
Convergence of non-smooth descent methods using
the Kurdyka-Łojasiewicz inequality

Dominikus Noll ∗

Abstract

We investigate convergence of subgradient-oriented descent methods in non-
smooth non-convex optimization. We prove convergence in the sense of subsequences
for functions with a strict standard model, and we show that convergence to a sin-
gle critical point may be guaranteed if the strong Kurdyka-Łojasiewicz condition
is added. We show by way of an example that the Kurdyka-Łojasiewicz inequality
alone is not sufficient to prove convergence to critical points.

Key words: Non-smooth non-convex optimization, subgradient-oriented descent
method, strict model, Kurdyka-Łojasiewicz inequality, upper C1 function, lower C1

function.

1 Introduction
In smooth optimization a sequence of descent directions dj at iterates xj is called gradient-
oriented if the angle between dj and the negative gradient −∇f(xj) stays uniformly
away from 90◦. Convergence of gradient-oriented methods is guaranteed by the Armijo
condition in tandem with a safeguard against too small steps (see [14]). Convergence is
apriori understood in the sense of subsequences, but the work of Absil et al. [4], and
subsequent generalizations [7, 11, 8, 21], assures aposteriori convergence xj → x∗ to a
single critical point x∗ if f satisfies the Kurdyka-Łojasiewicz inequality.

Here we investigate whether similar results may be expected in non-smooth optimiza-
tion. We are premonished by the well-known fact that for convex functions, the steepest
descent method converges only when the stepsizes tk satisfy

∑∞
k=1 tk =∞,

∑∞
k=1 t

2
k <∞,

(cf. [5]), a condition which cannot be verified algorithmically in the non-convex case, where
linesearch or related mechanisms are required. It turns out that the non-smooth situation
is indeed complicated, and not altogether promising. Convergence of subgradient-oriented
methods, even when understood in the sense of subsequences, only occurs when f belongs
to the specific class S of non-smooth functions having a strict standard model [20]. For
f ∈ S , convergence can be forced algorithmically, and in tandem with the Kurdyka-
Łojasiewicz property, f ∈ S assures convergence to a single critical point. We show by
way of an example that convergence to a critical point may fail even for tame convex
functions f 6∈ S .

The work of Bolte et al. [11] is of interest to us. These authors characterize the
Kurdyka-Łojasiewicz property for convex C1,1-functions by length boundedness of piece-
wise gradient iterates, and by the existence of an approximate talweg. We show that in

∗Université de Toulouse, Institut de Mathématiques, Toulouse, France

1

the non-smooth case convergence of discrete subgradient trajectories, or of the talweg, is
no longer linked to the Kurdyka-Łojasiewicz inequality. Something else is needed, namely,
a function f ∈ S . For f ∈ S we obtain convergence in the sense of subsequences of a
variant of the talweg, and convergence to a single critical points when the strong Kurdyka-
Łojasiewicz property is added. These results are in contrast with the continuous case [9],
where finite length of the subgradient trajectory automatically implies convergence to a
critical point.

Our work is also related to Attouch et al. [6], where an abstract convergence result
under the Kurdyka-Łojasiewicz inequality is proved. We investigate whether the sufficient
conditions of these authors can be assured algorithmically. The results are discussed in
section 12.

The structure of the paper is as follows. In section 6 we recall the model concept and
prove that upper C1-functions belong to the class S of functions with a strict standard
model. The central result in sections 7 – 9 proves convergence of subgradient-oriented
descent methods for functions f ∈ S . Consequences for the talweg and for discrete
gradient trajectories are given in section 11. The abstract descent result of [6] is discussed
in section 12. A limiting example is discussed in section 13.

2 Kurdyka-Łojasiewicz inequality
Following [8], we shall say that a locally Lipschitz function f : Rn → R satisfies the
Kurdyka-Łojasiewicz inequality (for short KL-inequality) at x∗ ∈ Rn if there exists 0 <
η <∞, a neighborhood U of x∗, and a concave function κ : [0, η]→ [0,∞) such that

(i) κ(0) = 0,

(ii) κ is of class C1 on (0, η),

(iii) κ′ > 0 on (0, η),

(iv) For every x ∈ U with f(x∗) < f(x) < f(x∗) + η we have

κ′(f(x)− f(x∗))dist(0, ∂Lf(x)) ≥ 1.

Here ∂L(f(x) is the limiting subdifferential of f at x. We shall say that f satisfies the
strong KL-inequality at x∗ if the same estimate holds for the Clarke subdifferential ∂f(x).
In Bolte et al. [10, Thm. 11] it is shown that definable functions satisfy the strong KL-
inequality, and this class is expected to cover a large variety of practical cases.

3 Subgradient-oriented descent
The angle condition does no longer describe a useful set of search directions in a non-
smooth setting. The reason is that directions allowing descent form in general not a half-
space, but a cone with opening angle < 180◦. That means a direction d with ∠(d,−g−) <
90◦, where g− is the steepest ascent subgradient, need not even allow descent. Fortunately,
gradient-orientedness of dj could also be defined in the following equivalent way: each dj
is the steepest descent direction at xj with respect to some euclidian norm ‖x‖2j = x>Pjx
on Rn, such that

0 < λ ≤ λmin(Pj) ≤ λmax(Pj) ≤ Λ <∞ (1)

2

for all j ∈ N and certain 0 < λ ≤ Λ < ∞. The charm of this second definition is that it
carries over reasonably to the non-smooth case.

Yet another difference between the smooth and the non-smooth case is that the concept
of a descent direction depends on the choice of the subdifferential. We therefore avoid
it and simply work with directions which allow descent, i.e., search directions d where
f(x+ td) < f(x) for some t0 > 0 and all 0 < t ≤ t0. Altogether, this leads to

Definition 1. A sequence dj of normalized directions allowing descent at xj ∈ Rn is
subgradient-oriented if there exist Clarke subgradients gj ∈ ∂f(xj) such that dj = − Pjgj

‖Pjgj‖ ,
with the Pj satisfying (1).

We examine under what conditions subgradient-oriented method for non-smooth op-
timization convergence. We are interested in conditions which can be guaranteed algo-
rithmically.

4 Discrete gradient-oriented flow
Bolte et al. [11] give a characterization of the Kurdyka-Łojasiewicz condition for convex
C1,1 functions in terms of finite length of discrete gradient flow trajectories. Here discrete
gradient flow means sequences xj of iterates satisfying the strong descent condition

β‖∇f(xj)‖‖xj+1 − xj‖ ≤ f(xj)− f(xj+1). (2)

One can observe that if (2) is to hold for all points on the segment [xj, xj+1], then one
obtains the condition β‖∇f(xj)‖ ≤ −∇f(xj)

>dj, which implies cos∠(−∇f(xj), dj) ≥
β > 0. In other words, the sequence of directions dj is then gradient-oriented in the usual
smooth sense.

Here we analyze the non-smooth and non-convex analogue of this result, using our
definition 1. That is, we seek algorithmically verifiable conditions assuring convergence
of discrete subgradient trajectories. Our results will be compared to [11, 8] in section 11.

5 Abstract descent method
Attouch et al. [6] prove convergence of an abstract non-smooth descent method for func-
tions satisfying the KL-inequality. They require their sequence xj to satisfy the axiom

f(xj)− f(xj+1) ≥ a‖xj − xj+1‖2 (3)

for some a > 0, and the existence of gj+1 ∈ ∂Lf(xj+1) satisfying

‖gj+1‖ ≤ b‖xj − xj+1‖ (4)

for some b > 0. While (3) is built rather along the lines of the usual strong descent
condition (2) for subgradient-oriented methods, condition (4) is unexpected, and the
immediate question is whether it has a chance to be algorithmically verifiable.

Postponing this question, if one believes that (4) makes sense algorithmically, then it
is natural to also consider a similar condition rooted at xj, i.e., there exists gj ∈ ∂Lf(xj)
and b > 0 such that

‖gj‖ ≤ b‖xj − xj+1‖. (5)

3

In our framework we can explain why both (4), (5) are difficult to force algorithmically.
We show in section 13 by way of an example that (4) and (5) both fail for a convex tame
function f 6∈ S .

On the positive side, our approach also shows that for functions f ∈ S , conditions
like (4) and (5) are not even needed. All that is required to prove convergence is a descent
condition in the spirit of (3), in tandem with a diligent backtracking strategy (Theorem
2). We will get back to this interesting line in section 12.

6 The model concept
Given a locally Lipschitz function f : Rn → R, we call φ : Rn × Rn → R a first-order
model of f if φ(·, x) is convex for every x ∈ Rn and the following axioms are satisfied:

(M1) φ(x, x) = f(x) and ∂1φ(x, x) ⊂ ∂f(x).

(M2) For every x and every ε > 0 there exists δ > 0 such that f(y) ≤ φ(y, x) + ε‖y − x‖
whenever ‖y − x‖ ≤ δ.

(M3) φ is jointly upper semi-continuous, i.e., (yj, xj) → (y, x) implies lim sup
j→∞

φ(yj, xj) ≤
φ(y, x).

One notices the similarity of this concept with the Taylor expansion of differentiable
functions, which is corroborated by the fact that every locally Lipschitz function has a
first-order model, which we call the standard model,

φ](y, x) = f(x) + f ◦(x, y − x).

