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Abstract

We prove deterministic and stochastic consistency of a nonlinear image restoration
technique based on a maximum entropy model. Practical aspects of the method are
also addressed, and we conclude with some numerical experiments.
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1 Motivation

Picture restoration deals with images that have been recorded in the presence of various
sources of degradation. Some types of degradations, called point degradations, affect only
the gray levels of the individual pixels. Other types involving blur are called spatial degra-
dations. For example, in aerial reconnaissarice, astronomy and remote sensing, the pictures
are degraded by atmospheric turbulence, optical system aberrations, and/or object and
camera motions. Electron micrographs are often degraded by the spherical aberrations of
the electron lens, and medical radiographs are of low resolution and contrast, (see e.g. [20],
[1] for more information on these).

Given an ideal image u(z) over a region £ C R? and the corresponding degraded image
v(z), we will assume that « and v are related by

v(m):fgq(m,y)u(y)dy-l-e(:c), zeq. SER)

where ¢(x,y) represents the blurring and e(z) the random pixel noise.

The assumption that the observed image v(z) is a linear function of the original u(z)
may be questioned in a variety of situations. For example, in the restoration of photographic
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images, what is recorded is usually a nonlinear function of u(z). However, in practice, the
nonlinear characteristics of the exposure mapping are often known, and it is then possible
to perform an a priori gray-level correction which finally leads to a linear model of type

(1.1); cf. [21].

Similarly, the additivity of the signal independent noise may be challenged. Many
noise sources are in fact additive. However, if followed by some nonlinear transformation,
the additivity will only be a valid assumption over a small dynamic range. In some cases,
the appropriate noise model is multiplicative and may be converted into an additive form
by applying a logarithmic transform. In summary, both hypotheses, the additivity of the
noise source, and the linearity of the blur are commonly accepted in image restoration since
they make the problem mathematically tractable. '

If the degradation caused by the blur is spatially invariant, and this is usually met at
least over large parts of the region, the blur takes the convolutional form ¢(z,y) = q(z —y),
and ¢(z) is then called the point-spread-function (PSF). In the following we will limit our
consideration to the deconvolution problem: Based on the knowledge of ¢(z) and some
statistical a priori knowledge about the noise, and assuming the model

o(z) = (g uw)(z) + e(z) = / a(z — y)u(y) dy + e(z) (1.2)

we wish to recover the unknown u(z) from its degraded version v{z).

The hypothesis that the blur ¢(z) is known is clearly special. In many cases, the
physical phenomenon underlying the degradation can be used to determine ¢(z), but in other
situations one might have to perform an a posteriori determination of the PSF by directly
inspecting the degraded image v(z), a procedure which requires individual treatment of the
images under considerations. In the present investigation, we will always assume that the

PSF is known.

One classical approach to the deconvolution problem (1.2) is based on inverse Wiener
or Kalman filtering, cf. [2, 17]. These methods, however, require some a priori knowledge
about the power spectra of the unknown signal u(z) and noise e(z) resp. their cross-
spectrum, a hypothesis which often appears to be artificial. More realistically, all that may
be known about the statistics of the model (1.2) might be the noise variance o, which
in practice is determined by inspecting parts of the degraded image v{z) with a relatively
homogeneous gray tone. '

Assume in the following that © = [0,1] x [0, 1], and suppose that the degraded image
v(z) has been sampled at the nodes z;; of a rectangular grid ;, with mesh size A > 0:

vij = (g * u)i; + e; = (gxu)(zy) + e(zy;), 0<4,5 <N ~1,

Suppose g € L>°(Q), and let the operator Q5 : L*(Q2) — RY*¥ and the vector v;, be defined
respectively by

(Qru); = (gxv)iy = (gxu)(zy),  (vn)y = v(zy) = vy
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Under the assumption that the sequence e;; satisfies the strong law of large numbers we
obtain the estimate

|M~Qwﬁﬂ@%~2}vdﬁi - (13)

ij

where N? = (1 + 1/h)? is the number of pixels in Q. It is then reasonable to seek for a
reconstruction of u(z) among the functions satisfying (1.3), and this has been suggested in
the engineering literature in a variety of papers (see [3], [15], or [14] among others).

Since there are clearly many solutions of (1.3), we select the one which minimizes some
previously chosen performance index like an energy functional or an entropy/information
measure. This leads to the optimization program

minimize Z(u /qb ), Du(z)) d=
(P1) subject to |[Qhu — upll2 £ No. =: Ne,

u(z) > 0, /S;u(a:) dez = 1.

