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Abstract

Structured output feedback controller synthe-
sis is an exciting recent concept in modern
control design, which bridges between the-
ory and practice in so far as it allows for
the first time to apply sophisticated mathe-
matical design paradigms like H1- or H2-
control within control architectures preferred
by practitioners. The new approach to struc-
tured H1-control, developed by the authors
during the past decade, is rooted in a change
of paradigm in the synthesis algorithms. Struc-
tured design is no longer based on solving
algebraic Riccati equations or matrix inequal-
ities. Instead, optimization-based design tech-
niques are required. In this essay we indicate
why structured controller synthesis is central
in modern control engineering. We explain
why non-smooth optimization techniques are
needed to compute structured control laws,
and we point to software tools which enable
practitioners to use these new tools in high-
technology applications.
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Introduction

In the modern high-technology field, control
engineers usually face a large variety of
concurring design specifications such as noise or
gain attenuation in prescribed frequency bands,
damping, decoupling, constraints on settling time
or risetime, and much else. In addition, as plant
models are generally only approximations of the
true system dynamics, control laws have to be
robust with respect to uncertainty in physical
parameters or with regard to un-modeled high-
frequency phenomena. Not surprisingly, such a
plethora of constraints presents a major challenge
for controller tuning, due not only to the ever
growing number of such constraints but also
because of their very different provenience.

The steady increase in plant complexity is
exacerbated by the quest that regulators should
be as simple as possible, easy to understand and
to tune by practitioners, convenient to hardware
implement, and generally available at low cost.
These practical constraints highlight the limited
use of Riccati- or LMI-based controllers, and
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they are the driving force for the implementation
of structured control architectures. On the other
hand, this means that hand-tuning methods have
to be replaced by rigorous algorithmic optimiza-
tion tools.

Structured Controllers

Before addressing specific optimization tech-
niques, we recall some basic terminology
for control design problems with structured
controllers. The plant model P is described as

P W

8
<

:

PxPD AxPC B1wC B2u
´ DC1xPCD11wCD12u
y DC2xPCD21wCD22u

(1)

where A, B1, . . . are real matrices of appropriate
dimensions, xP 2 R

nP is the state, u 2 R
nu

the control, y 2 R
ny the measured output,

w 2 R
nw the exogenous input, and ´ 2 R

n´

the regulated output. Similarly, the sought output
feedback controller K is described as

K W

�
PxKDAKxKC BKy

uDCKxKCDKy
(2)

with xK 2 R
nK and is called structured if

the (real) matrices AK ; BK ; CK ;DK depend
smoothly on a design parameter x 2 R

n, referred
to as the vector of tunable parameters. Formally,
we have differentiable mappings

AK D AK.x/; BK D BK.x/; CK D CK.x/;

DK D DK.x/;

and we abbreviate these by the notation K.x/ for
short to emphasize that the controller is structured
with x as tunable elements. A structured con-
troller synthesis problem is then an optimization
problem of the form

minimize kTw´.P;K.x//k
subject to K.x/ closed-loop stabilizing

K.x/ structured; x 2 R
n

(3)

where Tw´.P;K/ D F`.P;K/ is the lower feed-
back connection of (1) with (2) as in Fig. 1 (left),
also called the linear fractional transformation
(Zhou et al. 1996). The norm k � k stands for
the H1-norm, the H2-norm, or any other system
norm, while the optimization variable x 2 R

n

regroups the tunable parameters in the design.
Standard examples of structured controllers

K.x/ include realizable PIDs, observer-based,
reduced-order, or decentralized controllers,
which in state space are expressed as:
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diag.AK1 ; : : : ; AKq / diag.BK1 ; : : : ; BKq /
diag.CK1 ; : : : ; CKq / diag.DK1 ; : : : ;DKq /

�

:

In the case of a PID, the tunable parameters
are x D .�; kP ; kI ; kD/; for observer-based
controllers, x regroups the estimator and state-
feedback gains .Kf ; Kc/; for reduced order
controllers nK < nP , the tunable parameters
x are the n2K C nKny C nKnu C nynu unknown
entries in .AK ; BK ; CK ;DK/; and in the
decentralized form, x regroups the unknown
entries in AK1; : : : ;DKq . In contrast, full-
order controllers have the maximum number
N D n2P C nPny C nPnu C nynu of degrees of
freedom and are referred to as unstructured or as
black-box controllers.

