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1. INTRODUCTION

Since the presentation of Clarke’s generalized derivative in the mid-1970s, it has been a main
issue in nonsmooth analysis and optimization to develop notions of generalized first and second
derivatives for nonsmooth functions which may serve as a substrate for the classical derivatives.
In this paper we discuss two related concepts of generalized second derivatives for nonsmooth
functions which have been under an intense discussion over recent years. On the one hand, first
and second epi derivatives in the sense of Rockafellar have been studied at least since 1987. This
concept proves to be useful, e.g. when studying optimization problems for various classes of
nonsmooth functions including convex functions, convex-concave saddle functions, lower
C>-functions, or functions of the form g « ¢, with g convex and ¢ of class C2. See [1-5] and the
references given therein for an overview on these.

Recently, second epi derivatives have been extended to infinite dimensions (see [6 and 7]). In
[6], Borwein and Noll have used second Mosco derivatives for convex functions on Hilbert
spaces, while in [7], second epi derivatives turned out to be an important tool when describing
the second order behavior of not necessarily convex integral functionals on L2-spaces and
Sobolev spaces.

Parallel to this, on the other hand, Hiriart-Urruty’s theory of approximate first and second
derivatives for convex functions has been under discussion since the early 1980s, and has been
further developed over recent years. See [8-12] for an overview on this. It seems at first glance
that both theories should play, in some sense, a complementary role. Namely, approximate
second derivatives in the first place are designed as a one-dimensional notion which reflects the
second variation of a function f at a point x along a fixed direction h. As a contrast, second
order epi derivatives are sensitive to the second order variation of f along all directions A
simultaneously.

Nevertheless, we present a link for both theories here by showing that the generalized Dupin
indicatrix for a convex function, which was presented in {11, 12] as part of the theory
of approximate derivatives, may be obtained quite naturally in the context of second epi
derivatives. This requires a more geometric view of second epi derivatives, and so we continue
our line of investigation from [13], where second epi derivatives were looked at from a
geometric point of view. We derive some consequences of our new sight of the Dupin indicatrix.
For instance, we answer the question about the limiting behavior of the difference quotient

lim 3. f(x) — 3f(x)
e—~0% \/2_8

563

(1.1)
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where a, f(x) denotes the g-subdifferential of f at x (cf. [9, 12]). Namely, the limit (1.1) exists
if and only if f has a second order epi derivative at x. The limit behaviour of (1.1) was already
discussed in [12] under an unnecessarily strong side condition.

2. SECOND EPI DERIVATIVES

Let us briefly recall the notion of epi convergence. For an overview see [14-17].

Let f;, f: RY - R U {oo}, £ > 0 be extended real-valued lower semicontinuous functions.
Then f, is said to epi converge to f as t = 0%, noted f,  f, if the following conditions are
satisfied:

(@) given any sequence 7, — 0% and 4 € R?, there exist 4, — h such that S, () = f(h) as
n — oo;

(B) given any ¢, —» 0%, h € R? and h, — h, we have lim inf, .., £, (h,) = f(h).

We use a slight extension of the concept of epi convergence which was already discussed in
[13], and which has a geometric motivation in the context of epi convergence of second order
difference quotients to be presented later. Namely, we write £,(k) © 6 € R U {o} if conditions
(o) and (B) above are satisfied with f(%) replaced by 6. So f, = f if and only if f,(h) © f(h) for
every h.

Let f: R? > R be a locally Lipschitz function. The second order difference quotient of f at
x € R9 relative to y* € 9f(x), where 3f(x) denotes the Clarke generalized subdifferential of f at
x (cf. [18}), is defined as

Sx + th) — f(x) — Ky*, h)
t2

Af s (B) = , heR% 2.1)
Notice that, for every ¢ # 0, As, ,+, is a locally Lipschitz function of 4. With these notions at

hand we are ready to give the following definition, which the reader should compare with
[1-4, 13].

Definition 2.1. The function f is said to have second epi derivative q, ,« at x relative to
y* € df(x) if the second order difference quotient (2.1) epi converges to g, ,« as t = 07, i.e.
Afyysi™ Gy ywast— 0.