The Maximum Entropy approach is part of this scheme when we choose the performance
index to be the Boltzmann-Shannon entropy expression

Hoop) = dla) = { 2B 220

400 z<{

Alternative choices of objectives c,b(:c p) which control derivative values of the unknown
u(z) are the energy integral Z(u) = [, |Du(z)|*dz, or the higher order index Z(u) =
Jo |Auz |2 dz considered by Hunt [16] As’a further pOSSJbﬂlty we mention Fisher’s infor-

mation Z(u fﬂ ﬂfdew which was successfully used in [8, 9, 10] for power spectrum
estlma,tzon ploblems

An alternative approach towards solving the deconvolution problem (1.2) is based on
regression analysis. On applying an operator of local averaging type to the data vy, like for
instance a kernel estimator or a nearest neighbour estimator, provides an estimate ¥, for the
unknown function ¢g*wu. The latter may then — with the error & significantly reduced in size
— be used to get a restoration u, by performing, say, a least square inversion of the linear
system (g#u), = Op. This method clearly requires a trade-off between the smoothing effects
needed to reduce the noise, and the additional blur thereby introduced. In the presence of
a sizable noise component this limits the outlined approach.

The method we propose is to combine the optimization point of view with regression
analysis. More precisely, we suggest to apply the scheme (P) after an a priori smoothing
of the data has been performed. The latter may be done e.g. by applying a kernel operator



¥, = k * v, to the sampled data vy, which means that (P;) is now replaced by the following
scheme: :

minimize Z(u / Hlu z), Du(z)) dz
(P,) subject to |k * Qhu —k+ 'Uh”g < N¢

u(z) > 0, /S;u(:c) de = 1.

The tolerance € may be determined through the same type of argument based on the law
of large numbers: ||k * €;]|2 = ||&r]|5 & N?c2 = N*( Y., =: Né?, (cf. Section 5).

It is clear that a serious assessment of the virtues of the models (P;), () in solving
real life deconvolution problems could only be based on an analysis of their numerical
performance. This issue has been addressed in our paper [18], cf. also 3, 14, 11, 15], and
we present a variety of experiments with the model (P,). Nevertheless, asking for theoretical
arguments in support of these models is still worthwhile. Here we shall do this by proving
deterministic and stochastic consistency of the model () for an appropriate choice of the
model parameter €. It turns out that such analysis has something to offer even for practice.
Namely, our arguments suggest that the choice € = o, resp. € = gz is not the final answer.
In fact a slightly larger tolerance level is needed (see Section 5). The latter then allows for
a consistency result (Theorem 5.1).

iJ e_;l)

2 Duality

In this section we recall some known facts needed to analyze program (P) with the
Boltzmann-Shannon entropy as performance index:

minimize Z{u) = / u(z)log u(z) dx
Q
(P,) subject to ||Qru — vill, < A e
u(z) > 0, ju(m) dz =1,
Q
where || - ||, with 1 < p < oo denotes any fixed p—norm. Some basic references on Maximum

Entropy type models are [5, 6, 7, 13]. In particular, for the following, the reference [4] is
extremely useful.

The concave dual program associated with (P) is

maximize J(A,p) Z XijUij + p — / exp {(QN)(z) + p — 1} dz — A7l er ||\ ||
Q

subject to A € RV*V, ,u ER,

(Dh)



where 1/p + 1/p’ = 1, and where the adjoint Q3 : RY*N — [(Q) is defined by @Q3()) =
225 Miq(@i — ) =1 3055 Mij i

Let the values of the primal and dual programs be V(P;) resp. V(D). It is a standard
argument in convexity that ynder a mild constraint qualification hypothesis (C'Q), the
primal and dual programs are equivalent in the sense that their values coincide, and a
complementary slackness type relation tells that the optimal solution @, of (P;) may be
represented in terms of the solution (Ay, jix) of (D;) through a return formula, which in our
case is:

a(e) = exp {Qi(W)(2) + i — 1} = exp { D Aa(asy — o)+ — 1. (2.1)

A constraint qualification suflicient to guarantee this equivalence is the following (cf. [6, 4,

71):
There exists @ piecewise continuous, 4 > 0,

(cQ) / 4(z)dz = 1, such that ||Qntt — vp]l, < A es.
Q

3 Deterministic Estimates

In this section we obtain deterministic estimates for the program (P;) with Boltzmann-
Shannon entropy objective. We mention that a convergence analysis for a deterministic
program with Boltzmann-Shannon entropy applied to Fourier type inversion problems has
been obtained by the authors of [4]. Some of their technical results will enter into the
present reasoning.

In the following, let the unknown signal we are trying to reconstruct be a(z) > 0
with [, #(@)dz = 1. In order to exclude trivial situations, we assume that @ is piecewise
continuous with @ > 0. For a given ¢ € L*°(f2), let the true values of ¥ = g * 4 at the grid
points z;; (0 < 4,5 < N —1) of 2, be T, where

By = (0 = (0 a)(os) = [ alos; —)ily) dy. (3.1)

Suppose the data vy, satisfy ||, —wi||, < h™"€s. Then the constraint qualification hypothesis
(CQ) is certainly satisfied (with @ ranging in the place of ).