More sophisticated controller structures K.x/
arise from architectures like a 2-DOF control
arrangement with feedback block K2 and a set-
point filter K1 as in Fig. 1 (right). Suppose K1 is
the 1st-order filter K1.s/ D a=.s C a/ and K2
the PI feedback K2.s/ D kP C kI=s. Then the
transfer Try from r to y can be represented as the
feedback connection of P and K.x; s/ with

P D
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K.x; s/ D
�
K1.a; s/ K2.kP ; kI ; s/

�
;
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Optimization-Based Control Design Techniques and Tools, Fig. 1 Black-box full-order controller K on the left,
structured 2-DOF control architecture withK D diag.K1;K2/ on the right

Optimization-Based
Control Design
Techniques and Tools,
Fig. 2 Synthesis of
K D diag.K1; : : : ;KN /
against multiple
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P .1/; : : : ; P .M/. Each
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and gathering tunable elements in x D

.a; kP ; kI /.
In much the same way, arbitrary multi-loop

interconnections of fixed-model elements with
tunable controller blocksKi .x/ can be rearranged
as in Fig. 2, so that K.x/ captures all tunable
blocks in a decentralized structure general
enough to cover most engineering applications.

The structure concept is equally useful to
deal with the second central challenge in control
design: system uncertainty. The latter may be
handled with �-synthesis techniques (Stein and
Doyle 1991) if a parametric uncertain model
is available. A less ambitious but often more
practical alternative consists in optimizing the
structured controller K.x/ against a finite set of
plants P .1/; : : : ; P .M/ representing model varia-
tions due to uncertainty, aging, sensor and actua-
tor breakdown, un-modeled dynamics, in tandem
with the robustness and performance specifica-
tions. This is again formally covered by Fig. 2 and
leads to a multi-objective constrained optimiza-
tion problem of the form

minimize f .x/ D max
k2SOFT;i2Ik

kT .k/wi´i
.K.x//k

subject to g.x/D max
k2HARD;j2Jk

kT .k/wj ´j
.K.x//k�1

K.x/ structured and stabilizing

x 2 R
n (4)

where T .k/wi´i denotes the i th closed-loop robust-
ness or performance channel wi ! ´i for the k-
th plant model P .k/. SOFT and HARD denote
index sets taken over a finite set of specifica-
tions, say in f1; : : : ;M g. The rationale of (4)
is to minimize the worst-case cost of the soft
constraints kT .k/wi´i k, k 2SOFT, while enforcing

the hard constraints kT .k/wj ´j k � 1, k 2HARD,
which prevail over soft ones and are mandatory.
In addition to local optimization (4), the problem
can undergo a global optimization step in order
to prove global stability and performance of the
design, see Ravanbod et al. (2017) and Apkarian
et al. (2015a, b).
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Optimization Techniques Over the
Years

During the late 1990s, the necessity to develop
design techniques for structured regulators K.x/
was recognized (Fares et al. 2001), and the limi-
tations of synthesis methods based on algebraic
Riccati equations or linear matrix inequalities
(LMIs) became evident, as these techniques can-
not provide structured controllers needed in prac-
tice. The lack of appropriate synthesis techniques
for structured K.x/ led to the unfortunate sit-
uation, where sophisticated approaches like the
H1 paradigm developed by academia since the
1980s could not be brought to work for the design
of those controller structures K.x/ preferred by
practitioners. Design engineers had to continue to
rely on heuristic and ad hoc tuning techniques,
with only limited scope and reliability. As an
example, post-processing to reduce a black-box
controller to a practical size is prone to fail-
ure. It may at best be considered a fill-in for
a rigorous design method which directly com-
putes a reduced-order controller. Similarly, hand-
tuning of the parameters x remains a puzzling
task because of the loop interactions and fails as
soon as complexity increases.