Here f ◦(x, d) is the Clarke directional derivative of f at x in direction d. For C1-functions
φ](y, x) = f(x)+∇f(x)(y−x) reproduces indeed the Taylor expansion. There is, however,
a major difference between the Taylor expansion and the model concept. Taylor expansion
wants herself to be unique. The idea of the model concept is the opposite. We wish a
given function to have as many models as possible, because every model leads to a different
optimization method.

Definition 2. A first-order model φ for the locally Lipschitz function f is called strict at
x̄ ∈ Rn if the following strict version of axiom (M2) is satisfied:

(M̂2) For every ε > 0 there exists δ > 0 such that

f(y) ≤ φ(y, x) + ε‖y − x‖

for all y, x ∈ B(x̄, δ). The model φ is called strict if it is strict at every x̄.

Definition 3. A first-order model φ for the locally Lipschitz function f is called strong
at x̄ if the following even stronger version of (M2) is satisfied

(M̃2) For every ε > 0 there exists δ > 0 and L > 0 such that

f(y) ≤ φ(y, x) + L‖y − x‖2

for all x, y ∈ B(x̄, δ). The model φ is called strong if it is strong at every x̄.

4

Remark 1. One notices the resemblance of (M̂2) with the Taylor-Young formula, and
that of (M̃2) with the Taylor-Lagrange formula.

Remark 2. Notice that if a model is strong at x̄, then it is also strong for every x̃ in a
neighborhood of x̄. Strong models are strict, and strict models are models, but none of
these is invertible. For instance, if f is of class C1,1, then its Taylor expansion is strong,
while it is strict if f is of class C1. So for f ∈ C1 \C1,1 the Taylor expansion is strict but
not strong. If we consider f(x) = x2 sin(x−1) with f(0) = 0, then φ] is a model, which is
not strict at x = 0.

We recall from Spingarn [24] and Rockafellar and Wets [23] that a locally Lipschitz
function f : Rn → R is lower Ck at x0 if there exists a compact space K and a continuous
function F : B(x0, δ)×K → R for which all partial derivatives of order ≤ k are continuous,
such that

f(x) = max
y∈K

F (x, y), x ∈ B(x0, δ).

f is called lower Ck if it is lower Ck at every x. Recall that lower C2 functions are already
lower Ck for every k ≥ 2 (cf. [23]), but the class of lower C1 functions is strictly larger
than the class of lower C2 functions. Finally, we call f upper Ck if −f is lower Ck.

Proposition 1. (Cf. [18]). Let f be locally Lipschitz. If f is upper C1, then its standard
model φ] is strict, and if f is upper C2, then φ] is strong.

Proof: 1) Let f be upper C1 at x̄. Let ε > 0. According to Daniilidis and Georgiev [12]
there exists δ > 0 such that −f(tx+ (1− t)y)) ≤ −tf(y)− (1− t)f(x) + εt(1− t)‖x− y‖
for all x, y ∈ B(x̄, δ) and 0 ≤ t ≤ 1. This can be re-arranged as

f(y) ≤ f(x) + t−1 (f(x+ t(y − x))− f(x)) + ε(1− t)‖x− y‖.

Taking the limit superior t→ 0+ readily implies f(y) ≤ f(x) + f ◦(x, y− x) + ε‖x− y‖ =
φ](y, x) + ε‖x− y‖, hence strictness of φ] at x̄.

2) The proof of the upper C2 case is similar. �

Remark 3. Having a strict standard model φ] seems a weaker property than upper C1.
Indeed, from Spingarn [24] we know that upper C1 at x̄ is equivalent to the following: For
every ε > 0 there exists δ > 0 such that for all x, y ∈ B(x̄, δ) and every g ∈ ∂f(x) one has
−f(y) + f(x) ≥ g>(y− x)− ε‖y− x‖. In contrast, for strictness of φ] it suffices that this
be true for some g ∈ ∂f(x). We may represent this in a more compact form as follows: f
is upper C1 at x̄ iff for every ε > 0 there exists δ > 0 such that for all x, x+ td ∈ B(x̄, δ),
‖d‖ = 1, t > 0, we have

f(x+ td)− f(x)

t
≤ −f ◦(x,−d) + ε,

whereas strictness of the standard model replaces this by the formally weaker

f(x+ td)− f(x)

t
≤ f ◦(x, d) + ε.

Remark 4. If f is convex then φ(·, x) = f is a strong model in the sense of Definition
3. We say that a convex function is its own strong model. Since f has also a standard
model φ], we see that a function f will in general have several models.

5

Remark 5. Every convex composite function f = g ◦ F with g convex and F of class
C1 has the natural strict model φ(·, x) = g(F (x) + F ′(x)(· − x)). Convergence theory for
natural models was developed in [2, 3, 20].

In the same vein, if f is lower C2, then given a bounded convex set B, we can find
µ > 0 such that for every x ∈ B, f + µ‖ · −x‖2 is convex on B. In consequence,
φ(·, x) = f+µ‖·−x‖2 is a strong first-order model of f onB. Notice that descent directions
based on the natural model or the lower C2 model are in general not subgradient-oriented,
and it is open whether the KL-property applies in this setting.

The model concept extends even to lower C1-function:

Proposition 2. Let f be locally Lipschitz and lower C1. Then f has a strict first-order
model on every bounded set B.

Proof: Let B = B(0,M) be a bounded disk. We construct a strict model φ(·, x) for the
x ∈ B. For y ∈ B and g ∈ ∂f(y) let ty,g(·) = f(y) + g>(· − y) be a tangent to f at y. We
define the downshift of ty,g(·) with respect to x as

s = s(x, y, g) = [ty,g(x)− f(x)]+ + c‖y − x‖2,

where c > 0 is a fixed constant. Then we put

my,g(·, x) = ty,g(·)− s(x, y, g),

which we call the downshifted tangent. Now we define

φ(·, x) = max{my,g(·, x) : y ∈ B, g ∈ ∂f(y)},

and one can check that φ is indeed a strict first-order model of f at every x ∈ B. For a
more detailed proof see [18]. �

We have applied bundling techniques to lower C1 functions quite successfully in the
context of automatic control. We refer to [20, 18, 1, 19, 13] for theoretical material
supporting this branch of the theory. One may observe that for lower C1 functions the
standard model φ] is not the best choice, as more natural strict models φ or oracles in
the sense of [18] are available.

7 Descent step finding
In this section we discuss the question how to compute a subgradient-oriented descent
step. The difficulty may be condensed to the observation that if g ∈ ∂f(x), then due to
non-smoothness, −g may not necessarily allow descent. The directions allowing descent
form a cone, not a half-space, and it is therefore harder to find one pointing into this cone.
As the general theme of our work is the analysis of gradient-oriented methods, we will
during the following work with the standard model φ], even though some of the results
hold for more general models.

A function φ]k : Rn×Rn → R is called a first-order working model if φ]k(·, x) is convex,
φ]k(·, x) ≤ φ](·, x), φ]k(x, x) = φ](x, x) = f(x), and ∂1φ

]
k(x, x) ⊂ ∂1φ

](x, x) = ∂f(x).
Working models are maintained and updated iteratively during the inner loop (algorithm
1) with counter k by adding cutting planes. Here cutting planes means tangents to φ](·, x)

6

at the various null steps yk. In other words, due to the specific structure of φ], each φ]k
has the form

φ]k(·, x) = sup
g∈Gk

f(x) + g>(· − x)

for a suitable Gk ⊂ ∂f(x). Notice that the standard model itself has the same structure
with G = ∂f(x), i.e.,

φ](·, x) = sup
g∈∂f(x)

f(x) + g>(· − x),

which guarantees φ]k ≤ φ] and ∂1φ]k(x, x) ⊂ ∂1φ
](x, x). As we shall see, the management

of the sets Gk during the inner loop has to respect two basic rules, referred to as cutting
planes and aggregation, which we proceed to explain.

Given the current working model φ]k(·, x) at x, the step-finding algorithm computes
the solution yk of the tangent program

min
y∈Rn

sup
g∈Gk

f(x) + g>(y − x) + 1
2tk
‖y − x‖P , (6)

where ‖x‖2P = x>Px is an euclidian norm fixed during the inner loop at x. The solution yk
of (6) is called the trial step, tk is called the stepsize, while t−1k > 0 is sometimes referred
to as the proximity control parameter. The necessary optimality condition for (6) implies

0 ∈ ∂1φ]k(yk, x) + t−1k P (yk − x),

or what is the same,

g∗k := t−1k P (x− yk) ∈ ∂1φ]k(yk, x). (7)

We call g∗k the aggregate subgradient and f(x) + g∗>k (· − x) the aggregate plane at yk.
Notice that g∗k ∈ ∂f(x) due to the specific structure of φ].

Having computed a trial step yk by solving (6), we test acceptance by computing the
test parameter

ρk =
f(x)− f(yk)

f(x)− φ]k(yk, x)
.

We say that yk satisfies the descent condition if ρk ≥ γ. If this is the case, we accept
x+ = yk as the new serious iterate, and the step finding algorithm terminates successfully.
On the other hand, if ρk < γ, then we call yk a null step. In this case the inner loop
has to continue, and this requires improving the working model by modifying the set Gk,
and possibly by shortening the stepsize tk. In the case of a null step yk, we compute
gk ∈ ∂f(x) such that φ](yk, x) = f(x) + g>k (yk − x) and include gk in the new set Gk+1.
Moreover, we also include the aggregate subgradient g∗k in the set Gk+1.

