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An EM Algorithm for Dynamic SPECT
Heinz H. Bauschke, Dominikus Noll,* Anna Celler, Member, IEEE, and Jonathan M. Borwein

Abstract— In this paper we present two variants of the EM
algorithm for dynamic SPECT imaging. A version based on com-
partmental modeling which fits a sum of exponentials and a more
general approach allowing for arbitrary decaying activities. The
underlying probabilistic models are discussed and the incomplete
and complete data spaces are shown to be physically meaningful.
We indicate that the second method, leading to a convex pro-

gram in the M step, is easier to treat numerically and we present
a possible numerical approach. Some preliminary numerical tests
indicating the feasibility of the method are included.

I. INTRODUCTION

SINGLE photon emission computed tomography (SPECT)
is a nuclear medicine diagnosis technique which measures

the three dimensional (3-D) distribution of a radioactively
labeled pharmaceutical injected in the body. As compared to
standard imaging techniques such as computed tomography
(CT), the significance of SPECT lies in the fact that it reveals
the function of the body rather than its structure. For example,
if a radio pharmaceutical is absorbed by an unhealthy tissue
and rejected by healthy tissue, then SPECT will reveal the
unhealthy tissue as a bright region. A related technique is
positron emission tomography (PET), [34].
A SPECT camera works by rotating around the patient a

scintillation detector (camera head) that records gamma rays
emitted by the patient. A collimator placed in front of the
detector rejects rays that are not perpendicular to the camera
face (see Fig. 1). The images resulting in the camera are
two-dimensional 2-D projections of the original 3-D activity
distribution in the patient. Some devices use double or triple
head cameras, or even ring SPECT instruments, to improve
the number of detected counts and therefore the statistics.
Current clinical applications of SPECT are based on the

hypothesis that the injected radio activity in the organ of
interest is stationary over the acquisition period (usually about
20 min). However, physiological processes in the body are
usually dynamic and some organs (kidney and heart) show
a significant decay of activity due to washout. Being able to
trace activity in space and time is therefore of importance and
is expected to significantly enhance diagnostic possibilities. A
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Fig. 1. Photons radiating from the region of interest. (a) Misses the camera.
(b) Absorbed by the collimator. (c) Passes the collimator and hits the camera.

dynamic SPECT reconstruction, if numerically and algorith-
mically possible, might be presented as a movie rather than
a static image.
With a significant decay of tracer activity over the ac-

quisition period, the filtered back projection method (FBP)
may no longer be reliably used, and new approaches must be
developed. The purpose of the present paper is to introduce
a probabilistic model for dynamic SPECT whose numerical
solution is based on an instance of the EM algorithm. We
discuss its numerical aspects along with those of other models
as, for instance, presented in [20].
Let us mention that dynamic SPECT is currently already

possible with a ring SPECT instrument, rarely available in
hospitals, or with a triple head camera doing fast camera rota-
tions. Here, the time-varying activity is handled by acquiring
a number of fast sequential SPECT studies and fitting curves
on a voxel-by-voxel basis to the resulting SPECT images (cf.
[30]). This approach suffers from poor data statistics and is not
compatible with the majority of the transmission scan-based
attenuation-correction methods (cf. [32], [31], [9], [18], [19]).
Our investigation aims at a dynamic method which works even
for single-head cameras doing slow rotations adapted to the
time scale of the tracer dynamics.
Clinical applications of dynamic SPECT which could be

realized in the near future include renal studies using the
dynamic tracers Tc-99mMAG3 and Tc-99mDTPA used in
planar renal imaging, myocardial viability studies using I-123
labeled fatty acids, or brain blood-flow imaging using Xe-133,
Xe127, or I-123, (cf. [15], [23]). The biological half lives of
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any of these dynamic tracers is within the time scale of a
typical scan of 20–25 min duration.

II. PROBABILISTIC MODEL
In order to model dynamics in SPECT we consider an

instrument with a single camera head, available in most
hospitals. The case of double- or triple- head cameras or even-
ring SPECT devices could be treated similarly. The camera
rotates through 180 with stops, , with
each stop taking minutes. is the total acquisition
time, usually some 20 min. The camera plane is of typical
size 30 40 cm. Depending on its resolution, the camera is
divided into receptor bins (pixels), a typical choice being
some 6 6 mm, in which case we have receptor
elements. The camera rotates about a fixed axis with a radius
of 20–30 cm.
The gamma rays originate from a region of interest of

approximately 30 30 30 cm . This region of interest
is divided into little cubes called voxels. In our example,
assuming a spatial resolution of 0.5–1 cm leads to
up to elements. During the th stop the camera
is at a fixed position with angle

. What we are trying to reconstruct is the radio
activity of the isotope in voxels
at times . The projected data measured during each stop
present the activities in the receptor bins .