Remark 1. Notice that g, ,», when it exists, is automatically lower semicontinuous and
extended real-valued. Owing to the relation

A,(Ah) = A2A\(h), (2.2)

(where A, := A/, ,+,), we see that g, ,«is quadratic, i.e. positively homogeneous of degree 2.

Remark 2. If q, ,+ is symmetric, i.e. satisfies q, ,«(—h) = q,, ,+(h), then the second epi
derivative is said to be two-sided. Notice that this implies in particular that dom(g, ,«) is a linear
subspace. Further, if g, . is purely quadratic, i.e. has a representation of the form

Gy y»(h) = (T, ,sh, h), (2.3)

with T, ,« a symmetric linear operator defined on dom(g, ,+), then we use the notation
Qcy+ = 1l ,», calling this the generalized second fundamental form of f at x relative to y*.
The operator T, ,« is then called the generalized Hessian.
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Remark 3. Second derivatives may be understood as one-sided second derivatives in the following
sense. Namely, instead of basing our notion of convergence on the epigraphs, we might as well
work with hypographs. Now hypo convergence of A, , ,, to a limit function ¢ having values
in RU {—oo} is equivalent to epi convergence of —A;, ,«, = A_;, _,+, to the limit —gq.
Now suppose A, , ,«, both epi and hypo converges to a limit g, which consequently must have
finite values and be continuous. Then A, , ., converges to g pointwise and even uniformly
on compact sets. The latter is equivalent to saying that f has a second order Taylor’s expansion
at x, i.e. a representation of the form

S+ h) = fx) + (VFE), By + gh) + o(lAl?)  (h - 0). (2.4)

Conversely, if f has a second order Taylor expansion (2.4) at x, i.e. if A;, ,«, converges
uniformly on compact sets to some fully defined quadratic limit ¢, then A;, ,«, % g and
A_f . -y« —q, i.e. we have both convergence in the epi and in the hypo sense.

It may happen that, besides its epi limit g, ,«, the second order difference quotient (2.1) has
a limit in the sense of pointwise convergence, i.e.

al () = 5im Ayy,ye,(h) 2.5)

exists for every h € R%. Condition (8) for the epi convergence then automatically implies
dr,y» < 4} ,+. Again we use the notation g ,. = II} . when (2.5) is a quadratic form defined
on a subspace of R?. Clearly, if f has a derivative at x in the classical sense, then the usual
second fundamental form I, at x exists and equals IIX’" y*, where y* = Vf(x). However, is it true
that 71, = II, ,«in this case, and if not, what is the reason for introducing an object like 17, ,.?

We shall deal with these and related questions here. As it turns out, both g, ,»and q,‘f, yx have
a geometric interpretation, so there is no question about giving preference to one of them. It
may happen even for convex f that both II, ,« and II,;", = exist but are different, although this
situation may be considered as a somewhat pathological case. A class of examples of this type
was already presented in [13], and we shall go further into the analysis of these phenomena
here. Before doing this, let us quote the following facts from [13] which justify the use of the
second epi derivative g, ,« resp. II, ,«.

In the convex case, the most obvious reason for using epi convergence is of course its
invariance under Young-Fenchel conjugation. More precisely, if A;, ,«, % qs.x,y*, then the
conjugate of the second difference quotient, which is (As, ,s )* = Ars s, ,, has epi limit
q}:x,y*, i.e. Af“,y*,x,t % qf,x,y* = Grx yx x-

Let us now consider another more sophisticated observation, which justifies the use of
second epi derivatives, and which was obtained in [13].

Fact 1. For a convex f, x € R?, y* € 9f(x), let F be the convex hypersurface in R?*! represented
as the graph of f in a neighbourhood of the point p = (x, f(x)). Consider the outer paraliel
surface F, at distance ¢ > 0. Let n, be the outer unit normal vector of F corresponding with
the subgradient y* of f at x. Consider the corresponding point p, = p + &n, on the surface F,.
Then second order epi differentiability of f at x with respect to y* is equivalent to p, being a
point of second order smoothness of F, in the classical sense (sometimes called a normal point
of F,). In other terms, if F, is represented as the graph of a convex function f, in a neigh-
bourhood of y and such that p, = (y, f;(»)), then f is second order epi differentiable at x
with respect to y* if and only if f, is second order differentiable at y in the classical sense,
i.e. admits a second order Taylor expansion at y. See [13] for this.
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As a consequence of fact 1, the epi limit g, ,+, resp. II, .+, arises naturally as the limit
(¢ = 0%) of the second fundamental forms of the outer parallel surfaces. In more abstract
terms, the usual point of view of convex geometry leads us to consider II, ,., since the
information given by this form is hidden in the second order behaviour of the outer parallel
surfaces (see [13]). On the other hand, the function g; ,+, resp. I} ., cannot be reconstructed
in a natural way from the information on the outer parallel surfaces. See example 5.3 for this.