Remark 6. Notice that our test ρk>γ replaces the descent conditions (2) and (3).

We mention two specific ways of constructing the working model φ]k. The first option
is to maintain a finite set Gk = {g0, . . . , gk−1}, where at each step k the new cutting plane
gk is added. In this case the tangent program has the simple form

min
y∈Rn

max
i=0,...,k−1

f(x) + g>i (y − x) + 1
2tk
‖y − x‖2P , (8)

7

Algorithm 1. Descent step-finding by backtracking.
Input: Current iterate x. Output: Serious iterate x+.
Parameters: 0 < γ < γ̃ < 1, 0 < θ < Θ < 1.
1: Initialize. Put counter k = 1, fix t1 > 0 and g0 ∈ ∂f(x). Put G1 = {g0}.
2: Tangent program. Given tk > 0, the current Gk ⊂ ∂f(x) and working model
φ]k(·, x) = f(x) + max

g∈Gk
g>(· − x), compute solution yk of the tangent program

(TP) min
y∈Rn

φ]k(y, x) + 1
2tk
‖y − x‖2P .

3: Acceptance test. Compute

ρk =
f(x)− f(yk)

f(x)− φ]k(yk, x)
.

If ρk ≥ γ, then put x+ = yk and quit successfully with new serious step. Otherwise,
if ρk < γ, goto step 4.

4: Cutting plane. Pick a subgradient gk ∈ ∂f(x) such that f(x) + g>k (yk − x) =
φ](yk, x), or equivalently, f ◦(x, yk−x) = g>k (yk−x). Include gk into the new set Gk+1

for the next sweep.
5: Aggregate plane. Include the aggregate subgradient g∗k in the new set Gk+1, and

allow the inclusion of additional subgradients from ∂f(x).
6: Step management. Compute the test quotient

ρ̃k =
f(x)− φ](yk, x)

f(x)− φ]k(yk, x)
.

If ρ̃k ≥ γ̃, then select tk+1 ∈ [θtk,Θtk]. On the other hand, if ρ̃k < γ̃ then keep
tk+1 = tk. Increment counter k and go back to step 2.

which can be converted to a convex quadratic program. Here the aggregate subgradient
has the form

g∗k =
k−1∑

i=0

λigi, λi ≥ 0,
k−1∑

i=0

λi = 1,

and the gi ∈ Gk with λi > 0 are said to be called by the aggregate g∗k. Including g∗k in the
set Gk+1 allows us to drop older elements of Gk, so that the size of Gk can be limited.

The second case of interest is when φ]k = φ] for all k. Here the test quotient ρ̃k has
constant value 1, so we always reduce the stepsize in case of a null step. Adding cutting
planes and aggregate planes has no effect, because they are already included in G = ∂f(x).
The only action taken by the algorithm is backtracking. The solution yk of the tangent
program now has the specific form yk = x− tkPg−, where g− ∈ ∂f(x) is the projection of
0 onto ∂f(x) with respect to the euclidian norm ‖ · ‖P . In other words, this case covers
all non-smooth subgradient-oriented descent method with backtracking linesearch in the
sense of definition 1.

Theorem 1. Let f be locally Lipschitz. Suppose 0 6∈ ∂f(x). Then after a finite number
of trials k the descent step-finding algorithm locates gk ∈ ∂f(x) and a stepsize tk > 0 such
that x+ = x− tkP−1gk satisfies the descent condition ρk ≥ γ.

8

Proof: 1) We assume, contrary to what is claimed, that the algorithm turns infinitely,
generating a sequence yk of trial points which all fail the acceptance test. That means
ρk < γ for all k ∈ N. According to step 5 of the algorithm the step size tk is either kept
invariant, or reduced by a factor θ < 1, but it is never increased. We have therefore two
cases. Case 1 is when tk → 0, case 2 is when tk is bounded away from 0. The latter
means tk = tk0 for some k0 ∈ N and all k ≥ k0. In both cases we will have to achieve a
contradiction with the hypothesis 0 6∈ ∂f(x). Since the norm ‖ · ‖P is fixed during the
entire proof, we may without loss assume P = I during the following in order to simplify
the notations.

2) Let us start with the case where tk → 0. By step 5 of the algorithm the step size tk
is only reduced to tk+1 ≤ Θtk < tk when ρ̃k ≥ γ̃. We deduce that there exists an infinite
subset K of N such that ρ̃k ≥ γ̃ for every k ∈ K.

By the optimality condition (7) we have ‖yk − x‖ = tk‖g∗k‖, where g∗k is the kth
aggregate subgradient. Since ‖g∗k‖ ≤ max{‖g‖ : g ∈ ∂f(x)} <∞, we must have yk → x.
Using the fact that g∗k is a subgradient of φ](·, x) at yk, the subgradient inequality implies

g∗>k (x− yk) ≤ φ]k(x, x)− φ]k(yk, x),

which in view of φ]k(x, x) = f(x) and g∗>k (x− yk) = ‖g∗k‖‖x− yk‖ gives

‖g∗k‖‖x− yk‖ ≤ f(x)− φ]k(yk, x) ≤ g>0 (x− yk),

the latter because f(x) + g>0 (y − x) ≤ φ]k(y, x) for all k. We deduce φ]k(y
k, x) → f(x).

Moreover, since 0 6∈ ∂f(x), we have ‖g∗k‖ ≥ η > 0 for some η > 0 and all k. That shows

f(x)− φ]k(yk, x) ≥ η‖x− yk‖ (9)

for all k.
Next observe that φ]k+1(y

k, x) = φ](yk, x) by step 4 of the algorithm. Therefore,
expanding the control parameter ρ̃k, gives

ρ̃k = ρk +
f(yk)− φ](yk, x)

f(x)− φ]k(yk, x)

≤ ρk +
εk‖x− yk‖
η‖x− yk‖ = ρk + εk/η

for a sequence εk → 0+. Here we use (9) and the fact that yk → x and f(y)− φ](y, x) ≤
o(‖y − x‖) as y → x by the definition of the Clarke subdifferential. But ρk < γ for all k
and εk/η → 0, hence ρ̃k ≤ γ + εk/η < γ̃ for all k large enough. This contradicts ρ̃k ≥ γ̃
for the infinitely many k ∈ K, and settles the case where tk → 0.

3) Let us now consider the case where the step size tk is frozen from some counter k0
onwards, i.e., tk =: t > 0 for all k ≥ k0. That means ρ̃k < γ̃ for all k ≥ k0. As in part 2)
of the proof we wish to show yk → x, but with the step size frozen this turns out more
complicated to verify.

Let us introduce the objective function ψk(·, x) = φ]k(·, x) + 1
2t
‖ · −x‖2 of program (6)

for k ≥ k0. We know that φ]k(y
k, x) = f(x) + g∗>k (yk − x) by step 4 of the algorithm.

Therefore
ψk(y

k, x) = f(x) + g∗>k (yk − x) + 1
2t
‖yk − x‖2.

We define the quadratic function

ψ∗k(·, x) = f(x) + g∗>k (· − x) + 1
2t
‖ · −x‖2

9

then

ψk(y
k, x) = ψ∗k(y

k, x) (10)

by what we have just seen. By the definition of the aggregate subgradient we have
f(x) + g∗>k (· − x) ≤ φ]k+1(·, x), so that

ψ∗k(·, x) ≤ ψk+1(·, x). (11)

Notice that ∇ψk(y, x) = g∗k + t−1(y − x), so that ∇ψ∗k(yk, x) = g∗k + t−1(yk − x) = 0 by
(7). This proves the representation

ψ∗k(y, x) = ψ∗k(y
k, x) + 1

2t
‖y − yk‖2. (12)

Now we have

ψk(y
k, x) ≤ ψ∗k(y

k, x) + 1
2t
‖yk − yk+1‖2 (using (10))

= ψ∗k(y
k+1, x) (using (12))

≤ ψk+1(y
k+1, x) (using (11)) (13)

≤ ψk+1(x, x) (yk+1 minimizer of ψk+1)
= φ]k+1(x, x) = f(x).

Therefore the sequence ψk(yk, x) is monotonically increasing and bounded above by f(x),
and converges to a value ψ∗ ≤ f(x). This shows that 1

2t
‖yk − yk+1‖2 is sandwiched in

between two terms with the same limit, ψ∗, hence ‖yk − yk+1‖ → 0. As ‖ · ‖ is euclidian
and the sequence yk is bounded, we deduce

‖yk − x‖2 − ‖yk+1 − x‖2 → 0. (14)

Now using both convergence results (14) and ψk(yk, x)→ ψ∗, we deduce

φ]k+1(y
k+1, x)− φ]k(yk, x) = (15)
ψk+1(y

k+1, x)− ψk(yk, x)− 1
2t
‖yk+1 − x‖2 + 1

2t
‖yk − x‖2 → 0. (16)

Now recall that f(x) + g>k (· − x) is an affine support function of φ]k+1(·, x) at yk. By
the subgradient inequality we obtain

g>k (y − yk) ≤ φ]k+1(y, x)− φ]k+1(y
k, x).