In the late 1990s and early 2000s, a change
of methods was observed. Structured H2- and
H1-synthesis problems (3) were addressed by
bilinear matrix inequality (BMI) optimization,
which used local optimization techniques based
on the augmented Lagrangian method (Fares
et al. 2001; Noll et al. 2004; Kocvara and
Stingl 2003; Noll 2007), sequential semidefinite
programming methods (Fares et al. 2002;
Apkarian et al. 2003), and non-smooth methods
for BMIs (Noll et al. 2009; Lemaréchal and
Oustry 2000). However, these techniques were
based on the bounded real lemma or similar
matrix inequalities and were therefore of limited
success due to the presence of Lyapunov
variables, i.e., matrix-valued unknowns, whose
dimension grows quadratically in nP C nK and
represents the bottleneck of that approach.

The epoch-making change occurs with
the introduction of non-smooth optimization

techniques (Noll and Apkarian 2005; Apkarian
and Noll 2006b, c, 2007) to programs (3) and
(4). Today non-smooth methods have superseded
matrix inequality-based techniques and may be
considered the state of art as far as realistic
applications are concerned. The transition took
almost a decade.

Alternative control-related local optimization
techniques and heuristics include the gradient
sampling technique of Burke et al. (2005), and
other derivative-free optimization techniques as
in Kolda et al. (2003) and Apkarian and Noll
(2006a), particle swarm optimization, see Oi et al.
(2008) and references therein, and also evolution-
ary computation techniques (Lieslehto 2001). All
these classes do not exploit derivative informa-
tion and rely on function evaluations only. They
are therefore applicable to a broad variety of
problems including those where function values
arise from complex numerical simulations. The
combinatorial nature of these techniques, how-
ever, limits their use to small problems with a
few tens of variable. More significantly, these
methods often lack a solid convergence theory.
In contrast, as we have demonstrated over recent
years (Apkarian and Noll 2006b; Noll et al. 2008;
Apkarian et al. 2016, 2018), specialized non-
smooth techniques are highly efficient in practice,
are based on a sophisticated convergence theory,
are capable of solving medium-size problems in
a matter of seconds, and are still operational
for large-size problems with several hundreds of
states.

Non-smooth Optimization
Techniques

The benefit of the non-smooth casts (3) and
(4) lies in the possibility to avoid searching for
Lyapunov variables, a major advantage as their
number .nP CnK/2=2 usually largely dominates
n, the number of true decision parameters x.
Lyapunov variables do still occur implicitly in the
function evaluation procedures, but this has no
harmful effect for systems up to several hundred
states. In abstract terms, a non-smooth optimiza-
tion program has the form
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minimize f .x/
subject to g.x/ � 0

x 2 R
n

(5)

where f; g W R
n ! R are locally Lipschitz

functions and are easily identified from the cast
in (4).

In the realm of convex optimization, non-
smooth programs are conveniently addressed by
so-called bundle methods, introduced in the late
1970s by Lemaréchal (1975). Bundle methods
are used to solve difficult problems in integer
programming or in stochastic optimization
via Lagrangian relaxation. Extensions of the
bundling technique to non-convex problems like
(3) or (4) were first developed in Apkarian and
Noll (2006b, c, 2007), Apkarian et al. (2008),
and Noll et al. (2009) and, in more abstract form,
in Noll et al. (2008). Recently, we also extended
bundle techniques to the trust-region framework
(Apkarian et al. 2016, 2018; Apkarian and Noll
2018), which leads to the first extension of the
classical trust-region method to non-differential
optimization supported by a valid convergence
theory.

