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A Concrete Duality Approach to Compactness and Strict
Singularity of Inclusion Operators

Dominikus Noll

1 Introduction

Let E,F be Banach sequence spaces satisfying F C E. We discuss properties of the
inclusion operator i : F — E such as compactness, weak compactness, strict singularity
and strict cosingularity. It is well-known that these properties admit dual descriptions in
terms of the adjoint operator ¢’ : E' — F’. The theorems of Schauder and Gantmacher
[4, p.485] reveal compactness and weak compactness as completely dual properties, while
Pelczyniski [18] shows that strict singularity and strict cosingularity are dually related in
the sense that an operator is strictly singular (strictly cosingular) if its adjoint is strictly
cosingular (strictly singular).

Dealing with sequence spaces, it is common to use, besides abstract topological duality,
various notions of concrete sequence space duality, such as a- (or Kothe/Toeplitz),3- and
v-duality. Consequently, instead of expressing properties of : : F' — FE in terms of its
adjoint ¢, one would then use the dual inclusion operators " : E" — F7, where 7 stands
for any one of the duality notions a, 3,7. In the present paper we pursue this idea, applying
it to the above mentioned properties of i : F' — E.

Our approach is motivated by the fact that these operator theoretic properties are of
interest also from the point of view of sequence space theory. Indeed, the importance of
compact and weakly compact inclusions in summability theory was demonstrated among
others by Bennett in [1], and by Schaffer/Snyder in [19]. Recently, in a series of papers
[20,21,22], Snyder showed that strict singularity and strict cosingularity have sequence
space interpretations. He discussed a sequence space property (noted F' < E), which
in many cases turned out to be a reformulation of strict cosingularity, and he indicated
that, on the other hand, strict singularity of i is closely related with two sequence space
properties known as the Meyer-Konig/Zeller property (noted MKZ) and the gliding humps
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property. Implicitely, both these properties were first discussed by Meyer-Koénig and Zeller
[9,10] in the context of summability theory. Their relation with strict cosingularity was
further examined by the author in [12].

Using concrete duality instead of abstract topological duality has the advantage that
the dual spaces E", F" under consideration are again sequence spaces, a fact which in
general is not true for the topological duals, and that the dual operators i"7 are again
inclusion operators, while i’ is a restriction. A drawback of the concrete approach is
that some information may be lost by using the smaller sequence space duals instead of
the larger topological duals. Nevertheless, our approach is quite effective when #— and
~-duality are used. It seems that a—duality is somewhat too restrictive in the general
context of sequence spaces. Its use was established by Kothe (cf. [8, vol.I]) in the frame
of perfect sequence spaces.

In section 2 we start considering properties of y-dual spaces needed later. Some of
these results are of interest in themselves. In section 3 we study weakly compact inclusion
operators, providing (- and ¥-dual versions of Gantmacher’s Theorem. As an application
we obtain among others that a reflexive BK-space E has reflexive f-dual E? if and only
if it has sectional convergence. Section 4 investigates compact inclusion operators. We
obtain 8- and 4 -dual versions of Schauder’s Theorem.

An interesting aspect of concrete sequence space duality is given in section 5. We shed
new light on the circle of problems connected with the Wilansky type properties recently
discussed by G. Bennett, W. Stadler and the author. It turns out that, from the point of
view presented here, these properties are §-dual versions of the Banach Homomorphism
Theorem.

In section 6 we discuss strict singularity and strict cosingularity in the context of
inclusion operators. We extend the results obtained by A.K. Snyder [20,21,22] and the
author [12]. In the final paragraph 7 we present an example quoted as the Main Example,
which turns out to be limiting for various results.

Qur terminology is mainly based on the monograph [24]. Further references concerning
notions from Functional Analysis and sequence space theory are [8,4,18,5,21,22,12]. The
sections of a sequence r € w are denoted by P,z,n € N.

2 v -duals

This section is of a preparatory character. We state some results on 8 - and v - dual spaces
needed in the remainder of the paper. For basic facts concerning these duality notions we
refer to [5], [24] and [6].