For fixed h > 0, K, > 0 and 1 < p < oo let us consider the approximation constant
© N-1 -
En(u,q, Kn) r=inf{|lu— > Xjqas — oo : A € RN, N[l < Ko} (3.2)
1,j=0

Our first estimate involving the constants K, and Fj relates the values of (Py) resp. (D)
to Z(u).



Lemma 3.1 Let By := Ey(1 +logd, q, Ki). Suppose |0 — vill, < h~tey. Then

I(a) > V(P) = V(D)) 2 (@) — -é-E,f exp{Ey} — 2" e, K. (3.3)

G e

Proof. The assumption [|Tn — vall, < A~ les guarantees that @ is feasible for (P;), and
this implies the first inequality. As observed above, the feasibility of % also implies the
fact that the constraint qualification (C'Q)) is satisfied, and this proves the dual equivalence
V(Py) = V(D4). It remains to prove the second inequality.

Choose A such that the infimum (3.2) (with ¥ =1 + log @) is attained. Now use the
estimate

exp{u} <14u+ %ﬂ%xp{ﬁ} for all |u| < B (3.4)

which is verified using Taylor’s formula (see [4]). Then applying (3.4) gives
exp {3 Nijai(e) — 1~ loga(e)} < Y Njai(e) ~ log(e) + B exp{Bn),  (35)
ij ij
where g;; = ¢(z;; — -). Multiplying (3.5) by @(z) > 0 and integrating gives
/ﬂ exp { ZJ: Mg (2) — 1} do — %:,\ijfaij < ~I(8) + 5 B exp{Es) L (e)de.  (3.6)

By the definition of (D;), and using (3.6), we have
V(D) > J(A\0) = — / exp{ > Nijgii(2) — 1} dz + Y Aijvi — h™ el A]|»
@ ij ij

1 - _
> I(a) ~ 5 By exp{En} — b7 eal| Ml — D (B — wy)-

i

Now the last term can be estimated by

‘ i (03— vig)| < Il I5n = wally < B enl| Ml < A7 en Ko,
i

which gives the second inequality in (3.3). O

With the help of Lemma 3.1, we are now in the position to give a first L!-estimate for
the approximation error ||@ — @p];.



Proposition 3.2 As above let Ey 1= Ep(1 + log @,q,K3). Suppose the data vy, of (Pr)
satisfy ||lvp — Bpllp < hlen. Then we have the following estimate:

@ — ay])? < Ele™ + 4K b ey, i | (3.7)

Proof. Applying Proposition 4.6 in [4] gives

f ulog @y, dz > / Uy, 10gﬁh dxr = V(Pl) (38)
Q Q
Next observe that the estimate

lexp{v} — exp{w}| < B(1 + exp{B}3/2)exp{w}  for all |v —w] < 3, (3.9)

which is Lemma 4.4(b) in [4], leads to
1. _ s _ .
M-l < [ wlog(u/m) de, (3.10)
Q

with the argument given in [4, §4]. Combining (3.8) and (3.10) with the estimate (3.3)
implies the desired (3.7). O

Remark. Proposition 3.1 gives the clue to proving an L!-norm convergence result. This
requires two stages. As a first step we provide a choice of the constant Kj > 0 such that
Ey = En(1 +logt,q, Ky) — 0 as B — 0. The second step will then be to adjust the model
parameter € in such a way that Kyh~ e, — 0.

4 Interpolation Theorem

In this section we start upon our first stage mentioned above. This is achieved by the
following result. Here we fix the notation g* for the adjoint kernel ¢*(z) = ¢(—=z).

Theorem 4.1 Let u € H!(Q) for some t > 2 and suppose that u may be represented as
u =gt % w for some w € L¥(Q). Then there exists a constant ¢, depending only on t such
that, with the choice K = cif|w]|h# =27 = ¢ ||w||,-h¥?, we obtain the estimate

Eh(u, q, I{h) = O(ht_z). (41)

Proof. As before let £, be the rectangular grid with mesh A > 0. Let T} be a trianguliza-
tion of £ consisting of congruent elements T' having their corners on grid points from (23,
with each 7' containing a total of ¢(¢t 4+ 2)/2 grid points. Take for instance triangles with
hypothenuse pointing north-west to south-east. Here we may for simplicity assume that
t — 1 divides 1/k, so that © is covered by the elements in 7} with no overlap. If this is not
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the case, we may use an extension operator for {2 which carries the situation to a somewhat
larger square where this extra requirement is satisfied.