Figure 3 shows a schematic view of a non-
convex bundle method consisting of a descent-
step generating inner loop (yellow block) com-
parable to a line search in smooth optimization,
embedded into the outer loop (blue box), where
serious iterates are processed, stopping criteria
are applied, and the acceptance rules of tradi-
tional trust-region techniques are assured. At the
core of the interaction between inner and outer
loop is the management of the proximity control
parameter � , which governs the stepsize kx �
ykk between trial steps yk at the current serious
iterate x. Similar to the management of a trust-
region radius or of the step size in a line search,
proximity control allows to force shorter trial
steps if agreement of the local model with the true
objective function is poor and allows larger steps
if agreement is satisfactory.

Oracle-based bundle methods traditionally
assure global convergence in the sense of
subsequences under the sole hypothesis that for
every trial point x, the function value f .x/ and

one Clarke subgradient � 2 @f .x/ are provided.
In automatic control applications, it is as a rule
possible to provide more specific information,
which may be exploited to speed up convergence
(Apkarian and Noll 2006b).

Computing function value and gradients of
the H2-norm f .x/ D kTw´ .P;K.x// k2 requires
essentially the solution of two Lyapunov equa-
tions of size nP CnK ; see Apkarian et al. (2007).
For the H1-norm, f .x/ D kTw´ .P;K.x// k1,
function evaluation is based on the Hamiltonian
algorithm of Benner et al. (2012) and Boyd et al.
(1989). The Hamiltonian matrix is of size 2.nPC
nK/, so that function evaluations may be costly
for very large plant state dimension (nP > 500),
even though the number of outer loop iterations
of the bundle algorithm is not affected by a large
nP and generally relates to n, the dimension of x.
The additional cost for subgradient computation
for large nP is relatively cheap as it relies on
linear algebra (Apkarian and Noll 2006b). Func-
tion and subgradient evaluations for H1 and H2
norms are typically obtained in O

�
.nP C nK/

3
�

flops.

Computational Tools

Our non-smooth optimization methods became
available to the engineering community since
2010 via the MATLAB Robust Control Tool-
box (Robust Control Toolbox 4.2 2012; Gahinet
and Apkarian 2011). Routines HINFSTRUCT,
LOOPTUNE , and SYSTUNE are versatile enough
to define and combine tunable blocks Ki .x/, to
build and aggregate multiple models and design
requirements on T .k/w´ of different nature, and to
provide suitable validation tools. Their imple-
mentation was carried out in cooperation with
P. Gahinet (MathWorks). These routines further
exploit the structure of problem (4) to enhance
efficiency; see Apkarian and Noll (2007) and
Apkarian and Noll (2006b).

It should be mentioned that design problems
with multiple hard constraints are inherently
complex and generally NP-hard, so that exhaus-
tive methods fail even for small- to medium-
size problems. The principled decision made in
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Optimization-Based Control Design Techniques and Tools, Fig. 3 Flow chart of proximity control bundle
algorithm

Apkarian and Noll (2006b), and reflected in the
MATLAB tools, is to rely on local optimization
techniques instead. This leads to weaker
convergence certificates but has the advantage
to work successfully in practice. In the same
vein, in (4) it is preferable to rely on a mixture
of soft and hard requirements, for instance, by
the use of exact penalty functions (Noll and
Apkarian 2005). Key features implemented in the
mentioned MATLAB routines are discussed in
Apkarian (2013), Gahinet and Apkarian (2011),
and Apkarian and Noll (2007).

Applications

Design of a feedback regulator is an interac-
tive process, in which tools like SYSTUNE,
LOOPTUNE, or HINFSTRUCT support the
designer in various ways. In this section we

illustrate their enormous potential by showing
that even infinite-dimensional systems may be
successfully addressed by these tools. For a
plethora of design examples for real-rational
systems including parametric and complex
dynamic uncertainty, we refer to Ravanbod
et al. (2017), Apkarian et al. (2015a, 2016,
2018), and Apkarian and Noll (2018). For
recent applications of our tools in real-world
applications, see also Falcoz et al. (2015), where
it is in particular explained how HINFSTRUCT
helped in 2014 to save the Rosetta mission.
Another important application of HINFSTRUCT
is the design of the atmospheric flight pilot for
the ARIANE VI launcher by the ArianeGroup
(Ganet-Schoeller et al. 2017).

