is because in (4) the −ξ2i and ξ2j have
to sum to γ ≥ 0. Therefore if there is a non-vanishing contribution from an index i with
negative signature, there is necessarily also one from an index j with positive signature.)
We may without loss assume that this contribution with positive signatures comes from
j = 1. A similar argument applies when ξi = ±∞. We now have two subcases. Case II.1
is when ξk1 → ξ1 ∈ (0,+∞], case II. 2 is when ξk1 → ξ1 ∈ [−∞, 0).

Let us discuss case II.1. Shrinking d if need be, we assume ξ1 − d > 0, and then also
ξk1 > d for all k large enough. (This works also for ξ1 = +∞). Now define fk(t) =
q(t, ξk2 , . . . , ξ

k
n), then fk(t) = t2 + r(ξk2 , . . . , ξ

k
n). We have fk(t) > 0 for every t ∈ Ik :=

[ξk1 − d, ξk1 + d], because d < dist(xk, Q). Moreover, f ′
k(t) = 2t ≥ 2(ξk1 − d) > 0 for t ∈ Ik.

So fk is positive and increasing on Ik. Therefore

max
t∈[ξk1−d,ξk1 ]

fk(t) = fk(ξ
k
1 ) = q(xk) → 0.

Now define gk(t) = fk(t+ ξk1 ), then

max
s∈[−d,0]

gk(s) = q(xk) → 0.

Therefore the sequence gk converges to 0 in the space of quadratic polynomials in the
variable t. But that implies its coefficients tend to 0, a contradiction with gk(t) = (t +
ξk1 )

2 + r(ξk2 , . . . , ξ
k
n), because the coefficient of t2 is 1 and does not tend to 0. That is a

contradiction in case II. 1, and therefore settles that case.
Now consider case II. 2. Here we arrange ξ1 + d < 0, and then also ξk1 + d < 0 for k

sufficiently large, and that works also for ξ1 = −∞. So here fk is positive and decreasing
on Ik. We use an analogous argument, and get a similar contradiction. That settles case
II.

c) It remains to discuss case I. Note that here we must have γ = 0, so Q is a cone (in
the sense of quadric theory). Suppose r > 0, then the sublevel set {x ∈ F : q(x) ≤ r} is
nonempty and unbounded. Fix x in this set, then q(x) = q(x+ td) for every d of the form
d = (0, . . . , 0, ξr+1, . . . , ξn), because q does not depend on the coordinates ξr+1, . . . , ξn.
Now let P be the orthogonal projection on d⊥, then P (F ) is convex and, in addition,
closed by what was observed at the beginning of the proof. But the infimum of q on
P (F ) is still 0, and it is not attained. With regard to the form (4) we have therefore
reduced the dimension n by 1, but the quadric is still of the form (4) with the same r.
Continuing in this way, we end up with the case where r = n in (4). But then we are in
case II, because remember that case I can only occur when r < n. That settles case I and
therefore completes the first part of the proof.

2) Let us now prove that if F has a q-asymptote Q, then it is not Frank-and-Wolfe. From
the definition of a q-asymptote we have F ∩Q = ∅. We may therefore assume without loss
that F ⊂ {x ∈ Rn : q(x) > 0}, because F is connected and q is continuous. Now there
exists a sequence xk ∈ F and a sequence yk ∈ Q such that dist((xk, q(xk)), (yk, 0)) → 0.
That means 0 is the infimum of q, and it is not attained. □
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Remark 9. One might be tempted to guess that F is Frank-and-Wolfe iff there is no
quadratic Q which is asymptotic to F . The example of the positive orthant in remark 7
shows that this guess is incorrect. The corresponding condition is too strong.

Remark 10. Note that if we remove the condition dist(Q,F ) = 0 from the definition of
q-asymptotes, then the statement becomes trivial. The sole difficulty in the first part of
the proof of Theorem 3 is indeed to establish dist(Q,F ) = 0.

This observation also indicates why there is little hope for an extension of Theorem 3
to higher degree polynomials. Consider for instance f(x, y, z) = (y2 + (xy − 1)2)z, then
Q = {(x, y, z) : f(x, y, z) = 0} = {z = 0} is an affine manifold. We have f(k, 1

k
, 1) → 0,

but dist((k, 1
k
, 1), Q) → 1√

2
as k → ∞. Putting F = {(x, y, 1) ∈ R3 : xy ≥ 1}, we see

that f does not attain its infimum 0 on F , yet the affine manifold Q = {f = 0} is not
asymptotic to F . What is missing is an argument to infer from f(xk) → 0 for xk ∈ F
that also dist(xk, Q) → 0, and for higher order polynomials such an argument may not
exist.