Consider now the C°-firiite elements on 7;* with piecewise polynomials of degree < ¢ — 1
on each element 7' € T;!. Let J} be the associated interpolation operator specified by the
t(t+ 1)/2 grid points on each element. Then the Bramble-Hilbert Lemma (cf. [12]) implies

If = Taflze) < CR 77| f ey (4.2)
for f € HY(f). The Sobolev embedding theorem for dimension 2 gives H*(?) C C(Q), and
therefore implies

I = Ta(Hlleo < CH 2 fllrre( = O(B'?). (4.3)

Now let the elements T' of T;} be labelled by their respective corners x,, sited at the
90-degree angle, (r,s) € T C Iy = {(,7) : 0 < 4,7 < N — 1}, say. There are two
types of triangles. Let the elements pointing upward be noted 7%, the elements pointing
downward 7. For a fixed (r,s) € '}, let the #(¢ + 1)/2 knots in T be labelled Z,1q; 544,
i =1,2,...,t(t + 1)/2. The interpolation operator has the following explicit form. For
ye Tt

t(t+1)/2

(J;ff)(y) = Z S (@rdoi,s8)Prsi(Y) ' (4.4)

for certain polynomials p,,; of degree < ¢t — 1 depending only on r,s,7 and h (resp. N =
1+ 1/h). Since the elements of 7;} are congruent triangles, it follows from inspecting the
situation for the reference element that there exists a constant C; depending only on ¢ and
the domain 2 such that, for all »,s,¢ and A > 0 the estimate

‘/iprsi(m) d:c‘ < C,h? " (4.5)

is satisfied.

For fixed z € §, let f be defined as f(y) = w(y)g(y —«). Then integrating (4.3) implies

(¢+ % w)(@) = / f(y)dy = ] (T2 )(y) dy + O(h). (4.6)

It therefore remains to show that the first term on the right hand side of (4.6) has the form
2o Mijq(@i; — ) with [[A]ly < K, as in the statement of the Theorem.

In view of (4.4), the term in question is

[@nwa = ¥ [ @inwa+ Y [ @inwd (4.7
= Z f(®rtaists) /}:i Prsi(y) dy = Z f(mr:l:aesiﬁi)brisihza

rst rs rst
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with | m| < Ci, and the summation is over the (r,s) € I} and ¢ = 1,...,t(t + 1)/2.
Rearranging the order of summation by setting k =rtal=skf shows that the last
term in (4.7) equals :

N-1 N-t- o
> cxe B2 fmre) = Z cpe h? w(wke) g(zre — ), (4.8)
k,£=0 k,2=0

where the coefficients ¢¢ are obtained as

+
Cre = E b,

rda;=k, s£8;=£

We deduce that |cie] < #(¢ + 1)Cy =: ¢, which in fact only depends on t. Setting Az =
creh?w(zye) then proves the desired || Al < Ka:

SN S (2R Y Wl < (2 W ol + O(R) < 'l

for A sufficiently small. This proves the result. O

Corollary 4.2 Let @ > 0 be the true image, and suppose log i € H*(Q) for some t > 3 and
that log @ may be represented as gt x w for some w € LP(Q). Then, for any array vy of
data satisfying ||va — O, < h~ten, the solution Gy of (P1) satisfies the L'-norm estimate

& — w2 = O + O(eur). (4.9
In particular, @y, converges to U in L*-norm provided that exh*?™1 — 0 as h — 0.

Proof. With the data satisfying |5 — wi]l, < A~ 'es, the constraint qualification (CQ)
for program (P;) is met, the optimal solution @, exists and satisfies the dual relationship.
Hence estimate (3.7) is satisfied.

As a consequence of our assumptions, Theorem 4.1 now applies to v = 1 + log @ and
yields the estimate

Ey = Ey(1 +log i, g, Kp) = O(h?), (4.10)

if K}, is chosen of the form K = O(h*?) as specified in the statement of Theorem 4.1.
Then (3.7) gives the claimed estimate

|1z - anllf = O(h* ) + O(exh®?~).

This proves the result. ]

We conclude this section with a brief discussion of the above hypothesis that log@ =
gt % w for some w € L¥'(Q2). It turns out that this is by no means an artificial requirement:
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Proposition 4.3 Suppose ¢ € C(2), and let © € C(Q) be the true image satisfying a4 > 0
and f,ude = 1. Then there exists a unique function & € C(Q) satisfying & > 0 and
Jo@ide = 1 such that q'x =g * @ ‘and, in addition, logfi = ¢* * w for some w € C(Q).
Moreover, if logii € C¥, then, also logu € C*. In particular, if the kernel q is injective,
logu—q‘!'*wforsomewEC(Q) c

Proof. According to Fredholm’s alternative, the space W = {w € C(Q) : g*x w = 0} of
solutions of the homogeneous equation is finite dimensional and spanned say by wy,...,w,.
Moreover, the functions f* € C(£2) of the form f* = ¢* * wt for some w* € C(f) are
characterized by .