Illustrative Example
We discuss boundary control of a wave equation
with anti-stable damping,
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xt t .�; t/ D x��.�; t/; t � 0; � 2 Œ0; 1�

x�.0; t/ D �qxt .0; t/; q > 0; q 6D 1 (6)

x�.1; t/ D u.t/:

where notations xy and xyy stand for partial first-
and second-order derivatives of x with respect to
y, respectively. In (6), x.�; t /; xt .�; t / is the state;
the control applied at the boundary � D 1 is u.t/,
and we assume that the measured outputs are

y1.t/ D x.0; t/; y2.t/ D x.1; t/;

y3.t/ D xt .1; t/: (7)

The system has been discussed previously in
Smyshlyaev and Krstic (2009), Fridman (2014),
and Bresch-Pietri and Krstic (2014) and has been
proposed for the control of slip-strick vibrations
in drilling devices (Saldivar et al. 2013). Here
measurements y1; y2 correspond to the angular
positions of the drill string at the top and bottom
level, and y3 measures angular speed at the top
level, while control corresponds to a reference
velocity at the top. The friction characteristics at
the bottom level are characterized by the param-
eter q, and the control objective is to maintain a
constant angular velocity at the bottom.

Similar models have been used to control
pressure fields in duct combustion dynamics; see
DeQueiroz and Rahn (2002). The challenge in
(6) and (7) is to design implementable controllers
despite the use of an infinite-dimensional system
model.

The transfer function of (6) is obtained from

G.�; s/D
x.�; s/

u.s/
D
1

s
�
.1 � q/es� C .1C q/e�s�

.1 � q/es � .1C q/e�s
;

which in view of (7) leads to G.s/T D

ŒG1 G2 G3� D ŒG.0; s/ G.1; s/ sG.1; s/�.
Putting G in feedback with the controller

K0 D Œ0 0 1� leads to bG D G=.1CG3/, where

bG.s/ D

2

4

1
s.1�q/
1CQ
2s
1
2

3

5C

2

6
4

� 1�e
�s

s.1�q/

�Q.1�e
�2s/

2s
Q
2
e�2s

3

7
5

DW eG.s/CΦ.s/; (8)
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Optimization-Based Control Design Techniques and
Tools, Fig. 4 Stability of the closed-loop .eG C
Φ;K/ is equivalent to stability of the closed-loop
.eG;feedback.K;Φ//. See also Moelja and Meinsma
(2003)

where Q D .1C q/=.1 � q/.
Here eG is real-rational and unstable, while Φ is
stable but infinite dimensional. The latter follows
from the fact that 1�e�s

s
and 1�e�2s

2s
are stable

transfert functions as clarified by series expan-
sions. Now we use the fact that stability of the
closed loop .eG CΦ; K/ is equivalent to stability
of the loop .eG;feedback.K;Φ// upon defin-
ing feedback.M;N / WDM.I CNM/�1 : The
loop transformation is explained in Fig. 4.

Using (8) we construct a finite-dimensional
structured controller eK D eK.x/ which stabilizes
eG. The controller K stabilizing bG in (8) is then
recovered from eK through the equation eK D

feedback.K;Φ/, which when inverted gives
K D feedback.eK;�Φ/. The overall con-
troller for (6) is K� D K0 CK, and since along
with K only delays appear in Φ, the controller
K� is implementable.

Construction of eK uses SYSTUNE with pole
placement via TuningGoal.Poles, imposing
that closed-loop poles have a minimum decay of
0.9, minimum damping of 0.9, and a maximum
frequency of 4.0. The controller structure is cho-
sen as static, so that x 2 R

3. A simulation with
K� is shown in Fig. 5 (bottom), and some accel-
eration over the backstepping controller from
Bresch-Pietri and Krstic (2014) (top) is observed.