Example 5.1. To illustrate Theorem 3 we consider the set F = {(x, y) ∈ R2 : y ≥ x2} and
claim that it is Frank-and-Wolfe. We check this by showing that F has no q-asymptotes.
Suppose Q = {q = 0} is a q-asymptote of F . If Q is a hyperbola or consists of two lines,
then F itself has lines as asymptotes, which is impossible, because F is a parabola. It is
equally impossible that Q is an ellipse, so Q must be a parabola, too. But it is intuitively
clear that no other parabola can be a q-asymptote of y = x2.

To prove this rigorously, suppose q(x, y) = ax2 + bxy + cy2 + dx + ey + f . By the
definition of a q-asymptote there exist (xk, yk) ∈ Q and (xk, x

2
k) ∈ F , such that ∥(xk, x

2
k)−

(xk, yk)∥ → 0 and q(xk, x
2
k) → 0. Picking a subsequence, we may without loss assume

xk → +∞. Then q(xk, x
2
k) = ax2

k + bx3
k + cx4

k + dxk + ex2
k + f → 0 implies successively

c = 0, then b = 0, then a = −e, then d = 0 and f = 0, and finally a ̸= 0. Hence
Q = {(x, y) : a(x2 − y) = 0}, but this is the boundary curve of F , which contradicts
F ∩Q = ∅. □

Remark 7 suggests an equivalent geometric characterization of q-asymptotes, which we
now develop. Let Q = {x ∈ Rn : q(x) = 0} be a quadric and consider the associated
one-parameter family Q = {Qα}α∈R of quadrics Qα = {x ∈ Rn : q(x) − α = 0}. Note
that Q is a geometric object, as an affine change of coordinates leads to the same family
of sets. Informally, we intend to show that Q ∈ Q is a q-asymptote of the closed convex
set F if and only if Q,F are asymptotic, and no other element Q′ of the bundle Q can
be squeezed in between F and Q.

Definition 5. Let F,Q be closed sets with F ∩ Q = ∅ and dist(F,Q) = 0. We say that
the closed set Q′ is squeezed in between F and Q if F ∩ Q′ = ∅ = Q ∩ Q′ and if every
segment [x, y] with x ∈ F and y ∈ Q contains a point z ∈ Q′, i.e., [x, y] ∩Q′ ̸= ∅. □

We now have the following

Proposition 8. Let F be closed convex and let Q = {x ∈ Rn : q(x) = 0} be a quadric.
Then Q is a q-asymptote of F if and only if Q is asymptotic to F and no other member
Q′ of the bundle Q can be squeezed in between F and Q. In other words, Q is a tight
quadric asymptote to F .

Proof: 1) Suppose Q is a q-asymptote of F . Then there exist xk ∈ F , yk ∈ Q such that
xk − yk → 0 and q(xk) → 0. Clearly Q is asymptotic to F . Since F ∩ Q = ∅ and F is
connected, we either have F ⊂ {x : q(x) > 0} or F ⊂ {x : q(x) < 0}. Assume without
loss that F ⊂ {x : q(x) > 0}. Suppose Q′ = {x : q(x) = α} can be squeezed in between
Q and F . Since Q ∩Q′ = ∅, we have α ̸= 0. There are two cases to be discussed.
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Suppose first that α < 0. Then we find a point zk in the open segment (xk, yk) such
that q(zk) = α < 0. But q(xk) > 0, hence by the mean value theorem there exists another
point vk in the open segment (xk, zk) with q(vk) = 0. Now we repeat the argument on
[xk, vk], which must also contain a point with value q = α. That leads to a contradiction,
because we thereby find a third root of q on the segment [xk, yk], which is impossible as
q is quadratic. In consequence the squeezing value must be α > 0.

Suppose therefore that the quadric Q′ which may be squeezed in between F and Q
has α > 0. Then we have the following situation on the segment [xk, yk]. There exists
zk ∈ (xk, yk) with q(zk) = α > 0, while q(yk) = 0 and q(xk) → 0, 0 < q(xk) ≪ α. Let
Lk be the line generated by [xk, yk]. Since q is a quadratic function on Lk, there exists
a point vk ∈ Lk preceding xk where q(vk) = 0. Here preceding means that xk ∈ [vk, yk].
Since F ⊂ {q > 0}, we have vk ̸∈ F . In particular, F ∩ Lk is contained in the segment
[vk, xk]. But vk ∈ Q, xk ∈ F , hence the segment [vk, xk] must also contain an element wk

of Q′, i.e., with q(wk) = α, and that is impossible because q is quadratic. Namely, the
arrangement on the line Lk is now vk < wk < xk < zk < yk with q(yk) = 0, q(zk) = α > 0,
q(xk) ≪ α, q(wk) = α, q(vk) = 0. But q ↾ Lk is concave, so this is impossible. This proves
that Q′ ∈ Q could not possibly be squeezed in between F and Q.