(ff,w)=0 foralli=1,...,r. (4.11)

Now let us consider the following finite dimensional optimization program

minimize I(u) = f u(z) log u(z) dz
Q
(P) subjectto ueu+W,u>0,

[]u(w) dz = 1.

Then (P) is feasible since % is admitted, and hence a unique solution @ exists. This follows
in fact from the weak compactness of the level sets of Z in L'(2), and the strict convexity
of Z, both proved in [4].

We show that @ is as claimed. Indeed, the Kuhn-Tucker conditions for (P) are the
following:

1. VZ(a)+ p € Wi,
2. ueu+W;

3.&20,/&@::1.
19

Since {VZ{i), h) = (1+log @, h), condition 1. gives (4.11) for the function f+ = logi+u+1,
which means that log @ + ¢ + 1 = ¢t * w* for some w* € C(Q). Since g+ * 1 is a constant
function, the latter is equivalent to log it = gt * vt for some v € C(2), as desired.

Concerning the uniqueness of #, observe that any other function of this type would
satisfy the Kuhn-Tucker conditions 1. - 3. above. However, by the convexity of (P), these
characterize the optimal solutions of (P), and by the strict convexity of Z (cf. [4]), the
solution of (P) is unique. This completes the argument, a

Remark. Proposition 4.3 leads to the following slight improvement of Corollary 4.2:
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Suppose log@ € H' () for some t > 2. Let o) = (g +4)n, and suppose the data vy for (P)
satisfy ||ve —n|lp < B 'en. Then the solution iy, of (P1) converges to @ in L'-norm provided
that exh¥P~1 — 0, where 1 is the function guaranteed by Proposition 4.3.

This is the best we can hope for, since g 4 = ¢ *ﬁ by construction, and so % and @ could
not possible be distinguished through any data sampled on the basis of model (1.2).

5 Stochastic Convergence

In this Section we proceed towards a stochastic convergence result for the model (P),
which combines the optimization approach (F;) with a priori smoothing of the data. To
keep things easier, we will limit our considerations to smoothing operators of convolutional
type. More precisely, we consider discrete kernel operators k& which apply to a data array
vy, € RN on ), via the formula:

k* 'Uh)zg - Z kr‘svz —j—5) 0 S 7'1.7 S N — 1; (51)
r,5=0
given an array of weights k., > 0,0 < r,s < N — 1, satisfying ), k., = L.

For a white noise sequence e,J with mean ZGIO and variance G' , the smoothed sequence
&; = (k * e);; has variance o7 = (er kYo, so the noise variance is reduced by the

smoothing factor p(k)?, where p(k Zk 1/ ?<

In tandem with the smoothing factor p(k), we shall need another characteristic 6(k)
associated with a kernel operator of the above type, which is defined as

o(k) = kij/? + 52
ij

In the following, let us fix a sequence ¢, and a sequence kj, of kernels with smooth-
ing factor p, = p(kn), and characteristic 8, = 8(ks), and consider the following image
restoration process defined for every h > 0:

Given the dirty image vy, sampled at the grid points of €, and according to the linear
model (1.2), form the smoothed data @) = kj, * vy, and then calculate the unique solution
4y, of the nonlinear maximum entropy estimation program

minimize ZI{(u) = / w(z)logu(z) dz
o)
(Pg) subject to ||(q % u)h — ’5;,,”2 < h7lg,
u(z) 2 0, /u(m) dz = 1.
Q
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The following result, involving conditions on €, pp and 8y, gives sufficient conditions
under which the error ||% — 4], for the solution @y, of (P2) converges to 0 with probability

Theorem 5.1 Let the true image @ be strictly positive, and suppose for some t > 3, logu €
HY(Q), and that log @ is of the form ¢t xw for some w € L*(Q). Suppose that the smoothing
factors p,, the characteristics 8, associated with the kernel operators ky,, and the tolerances
€, satisfy the following sel of conditions:

2
. P . hgh s
(¢) E z}% <oo  (#) . — 0 (171) € — 0. (5.2)
he=1/(N—1)

Then the L'-error || — @a||1 converges to zero with probability one.

Proof. The deterministic result Corollary 4.2 (applied in the case p = 2 and with vy, replaced
by 1) gives rise to the estimate

i — @]} = O(A* ) + O(en), (5.3)
for the solution @ of (P), provided that the data vector v, is such that the smoothed data
Ty, = ky, * vy, satisfy |0 — Op]lz < h7les eventually. Since ¢t > 2 and ¢, — 0, this shows

||iin — @||1 — O for such vy. It therefore remains to show that ||¢, — 9n]ls < A7l eventually
is satisfied with probability one.