Let us quote a second fact which clarifies the interrelation between the pointwise and epi
limits of the second difference quotient and justifies the use of second epi derivatives.

Fact 2. Let f be a locally Lipschitz function, x € R?, y* € 3f(x). Let F be the Lipschitzian
hypersurface in R*! represented as the graph of f in a neighbourhood of p = (x, f(x)). Let n,
be the unit normal vector corresponding with y*, and let 7, the corresponding generalized
tangent hyperplane at p (cf. [18]). Let ¢, be any ray emanating from p and contained in 7,,,
then ¢, and n, determine a normal section. Let us choose our local coordinates such that
p=1(0,0)=(0,f(0)) and 0 = y* € 3f(0). Then 7, = RY x {0}, n, is the x,;.,-axis, and
t, = Rh x {0} for some 4 € R?. Then the following are true (cf. [13]).

(1) Aso,0,(8) > 6,, (t 0%) is satisfied if and only if the surface curve x, lying in the
normal section spanned by 7, and n, has curvature 26, at p.

(2) Given any other surface curve x having the same tangent line #, at p, and such that its
projection x’ onto the tangent hyperplane 7, has a finite curvature at p, has normal curvature
26, at p (theorem of Meusnier).

(3) Asp,0,:(h) % ¢, is equivalent to saying that every surface curve x having tangent t,atp
has upper normal curvature at least 26,, and there exists at least one such curve which has
exactly normal curvature 26, at p.

Roughly speaking, these statements show that the second order behaviour of f at x, resp. F,
at p with respect to a certain direction # may be completely understood by considering all
surface curves x having tangent 7, at p and evaluating the curvature of their projection x” onto
the normal section spanned by ¢, and n,. However, only those curves x whose projection k'
onto the tangent hyperplane have a finite curvature at p contribute to the value qf, y+(h), while
the remaining curves « still have an effect on the value g, ,«(h). As part of the discussion here,
we will see that 6, < 6, is possible.

Let us now collect some known facts concerning the interrelation between pointwise and epi
convergence of the second difference quotient, resp., the interrelation between g, ,» and qf, yre
For convex functions f, the following are known.

(1) Suppose g,,,« exists and dom(q,,,+) has nonempty interior. Then the second difference
quotient converges pointwise to g, ,» on int(dom(g,,,+). In particular, if g, ,«is fully defined,
then gf . exists and equals g, ,», (see [2,13]). Though g, ,. and g} ,. may differ on the
boundary of int(dom(g, ,)) (see example 5.1).

) If q,’,',y* exists and is fully defined, then g, ,» exists and they coincide. Convexity is
essential for this, as example 5.2 shows.

(3) When g, ,. = II, ,.exists with domain a proper subspace, then qf, »»may still fail to exist.
Even worse, g, ,« = II; ,» may exist, but the pathological phenomenon I, ,«(h) < IIx'f y*(h) for
some 2 may occur (see example 5.3).

(CY) qf,y. = II,’f y+ may exist with domain a proper subspace, while g, ,« fails to exist (see
example 6.3 in [13]).
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The situation is even worse for nonconvex f, for in this case II, ,« and II{ ,. may both exist,
have domain RY, and yet be different, i.e. II, ,«(h) < H}f y+(h) for some h (see example 5.2).