Recall that, given a BK-space E containing ®, the - dual space E” is again a BK-
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space under the norm

inyils

=1

lyllg= sup sup
lfle<1 neN

and similarly for || ||,. Starting with ||-||s on E” gives a norm ||+ ||gs on E”?, and similarly
for E™. In the following the spaces Ef, B, EPP B will always be considered as BK-
spaces with their corresponding norms defined as above. For the sake of clarity we will
sometimes write || | ge instead of || ||

The following result was essentially proved in [24, p.169]. We leave the necessary
adjustments to the reader.

Lemma 2.1 Let E be a BK-space containing ®. Then the following four statements are
equivalent:

(1) E is closed in EP5;
(2) E is closed in EM;
(3) E has an equivalent monotone norm (cf.[24, p.104]);

(4) ® is a norming subspace of E'.

Recall that a linear subspace Y of the dual E' is called norming if ||z||z = sup{|f(z) :
| fller <1, f € Y} is satisfied. Regarding ® as a subspace of E' via natural identification,
statement (4) above therefore means that we have ||z||g = sup{|(z,y)| : v € @, |ly||er < 1}.

In contrast with $8-dual spaces, the y-dual spaces have an important feature already
pointed out in [12]. Namely, they are always dual Banach spaces. Indeed, given a BK-
space E containing ®, let E, denote the closure of ® in E". Then E, is a BK-AK-space
whose dual is E! = Ef = E} = E” (cf.[24, 10.3.23]). This observation gives rise to the

following

Lemma 2.2 Let E,F be BK -spaces having ® C F C E. Then the following statements
are equivalent:

(1) EP is closed in F°;
(3) E,=F,.

Proof. Assume (1). First observe that E” is closed in F". Indeed, as F* is always
closed in F7 (cf. [24, p.158]), we deduce that E” is closed in F. Hence there exists C > 0
satisfying
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el < llzllgs < C - [lellF

for all z € EP. Now for fixed z € E7, this implies

leller = sup||Prz]|e~
n

sup | Pac] s

IA

C'-stip [| Pazt|| v
C - |lz|lpv,

proving that E” is closed in F7'. Finally, observe that EY = Ef, FY = FJ, hence [24, 8.6.1]
implies F, = F,.

Clearly (3) implies (2). Finally, (2) implies (1) since E” is closed in E7, hence is closed
in F, and therefore is closed in F? as well. O

We end this section with the following result, which gives some information on the
interrelation between the space E and the corresponding space E,.

Lemma 2.3 Let E be a BK -space containing ®, and let E, be the closure of ® in E7.
Then

(1) if E has AD, we have E C E,;

(2) E, C E if and only if E has AB.

Proof. Concerning (1), note that the closure E4p of @ in E is always contained in
the closure E, of ® in E". As AD implies E = E,p, the result follows.

Now consider statement (2). Observe that AB for E implies that E,p has AK.
Hence E}, = E;rm = E/, the latter by [24, 7.2.4]. But AB also implies Ef = E7, hence
E} = E" = E};,. Finally, [24, 8.6.1] implies E, = E4p, giving E, C E.

Conversely, assume E, C E. This implies E, C Ep, hence E, = E,p. Therefore
E! = E4, = E! = E} = E", proving that E has AB. O

Remarks. 1) As a consequence of statement (2) of Lemma 2.3 we find that the
class of all BK-AB-spaces F' having v-dual ¥ = E", has a largest element, E"?, and a
smallest element, E,. In particular, this implies F, = E, for all BK-AB-spaces F in this
class. Notice that E? also has y— dual E” (cf.[5]), so E, C E®® C E™. This proves that
E, could as well have been defined as the closure of ® in E®P. However, E? in general
is different from EP, so it is not clear whether a smallest BK-AB-space with 3-dual E?
exists in general.

2) The converse of statement (1) of Lemma 2.3 is not valid. Indeed, let E be a
proper dense BK-subspace of ¢; having Ef = ¢ = . A space of this type may be



Noll 137

E = {z € 4 : ((2n)*z2, — (2n + 1)%z2n41) € ¢,} (see also [2, Theorem 6]). Then we
have E, = £;, but E does not have AD, for the latter would imply E = ¢;. For details
concerning the space E above we refer to the main example in section 7.