Now observe that for every h > 0, and with L denoting the global Lipschitz constant
of ¥ = g * 4, we have

P{||kp, * vn — Oplla > R en} < P{|lkn * v, — kp % By lls > hlen — L8y},
since

{w : |[kn * va(w) — Balla > A7 en} C {w : ||kn * va(w) — K * Tpllz > A~ len — L, ).
Indeed, for w in the left hand set, we have

hle, < ||kn * vi(w) — alle < ks * va(w) — kn * Bg|2 + ||Br — En * T2, (5.4)

and the second (deterministic) term in (5.4) may be estimated as follows:

[n — kn* Tall3 = (;(kh)rs(ﬁi—r,j—s - %’))2 <) (L ;(kh)mm‘i\fw)z = L%,

iF if
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Applying Chebysheff’s inequality now gives the estimate

-1
(h léh-—Lﬁ)

P{”k’h * ('Uh — 'Uh)||2 > h- €h — Lﬂh} < (”kh * (’t)h — 'ah)”%) = A2(55)

LI

and according to the model (1.2), the E() term in (5.5) is

E(”kh *ehng) = ZE( ZZZ kh rs kh r's’E(ez —rj—sCi-r! j—5 ) = NZ,OhO'e,
i

iy rs rlsf

the latter using the fact that the e;; are white noise e with mean zero and variance o2,

Consequently, the last term in (5.5) is

N2p2o? or\?
2 _ h¥e < (i3
A (h_leh - Lﬂh)z - I{(fh) ’

where we use N = O(h™1) and (h~'ep, — L83)/(h €) — 1, which follows from (i7).
Let F' = {w: ||on(w) — Bp||2 < A~ e, eventually}. Then, for every § > 0, we have

P(F) = 1—P{Vh <83 < h iy —owls > b ew}

> 11— P{Hh <4 [l'ﬁh —_— ?j‘hllz > h_lﬁh}
> 1= P{|on—allz > h"en} > 1—[{2('%)

€
h<s h<s P

Since ¢ > 0 is arbitrary, the last term may be made arbitrarily close to 1 regarding the fact
that by assumption (z) the series ), pp/es Converges quadratically. This shows P(F) =1
and completes the argument. |

Corollary 5.2 With the same basic assumptions as in Theorem 5.1, suppose the following
set of condilions is satisfied:

ho )
@) 220 () ZEoo (i1) € — 0 (5.6)
€h 43

Then the L'-error tends to 0 in probability, i.e., || — 4|1 Ao.

Proof. For fixed @ > 0 we have to show P{||g& — @]l1 > a} — 0. By the deterministic
result and condition (222), ||on — Tullz < A~ tey, implies |G — @plli < K (A + ¢) < o? for
some K > 0 and A < hq, say. Therefore

{w: g —anW)lll 2 ®} C{w: ||Bw) — Balla > A" en}
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for all B < ho. It then suffices to show that P{||f, — ©al|l2 > h~lex} — 0, and this is
precisely the argument given in the proof of Theorem 5.1, where condition (5.6) (i) is now
used instead of (5.2) (¢). This-completes the argument. O

Remark 1. Naturally, we have to show that the set of conditions (5.2) resp. (5.6) is
consistent. We shall do this in particular for the d-nearest neighbour type kernel estimators.
Let dj, be a sequence of integers, and define the kernels kj, through the array of weights

1
(kn)vs = { (2dy, +1)2

0 else.

for |r| < dj and |s| < dy,

Then we easily find the smoothing factor and the characteristic to be
Ph = (Ru)i, = (2dn + 1) = O(d7?)

resp.

6, = ( 3 \/m)/@dh +1)% = O(dy).

Irlils|<dn

The conditions (5.2) therefore read as:

() h-ll(ZN_;)(dheh)_z <oo (#) hdyfen —0 (i11) e, — 0. (5.7)

But these may be arranged e.g. with A = O(1/N), h~te;, = N¥®, d, = O(N31), for then
dp — 00, hdpfer, = O(N"HP) = 0, ¢, = N™Y5 5 0, and Y (dpep) ™2 = 5, N7H/10 < o0,

Remark 2. In Section 1, the choice €, = O(ps) was suggested, which in the situation of
Remark 1 above gives ¢, = O(d;'). But then it follows that condition (¢) is violated, for
dnen = O(prdy) = O(1) does not tend to 0. Our method of proof in fact suggests that a
slightly larger tolerance e = ppoe/Th, where 7, — 0, is correct. More precisely, by Theorem
5.1 and Remark 1 above, the set of conditions

(i) SSrE<oo (i) dihm —0 (i) =0 (5.8)

dnTh

guarantees L' convergence a.e., while the weaker (i) 7, — 0 still gives L'-convergence in
probability (Corollary 5.2).