2) Conversely, suppose Q is asymptotic to F and is tight in the sense that no other
member Q′ of the bundle Q can be squeezed in between F and Q. Since F ∩Q = ∅, we
may assume F ⊂ {x : q(x) > 0}. Let γ := infx∈F q(x). We claim that γ = 0. For suppose
we had γ > 0 then on choosing 0 < α < γ we find that Q′ = {x : q(x)−α = 0} is squeezed
in between F and Q, which is impossible. Hence γ = 0. Now pick xk ∈ F with q(xk) → 0
and yk ∈ Q. Using the argument of part 1) of the proof of Theorem 4, it follows that
yk − xk → 0. Hence (xk, q(xk))− (yk, 0) → 0. That shows dist(Q× {0}, graphF (q)) = 0,
hence Q is a q-asymptote of F . □

Remark 11. In view of the new characterization of q-asymptotes we have the following
description of Frank-and-Wolfe sets. Whenever Q is a quadric asymptote of a Frank and
Wolfe set F , then there exists another quadric Q′ in the bundle Q associated with Q that
can be squeezed in between F and Q. We could say that Q′ is a tighter asymptote than
Q. As this argument can be repeated, the FW -set F has no tightest asymptote among
the quadrics in Q.

Remark 12. It is instructive to give a direct argument for the fact that an f-asymptote
in the sense of Klee is tight in the sense of the previous remark, hence is a q-asymptote.
To see this, suppose M = {x ∈ Rn : Ax − b = 0} is an f-asymptote of F and represent
M as the quadric M = {x : q(x) = ∥Ax− b∥2 = 0} = Q. Consider the associated bundle
Q = {Qα} and suppose some Qα with α ̸= 0 can be squeezed in between Q = M and
F . Clearly this means α > 0, as the Qα′ with α′ < 0 are empty. But q is convex, hence
F ⊂ {x : q(x) = ∥Ax − b∥2 > α}, because F ⊂ {x : ∥Ax − b∥2 < α} implies that q is
concave on a segment [x, y] with x ∈ F and y ∈ M . But now we have a contradiction
with the fact that dist(M,F ) = 0, as this implies infx∈F ∥Ax− b∥ = 0.

6. Generalized linear complementarity problem

Let F be a closed convex cone in Rn, let A = AT ∈ Rn×n, and b ∈ Rn. Then we consider
the following generalized linear complementarity problem on F with data (A, b):

(6) Find x∗ ∈ F such that (Ax∗ + b)Tx ≥ 0 for every x ∈ F , and Ax∗ + b ⊥ x∗.
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Every x∗ ∈ F satisfying (6) is called a solution of the problem. We say that the generalized
linear complementarity problem (6) is feasible if γ = infx∈F (Ax+ b)Tx > −∞ and if there
exists x0 ∈ F such that (Ax0 + b)Tx ≥ 0 for every x ∈ F .

Theorem 4. Suppose problem (6) is feasible. If F is a Frank-and-Wolfe cone, then (6)
has a solution x∗.

Proof: Let x0 be a feasible solution, then (Ax0 + b)Tx ≥ 0 for every x ∈ F . Since F
is a cone we have 2x0 ∈ F , and (2Ax0 + 2b)Tx ≥ 0 for every x ∈ F . Due to feasibility
the quadratic function q(x) = (Ax + 2b)Tx is now bounded below by 2γ, and since F is
Frank-and-Wolfe, there exists x∗ ∈ F such that

(7) (Ax+ 2b)Tx ≥ (Ax∗ + 2b)Tx∗

for every x ∈ F . For x ∈ F and 0 < t ≤ 1 we have x̃ = x∗ + t(x − x∗) ∈ F , hence on
substituting x̃ in (7) and expanding, we get

t(Ax∗ + 2b)T(x− x∗) + t(x− x∗)TAx∗ + t2(x− x∗)TA(x− x∗) ≥ 0.

Dividing by t and letting t → 0 gives 2(Ax∗+b)T(x−x∗) ≥ 0, hence (Ax∗+b)T(x−x∗) ≥ 0
for every x ∈ F . Putting x = 0 ∈ F we get (Ax∗ + b)Tx∗ ≤ 0, while putting x = 2x∗ ∈ F
gives (Ax∗ + b)Tx∗ ≥ 0, so together we get complementarity Ax∗ + b ⊥ x∗. From that
follows (Ax∗+b)T(x−x∗) = (Ax∗+b)Tx ≥ 0 for all x ∈ F , hence x∗ is a solution of (6). □

For sufficient conditions guaranteeing infx∈F (Ax + b)Tx > −∞ we refer to [6] and the
references given there. Links with the linear complementarity problem can already be
found in the original work [5].
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