3. THE DUPIN INDICATRIX

In classical differential geometry, the Dupin indicatrix of a surface F at a given point p is the
hypersurface II,(h) = £1 of the tangent space T, of F at p. In convexity, we may define an
upper and lower Dupin indicatrix as proposed in [19]. On every ray ¢, emanating from p and
contained in the tangent hyperplane, we mark the upper and lower curvatures of the plane
surface curve lying in the normal section spanned by ¢, and the normal n,, thus obtaining a
convex domain y representing the lower Dupin indicatrix, and a star shaped domain T’
representing the upper Dupin indicatrix. If y = I, this set is called the Dupin indicatrix
(see [19] for details). It is clear, however, that these constructions reflect the behaviour of the
pointwise limit qﬁ, »« rather than the epi limit of the second difference quotient. We shall,
therefore, use the notation Ind* for the pointwise indicatrix. Now, Busemann and Feller [19]
also propose a third way of constructing a Dupin indicatrix as a set-valued limit of certain
domains. This idea also appears in Hiriart-Urruty and Seeger [12], and we use this as our
definition of a generalized Dupin indicatrix for a convex function. Clearly all definitions
coincide if the function f is twice differentiable at the point x under consideration.

Let f be a convex function on R?, x € RY, y* € 3f(x). For t > 0 let

T, =the R¥:As, s, h) <3},
then
liminf T, = (h e RY:vt, > 0" 3h, > h,h, e, } resp.
-0t G.1)
limsupT, = {(he R?:3¢, > 0% 3h, > h,h,eT,}
t—0* "

are called the lower, resp. upper, Dupin indicatrices of f at x with respect to y*, noted Ind ; , .+,
resp. Ind;, ,«. If the lower and upper Dupin indicatrices coincide, we call this the Dupin
indicatrix, using the notation Indy,, ,«. The limit inferior and limit superior (3.1) are usually
referred to as limits in the sense of Kuratowski, so the Dupin indicatrix exists when the level sets
T, are convergent in the Kuratowski sense (as t = 0*).

In [12], the authors give sufficient conditions on when the Dupin indicatrix (3.1) exists. Here
we have the following theorem.

THEOREM 3.1. Let f be convex. Then the Dupin indicatrix Ind, , ,« of fat x relative to y* e 9f(x)
exists if and only if f has second epi derivative g, ,« at x. Moreover, in this case we have the
representation

Ind;, ,» = (h € R?:q, ,+(h) < §}. (3.2)

Proof. (1) Suppose the Dupin indicatrix Ind, , ,» exists. By (3.1) this means that the level sets
(A, = ) are convergent in the Kuratowski sense (as ¢+ = 0%). As a consequence of formula
(2.2), we deduce that the level sets (A, < «) are convergent for any fixed positive «. We show
that epi(A,) converges in the Kuratowski sense (as ¢ — 0*). Clearly, we have to show that
lim sup epi(A,) C liminf epi(A,). Let (x, u) be an element of the left-hand side. Fix a sequence
t, =~ 0*. Using the definition (3.1) of the limit superior, we find s, = 0%, x, > x and
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M, = u such that A, (x,) <p,. Fixing ¢ >0, we find u, <u + ¢ for n = n(e), hence
X, € (A;, < u + &) for n = n(¢). This implies x € lim sup(A; < u + ¢) for every ¢ > 0, and
by the above observation, these are in fact limits. Hence we find sequences x: — x such
that A, (x;) < u + ¢. Using a diagonal procedure, we may now extract a sequence (y;) of
the form y, = x;”" for k(n) < k < k(n + 1) such that y, = x and A, (y) < pu + 1/n for
k(n) < k < k(n + 1). This proves (x, ) € lim inf epi(A,).

(2) Conversely, assume that epi(A,) has a limit in the sense of Kuratowski. We show that, for
fixed o > 0, the level sets (A, < «) are also convergent in the sense of Kuratowski. Let
x € limsup(A; < o). Fix a sequence ¢, = 0*. By the definition of the limit superior we find
s, = 0% and x, — x having A, (x,) = . Using formula (2.2), the latter implies

A ya-9(( —)x,) = (1 - &) (3.3)

for every fixed ¢ > 0. In other terms, ((1 — &)x, (1 — £)’a) is an element of lim sup epi(A,).
By assumption, the latter is in fact a limit, so we find sequences x; — (1 — &)x and a —
(1 — &« such that A, (x;) < ;.