Ideally, while the camera head is at position only gammas
traveling along a line with angle are allowed to pass the
collimator and hit some photo cell (see Fig. 1).
We assume that activity is constant during the time interval

of a single stop, but is allowed to vary in time over the whole
acquisition period. Here, activity of voxel during the
th stop is proportional to the number of photons that leave
the voxel during this time interval, radiating in any possible
direction.
Let be the random variable which counts the number

of events in the camera bin during the stop . The physics
of radio activity make it reasonable to assume that the are
Poisson distributed. The data collected in the camera bins
at different positions form a sample for the .
Let denote the probability that a photon leaves voxel
in direction and hits the detector bin while the camera
is actually at position . The coefficients are supposed
to be known. They are usually referred to as the geometry
of the model but, in addition to geometry, they may include
probabilistic effects such as gamma ray scattering and, more
importantly, attenuation and collimator blurring (see [1], [9],
[36], [33]).
While including the collimator response function into the

model parameters is routinely possible, correcting for
attenuation causes a major problem which, in practice, is
handled in two ways. The first is to calculate the attenuation
map beforehand, either by doing a transmission scan in parallel
with the SPECT acquisition (see for instance [9]) or by
estimating attenuation mathematically. For the latter approach
see the method proposed in [24] and reported to be practical
in [35]. A second way, at least mathematically possible,

Fig. 2. The coefficient is the relative volume of voxel lying within the
beam connecting and the receptor bin during the camera position .

consists in estimating the unknown attenuation and source
simultaneously as proposed, for instance, in [6] and, more
recently, in [13].
The way attenuation is estimated does not have any influ-

ence on our dynamic protocols. The coefficients may,
in principle, even comprise scattering, although the number
of nonzero then increases dramatically, leading to a
numerically difficult problem.
In a simplified model where collimator blurring, attenuation,

and scatter are ignored is proportional to the volume of
that part of voxel which lies in the beam connecting
with the receptor bin during the position given by the

angle (see Fig. 2). Based on the geometry, the expected
values of the are

(1)

For later use, let us fix some notation here. The coefficients
give rise to two linear operators. We define
by and by

. We observe that, in practice, is usually
one to one, while is typically not.

III. DYNAMIC TRACING
The critical part in modeling the dynamics of SPECT

is the time behavior of activity . If radioactive decay
were the only significant part, a standard model of the form

with known decay constant would
apply. Dynamic SPECT is, however, based on the hypothesis
that due to a flow in the organ, each voxel may have its own
individual decay profile. Therefore, more sophisticated models
for decay with rates varying in time and space are needed.
Based on experimental evidence for fatty acid myocardial
viability [14], the following parametric model of decay:

(2)
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with unknown parameters and
was used in [20] and [5]. Discretizing (2)

according to the stops, the total
acquisition time, leads to a parametric model with five degrees
of freedom for each .
Another approach suggested in the investigation of NMR-

relaxation data (cf. [37]) uses a model of the form

(3)

Discretizing the time axis at the stops now leads to a sum
of exponentials with degrees of freedom.
A third approach, which we propose here, is to not insist on

any specific form of the decay curves. That is, in each position
we allow for an activity profile with degrees of freedom

, assuming only that activity decays in time

and (4)

As compared to (2), this increases the flexibility of modeling
decay, but increasing the degrees of freedom bares the risk
of producing an under fitted model. Fortunately, experiments
indicate (see Section VIII) that the model works well, and
that its algorithmic and numeric advantages over (2) should
be exploited. To introduce some standing notation we denote
the set of satisfying (4) by .