Since φ]k+1(y
k, x) = φ](yk, x), we have

φ](yk, x) + g>k (y − yk) ≤ φ]k+1(y, x). (17)

Now we expand

0 ≤ φ](yk, x)− φ]k(yk, x)

= φ](yk, x) + g>k (yk+1 − yk)− φ]k(yk, x)− g>k (yk+1 − yk)
≤ φ]k+1(y

k+1, x)− φ]k(yk, x) + ‖gk‖‖yk+1 − yk‖ (using (17)).

But the last term converges to 0 as a consequence of (15), boundedness of the gk, and
yk+1 − yk → 0. This proves

φ](yk, x)− φ]k(yk, x)→ 0. (18)

10

Let us argue that φk(yk, x) → f(x). If this is not the case, then lim infk→∞ φ
]
k(y

k, x) =
f(x)− η for some η > 0. Choose δ > 0 such that δ < (1− γ̃)η. From (18) we know that
φ](yk, x)− δ ≤ φ]k(y

k, x) for all k ≥ k1 and some k1 ≥ k0. Using ρ̃k ≤ γ̃ for all k ≥ k0 in
tandem with f(x) > φ]k(y

k, x) gives f(x)− φ]k+1(y
k, x) ≤ γ̃

(
f(x)− φ]k(yk, x)

)
. Therefore

γ̃
(
φ]k(y

k, x)− f(x)
)
≤ φ]k+1(y

k, x)− f(x) = φ](yk, x)− f(x) ≤ φ]k(y
k, x) + δ − f(x).

Passing to the limit for a subsequence realizing the limit inferior gives

−γ̃η ≤ −η + δ,

contradicting the choice of δ. This shows η = 0 and proves φ]k(y
k, x)→ f(x). From (18)

we immediately deduce φ](yk, x)→ f(x). And this is from where we now deduce yk → x.
Indeed, from estimate (13) we get

ψk(y
k, x) = φk(y

k, x) + 1
2t
‖yk − x‖2 ≤ ψ∗ ≤ f(x),

so that φk(yk, x)→ f(x) shows 1
2t
‖yk − x‖2 → 0 and also ψ∗ = f(x).

To finish the proof, let us now achieve a contradiction by showing 0 ∈ ∂f(x). Namely,
by the subgradient inequality,

t−1(x− yk)>(y − yk) ≤ φ]k(y, x)− φ]k(yk, x)

≤ φ](y, x)− φ]k(yk, x) (using φ]k ≤ φ])

Passing to the limit gives

0 ≤ φ](y, x)− f(x) = φ](y, x)− φ](x, x).

As this is true for every y, we obtain 0 ∈ ∂1φ](x, x) ⊂ ∂f(x), the desired contradiction.
That settles the proof of case 2. �

Remark 7. The result tells us that if we are not able to find a step which allows descent at
x, then 0 ∈ ∂f(x). However, the converse is not true. Even when 0 ∈ ∂f(x), we may still
be able to find a descent step. Take for instance f(x) = −|x| at x = 0. Then 0 ∈ ∂f(x).
Yet, if we initialize the step finding algorithm with g0 = 1, then we will immediately get a
descent step which passes the acceptance test ρk≥γ in step 3. It is therefore recommended
to initialize the algorithm with a limiting subgradient g0 ∈ ∂Lf(x). When 0 6∈ ∂Lf(x),
we increase our chances of finding a step allowing descent.

Remark 8. The above algorithm requires a method to compute g ∈ ∂f(x) where the
maximum g>d = f ◦(x, d) = max{h>d : h ∈ ∂f(x)} is attained for a given d. The
existence of such an oracle is a realistic hypothesis.

As an illustration consider eigenvalue optimization, where f(x) = λ1 (F (x)) with F :
Rn → Sm of class C1 and λ1 : Sm → R the maximum eigenvalue function on the space Sm
of m×m symmetric matrices. Then ∂f(x) = F ′(x)∗∂λ1 (F (x)) is computable as soon as
F ′(x)∗ is, because computation of ∂λ1(X) is well-known. More precisely,

f ◦(x, d) = λ′1(X,D) = λ1
(
Q>DQ

)
,

where X = F (x) ∈ Sm, D = F ′(x)d ∈ Sm, and where the columns of Q form an
orthonormal basis of the maximum eigenspace of X. Then G = QQ> ∈ ∂λ1(X) attains
the maximum λ1

(
Q>DQ

)
= G •D, and g = F ′(x)∗G therefore attains f ◦(x, d) = g>d.

11

8 Algorithm
In this section we state the main algorithm formally, and give a few comments on its
rationale. Recall first that the step finding algorithm 1 combines successive improvement
of the working model, achieved by adding cutting planes, with occasional backtracking
steps, tk+1 = tk or tk+1 ∈ [θtk,Θtk]. This means that in the inner loop (algorithm 1) the
stepsize is never increased. Therefore, in the outer loop, we allow the stepsize t]j+1 = θ−1tk
to increase if acceptance gives a good ratio ρk ≥ Γ. If acceptance gives a ratio γ ≤ ρk < Γ,
then me memorize the last stepsize used.

We stress that the following algorithm contains the steepest descent method, and all
subgradient-oriented descent methods in the sense of definition 1, as special cases. On
the other hand it is more general because it allows to approximate these methods by an
iterative technique. This is beneficial in practical situations, where the full subdifferential
∂f(x) is inaccessible to direct computation.

Algorithm 2. Subgradient-oriented descent method.
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < θ < Θ < 1, 0 < c < C < ∞,

0 ≤ t < t ≤ ∞.
1: Initialize. Put counter j = 1, choose initial guess x1, and fix t]1 > 0. Choose an

euclidian norm ‖x‖21 = x>P1x such that c‖ · ‖ ≤ ‖ · ‖1 ≤ C‖ · ‖.
2: Stopping. At counter j, stop if 0 ∈ ∂f(xj). Otherwise goto inner loop.
3: Inner loop. Given xj and the euclidian norm ‖·‖j satisfying c‖·‖ ≤ ‖·‖j ≤ C‖·‖, use

the step-finding algorithm with proximity control (algorithm 1) started at stepsize t]j
to find a stepsize tk > 0 such that the kth trial point yk satisfies ρk ≥ γ. Put xj+1 = yk

and goto step 4.
4: Updating stepsize. Check whether ρk ≥ Γ at acceptance xj+1 = yk. If this is the

case, put t]j+1 = θ−1tk, otherwise put t]j+1 = tk. Goto step 5.
5: Small stepsize safeguard rule (Optional). Replace t]j+1 by max{t]j+1, t}.
6: Large stepsize safeguard rule (Optional). Replace t]j+1 by min{t, t]j+1}.
7: Updating norm. Choose a new Pj+1 such that c‖ · ‖ ≤ ‖ · ‖j+1 ≤ C‖ · ‖. Then goto

step 2.

Notice that step 5 is void if t = 0, and the same for step 6 when t =∞. This is what
we indicate by the term optional. In fact, we wish to avoid these rules in the convergence
proofs, even though they are certainly acceptable in practice. For instance, linesearch
methods tempting second-order steps always put t = 1. Notice that if t = 0 and t = ∞,
then the step length is fully memorized between serious steps.

In the smooth case, the idea of fully memorizing the steplength has been analyzed in
[21], with the outcome that stepsize may be fully memorized for C1,1-functions, whereas
this is not possible for C1 functions. Here the linesearch has to be started at t1 ≥ t for
a threshold t > 0. Since C1 functions are upper C1, and C1,1-functions are upper C2, we
can consider items 2 and 3 of Theorem 2 below as non-smooth extensions of Theorems 1,
2 in [21], and of the results in [4].

12

start

current iterate

stopping exit
yes

no

working
model

tangent
program

ρ ≥ γ

ρ ≥ Γ

yes

t+ = 2t

safeg. rules

yes no

t+ = t

no

cutting planes
aggregation

t+ = t

t+ = 1
2
t

ρ̃ ≥ γ̃
no

yes

inner loop

outer loop

Figure 1: Flowchart of Algorithm 2

9 Convergence
In this section we prove convergence in the sense of subsequences of algorithm 2. Conver-
gence to a single critical point will follow if the strong KL-property is satisfied.

Theorem 2. Suppose f is locally Lipschitz and {x ∈ Rn : f(x) ≤ f(x1)} is bounded. Let
xj be the sequence generated by algorithm 2. Then the following are satisfied:

1. If the standard model φ] of f is strict, i.e., f ∈ S , then xj has at least one accu-
mulation point which is critical.

2. If the standard model is strict and algorithm 2 is operated with the small stepsize
safeguard rule t > 0, then every accumulation point of xj is critical.

3. If the standard model is strong, then every accumulation point of the xj is critical
(and the small step safeguard rule may be dispensed with: t = 0).

4. If the standard model φ] is strict and f satisfies the strong Kurdyka-Łojasiewicz
property, then xj converges to a single critical point (and the small stepsize safeguard
rule may be dispensed with: t = 0).

In all these cases the large stepsize safeguard rule may be dispensed with, i. e., t =∞.