Owing to the fact that o > 0, we have o} < o from an index n(g). Using a diagonal procedure,
we may now define a sequence (y,) of the form y, = xi’" for k(n) < k < k(n + 1) which
converges to x and satisfies A, (¥¢) < . This proves x € lim inf(A; < «) and, hence, the claim.

(3) As epi convergence of the functions A, is known to be equivalent to convergence of their
epigraphs in the sense of Kuratowski used above, we have established the first half of the
statement. It remains to prove the representation (3.2). Suppose A, g for some quadratic
convex and lower semicontinuous function g. Then epi(A,) — epi(g) in the Kuratowski sense.
Now part (2) of the proof gives (A, = o) = (g < o) for every positive «, and this proves
formula (3.2). W

Remark 1. 1t is known that for a sequence (f,) of lower semicontinuous functions, convergence
(f, < a) = (f = ) of all level sets implies epi convergence f, < f, while the converse is not
true in general. In our special situation of convergence of second order difference quotients, the
above proof shows that both notions are almost the same. The only level sets which did not play
a role in the reasoning above are (A, < 0) = (A, = 0). (Observe that by convexity, we always
have A, = 0, so level sets with negative heights do not occur.) However, epi convergence A, = ¢
does not imply convergence of the zero level sets, i.e. we do not have (A, = 0) 2 (g = 0) in
general. For an example take f(x) = x*, then the second derivative g = Gooat0isg=0,so
(g = 0) = R, while the sets (A, = 0) equal {0} for all ¢ # 0 and, hence, do not converge to
(g = 0). The reason for this lies in the fact that the function indentically zero is a kind of
singular element with regard to the notion of convergence of level set (see also [20]).

Remark 2. As a consequence of theorem 3.1, Ind; , ,« exists if and only if Inds ,« , exists, and
these sets are polar to each other. Indeed, this follows from the invariance of epi convergence
under Young-Fenchel conjugation in tandem with the representation (3.2). Notice that for any
lower semicontinuous quadratic convex function g one has the equality (g < 3)° = (g* < ).

Remark 3. Notice that Ind,,, ,«is symmetric with respect to the origin precisely when the second
epi derivative g, , is two-sided, and that Ind,, , is a conic if and only if g, ,« is purely
quadratic. In the latter case, Ind;, ,» may be unbounded, which corresponds with Indp ,« ,
being degenerate, or it may be degenerate, which corresponds with its polar being unbounded.



Nonsmooth functions 569

Remark 4. The latter observation is true without the requirement that Ind = Ind;, ,» be a
conic. Indeed, unboundedness of Ind means g(k) = 0 for some h # 0, where g = g, ,».
However, ¢g* must be degenerate, namely, we have g*(k) = o for all directions k& having
(h, k) > 0. In fact dom(g*) is the cone polar to Ker(g).

4. CONSEQUENCES

In this section we obtain two consequences of theorem 3.1, which have been discussed in [12]
under stronger conditions guaranteeing the existence of the Dupin indicatrix.
Let f be convex, x € R?, y* e 3f(x). Then the function D*f(x, y*; -) defined as

D*f(x, y*; h) = liminf A;, . (k') @.1)
t—>0*h' > h

is lower semicontinuous (cf. [12]). It is closely connected to second order epi differentiability,
namely, f is second order epi differentiable at x with respect to y* if and only if the limit inferior
(4.1) is independent of the limit ¢t — 0%, i.e. fixing a sequence z, — 0* does not affect the value
of (4.1).

B The authors of [12] use another kind of one-sided second order derivative, the function
f"(x, y*; +) defined as

S, y* h) = 1iI£'($)9D As,x yr, (), 4.2)

which is convex and quadratic. It gives rise to the definition of the second order subdifferential
Pfx, y*) =z € R (g, by < Vf"(x, y*; ) Vh € RY}, (4.3)

which has been discussed, for example, in [8, 12]. Observe that D*f < f” in general, and that
since D?f is lower semicontinuous, Df < clf", where cl¢ means the lower-semicontinuous hull
of ¢. The interest in the function clf” lies in the fact that by (4.3), (cIf")"/? is the support
function of the second order subdifferential. It is natural to ask under what conditions
D*f = f, or at least D*f = cIf”. We have the following proposition.