3 Weak Compactness

The purpose of this section is to prove (- and 4-dual versions of Gantmacher's Theorem,
which states that an operator T between Banach spaces is weakly compact if and only if
its adjoint 7" is. Here, one difficulty consists in finding the right substitutes for the weak
topologies o(E', E") and o(F’, F"). Before presenting the solution, we need the following

Lemma 3.1 Let F be a BK -space containing ®. Then the following statements are equiv-
alent:

(1) F has AB;

(2) The o(FPP, FF)-closure B** of the unit ball B of F is absorbing in FPP. (Here *
stands for the polar with respect to the dual pairing (FPP, FF)),

Proof. Observe that F has AB if and only if F” is closed in F', i.e. when the dual norm
and the #-dual norm are equivalent on F®. Now, as the polar B* of the unit ball B of F
with respect to the pairing (F%, FP) is just the dual unit ball intersected with F*?, i.e.

B*=B°NF?,

(where ° stands for the polar in the dual pairing (F, F')), we deduce that AB is equivalent
with the statement

B*Cp-D forsome p>0
where D = {y € F? : ||y||s < 1}. This gives
D*cp- B

As D® is the || - ||gs-unit ball in F*#, hence is absorbing, the equivalency of (1) and (2)
follows. [

Theorem 3.2 Let E,F be BK-spaces having ® C F C E. Suppose F has AB and
i : F - E is weakly compact. Then i°® : FP% — EPC maps FPP into E and is weakly
compact as o mapping FP? - E.
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Proof. Let B be the unit ball in F, and let C' denote the closure of i(B) in E. Then
C is o(E, E')-compact. Hence C is also o(E, E®)-compact, for this topology is weaker.
Consequently, C' is the closure of i(B) with respect to the topology o(E®?, Ef). Now by
Lemma 3.1 above the o(F?°, FP)-closure B = B*® of B in F/° is absorbing, hence is a
neighbourhood of 0 in the Banach space F#%. On the other hand, the mapping % is
continuous with respect to the topologies o(F°°, Ff) and o(E®®, Ef), so we have

i';m(B“) =i"*(B) c iP3(B) = i(B) = C,

where we use i | F = i, and where the bar refers to the o(F%° F®) and o(E, EF)-
closures respectively. This proves that i°’(B®*) is weakly relatively compact in E, and
that ¢%5(FPP) C E. This ends the proof. O

We shall now derive a -dual version of Gantmacher’s theorem which relates weak
compactness of 7 to weak compactness of i’.

Theorem 3.3 Let E,F be BK-spaces having ® C F C E. Suppose E has AB and
i# . E? — FP {s weakly compact. Then so isi: F — E.

Proof. a) Let B be a neighbourhood of 0 in E®. As E has AB, E” is closed in E', so B
may be chosen of the form

B=BnNE*

where B’ denotes the dual unit ball in E’. Then the image of B under i? is relatively
compact in the weak topology o(F?, F#). Let C denote the closure of i*(B) in this
topology. We claim that C is as well compact with respect to the weak topology o(F’, F").
Indeed, as F¥ — F is a continuous inclusion, it is also continuous with respect to the
corresponding weak topologies, hence the image of C' under this inclusion is weakly compact
in F’. This proves the claim.

b) Observe that as a consequence of a) above, C is also compact with respect to
the weak star topology o(F”, F), in particular, C is the closure of i’( B) with respect to
a(F', F).

¢) Denoting the (E', E)-polar by °, the set B*® is the closure B of B in E' with respect
to the weak star topology ¢(E’, E). But notice that the restriction ¢ : E' — F’ is weak
star continuous, hence we obtain

i'(B*) =14(B) c #(B) = #*(B) = C,

where the last equality follows from the fact that C is also the weak star closure of i*(B),
see part b), and where we use ¢ | E? = ¢, The proof will consequently be complete if we
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prove that B°® is a neighbourhood of 0 in E’, for this shows the weak compactness of ¢/,
and hence the weak compactness of ¢ by Gantmacher’s theorem.

d) Notice that B° = B" by the choice of B and the fact that E® is weak star dense
in E’'. Hence B® = B = B'. This completes our argument. 0O

Corollary 3.4 Let E,F be BK-spaces having ® C F C E. Suppose F' has AB and
i: F — E is weakly compact. Then so is i® : Ef — FP,

Proof. Theorem 3.2 implies that i?? : FP? — EPP is weakly compact. Hence by Theorem
3.3, :° : EP — F¥ is weakly compact. O

The following is a nice consequence which could be expected from Gantmacher’s The-
orem, namely from the version stating that T : F — E is weakly compact if and only if
T"(F") C E.