Proof: 1) From the analysis of section 7 we know that after a finite number of trials k the
descent step finding algorithm 1 at serious iterate xj locates a new iterate xj+1 satisfying
the acceptance test ρk ≥ γ, unless we have finite termination due to 0 ∈ ∂f(xj). Excluding

13

this case, let xj be the infinite sequence of steps generated by algorithm 2. Suppose xj+1

is accepted at inner loop counter kj, i.e., xj+1 = ykj passes the acceptance test, while the
yk with k < kj are null steps. This means

f(xj)− f(xj+1) ≥ γ
(
f(xj)− φ]kj(x

j+1, xj
)
. (19)

Now from optimality (7) we know that g∗j = t−1kj Pj(x
j −xj+1) ∈ ∂1φ]kj(xj+1, xj), hence the

subgradient inequality gives

(xj − xj+1)>t−1kj Pj(x
j − xj+1) ≤ φ]kj(x

j, xj)− φ]kj(x
j+1, xj) = f(xj)− φ]kj(x

j+1, xj).

In combination with (19), and using ‖u‖2j = u>Pju, this gives the estimate

t−1kj ‖x
j − xj+1‖2j ≤ γ−1

(
f(xj)− f(xj+1)

)
. (20)

Summing (20) over j = 1, . . . , J − 1 on both sides gives

J−1∑

j=1

t−1kj ‖x
j − xj+1‖2j ≤ γ−1

(
f(x1)− f(xJ)

)
,

and since the algorithm is of descent type and the set of iterates xj is bounded, the right
hand side is bounded above, which implies summability of the series

∑
j t
−1
kj
‖xj − xj+1‖2j .

In particular, this implies t−1kj ‖xj − xj+1‖2j → 0, and since the norms ‖ · ‖j are uniformly
equivalent, tkj‖xj − xj+1‖2 → 0.

2) Let us consider an infinite subsequence j ∈ N of N where g∗j → 0, j ∈ N . We
will show that every accumulation point of the xj, j ∈ N , is critical. Let x∗ be such an
accumulation point, and passing to a subsequence if necessary, assume xj → x∗, j ∈ N .

Since g∗j is a subgradient of φ]kj(·, xj) at xj+1 = ykj , the subgradient inequality gives
for every test vector h:

g∗>j h ≤ φ]kj(x
j+1 + h, xj)− φ]kj(x

j+1, xj) ≤ φ](xj+1 + h, xj)− φ]kj(x
j+1, xj).

As xj+1 = ykj was accepted, we have f(xj) − φ]kj(x
j+1, xj) ≤ γ−1 (f(xj)− f(xj+1)) .

Substituting this above gives

g∗>j h ≤ φ](xj+1 + h, xj)− f(xj) + f(xj)− φ]kj(x
j+1, xj)

≤ φ](xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
.

Now putting h = xj − xj+1 + h′, we obtain

g∗>j (xj − xj+1) + g∗>j h′ ≤ φ](xj + h′, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
.

Passing to the limit j ∈ N , using xj → x∗, boundedness of xj − xj+1, g∗j → 0 and
f(xj)− f(xj+1)→ 0, we obtain

0 ≤ φ](x∗ + h′, x∗)− f(x∗) = φ](x∗ + h′, x∗)− φ](x∗, x∗).

Since h′ was arbitrary, this implies 0 ∈ ∂1φ
](x∗, x∗) ⊂ ∂f(x∗), which proves what was

claimed.

14

3) We shall now have to deal with the more complicated case of infinite subsequences
J of N satisfying ‖g∗j‖ ≥ η > 0 for all j ∈ J . We first claim that under this assumption,
tkj → 0, j ∈ J . Indeed, if tkj ≥ τ > 0 for all j ∈ J , then on passing to a subsequence
J ′ ⊂ J , we may assume Pj → P , xj − xj+1 → δx, t−1kj → t−1 ≤ τ−1, and such that
t−1‖δx‖P ≥ η. But at the same time (xj−xj+1)>t−1kj Pj(x

j−xj+1)→ 0 implies t−1‖δx‖2P =
0, a contradiction. This shows tkj → 0 for the subsequence j ∈ J .

4) Let us for convenience call infinite sequences J with ‖g∗j‖ ≥ η > 0 for all j ∈ J
problematic. We distinguish two types of problematic sequences. The first type are those
J1 where for every j ∈ J1 the backtracking rule (step 6 of algorithm 1) was applied at
least once during the jth inner loop. The second type are those J2 where the backtracking
rule was never applied during the jth inner loop for any one of the j ∈ J2. More formally,

J1 ⊂ {j ∈ N : t]j > tkj}, and J2 ⊂ {j ∈ N : t]j = tkj}.

Notice that every problematic subsequence J has either subsequences J1 of type 1, or J2

of type 2, or both.
5) Consider a problematic subsequence j ∈ J1 of the first type. Despite the fact that

tkj → 0, it is conceivable that t]j →∞ on a subsequence. Fixing a small threshold ϑ > 0,
we consider the set B = {xj, yk : k ≤ kj, j ∈ J1, tk ≤ ϑ}. On the other hand, for a
problematic subsequence j ∈ J2 we simply choose B = {xj, yk : k ≤ kj, j ∈ J2}. We
show that in both cases B is bounded.

Observe that the set of all serious iterates is bounded, so the question hinges on
whether the null step yk visited during the inner loop at xj remain uniformly bounded.
Now let g0j ∈ ∂f(xj) be the first subgradient picked in the inner loop, which stays in the
set Gk at all counters k of the jth inner loop. Then {g0j : j ∈ J } is bounded by the local
boundedness of the Clarke subdifferential. By the subgradient inequality,

g∗>k (xj − yk) ≤ φ]k(x
j, xj)− φ]k(yk, xj) ≤ g>0j(x

j − yk) ≤ ‖g0j‖‖xj − yk‖,

and moreover, by the specific structure of the aggregate (see part 2) of the proof of
Theorem 1), g∗>k (xj − yk) = ‖g∗k‖‖xj − yk‖. We deduce ‖g∗k‖ ≤ ‖g0j‖ ≤ M <∞ for all j
and all 1 ≤ k ≤ kj. This shows t−1k ‖xj − yk‖ ≤ M for all k, j, and implies boundedness
of those yk where t−1k is bounded away from 0. This applies to those k where tk ≤ ϑ, and
proves our claim.

6) Let us consider a problematic subsequence j ∈ J1 of type 1. Let x̂ be an accumu-
lation point of J1. We will show that x̂ is critical. Passing to a subsequence if necessary,
we may assume xj → x̂, j ∈ J1.

Suppose that for j ∈ J1 the backtracking rule was applied for the last time at stage
kj − νj with νj ≥ 1. In other words,

tkj = tkj−1 = · · · = tkj−νj+1 < tkj−νj , (21)

with tkj = θkj−νj tkj−νj for some 0 < θ ≤ θkj−νj ≤ Θ < 1. From the inner loop (algorithm
1) we know that backtracking occurs solely when ρ < γ, ρ̃ ≥ γ̃. In consequence, we have

ρkj−νj =
f(xj)− f(ykj−νj)

f(xj)− φ]kj−νj(ykj−νj , xj)
< γ, ρ̃kj−νj =

f(xj)− φ](ykj−νj , xj)
f(xj)− φ]kj−νj(ykj−νj , xj)

≥ γ̃.

From (21) we know that g̃j := θ−1kj−νj t
−1
kj
Pj(x

j − ykj−νj) ∈ ∂1φ
]
kj−νj(y

kj−νj , xj). We will
show that g̃j → 0, and subsequently, that this implies 0 ∈ ∂f(x̂).

15

By the subgradient inequality we have

(xj − ykj−νj)>θ−1kj−νj t
−1
kj
Pj(x

j − ykj−νj) ≤ φ]kj−νj(x
j, xj)− φ]kj−νj(y

kj−νj , xj)

= f(xj)− φ]kj−νj(y
kj−νj , xj). (22)

Now as t−1kj → ∞ for problematic subsequences, and by boundedness of the θkj−νj , and
boundedness of the set yk of trial points and serious iterates shown in part 5), we must
have ykj−νj − xj → 0. Since xj → x̂, j ∈ J1, we have ykj−νj → x̂, too.

7) We claim that the g̃j = θ−1kj−νj t
−1
kj
Pj(x

j − ykj−νj), j ∈ J1, are bounded. This can be
seen from (22). Indeed, the left hand side behave asymptotically like c‖g̃j‖‖xj − ykj−νj‖.
The right hand side of (22) is majorized by f(xj)−m0(y

kj−νj , xj), where m0(·, xj) is the
exactness plane of the jth inner loop. Therefore, (22) may be transformed into

c‖g̃j‖‖xj − ykj−νj‖ ≤ ‖g0j‖‖xj − ykj−νj‖.

But the g0j ∈ ∂f(xj) are bounded due to boundedness of the xj and local boundedness
of the Clarke subdifferential operator ∂f , hence the claim.

8) We will now show that g̃j → 0, j ∈ J1. Assume contrary to what is claimed that
‖g̃j‖ ≥ θ > 0 for all j ∈ J1. This shows

f(xj)− φ]kj−νj(y
kj−νj , xj) ≥ θ‖xj − yk−νj‖ (23)

for all j ∈ J1. Indeed, from the subgradient inequality,

g̃>j (xj − ykj−νj) ≤ φ]kj−νj(x
j, xj)− φ]kj−νj(y

kj−νj , xj) = f(xj)− φ]kj−νj(y
kj−νj , xj).