ProrosiTiON 4.1. The equality
D*f(x, y*, *) = clf"(x, y*,*) 4.4

implies that f is second order epi differentiable at x relative to y*. Moreover,
dy.,» = D*f(x, y*, ) in this case. The equality

Df(x,y*; ) = f"(x, %5 ) (4.5)

is equivalent to the existence of g, ,« in tandem with the equality g, ,» = qf, »+. In other words,
the epi limit exists and is a pointwise limit.

Proof. By [12, theorem 3.7], the equality (4.4) implies the existence of the Dupin indicatrix,
hence second order epi differentiability of f at x relative to y* by theorem 3.1.

Concerning the second part of the statement, it is clear by the first part that equation (4.5),
which is stronger than (4.4), implies g, ,« = g} .. The converse is clear. H
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Remark. 1t should be noted that the converse of the first part of the statement is not true, i.e.
second order epi diffentiability does not give the equality (4.4). This follows from example 5.3.

The following result even shows that (4.4) reduces to (4.5) in most cases, which means that
(4.4) is tentatively stronger than the mere existence of the second epi derivative, resp. the Dupin
indicatrix.

ProposITION 4.2. Suppose (4.4) is satisfied, and let dom(qg,,,«) be a linear subspace. Then
equality (4.5) is satisfied. In particular, this is the case when g, ,« is two-sided.

Proof. Let H = dom(g,,,+) be a linear subspace. We aim to prove that

Af,x,y",t'H = Afig x,y4H

converges to gy ,» | H in the sense of epi convergence in H. It then follows from known results
(cf. [2, 13, 17]) that the limit is pointwise on H, and this proves the statement.

We have to check conditions («) and (£) for the epi convergence in H. Now condition (£) is
trivially satisfied, since it holds for the epi convergence in the larger space. Concerning (), we
fixhandu = g, ,«(h) = D?*f(x, y*; h). By condition (4.4) we have (&, u) € clepi f"(x, y*; *), so
there exist , = h and u, — u such that u, = f"(x, y*; h,). Using D?*f < f" and the lower semi-
continuity of D%f, we deduce that f"(x, y*; h,) = u, so we may assume u, = f"(x, y*; h,).
Now we have

qx,y*(hn) = f”(x! )’*; hn) < o,
which means A, € dom(g, ,+) = H. Fix t, > 0". By definition (4.2) we find indices k(n)
such that
_ 1
Af ey B < 706V ) + (4.6)

for all k = k(n). Setting A = h,, for k(n) < k < k(n + 1), therefore, provides a sequence
converging to 4 in H and such that

Hm SUD A1,y () < Him 7706, 7% hr) = G yu(h).
— 00 n—o

This establishes condition («) for epi convergenceon 7. W

Remark. If we drop the assumption that dom(g, ,+) is a linear subspace, the above reasoning
still guarantees equality (4.5) on the relative interior of dom(q, ,+). However, example 5.1
shows that this need not be the case on the relative boundary.

We end this section with the following application of theorem 3.1 combined with the results
in [12].

ProposITION 4.3. Let f be convex, x € R?, y* € 3f(x). Then the limit

. 0. f(x) — y*
1 LA AL AN A
e—l’r(rJl“ V2e

exists precisely when f is second order epi differentiable at x relative to y*.

= Indf*'y*’x (4.7)
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Proof. It was proved in [12] that

o o0 f(X) — y*
liminf === =Ind s .,

4.8
s 270 = _ o
N7 Tt

hence the existence of the limit (4.7) is equivalent to the existence of the dual Dupin indicatrix
Indgs ,4 ., which by remark 2 following theorem 3.1 is equivalent to the existence of Ind, hence
to second order epi differentiability of /. M

Remark. Notice that the equality (4.7) is in contrast with the limiting behaviour of the
difference quotient

. SO h)y = fixs )
el-l»r(l)l+ \/2_3 ’

Here f,(x; ) denotes the g-approximate directional derivative at x (cf. [9, 10}), in other terms,
the support function of the e-subdifferential d,f(x). Namely, as has been proved by
Hiriart-Urruty [9, 12], the limit (4.9) exists and equals V2g} ,+(h) precisely when g} ,.(h) exists,
whereas (4.7) reflects the epi information rather than the pointwise information of the limiting
behaviour of the difference quotient of the e-approximate subdifferential. This is no longer a
surprise, however, when we observe that (4.9) is a one-dimensional notion which is completely
determined by the behaviour of f along the ray x + RhA.