IV. MAXIMUM LIKELIHOOD
Let us now derive the maximum-likelihood estimation for

the unknown parameters based on the data . Let
be the probability density of the measurements given the
activity curves . Then we consider

ML maximize
subject to

i.e., we pick those parameters which were the ones most
likely to have produced the data . As the are
Poisson variables with means , up to some con-
stant the negative log-likelihood function equals

The problem of minimizing subject to the constraints (4)
is feasible and admits optimal solutions since the objective
clearly tends to infinity if at least one of the on
the feasible set . On the other hand, solutions are typically
not unique. Any solution must satisfy the following
Kuhn–Tucker conditions (cf. [10]). There exist multipliers

, , and such that for each

we have the system KT

where we used the abbreviation

(5)

Clearly, any solution has for fixed .
Notice also that any two solutions must satisfy

for every fixed , since the
functions are strictly convex for . As
the operator given by is typically not
one to one, ML may have multiple solutions. Ensuring that
is only moderately defective is of relevance for the numerics

and may be influenced by the discretization we choose (cf. [5]).
Remark: We mention that the major difference with the

widely known probabilistic model of Shepp and Vardi [34], [8]
for static emission tomography is that, in the dynamic case, the
model is extremely under fitted. For instance, in the situation
of Section II, the unknown dynamic image has 64 degrees
of freedom per slice, to which we fit of the order of 64 data
(that is, 64 stops and 64 bins per camera cross-section). The
situation improves if multiple camera heads are available, but
the problem remains under fitted. To render it tractable, a prior
model for the dynamics such as (2), (3), or (4) is required,
represented by the constraint set .

V. THE EM ALGORITHM
The EM algorithm is an iterative procedure to calculate

maximum likelihood estimates. It first made its appearance
in 1976 in a paper by Dempster et al. [12] (see also [22])
and its original intention was maximum-likelihood estimation
with incomplete data. Since then, the EM algorithm has been
applied in a much wider context, including situations in which
the incomplete and the complete data space are defined in a
somewhat artificial way.
In our present situation, the maximum likelihood problem

ML involving the joint probability distribution of
represents the incomplete data space. To introduce a complete
data space we consider the random variables which
present that part of the activity in voxel that radiates toward
the receptor bin during stop . These are Poisson random
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variables with mean and joint probability density
depending on the parameter .

The EM algorithm is now the following. By induction
define a sequence of parameter estimates

according to the following rules.
1) E step: Given and the data calculate
the conditional expectation .

2) M step: Calculate the new estimate by
maximizing over .

The E step is fully explicit here. Namely, given the data and
the current we find that

(6)

This may, in fact, be obtained from the following.
Lemma 1: Let be independent Poisson dis-

tributed random variables with mean . Then the
conditional expectation

is obtained as

For the M step, we maximize the log-likelihood function
over the . Up to constant terms, that

entails minimizing

over all . Obviously, this function is of the form
with each

depending only on the variable ,
the set of satisfying (4) for fixed . Notice that the data
and the previous iterate do not enter directly into the

calculation of . Rather, is it which makes connection
with the previous step.
We have

with as in (5) and

(7)

We now consider the maximum-likelihood problem for the
complete data space which perforce splits into problems
of size

ML maximize
subject to

Setting , and with defined as
before, the th problem becomes

ML minimize
subject to

Notice that in contrast with the original maximum-likelihood
problem ML , we do not control the constraints
here, since they are built in through the objective due to

. In fact, for fixed , consider such that both
and . Then the corresponding term in

works as a barrier function which forces the variable to
take strictly positive values. For the same reason, it is now
reasonably clear that the optimal solutions for ML
are unique since the are strictly convex and coercive.
The Kuhn–Tucker conditions (cf. [10]) for the optimal

solutions of ML imply the existence of multipliers
, giving the system KT

Based on the optimality conditions KT , we may now enter
a detailed analysis of the EM algorithm.

VI. ALTERNATING PROJECTIONS
We show that the EM algorithm presented in the previous

section may be interpreted as an alternating projection proce-
dure, in the sense of von Neumann, provided that the Euclidean
metric is replaced with the Kullback–Leibler distance. The
interested reader is referred to the Appendix for a brief account
of von Neumann’s alternating projections.
Let and . The Kull-

back–Leibler distance of is defined as

Now has properties which resemble those of a metric, but
obviously lacks symmetry and is only defined for and

. In analogy with the orthogonal projection we define
projection operators and associated with . Given
a closed convex subset of and a point , the
forward, respectively backward, projections of onto are
defined as

and
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With these notions, the M step presented in Section V turns
out to be a Kullback–Leibler backward projection.
Proposition 1: Let for

some . Given let be the backward
projection of onto , that is

Then the solution of the M step satisfies
, for short, .