But the left hand side behaves asymptotically like ‖g̃j‖‖xj−ykj−νj‖, hence the claim (23).
9) This is now the moment where we apply the fact that f has a strict standard model

φ]. We apply axiom (M̂2) to the sequences xj → x̂ and ykj−νj → x̂. That means there
exist εj → 0 such that

f(ykj−νj)− φ](ykj−νj , xj) ≤ εj‖xj − ykj−νj‖. (24)

Now we expand

ρ̃kj−νj = ρkj−νj +
f(ykj−νj)− φ](ykj−νj , xj)
f(xj)− φ]kj−νj(ykj−νj , xj)

≤ ρkj−νj +
εj‖xj − ykj−νj‖
θ‖xj − ykj−νj‖ = ρkj−νj + εj/θ.

Since εj → 0, this shows lim sup ρ̃kj−νj ≤ lim sup ρkj−νj ≤ γ < γ̃, contradicting the fact
that ρ̃kj−νj ≥ γ̃ for every j ∈ J1. This proves g̃j → 0. Using the argument employed in
part 2), we now deduce 0 ∈ ∂f(x̂).

10) It remains to deal with problematic subsequences of type 2. This can only be
dealt with if the model is strong, or if the small stepsize safeguard rule is applied (that
is, t > 0). Namely, in both cases, the existence of problematic subsequences of type 2
can simply be ruled out. For t > 0 this is clear, because then t]j+1 is bounded below, and
cannot go to zero. For φ] strong this could be obtained from [20].

11) Let us now assume that f satisfies the Kurdyka-Łojasiewicz inequality. We have
to show that xj converges to a single critical point x∗.

16

We have shown that the sequence xj has at least one accumulation point x∗ which is
critical. Moreover, the set of accumulation points L of xj is closed, as can be proved by a
diagonal argument. Since f(xj) is decreasing, we conclude that f has constant value on
the set L.

By assumption, for every x ∈ L, there exists an open neighborhood U(x) of x and a
continuous concave function κx : [0, ηx] → [0,∞) of class C1 on (0, ηx) with κx(0) = 0,
κ′x > 0 on (0, ηx), such that

κ′x (f(x′)− f(x)) dist (0, ∂f(x′)) ≥ 1

whenever x′ ∈ U(x) satisfies f(x) < f(x′) < f(x) + ηx. Using compactness of L, we find
finitely many points x1, . . . , xr ∈ L such that the U(x1), . . . , U(xr) cover L. Choose ε > 0
such that V := {x ∈ Rn : dist(x, L) < ε} ⊂ ⋃r

i=1 U(xi). Put η = mini=1,...,r ηxi , and define
the function κ′(t) = maxi=1,...,r κ

′
xi

(t), then κ′ is continuous and decreasing because all the
κ′xi are. Putting κ(t) =

∫ t
0
κ′(τ) dτ therefore defines a concave class C1 function on [0, η]

with κ(0) = 0 and κ′ > 0 on (0, η). In addition, κ has the following property: For every
x ∈ L and every x′ ∈ V = {x′ : dist(x′, L) < ε} with f(x) < f(x′) < f(x) + η there holds

κ′ (f(x′)− f(x)) dist (0, ∂f(x′)) ≥ 1. (25)

Indeed, to see this let x, x′ as above. Find xi such that x′ ∈ U(xi). Then

1 ≤ κ′xi (f(x′)− f(xi)) dist(0, ∂f(x′))

≤ κ′ (f(x′)− f(x)) dist(0, ∂f(x′)),

using κ′xi ≤ κ′ and f(xi) = f(x). That proves our claim.
Let us for the following assume without loss that f ≡ 0 on L. Recall that the aggregate

subgradient g∗j = t−1kj Pj(x
j − xj+1) satisfies t−1kj ‖xj − xj+1‖2j ≤ γ−1 (f(xj)− f(xj+1)) by

acceptance ρ ≥ γ. Concavity of κ gives the estimate

κ
(
f(xj)

)
− κ

(
f(xj+1)

)
≥ κ′

(
f(xj)

) (
f(xj)− f(xj+1)

)

whenever 0 < f(xj) < η, 0 < f(xj+1) < η. Combining these twain gives

κ
(
f(xj)

)
− κ

(
f(xj+1)

)
≥ κ′

(
f(xj)

)
γt−1kj ‖x

j − xj+1‖2j .

By the strong KL-inequality (25), and using f(x) = 0, we have κ′ (f(xj)) ≥ ‖g‖−1 for
every Clarke subgradient g ∈ ∂f(xj). Therefore in particular κ′ (f(xj)) ≥ ‖g∗j‖−1 for the
aggregate subgradient, which due to the specific form of the Clarke model φ] belongs to
∂f(xj). We deduce

κ
(
f(xj)

)
− κ

(
f(xj+1)

)
≥ γ

t−1kj ‖xj − xj+1‖2j
t−1kj ‖Pj(xj − xj+1)‖ ≥ c′‖xj − xj+1‖

for some constant c′. That proves summability of ‖xj − xj+1‖, hence xj is a Cauchy
sequence, which converges to x∗ and L = {x∗}. Since L was shown to contain at least
one critical point of f , we conclude that x∗ is critical. That completes the proof of the
Theorem.

�

17

10 Consequences and comments
In this section we present several consequences of the main Theorem 2, and give some com-
ments. The following result is the expected convergence of the steepest descent method.
Notice that we obtain algorithmically verifiable criteria for convergence, as opposed to
conditions like [5]. The price to pay for this is that f has to belong to the class S .

Corollary 1. Suppose f is upper C1 and satisfies the strong KL-inequality. Let {x ∈
Rn : f(x) ≤ f(x1)} be bounded and let xj be generated by a subgradient-oriented descent
method, where the stepsize may be fully memorized. Then xj converges to a critical point
of f .

Proof: By Proposition 1 we have f ∈ S . Therefore algorithm 2 converges for the
special case, where step finding uses algorithm 1 with φ]k = φ]. Notice that we are in the
case t = 0 and t = ∞, so no restriction at all is made on the stepsize, which means it is
fully memorized. �

The next result describes a situation where the use of the small stepsize safeguard rule
t > 0 may be beneficial. Namely, it gives a satisfactory answer for stopping even when
the KL-inequality is not available:

Corollary 2. Let f ∈ S and suppose algorithm 2 is run with t > 0. Suppose {x ∈ Rn :
f(x) ≤ f(x1)} is bounded. Then for every ε > 0 there exists j0 ∈ N such that all iterates
xj, j ≥ j0, are within distance ε of some critical point of f .

Proof: Suppose there exist ε̄ > 0 and infinitely many xj, j ∈ J , which have no critical
point of f within ε̄ reach. Due to t > 0, this sequence xj, j ∈ J , has an accumulation
point, which by Theorem 2 is critical, a contradiction. �

The small stepsize safeguard rule is not needed if f has a strong model.

Corollary 3. Suppose f is upper C2 and {x ∈ Rn : f(x) ≤ f(x1)} is bounded. Then for
every ε > 0 there exists j0 ∈ N such that every iterate xj, j ≥ j0, is within distance ε of
some critical point of f .

Proof: Since f has a strong standard model, infinite subsequences xj, j ∈ J2, where
t]j = tkj → 0 can be excluded. Those were named problematic subsequences of type 2
in the proof of Theorem 2. As the proof of Theorem 2 shows, all other subsequences
(unproblematic, or problematic of type 1), have an accumulation point which is critical,
and that proves the result. �

So far we have never needed the large stepsize safeguard rule t < ∞. There is one
specific situation, where this rule is beneficial, because it gives an additional option to
converge to a single critical point without the KL-inequality.

Corollary 4. Suppose the set K of critical points of f ∈ S is apriori known to be totally
disconnected. If algorithm 2 is operated with both safeguard rules, i.e., 0 < t < t < ∞,
then the sequence xj converges to a single critical point x∗.

Proof: From the proof of Theorem 2 we know that t−1kj ‖xj − xj+1‖ → 0. Hypothesis
t < ∞ yields tkj ≤ t < ∞, so we deduce xj − xj+1 → 0, j → ∞. As a consequence, by

18

Ostrowski’s theorem [22], the set L of accumulation points of the sequence xj is either a
singleton or a nontrivial compact continuum.

Secondly, hypothesis t > 0 assures that every accumulation point of the sequence xj
of serious iterates is critical, so that L ⊂ K. Since by hypothesis the only connected
components of K are the singletons, L must be singleton, hence xj converges to a single
critical point x∗. �

Once again we could dispense with t > 0 if f was upper C2, respectively, if model
φ] was strong, and we could dispense with t < ∞ if we knew from other reasons that
xj − xj+1 → 0.

11 Talweg and the unskilled skier’s descent
The original motivation for the KL-property was to prove finite length of subgradient tra-
jectories ẋ(t) ∈ −∂f(x(t)). In the continuous case this immediately implies convergence
to a critical point [9]. Subgradient-oriented descent may be understood as a discrete form
of subgradient trajectories, and in [11] the authors use indeed finite length of such tra-
jectories to characterize the KL-property. However, as we shall see in section 13, in the
discrete case finite length of the trajectory does not imply convergence to a critical point.
In order to assure convergence to a critical point, we need strictness of φ], i.e., f ∈ S .