Corollary 3.5 Let E be a reflezive BK-AB-space. Then EPf = E. In particular, E has

a monotone norm,

Proof. Apply Theorem 3.2 to the inclusion i : E — E, which is weakly compact here.
O

Remarks. 1) The AB assumption on the space F' in Theorem 3.2 respectively the
space E in Corollary 3.5 may not be omitted. Indeed, in the case of Corollary 3.5 this
is immediately clear from the fact E = EPP implies that E has AB, while in the case of
Theorem 3.2 this is best seen by considering again the main example (section 7).

2) The condition F?* ¢ E in Theorem 3.2 is clearly not sufficient to imply weak
compactness of the inclusion F' — E, so the naiv analogue of Gantmacher’s result fails in
this situation. Take for instance F = £, E = ¢,, then F = F C E, but £, — ¢, is not
weakly compact.

One might conjecture that weak compactness of an inclusion F' — E implies weak
compactness of E# — FP in the case where F is an AD-space. Actually, the compact
version of this statement is valid, as we will prove in the next section (Theorem 4.1). But
the weakly compact version fails, as we will see below. First we have the following

Lemma 3.6 Let E be a BK -space containing ®. Suppose EP is reflezive. Then E = E,,
and E is reflezive.

Proof. Reflexivity of E? implies weak compactness of Ef — ES. Hence, by Theorem
3.3, EP8 — EPP is weakly compact, so E®? is reflexive. As E, is the closure of & in EA?
(cf. section 2), E, is reflexive, and hence so is its dual E, = E} = E7. This implies
EY = E,. Consequently, we have E"Y = E,. Indeed, given any y € E", there exists
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[ € EY satisfying f(z) = (z,y) for all z € . But E¥ = E, implies the existence of a
z € E, having f(z) = (z,2) for all z € E". This gives y = z € E,.

So E, = E™. But recall that we always have E, C E’® ¢ E". This implies E, = E®?,
hence Ef = E®, In particular, this implies E C E,, for E C E®* is always true.

Now observe that E, is a BI-AK-space whose $-dual is Ef. The latter space is itself
AK, since E” = EPP. Hence the space E, has the Wilansky property (see [2,23] and
section 5). This means that every dense BK -subspace of E, having the same §-dual must
coincide with E,. But notice that E is of this type, so E = E,. This gives the result. [

The proof of Lemma 3.6 contains more information than the statement. In fact, we
obtain the following result improving Corollary 3.5.

Theorem 3.7 Let E be ¢ BK-space containing ®. Then the following statements are
equivalent: (1) E” is reflezive, (2) EP is reflezive, (3) E™ is reflezive, (4) EPP is reflezive,
(5) E, is reflezive, (6) E is reflezive and has AB, (7) E is reflezive and has AK.

Remarks. 1) Let E be a reflexive BK-AD-space which does not have AK. Then E —
E is weakly compact, but E# — Ef and EY — E” are not by Theorem 3.7. This provides
an example for the fact that weak compactness if ¢ does not imply weak compactness of
i?,17 even when the source space has AD. A reflexive BK-AD-space E not having AK
may be obtained by taking the domain of ¢, with respect to the Cesiro matrix Cj of second
order.

2) We give an example indicating that Theorem 3.7 is not valid for a-duality. Indeed,
there exists a non-reflexive BK-AD-space E contained in ¢, and satisfying E* = ¢§ = {,.
Let F' be the domain of the BK-space £, + line with respect to the summation matrix S,
then F'is a reflexive BK-AD-space with & C F C ¢; satisfying F* = £3 = {,. Clearly F is
a proper dense subspace of £;. Now let E be any non-reflexive proper dense B -subspace
of {; containing F. Then E is as desired.