Proof: Indeed, for the proof we simply observe that with
, for short, , the objective function of

the M-step satisfies which
up to a constant term equals . Minimizing over

is therefore equivalent to minimizing over
. Existence and unicity of the projection is guaranteed

since and the set contains points in . Notice
also that is closed, as it is the linear image of the closed
convex and polyhedral set under , and is therefore itself
polyhedral.
Based on this observation we now ask whether, similarly,

the E step may be interpreted as a projection onto a convex set.
Proposition 2: Let

. Let be the current EM iterate and
let . Then the conditional expectation defined by
the E step (6) is the Kullback–Leibler projection of onto
in the forward and the backward sense

Proof: First, consider the case of the backward pro-
jection. Clearly, exists and satisfies the
Kuhn–Tucker conditions. There exist multipliers such
that

in tandem with the constraints

Summing over for fixed gives
This readily implies (6).
Next, consider the case of the forward projection

. Here the Kuhn–Tucker conditions provide multipli-
ers satisfying

and with constraints as above. Taking exponentials and sum-
ming over for fixed gives the same type of relation and
again leads to (6).
It remains to observe that any limit point of the sequence

must be a Kuhn–Tucker point for the problem ML . This is a
consequence of a general fact (see [38]), but could equally well
be checked using the conditions KT in tandem with (6) and
(7) and the KT . Indeed, convergence of the iterates
implies convergence of . Formula KKT implies

so the multipliers converge as well. Passing to the limit
therefore implies the corresponding conditions KT and

it remains to check that part of the Kuhn–Tucker conditions
KT , which concerns the constraints . Clearly,
however, if any such constraint is active , the
corresponding conditions in KT are satisfied. In case
, the multiplier will do.
In consequence, we may now state the principal conver-

gence result for the present Poisson EM algorithm.
Theorem 1: The sequences and generated

by the Poisson EM algorithm based on the constraint set (4)
converge to limit points . Here,
is of the form , with a solution to the

maximum-likelihood problem ML .
Proof: First, observe that the problem ML is convex

and, due to the structure of the constraint set , admits
optimal solutions. We claim that the sequences of alternating
Kullback–Leibler projections

converge to certain limit points . In
the case where , the alternating sequence converges
to a common limit point . This is a known fact
proved by Bregman (see, e.g., [2, Th. 8.1]). In case ,
which is the more realistic one, the convergence proof is more
complicated and only special cases have been considered.
(See, for instance, [16], [17], [34], and [7], where the case
of positivity constraints was discussed.) Our present
case, involving the constraint set (4), may be settled using the
same type of reasoning. We skip over the details, which are
tedious.
Finally, notice that the point satisfying is uniquely

determined by the injectivity of and by closedness lies in .
Inspecting the Kuhn–Tucker conditions for ML , we see that
must be a Kuhn–Tucker point and, by convexity, therefore

solves ML .
Remark: Consequently, the EM algorithm is best under-

stood in the space of variables, where it may be recast as
an alternating Kullback–Leibler projection onto closed convex
sets and . In fact, is an affine subspace restricted to ,
while depends on the parameter space and may
therefore be quite complicated. The whole procedure may be
generalized to any comparable situation with a closed convex
parameter space .
Remark: Replacing the constraint set by , representing

the nonlinear conditions (2), we obtain a nonconvex set
. The EM algorithm could then still be formulated as an

alternating projection between and , but with the obvious
problems when projecting onto nonconvex sets.
Remark: Iusem [16], among others, considers the case

where we impose only positivity conditions
. Here, the backward projection onto is

particularly pleasant to calculate and leads to an explicit
formula.

VII. THE LEAST SQUARES APPROACH
In [20], the authors propose a different approach to the

dynamic SPECT problem, which is based on the dynamic
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model (2) and is solved using nonlinear least squares

NLS
minimize
subject to

Here, the operator is defined as before

Problem NLS was found difficult to treat in practice due to
the highly nonlinear dependence of the on the parameters
(cf. [20], [5]). Following the ideas presented in Section III, we
replace the parametric model (2) by (4). This leads to a linear
least squares problem with inequality constraints

LLS minimize
subject to

where is, as before, the set of satisfying (4). Our aim now
is to present a probabilistic model for both NLS and LLS .
This will also provide clues to possible numerical approaches
based on a version of the EM algorithm.
Following the pathway in Section V, we let the random

variables and be defined accordingly, but now
assume that the are independent and normal variables
with unknown mean and common variance .
Consequently, the are independent normal variables with
mean and variance .
With these agreements, LLS is just the maximum-

likelihood estimation problem

ML maximize
subject to

where denotes the density of the normal law with
mean and covariance matrix . Similarly, problem
NLS is the maximum likelihood problem with the constraint
set given by (2).
Returning to the outline of Section V, we apply the EM

algorithm to the present situation, letting , respectively ,
represent the complete, respectively incomplete, data spaces.
As in the Poisson case, this generates sequences and

according to the following rules.
1) E step. Given the current iterate , calculate the
conditional expectation .