Gain-Scheduling Control
Our last study is when the parameter q � 0

is uncertain or allowed to vary in time with
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Optimization-Based Control Design Techniques and
Tools, Fig. 5 Wave equation. Simulations forK obtained
by backstepping control (top) (Bresch-Pietri and Krstic
2014) and K� D K0 C K obtained by optimizing
feedback.eG;eK/ via SYSTUNE (bottom). Both con-
trollers are1-dimensional but implementable

sufficiently slow variations as in Shamma and
Athans (1990). We assume that a nominal q0 > 0
and an uncertain interval Œq; q� with q0 2 .q; q/
and 1 62 Œq; q� are given.

The following scheduling scenarios, all
leading to implementable controllers, are
possible: (a) computing a nominal controller eK
at q0 as before, and scheduling through Φ.q/,
which depend explicitly on q, so that K.1/.q/ D
K0Cfeedback.eK;�Φ.q//, and (b) computing
eK.q/ which depends on q, and using K.2/.q/ D
K0 C feedback.eK.q/;�Φ.q//.

Optimization-Based Control Design Techniques and
Tools, Fig. 6 Synthesis at nominal q0 D 3. Simulations
of nominal K D K0 C feedback.eK;Φ.3// for q D
2; 3; 4. Nominal controller is robustly stable over Œq; q�

While (a) uses (3) based on Apkarian and
Noll (2006b, c) and available in SYSTUNE, we
show that one can also apply (3) to case (b).
We use Fig. 4 to work in the finite-dimensional
system .eG.q/; eK.q//, where plant and controller
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Optimization-Based Control Design Techniques and
Tools, Fig. 7 Method 1. eK obtained for nominal q D
3, but scheduledK.q/ D K0 C feedback.eK;Φ.q//.
Simulations for q D 2 top, q D 3 middle, q D 4 bottom

now depend on q, which is a parameter-varying
design.

Optimization-Based Control Design Techniques and
Tools, Fig. 8 Method 2. eK.q/ D eKnom C .q �
3/eK1 C .q � 3/2eK2 and K.q/ D K0 C
feedback.eK.q/;Φ.q//. Simulations for q D 2; 3; 4
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For that we have to decide on a parametric
form of the controller eK.q/, which we choose as

eK.q; x/ D eK.q0/C .q � q0/eK1.x/

C .q � q0/
2eK2.x/;

and where we adopted the simple static form
eK1.x/ D Œx1 x2 x3�; eK2 D Œx4 x5 x6�, featuring
a total of 6 tunable parameters. The nominal
eK.q0/ is obtained via (3) as above. For q0 D 3

this leads to eK.q0/ D Œ�1:049 � 1:049 �

0:05402�, computed via SYSTUNE.
With the parametric form eK.q; x/ fixed, we

now use again the feedback system .eG.q/; eK.q//

in Fig. 4 and design a parametric robust controller
using the method of Apkarian et al. (2015a),
which is included in the SYSTUNE package and
used by default if an uncertain closed-loop is
entered. The tuning goals are chosen as con-
straints on closed-loop poles including minimum
decay of 0.7, minimum damping of 0.9, with
maximum frequency 2. The controller obtained
is (with q0 D 3)

eK.q; x�/ D eK.q0/C .q � q0/eK1.x�/

C .q � q0/
2eK2.x�/;

with eK1 D Œ�0:1102;�0:1102;�0:1053�, eK2 D
Œ0:03901; 0:03901; 0:02855�, and we retrieve the
final parameter varying controller for G.q/ as

K.2/.q/ D K0Cfeedback.eK.q; x�/;�Φ.q//:

Nominal and scheduled controllers are compared
in simulation in Figs. 6, 7, and 8, which indicate
that K.2/.q/ achieves the best performance for
frozen-in-time values q 2 Œ2; 4�. All controllers
are easily implementable, since only real-rational
elements in combination with delays are used.

The non-smooth program (5) was solved with
SYSTUNE in 30 s CPU on a Mac OS X with
2:66GHz Intel Core i7 and 8 GB RAM. The
reader is referred to the MATLAB Control Tool-
box 2018b and higher versions for additional
examples. More details on this study can be found
in Apkarian and Noll (2019).
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