3) The results of this section remain valid if f-duality is replaced by y-duality. In the
case of Theorem 3.3 this is immediately clear, since weak compactness of i” implies weak
compactness of ¥, for F¥ is closed in F7. Also the v-dual version of Theorem 3.2 follows
by making appropriate changes in the proof.

4 Compactness

The classical Theorem of Schauder [4, p.485] states that an operator T between Banach
spaces is compact if and only if its adjoint 7" is. Here we obtain analogues of Schauder’s
result for 8- and y-duality.
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Theorem 4.1 Let E, F be BK—spaces satisfying ® C F C E. Suppose F' has AD and
the inclusion i : F — E is compact. Then so is i : EF — FF,

Proof. a) Let € > 0 be fixed. Using the fact that i is compact and @ is dense in F, we
find vectors y',...,y" € ® having ||y'||r < 1 such that, given any y € F,|ly||r < 1, there
exists ¢ € {1,...,n} such that |ly — ¢’||g < ¢/3.

b) As the vectors y* have been chosen from @, there are only finitely many different
vectors P,y'. Let us arrange these as a finite sequence z?,...,2°. Now consider the linear
operator ¢ — ({z,2!),...,{z,2*)), E® — C*. As the range space is finite dimensional, the
operator is compact, so there exist vectors z!,...,2™ € E®,||2’||gs < 1 such that given
any z € EP, ||z||gs < 1, we find j € {1,...,m} satisfying

sup |(z',2 —2’)| < ¢/3.

Ty R |

Hence by the definition of the z' we have

sup sup |(Py',z—a')| < ¢/3.
reN i=l,..n
¢) Now let z € EP, ||z||gs < 1 be fixed. Choose j € {1,...,m} for ¢/3 and z as in b).
Now fix y € F, ||y||r < 1. Choose i € {1,...,n} according to a). Then we have

[(Py,z—27)| < [ly—o' Pa)| + [ (¥, Pz = 2)) | + [y — ', Pz |
< |y =¥ llellPrzllzs + €/3 + |lv — ¢'llell Pra’ || ge
%

€/3+¢€/3+¢/3.

This implies

lle —2’llpe = sup sup [(Py,z —2’)| <¢
llie<t reN

hence #° is compact. [

Remark. The AD assumption on F' may not be omitted here. This may be seen
from the following example. Let F = ¢,+lin{a}, where a is the sequence having a, = n?,
and let E = {z € w: (z,/n?) € bv}, both given their natural BK —topologies. Clearly
® CFCE. As F 2 ¢, and E & {,, the inclusion F — E is compact (cf.[8, §42,3.(9).]).
But notice that E® = {y € w : (n%z,) € cs} = FP, so the inclusion i is the identity
operator, hence is certainly not compact.

Corollary 4.2 Let E,F be BK —spaces satisfying ® C F C E. Suppose F' has AB and
the inclusion i : F — E is compact. Then so 18 i : EF — FP,
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Proof. Let Fyp be the closure of ® in F, then Fsp has AK and the inclusion Fyp — E'is
compact. Hence by Theorem 4.1 above, E® — F, is compact. But notice that Fi, = F/,
and that F/ = F” as F has AB. So the inclusion E® — F7 is compact. As F” is closed
in F7, the result follows. O

Corollary 4.3 Let E,F be BK—spaces having ® C F C E. Suppose E has a monotone
norm. Leti® : E® — FP be compact. Theni: F — E is compact.

Proof. Since E? has AB, it follows from Corollary 4.2 above that F°¢ — EPf is compact,
hence the inclusion F — E®? is compact. Finally, the fact that E has monotone norm

implies that E is closed in E®? (see Lemma 2.1), and this proves the compactness of the
inclusion F —» E. O

Remarks. 1) Theorem 4.1 and its Corollaries remain valid if f-duality is replaced
by 7-duality. This is immediate for Corollary 4.3, since the f-duals are closed in the
corresponding v-duals, so compactness of E* — F readily implies compactness of Ef -
F5. Concerning Theorem 4.1, observe that the proof of the y-dual version is essentially
the same. Finally, the y-dual version of Corollary 4.2 results from the fact that AB for
the space F implies F? = F/,

2) We consider the following example. Let FF = {z € w : (n’z,) €.}, E={z € & :
((2n)%z2n —(2n+1)%2n41) € ¢o}. Then the inclusion F' — E is not compact. Nevertheless,
EP =0, FP = {y: (y./n?) € £} = &, s0 the inclusion E? — F* is compact. This proves
that Corollary 4.3 is not even valid in the case where F is BK-AK, i.e., some restictive
requirement on the space E is needed. For details concerning this example we refer to
section 7.