2) M step. Calculate the new iterate by maxi-
mizing over .

Here, denotes the normal law with mean and
covariance matrix , which is the joint density of .
Proposition 3: Let for some

. Then, given the result of the previous E step, the
next M step reduces to calculating the orthogonal projection

of onto and taking to satisfy .
Proof: Indeed, the negative log-likelihood function used

for the M step, up to constant terms, equals
and is to be minimized over . This establishes the
statement.
Let us now pass to the E step, which we would like to

reveal as an orthogonal projection. This involves calculating

the conditional expectation . Due
to independence of , this may be obtained from the following.
Lemma 2: Let be a vector of indepen-

dent normal variables with mean and variance
. Then the conditional expectation

satisfies

More precisely, is the orthogonal projection of
onto the set of satisfying .

Proof: In consequence of [29, Th. 2.1(viii)], a normal
vector

gives the conditional expectation

We apply this in the case
which gives the stated formula.
With this observation, we find that the formula replacing (6)

in the case of the normal variables is

(8)

and the E step is in fact realized as an orthogonal projection:
Proposition 4: Let .

Let be the current iterate generated by the previous M step
and let . Then the result of the next E step is the
orthogonal projection of onto .
We are now in the position to state the convergence result for

the EM algorithm in the case of normal variables. It is based
on von Neumann’s classical method of alternating projections.
Theorem 2: Let be defined as above and let
be the sequences generated by the Gaussian EM algo-

rithm. Then converge to limit points
. Here, is of the form with a

solution to the least squares problem LLS .
Proof: In the case where , it is well known that

the sequence of alternating projections converges to a common
limit point which, by definition of , is then
of the form .
The more involved case occurs when . Following

[3], a dichotomy appears. Either the alternating sequences
converge to limit points , with
realizing the distance between , or there are no points
realizing this distance, in which case the sequences tend to
infinity , with approaching
the distance between . We will argue that in our situation
the second case is impossible.
Indeed, the distance not being attained implies the

existence of a common asymptotic direction for : there
exist and having

. The second inclusion implies
for fixed , while the first gives for some .
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The being nonnegative, this is only possible when
and, hence, .
We deduce that and . It is now routine

to check that is a Kuhn–Tucker point for the original problem
LLS .
Remark: Replacing by gives an

important special case. The orthogonal projection onto
is explicit and, in tandem with (8), leads to a formula for

updating . We then have an iterative method for calculating
nonnegative least squares solutions. One may compare this
to other iterative methods for calculating nonnegative least
squares solutions such as ISRA (see [27]).
Let us analyze the M step a little further. Recall that up to

a constant additive term and a constant factor, the negative
log-likelihood function equals

and is to be minimized over . Setting

and (9)

we have

constant terms

The Kuhn–Tucker conditions therefore imply the existence of
Lagrange multipliers and
satisfying LKT

and

for

Therefore, analogously to the Poisson case, the original prob-
lem of size splits into problems of size . Notice that in
contrast with the Poisson case ML , we do have to control
the constraints here, which leads to the additional
multipliers . However, as we shall see, these constraints
will generally be inactive and the multipliers will vanish.

VIII. NUMERICAL APPROACH
In this section we shall discuss the practical aspects of both

EM algorithms. Clearly, the algorithms may be expected to
be slow since alternating projections are known to converge
no better than with a linear rate. Nevertheless, the additional
numerical stability gained may often justify the EM scheme, in
particular, if some speed is recovered, e.g., by parallelizing the
M step. The crucial question to be addressed before proposing
this scheme is the following. Observe that in the dynamic
case the M-step is intrinsically more complicated than in

the stationary case, because it requires solving a nonlinear
optimization problem ML where the static case goes with
an explicit formula, (cf. [17], [7]). We therefore have to assure
that a reasonably fast numerical solution is possible. In order
to answer this question, we shall analyze the M steps of both
the Poisson and the Gaussian model.
The first surprising observation is that both M steps, al-

though coming from completely different out sets, lead to
exactly the same procedure. Recall the Kuhn–Tucker condi-
tions KT for the Poisson M step presented in Section V. To
simplify notation we omit the indexes and which are fixed,
writing and and, similarly, for
the solution and the multipliers. We then have the following.
Lemma 3: For fixed the problem ML has a unique

solution satisfying (4). This solution is of the
following form:

(10)

for appropriate with

(11)

the being strictly decreasing. In particular,
and .
Proof: Uniqueness of the solution of ML follows

from strict convexity of the objective. Clearly, any solution,
since it satisfies (4), has the form (10) and it only remains to
establish (11).
The complementarity condition in KT implies that

for all , while the remaining multipliers
may be strictly positive. Now, summing the Kuhn–Tucker
equations KT in each block separately
gives (11).
Remark: This result is interesting since it tells us that given

any sequences , there exists a
unique subdivision (10) such that , defined
through (11), is strictly decreasing. (Taking, for instance,

we obtain the amusing observation that, given any
sequence , there exist a unique subdivision (10) such
that the arithmetic means of the over each block are strictly
decreasing and satisfy the boundary conditions and

.)
Let us now pass to the Gaussian M step obtained in

Section VII. Here we have the same observation which, again
on suppressing the indexes , is the following:
Lemma 4: The solution of the Kuhn–Tucker

conditions LKT is unique and of the form (10), possibly
with a different . It admits a representation of the form
(11) with replacing and replacing . The sequence

is strictly decreasing and, again, the limit conditions
are satisfied.

Proof: Indeed, starting out with the blocks (10), possibly
with another , we find again that the multipliers must
vanish. Summing the Kuhn–Tucker conditions LKT in each
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(a) (b)

(c) (d)

Fig. 3. Comparisons of models (2) and (4) using typical dynamic pixels from two simulated reconstructions on the basis of 60 (left column) and 80 (right
column) camera positions. In the lower line an a posteriori fit of (2) to the data of (4) shows little difference with model (2).

block would suffice, provided we knew that the final multiplier
, belonging to the constraint , had vanished. Clearly,

this is the case if , which is consequently what remains
to be checked.
Assume to the contrary that the last block in (10) is zero,

. Then the Kuhn–Tucker
conditions give

which, in view of and , is only possible when
. However, by construction (9) we

have so and the result follows.
The observation that both M steps are essentially equivalent,

although with different data versus
, gives us choice on how to perform the M step. In

fact, the Gaussian M step uses nonnegative least squares, and
for a moderate size works faster than the Poisson M step
ML . On the other hand, for a really large , if required,
the Poisson M step could more conveniently be solved by an
interior point method. In fact, a logarithmic barrier term for

the constraints (4) leads to the objective

One might perform only a few steps toward minimizing for
a fixed before passing to another E step. Increasing the
number of steps and reducing should then be controlled
by testing decrease of the likelihood function in ML ,
respectively in LLS , which, for theoretical reasons (see [12]),
is known to decrease at each iteration if an exact EM step is
performed.
Experiment: Using the Poisson EM algorithm for the dy-

namic model (4), with an M step based on a quadratic program
(justified through Lemma 3 and Lemma 4), we reconstruct
a typical slice of 64 64 pixels using 60–80 stops within
the order of 40–50 min CPU, with up to 100 EM iterations.
Performance can often be improved if a good prior guess is
available. A considerable speedup could, however, be obtained
by parallelizing the M step. A more detailed evaluation of
our present approach including comparison to other dynamic
methods, shall be presented in [21].
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The experiment reported in Fig. 3 is to demonstrate that
replacing the mixed-exponential decay model (2) by the more
general decay model (4) usually does not lead to a loss of
information. The four pictures show randomly chosen dynamic
pixels from two simulated reconstructions on the basis of 60
[Fig. 3(a) and (c)], respectively 80 [(Fig. 3(b) and (d)], camera
positions. The plots in the top line show comparisons of typical
decay curves produced by the models (2) (smooth semicolon
curves) versus (4) (step-like curves).
The Fig. 3(c) and (d) indicates that, typically, no informa-

tion is lost on replacing (2) with (4). Namely, the smooth
dotted lines show model (2) curves which a posteriori have
been fitted to the step-like functions (4). Typically, these show
little difference from the direct fitting of (2) (smooth semicolon
type curves as before) so (2), if desired, could be retrieved
from (4). As (4) has numerical advantages, the EM algorithm
should in fact be built on (4). Fitting a model (2) decay curve
to the step functions (4) may be deferred to the end of the
procedure.