In [11] the authors use yet another discrete construction related to the KL-property,
which they call a talweg. Again, finite length of the talweg may be used to characterize
the KL-property. Here we consider the following slight modification of the talweg:

Algorithm 3. Unskilled skier’s descent into the valley
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < θ < Θ < 1, 0 < c < C <∞, K > 0.
1: Given the current serious iterate x, stop if 0 ∈ ∂f(x). Otherwise use the step-finding

algorithm 1 to find x̂ satisfying the acceptance test ρ ≥ γ.
2: Manage the stepsize t] as in algorithm 2.
3: Given the intermediate iterate x̂, find the new serious iterate x+ on the same level

curve, i.e., f(x+) = f(x̂), such that ‖x+ − x̂‖ ≤ K‖x̂− x‖. Then go back to step 1.

The interpretation is as follows. The novice skier, lacking control, starts steepest
descent (schuss) downhill from his current position x. Not being able to wedel, this leads
him straight to x̂, with sufficient decrease ρ ≥ γ achieved quickly. Stopping at x̂ is
arranged by sitting down on the bottom. In need of some rest, the clumsy skier now puts
his skis in parallel with the level line to be stable for a while and then walks some distance
along the level curve from x̂ to x+. From here the procedure loops on by another pair
of schuss-walk steps. The obvious question is whether the unskilled skier ever reaches
the valley, i.e., whether the method converges to a critical point. (Finite length of the
trajectory without convergence to a critical point is no consolation for the novice skier,
because the ski lodge is at the bottom of the valley at a critical point. Convergence to a
non-critical point means St. Bernhard dogs will have to pick him up on the slope a few
days later).

We notice that the step from x to x̂ is identical with the serious step of algorithm 2.
In [8] sequences with jumps like x̂→ x+ are called piecewise gradient trajectories.

19

Theorem 3. Suppose f is locally Lipschitz and {x ∈ Rn : f(x) ≤ f(x1)} is bounded. Let
x1, x̂1, x2, x̂2, . . . be the sequence generated by the unskilled skier’s descent method. Then
the following are satisfied:

1. If the standard model φ] is strict, then xj, x̂j have at least one common accumulation
point x∗ which is critical.

2. If the standard model is strong, then every accumulation point of xj, x̂j is critical.

3. If the standard model is strict and the small step safeguard rule (t > 0) is used, then
every accumulation point of xj, x̂j is critical.

4. If the standard model is strict and f satisfies the strong KL-inequality, then xj, x̂j

converge to a single critical point x∗.

Proof: The argument of Theorem 2 shows that
∑

j ‖xj − x̂j‖ <∞. But ‖xj+1 − x̂j‖ ≤
K‖x̂j − xj‖, so that

∑
j ‖xj − xj+1‖ converges, too. �

Remark 9. If f has the strong KL-property, but the standard model of f fails to be
strict at x∗, then xj, x̂j still converge to x∗, but x∗ may fail to be critical. An example of
this behavior is given in section 13.

12 Links with abstract convergence
We are now in the position to discuss the role of the sufficient conditions (3) and (4) in
the convergence result of [6], and that of the alternative condition (5).

As we see from part 1) of the proof of Theorem 2, our acceptance test ρ ≥ γ forces
the descent condition f(xj) − f(xj+1) ≥ γt−1kj ‖xj − xj+1‖2, which is weaker than (3) in
[6], and coincides with it when the t−1kj are bounded below. We could force the latter
by the large stepsize safeguard rule, i.e., by choosing t < ∞, but we only do this in the
situation of Corollary 4, because in all other cases it represents an unnecessary limitation.
Nonetheless, in the light of our result, condition (3) may be considered reasonable, because
in practice we expect tkj to be bounded above most of the time, and more importantly,
our analysis shows how (3) can be forced algorithmically.

It is more difficult to understand condition (4), because in our approach subgradient
information at trial points yk generated in the inner loop is only evaluated and registered
at null steps, while we accept on the basis of (3) only. Therefore, if condition (4) is to
be forced algorithmically, one has to add it to the acceptance test of the inner loop (step
3 of algorithm 1). However, we had convinced ourselves a long time ago that this foils
finiteness of the inner loop. In fact, the case which poses problems is the one analyzed in
part 3) of the proof of Theorem 1. We do not see how (4) could be forced algorithmically,
and our example in section 13 shows that there is very little margin to succeed. We believe
that condition (4) is not realistic for non-smooth descent methods.

Concerning conditions (5), observe that the aggregate Clarke subgradient g∗j in part
2) of the proof is an element of ∂f(xj) due to the specific structure of the standard model
φ], and it could therefore be a candidate for condition (5). However, our construction
gives ‖g∗j‖ ∼ t−1kj ‖xj −xj+1‖, and this could only be bounded above by a‖xj −xj+1‖ if the
tkj are bounded away from 0, an unlikely case. Since g∗j is the most natural candidate to

20

converge to 0 ∈ ∂f(x∗), we conclude that (5) is again too strong to be realistic. This is
corroborated by the example in section 13.

Remark 10. Conditions (4) and (5) are typical examples for the fact that criteria which
work in the smooth case may not be mechanically transferred to the non-smooth setting
in replacing gradients by subgradients. In fact, estimates (4), (5) go the wrong way, as
our proof shows. It is the aggregate subgradient g∗j which arranges convergence g∗j → 0,
but the aggregate satisfies ‖g∗j‖ ≤M‖∂f(xj)‖, and since g∗j ∼ t−1kj (xj−xj+1), the estimate
which is true reads t−1kj ‖xj − xj+1‖ ≤M‖∂f(xj)‖.
Remark 11. The fact that the aggregate subgradient g∗j → 0 is a convex combination of
model subgradients at null steps leads to the conclusion that the correct subdifferential
to be used in non-convex bundling is the Clarke subdifferential. This is why our present
theory needs the strong KL-inequality.

13 Failure of subgradient-oriented descent
The following example adapted from [15] can be used to show the difficulties with non-
smooth subgradient-oriented descent. We define a convex piecewise affine function f :
R2 → R as

f(x) = max{f0(x), f±1(x), f±2(x)}
where

f0(x) = −100, f±1(x) = ±2x1 + 3x2, f±2(x) = ±5x1 + 2x2.

The following plot shows that part of the level curve [f = a] which lies in the upper half
plane x2 > 0. It consists of the polygon connecting the five points (−a

5
, 0), (− a

11
, 3a
11

),
(0, a

3
), (a

11
, 3a
11

), (a
5
, 0). We are interested in the lower level set [f ≤ a] which lies inside the

polygon, and above the x1-axis.

bb
b

bA

bB

x

b
C

f2+f2−

f1+

f1−

a

11

a

5

a

3

3a

11

x2 = −
5

2
x1 +

a

2

x2 = −
2

3
x1 +

a

3

b

∇f2+ = (5, 2)

b

∇f1+ = (2, 3)

(a

11
, 3a
11
)

−
a

11

We decompose the lower level set [f ≤ a]∩ [x2 ≥ 0] into 4 regions where the 4 different
branches of f are active, i.e., [f = f1+], [f = f1−], etc. In the plot we indicate these by
the symbols f1+, f1−, etc. The lines [f1+ = f2+] and [f1− = f2−] connect the origin to the
points (± a

11
, 3a
11

), while [f1− = f1+] ∩ [x2 ≥ 0] is the positive x2-axis.

21

We denote the rhombus described by the four points (0, 0), (a
11
, 3a
11

), (0, a
3
), (− a

11
, 3a
11

)
by Ra. In the plot this area is shaded gray.

Now we consider a current point x on the upper right part of level curve [f = a], that
is, a point with x1 = τa

11
for some 0 < τ ≤ 1, and with x2 = −2

3
x1 + a

3
. In other words, x

is on the right upper boundary of the rhombus Ra. The steepest descent direction at x is
−∇f1+ = (−2,−3). This is indicated by the blue line parting at x and passing through
the points A,B,C. (The two limiting positions for x are the parallel dashed blue lines).
Informally, what we now do is the following. We construct an instance of the steepest
descent method, where steepest descent steps away from x along the blue line which are
accepted by the test ρ ≥ γ lie before the point B. With the exception of the point A,
which is also accepted, this means that we will stop at a point x+ which is again on the
upper part of a rhombus Ra+ , where a+ = f(x+) < f(x), possibly on the other side of
the x2-axis. Proceeding in this fashion, we will generate a sequence x, x+, x++, . . . which
will never escape from the rhombi Rf(x), Rf(x+), Rf(x++), and will converge to the origin,
which is not a critical point of f .

Notice that our algorithm would also accept the point A on the positive x2 axis, and
this is indeed the only escape point on the blue line. Once an iterate of the form A is
found, the steepest descent direction switches to (0,−3) and we leave the rhombi through
the origin. Our argument is that finding the only escape point A on the blue line is
not algorithmically feasible, even more so as we have not specified any condition which
distinguishes A from the other point accepted by the test ρ ≥ γ.

τa

11

b

b

A

b

B

b

C

If we plot the function t 7→ f(x + td), where d is the steepest descent direction
d = (−2,−3) at x with 0 < x1 ≤ a

11
, then we get a piecewise linear curve with two kinks

corresponding to the points A = (0, a
3
− 13

6
x1) and B = (13

27
x1− 2

27
a;−13

9
x1 + 2

9
a). Finally,

the line hits the x1-axis at C = (13
9
x1 − 2

9
a, 0).