4.9

5. EXAMPLES

The following example has already been used in [13] to discuss possible pathological
behaviour of the second epi derivative.

Example 5.1. Define a convex f;: R* > R by setting
Jikx, y) = sup z,(x, ), ;.1
HES]

where z,(x,y) = -3t = 1|¢f/*** + 3ty, and where 1< a <2 is fixed. Then we have
J1(0,0) = 0, V£(0,0) = (0,0), so f, = 0. The following properties of f; are relevant for its
second order behaviour at (0, 0):

(1) on the y-axis, £,(0, ) = §)?;

(2) on the negative x-axis, f;(x, 0) = C,|x|*> for a positive constant C,;

(3) there exists a critical parabola y = +K_x"° in the half plane x = 0 such that f,(x, y) = 0
for the points (x, y) inside the parabola. Specially, K;,, = 273,

It follows that g* exists at (0, 0) with domain the half space {(h,, 4,): h; = 0}, and by (1), resp.
(3), we have g*(0, 1) = 2, while g*(k,, h;) = 0 for h, > 0. For the (h,, h,) with the &, < 0 it
can be shown that g*(h,, h,) = .

Concerning the second epi derivative g at (0, 0), (3) clearly shows g(h,, k,) = 0 for all A, > 0.
Now the important point is that also g(0, £1) = 0 < ¢*(0, +1). This follows by considering the
second order difference quotient of f; along the critical parabola in tandem with fact 2 (3) from
Section 2. Finally, one shows that g(k,, h,) = « for h; < 0, hence dom(g) = dom(g").
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The Dupin indicatrix Ind at (0, 0) is the half plane {(k,, A;): #, = 0}, while the pointwise
indicatrix Ind* in the sense of [19]is {(k,, ;) : b, > 0} U {0} x [—%, ], which is not a closed set.
Indeed, Ind is the closure of Ind*. Notice also that D?f, = clf". It follows that condition (4.4)
need not imply (4.5) on the relative boundary of the domain of q.

Example 5.2. Let g(x,y) = fi(x,y) for x =2 0, g(x,») = fi(—x,y) for x <0, then g is
the minimum of two convex functions and, hence, is locally Lipschitz. Notice that g has both
a pointwise second derivative g* and a second epi derivative g at (0,0) such that
dom(g) = dom(g*) = R?, but we have g(0, 1) = 0 < ¢*(0, 1) = §.

Example 5.3. The drawback of f] is that its second epi derivative is not a quadratic form.
Therefore, we construct the following modification. Define f,: R> > R by

L6y = |flusp1 Z5(x, »), (5.2)

where 7,(x, y) = —4s* + 1[s|>~* + sy. Then £, = 0, V£,(0, 0) = (0, 0), and £,(0, 0) = 0. Again
/>0, y) = 3y* along the y-axis, and f,(x,0) = C,x*® along the positive x-axis, with C,, the
same as above. There exists a critical parabola sited in the half plane x < 0 such that f, = 0
inside the parabola. Setting f = max(f;, f;) now provides a convex function whose second
order epi derivative II = g and second order pointwise derivative IT* = g* at (0, 0) both exist
as quadratic forms with domain the y-axis, and such that I1(0, +1) < IT%0, +1) = 2. The exact
value II(0, £1) can be found, for example, for & = 3/2 by calculating the curve y: (f; = f) in
the half plane x = 0. It turns out that y is of the form x = ¢y*'? with ¢ = 0.559713, and we find
the numerical value I1(0, +1) = 0.78904311.

Observe that Ind is the y-axis, while the_ pointwise indicatrix Ind* is the segment
{0} x [-¥, 2]. Here we have D?/(0, 0; (0, 1)) < f"(0, 0; (0, 1)), so condition (4.4) need not be
satisfied when f is second order epi differentiable.
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