Remark 3. The set of conditions (5.8) may be satisfied e.g. by choosing 7, = A%, d) =
O(hP) with 1 < 20 < 28 < 1 + @, while for (¢') 0 < 2a < 28 < 1 + « is sufficient. In
particular, this shows dy < N and also 7, '« N,e,=N “proe. Observe in particular that
for convergence in probability, the null sequence 7, may be chosen arbitrarily slow, so that
the choice ¢, = ppo. suggested in Section 1 might still be acceptable in practice (see Section

7.
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6 Practical Aspects

We briefly discuss the éomj)utational’ aspects of the model (P;) resp. (P,) (in the case
p = 2). Notice that alternative approaches have been presented e.g. by Frieden [14], Burch
et al. [11], and Haralick et al. [15], Andrews et al. [3]. Perhaps closest to our present model
(Py) is Auyeung et al. [3], where the performance index is the Burg entropy measure, but
the size of the images used in that reference is too small to allow for a realistic comparison.
For a comparison of the maximum entropy based methods with other techniques see in
particular Trussell [22].

While the papers [14], [11] and {15] propose different strategies, we claim that the most
natural approach to solving program () is via its dual (D;), which is a unconstrained op-
timization program and may therefore be solved using methods designed for unconstrained
problems. As we have reported in [19], Newton’s method did not lead to a satisfactory
results here, but an adaption of the conjugate gradient method to maximizing the non-
quadratic objective J (A, 1) as proposed by Fletcher and Reeves exhibits quite satisfactory
performance. Depending on the size and the symmetries of the mask g and the tolerance
level ¢, a restoration of a degraded 200 x 320 clown image, as used for our experiments,
takes between 4 and 10 minutes CPU.

An alternative approach in the spirit of [14] is to replace the tolerance type model (P;)
with a penalty approach

minimize f u(z) log u(z) dz + %Chh2[|Qhu — )3
(P1) “

subject to u(z) >0, / u(z)dz =1,
Q

Here the associated dual (D), related to (P,) via the same return formula (2.1), is

1
2Cph?

yy T T = 3 Ny - | en{@ire) 40— 1} do - s
1 i 2

subject to A € RV 4 e R.

This resembles the dual (D), but the nonsmooth term h~!e,||A||2 ranging in (D;) has now
been replaced with the more convenient term ﬁiﬁu)\”% Surprisingly, the models (P;) and

(f)l) are equivalent in a sense we are going to specify.

Notice that, by convexity, the optimal solution @ of (P;) satisfies the equality ||Qnu —
vp|l2 = h7len, i.e. the inequality constraint will be active — unless the global minimum
Umin Of the Boltzmann-Shannon objective T lies inside the convex set ||Qru —vi]|s < A7 tep,
which depending on ¢ is an ellipsoid or an elliptic cylinder. Since 4, is a constant function,
this is never the case for any problem of practical relevance (cf. [19]). Disregarding this
case, we find that the optimal solution @, of (P;) satisfies the following necessary optimality
conditions: There exist multipliers p > 0 and p satisfying
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1. VI(u) 4+ p Qi(Qru —v) + u1 =0;

3. HQhu - 'Uh“Q = h_lﬁh. o

On the other hand, the necessary optimality conditions for program (151) are as follows:
There exists a multiplier g such that

1. VI(u)+ Cph® Q5 (Qnu — vi) + pl = 0;

2 Lm@m:L

This means that the optimal solution @, of (P;) is as well optimal for (P,) if we let p := C},A2
and ¢, = h||@nls — vi||2, and conversely, by the uniqueness of the solutions of both
programs, the solution @, of (P;) solves (P,) with the choice Cj, = h~2p. Therefore, for the
numerics, instead of solving (D), we may as well use the dual program (D) in tandem
with the return formula (2.1). While the dual objective of (D) is smooth and therefore
somewhat better suited than the objective of (Dy), the extra work required for solving via
(Dl) is to provide the correct choice of the penalty constant C) to match say a prescribed
tolerance level ||Qaiip — vi||2 = A~ €y (as derived in earlier sections). This may be obtained
by performing a line search in C}, which in practice usually requires a very limited number
of steps.

Let us show that the duality between (P,), (D;) and (Py), (D;) could be used to estimate
the size of the penalty constants C) as compared to the corresponding tolerance level .
Writing down the equation V(P1) — V(P1) = V(D) — V(D) gives

- C :
Il = el = (6.1)

1
2C,h?