The function values at these points are

f(A) = f1+

(
0,
a

3
− 13

6
x1

)
= a− 13

2
x1,

f(B) = f1−

(
13

27
x1 −

2

27
a,−13

9
x1 +

2

9
a

)
= −26

27
x1 +

4

27
a− 13

3
x1 +

2

3
a =

22

27
a− 143

27
x1

f1+(B) = −91

27
x1 +

14

27
a

22

and
f(C) = f2−

(
13

9
x1 −

2

9
a, 0

)
= −13 · 5

9
x1 +

10

9
a.

We obtain

ρ =
a− f(B)

a− f1+(B)
=
a− 22

27
a+ 143

27
x1

a− 14
27
a+ 91

27
x1

=
5a+ 143x1
13a+ 91x1

.

If we put x1 = τ a
11

with 0 < τ ≤ 1, then

ρ =
5 + 143τ

11

13 + 91τ
11

=
55 + 143τ

143 + 91τ
.

This quotient is independent of a and has its largest value at τ = 1, namely, ρ = 198
242

.
Therefore, if we put 1 > γ > 198

242
, then none of the points B is accepted by the test ρ ≥ γ,

meaning that the interval of acceptance (x, x+] ⊂ (x,B) lies before B, and contains A
in its interior. Notice that this interval of acceptance corresponds also to the interval
of points accepted by condition (3). That means, the new serious iterate x+ will have
exactly the same properties as discussed for x, now in the rhombus Ra+ .

The question is now how convergence criteria (4) and (5) from section 5 behave in this
situation. Can we find a point x+ on the segment (x,B) where ‖∂f(x+)‖− ≤ b‖x− x+‖?
Since x− x+ → 0 and the gradient is constant on the parts [f = f1−] and [f = f1+], the
only candidate to be accepted by (4) is A, because here we get a convex combination of
two gradients. The Clarke subgradients are t(2, 3)+(1− t)(−2, 3) = (4t−2, 3), 0 ≤ t ≤ 1.
Unfortunately, those are norm bounded below by 3, so A does not work. There is no
point on the entire segment [x,B] which is accepted by condition (4). This is bad in two
aspects. Firstly, it is not good to have a hypothesis which is void. Secondly, one would at
least have hoped that the point A could be accepted, since from A onward the steepest
descent direction will pick another track and escape from the rhombus. In fact, the escape
line is the positive x2-axis. (Recall that our own method does accept the point A, but
a linesearch which tries to locate a single point could not claim to work in practice). In
contrast, (4) rejects even the escape point A. The same argument shows that condition
(5) fails badly.

We still have to explain why convergence to a critical point fails here. According to
our main theorem, this is due to the fact that the Clarke model is not strict at x∗ = (0, 0).
In order to verify this directly, consider points x = (ξ, η), y = (ξ′, η′) in the rhombus
Ra, but with ξ > 0, ξ′ < 0. If φ](·, (0, 0)) was to be strict, we would have to have
f(y) ≤ f(x) + f 0(x, y − x) + o(‖x − y‖) for (x, y) → (0, 0). But f(y) = −2ξ′ + 3η′,
f(x) = 2ξ + 3η, hence strictness requires

−2ξ′ + 3η′
!

≤ 2ξ + 3η + 〈(2, 3), (ξ′ − ξ, η′ − η)〉+ ε‖x− y‖,

where ε→ 0 as ξ′ → 0, ξ → 0, η′ → 0, η → 0. This gives

−2ξ′
!

≤ 2ξ′ + ε (|ξ′ − ξ|+ |η′ − η|)

if we use for simplicity the 1-norm on the right. This must obviously also hold when
η′ = η → 0, so

−4ξ′
!

≤ ε|ξ′ − ξ| = ε(ξ − ξ′),

23

as ξ′ → 0, ξ → 0, the latter because ξ > 0 and ξ′ < 0. Suppose ξ = −3ξ′ → 0, then we
should have −4ξ′ ≤ −4εξ′, which requires ε ≥ 1. Therefore φ] is not strict at (0, 0).

Let us finally observe that the ideal subgradient trajectory, where ẋ(t) ∈ −∂f(x(t))
at almost all times t, will switch to the escape line as soon as it crosses it at point
A, allowing an escape from the rhombus. This leads to the observation that in non
smooth optimization, and this is in stark contrast with smooth optimization, looking at
the continuous trajectory associated with a class of descent methods is useless, because
it tells us nothing about the discrete method.

14 Conclusion
We have shown that convergence of subgradient-oriented non-smooth descent methods to
critical points relies on two pillars. The Kurdyka-Łojasiewicz condition is sufficient to
guarantee summability of

∑
j ‖xj − xj+1‖ <∞ and therefore finite length of the discrete

trajectory. Strictness of the standard model assures convergence to critical points in the
sense of subsequences. When combined, these two assure convergence to a single critical
point.

References
[1] D. Alazard, D. Noll, M. Gabarrou. Design of a flight control architecture using a

non-convex bundle method. Mathematics of Control, Signals and Systems.

[2] P. Apkarian, D. Noll, O. Prot. A trust region spectral bundle method for nonconvex
eigenvalue optimization. SIAM J. Optim. 10(1):281-306,2008.

[3] P. Apkarian, D. Noll, O. Prot. A proximity control algorithm to minimize non-smooth
and non-convex semi-infinite maximum eigenvalue functions. J. Convex Anal. 16:641-
666,2009.

[4] P.A. Absil, R. Mahony, B. Andrews. Convergence of the iterates of descent methods
for analytic cost functions. SIAM J. Optim., 16(2):531-547, 2005.

[5] Y.I. Alber, A.N. Iusem, M.V. Solodov. On the projected subgradient method for non-
smooth convex optimization in a Hilbert space. Math. Programming, 81:23-35,1998.

[6] H. Attouch, J. Bolte, B.F. Svaiter. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward-backward splitting, and regular-
ized Gauss-Seidel methods. Math. Programming, Ser. A

[7] H. Attouch, J. Bolte. On the convergence of the proximal algorithm for nons-
mooth functions involving analytic features. Math. Programming, 116(1-2, Ser. B):5-
16,2009.

[8] H. Attouch, J. Bolte, P. Redont, A. Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems. An approach based on the Kurdyka-
Łojasiewicz inequality. Math. Oper. Res. 35(2):438-457,2010.

24

[9] J. Bolte, A. Daniilidis, A. Lewis. The Łojasiewicz inequality for nonsmooth suban-
alytic functions with applications to subgradient dynamical systems. SIAM J. Opt.
17(4):1205-1223,2007.

[10] J. Bolte, A. Daniilidis, A. Lewis, M. Shiota. Clarke subgradients of stratifiable func-
tions. SIAM J. Optim., 18(2):556-572,2007.

[11] J. Bolte, A. Daniilidis, O. Ley, L. Mazet. Characterizations of Łojesiewicz inequal-
ities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc., 362(6):3319-
3363,2010.

[12] A. Daniilidis, P. Georgiev. Approximate convexity and submonotonicity. J. math.
Anal. Appl. 291:117-144,2004.

[13] N. M. Dao, D. Noll. Minimizing the memory of a system. Submitted.

[14] J. E. Dennis jr., R. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice Hall Series in Computational Mathematics, 1983.

[15] J.-B. Hiriart-Urruty, C. Lemaréchal. Convex Analysis and Minimization Algorithms,
vol. I and II: Advanced Theory and Bundle Methods, vol. 306 of Grundlehren der
mathematischen Wissenschaften, Springer Verlag, New York, heidelberg, Berlin,
1993.

[16] K. Kurdyka. On gradients of functions definable in o-minimal structured. Ann. Inst.
Fourier, 48(3):769-783,1998.

[17] S. Łojasiewicz. Sur les ensembles semi-analytiques. In Actes du Congès International
des Mathématiques (Nice, 1970), Tome 2, pages 237-241. Gauthier-Villars, Paris,
1971.

[18] D. Noll. Cutting plane oracles to minimize non-smooth non-convex functions, Journal
of Set-Valued and Variational Analysis, 18(3-4):531-568,2010.

[19] D. Noll. Bundle methods for non-convex minimization with inexact subgradient and
function values. Computational and Analytical Mathematics. Springer proceedings
in Mathematics, 2012.

[20] D. Noll, O. Prot, A. Rondepierre. A proximity control algorithm to minimize non-
smooth non-convex functions. Pacific J. Optim. 4(3):2008,569-602.

[21] D Noll, A. Rondepierre. Convergence of linesearch and trust-region methods us-
ing the Kurdyka-Łojasiewicz inequality. Computational and Analytical Mathematics.
Springer Proceedings in Mathematics. 2012.

[22] A. M. Ostrowski. Solution of Equations in Euclidean and Banach Spaces. Academic
Press, New York, 1973.

[23] R. T. Rockafellar, R. J-B. Wets. Variational Analysis. Springer Verlag, 2004.

[24] J. E. Spingarn. Submonotone subdifferentials of Lipschitz functions. Trans. Amer.
math. Soc., 264:77-89,1981.

25