IX. CYCLIC PROJECTIONS
The fact that the Kullback–Leibler, respectively orthogonal,

projections onto the set cannot be calculated explicitly is
clearly a drawback of our present approach, accounting for the
fact that the speed is still inconvenient for clinical applications.
In addition to parallelizing the M step, this problem may be
addressed by the following idea. Split the projection onto
into two projection steps which are easier to compute and
combine the two resulting points to approximate . More
precisely, let us consider the sets

and

Then, and instead of projecting onto we wish
to use the projections onto the which, as we shall see, are
easier to perform.
Inspecting a simple case where the sets are the

edges of an equilateral triangle shows that projecting cyclically
onto the sets is not exactly what we want. There are, however,
various possible ways in which the projected information onto
the three sets may be used to approach the point

, realizing the distance between the two sets.
We propose the following scheme, which applies to both
the Poisson and the Gaussian case with the corresponding
interpretations.
1) Given an iterate , respectively , do an E
step using (6), respectively, (8). The result is .

2) Replace the M step by the following. Project onto
, which gives . To form the

new iterate , take
.

3) At the end of the procedure do a few correction steps
by projecting onto the true set .

Let us see why this scheme, leading to explicit formulas,
is expected to be faster than the original EM algorithm. The
crucial observation is the following.
Lemma 5: With the notation (7) and (5) let

be the Kullback–Leibler backward projection of onto .
Then and is given by the following alternative.
Either , in which case

or , in which case we have

and

A similar formula is obtained for the backward projection
.

X. CONCLUSION
We have presented two versions of an EM algorithm for

dynamic SPECT where the recorded events are assumed
to be either Poisson or normally distributed. The EM algorithm
is recognized as an alternating projection scheme in the sense
of von Neumann for normal laws, and with respect to the
Kullback–Leibler distance in the Poisson case. Our simulations
indicate that a parametric model, based on experiments in
myocardial viability studies (2) used in previous experiments
[20], may be replaced by a less biased model (4) which, in
addition, seems to have computational advantages. Modified
versions of our approach (in the spirit of [28]), accounting
for measurement noise in real clinical data, could easily be
formulated. Related regularization techniques are discussed in
[25] and [26]. Finally, we mention that our approach may
be extended to a Baysian model, including prior information
about the expected dynamic reconstructions.

APPENDIX
Let us briefly outline von Neumann’s idea of alternating

projections, originally formulated for hyperplanes, but later
extended to more general convex sets.
Suppose we are given two closed convex sets and

and we are interested to find a point in the intersection
, in short, a solution. Denote the orthogonal

projections (also called nearest point mappings) onto set
by and fix a starting point . The method of

alternating projections generates a sequence

If , then the sequence converges to some solution
in . Otherwise, it diverges. In the latter case, either the
distance between the sets is attained, then the subsequences

converge to points realizing this distance, that
is, and ,
or there are no points realizing the distance between and
, in which case .
The von Neumann scheme has often served as a numerical

tool to calculate solutions to linear or nonlinear systems, in
particular, if extended to the case of more than two sets (see
[4] for more details and further references).
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As the present paper highlights, the Gaussian EM algorithm
is a particular case of von Neumann’s scheme where the
projection onto , the E step, has an explicit formula (8),
while the projection onto , the M step, is more involved
and usually requires solving a number of optimization prob-
lems. In the static case, the M step is equally convenient
since it admits an explicit formula. Notice that in the case of
the EM algorithm, the intersection is typically empty and
the first part of the above dichotomy occurs, i.e., the distance
between and is attained.
In the case of Poisson distributed events, the same scheme

is valid if the Euclidean distance is replaced with the Kull-
back–Leibler distance (see Section IV and also [16] and [11]).
For readers familiar with the Shepp–Vardi version of the EM
algorithm for static emission tomography, we mention that
in their case both projections , the E step, and ,
the M step, are equally convenient to perform since they
lead to explicit formulas. It is then possible to calculate the
product and it is the iterative scheme based on this
operator which, in medical imaging, is widely known as the
EM algorithm.
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