Here we use the fact that the return formula 7(2.1) is the same for both dual pairs, so if @,
is the solution for both (P1) and (£}, the same must be the case for the duals: (A, ps)
solves (D7) and (Dy). But now the quadratic equation (6.1) has the double solution

_ Il

(6.2)

which could be considered as explicit if we knew the dual optimal solution Ay or at least could
find some means to estimate its norm. Nevertheless, since @5, — @, and using ||Ax}l2 = O(h)
(cf. Corollary 4.2), (6.2) at least tells us that Cp = O(e;') = o0.

Another practical aspect of the dual models (D) resp. (D;) is that the optimization
be best split in two stages, a line search in g, and a maximization over A:

max max J(X
PER NcRNXN ( ,,u)
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Indeed, as has been observed by various authors working with the noise model (1.3), the
coustraint [u(z)dz = 1 may in practice often be ignored, so the line search over y will
either become completely superfluous -or at least require but a small number of steps. (1t
should be said, however, that the constraint could not be omitted in all cases. For instance,
among the model masks used for the present experiments (see also [19]), we found that e.g.
the pillbox ring masks have a tendency to underscore the total energy balance).

Concerning the model (), with previously smoothed data, let us mention that in
practice, instead of applying a linear kernel operator, one would probably prefer more robust
statistics like a nonlinear median filter in order to obtain a satisfactory noise reduction. The
reason why our present theoretical investigations were based on linear kernel operators is
primarily due to the fact that they are easier to analyze. The model (P,) could in fact be
considered with any type of smoothing device, and one would then only have to estimate the
second (deterministic) term occurring in the inequality (5.4) in order to obtain a convergence
result in the spirit of Theorem 5.1.

7 Experiments

We used the 200 x 320 clown image displayed in Figure 1 for our simulations. In Figure 2,
the clown was blurred using a 7 x 7-supported mask ¢ of entries 1/49, and normal white

noise with variance o2 = 15.55 was added. This lead to a global signal-to-noise ratio of
SIN =15.99dB, (cf. [19] or [20] for this logarithmic scale).

Figures 3 to 7 present various restorations based on the models (P) and (7). Notice
here that for a rectangular N x M image, the tolerance in program (P;) has to be chosen
as VNMe. In Figure 3 we used the default value ¢ = 3.91 as suggested by the law of large
numbers (Section 1). In Figure 4, the extended model () was used. The blurred-and-noisy
image was smoothed with the 33 supported mask & of entries 1/9, introducing a smoothing
factor of p(k) = 1/3. The tolerance level was consequently reduced to € = ¢/3 = 1.32. In
Figure 5, according to the results obtained by our convergence analysis, a somewhat larger
tolerance ¢ = 1.97 was allowed after previously smoothing the degraded image with the
same linear filter.

As can be seen, the restorations in Figures 4 and 5 suffers from ringing effects along
the boundaries. In Figure 6, therefore, ringing was avoided by embedding the image into a
somewhat larger frame filled up with zeros. As experiments show, this frame should have
width at least the diameter of the mask ¢, and in our case was chosen of width 9. The same
linear a priori smoothing was used, and the tolerance level was now ¢ = 2.11.

Following a common suggestion in the digital image literature, in Figure 7, a priori
smoothing was performed using a nonlinear 3 X 3-supported median filter. Framing to
avoid wrapping around effects and the tolerance level € = 2.11 were used.

Finally, Figure 8 shows a restoration based on the linear restoration filter proposed
by Hunt (cf. [16, 20, 1]), which arises from the same noise model using the performance
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100 150 200

Figure 1. True 200 X 320 clown image

50 199 150 . 200 '
Figure 3. Restoration without previ-

ous linear smoothing ¢ = 3.94

100 150 200250
Figure 5. Restoration with previous
linear smoothing; € = 1.97

50 00 y 200 260
Figure 7. Restoration with previous
nonlinear smoothing; ¢ = 2,11

260
€3

. 50 100 150 200,
Figure 2. Blurred-and-noisy imag

S/N = 15.4dB

. 60 100 160 200 250
Figure 4. Restoration with previous

linear smoothing, e = 1.32

60 100 160 200 250
Figure 6. Restoration with linear
smoothing and framing; e = 2.11

50 100 150 200 250

Figure 8. Restoration with linear filter
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index Z(u) = [, |Au|* dz. Reference [16] presents a clever way of solving the corresponding
discretized Euler/Lagrange equation using the 2D Fast Fourier Transform (FFT2), which
is considerably faster thian the.nonlinear approach.based on (7).

Our experiments show that Hunt’s approach when combined with previous smoothing

of the degraded image is superior to a direct least squares inversion of the linear system
(g * u)p = Oy, which would be the classical approach to the inversion problem based on
regression methods.
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