We end this section with the following result improving Corollary 4.3.

Proposition 4.4 Let E,F be BK-spaces having ® C F C E. Suppose E has AB and
i#: BB — FB is compact. Then soisi:F — E.

Proof. The method of proof is essentially the same as in Theorem 3.3. Using a similar
argument, here one proves compactness of ¢’ and then uses Schauder’s theorem. [

5 Homomorphism Theorem

The homomorphism theorem for Banach spaces states that an operator T : F' — E is
a homomorphism, i.e. an open mapping onto T(F), if and only if its adjoint T" is a
homomorphism (cf.[8, §33,4.(1).]), or equivalently, T has closed range if and only if 7" has
closed range.
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In a series of papers, G. Bennett [2], W. Stadler and the author [23,14,15,16,17,11,12]
have studied what turns out to be 3- and +-dual versions of the homomorphism theorem.
The situation may be described more precisely by the following definition given by Bennett
[2].

A BK-space E containing @ is said to have the Wilansky property (W1) if every
BK-subspace F of E satisfying F# = EP is closed in E. E is said to have the Wilansky
property (W) if every dense BK-subspace F of E satisfying F# = E’ coincides with E.
Replacing f-duality by y-duality here leads to the Wilansky properties (y — W1) and
(7 — W) respectively. It was proved in [13] that the Wilansky properties (W) and (y— W)
are equivalent.

Observe that in view of Lemma 2.2, the Wilansky property (y — W1) is just one
half of the 8- and 5-dual versions of the homomorphism theorem for inclusions i : F —
E, while the Wilansky property (W) may be regarded as the corresponding part of the
homomorphism theorem for dense inclusions. Notice that the Wilansky properties above
are not valid for all BK -spaces (see for instance [2]), while the homomorphism theorem
clearly is a general statement. This shows again that we have to be careful about taking
for granted the validity of 8- and v-dual versions of results familiar in Functional Analysis.

The results quoted above deduce the homomorphism property of ¢ from the fact that

¥ is a homomorphism. In the following we provide a result of the reverse type deriving

the homomorphism property of i? from the fact that i is a homomorphism.

Proposition 5.1 Let E be a BK-AB-space. Let F be a closed subspace of E containing

®. Then E® is closed in FP. In other terms, if i : F — E is a homomorphism, then so is
i B — FB,

Proof. As F is closed in E, we have F/ = E/, hence F" = E”, since E, F have AB by
assumption. But now Lemma 2.2 gives the result. [

The statement of the Proposition is no longer true if the AB assumption on E is
omitted. This may be seen from the following example. Let F' = ¢,, E = ¢,+lin{a}, where
an = n®, then we have E® = {z : (n%z,) € cs}, so i : F — E is a homomorphism, but
i?: EP — FP = ¢, is not.

6 Strict Singularity and Cosingularity

An operator between Banach spaces T : F' — E is called strictly singular if for no infinite
dimensional subspace S of F' the operator T [ § : § — T(S) is an isomorphism. This
notion has been introduced by Kato [7]. Dually, the operator T is called strictly cosingular
if for no infinite codimensional closed subspace M of E the operator go T : F — E/M
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is an epimorphism (i.e. is surjective), where g denotes the quotient mapping £ — E/M.
This notion has been introduced by Pelczysniski [18]. We refer to [3] for a survey of results
and references concerning both these notions.

Topological duality of strict singularity and cosingularity is not complete, as it is in
the case of weak compactness and compactness. It is known (cf.[18]) that strict singularity
(strict cosingularity) of the adjoint 7" implies strict cosingularity (strict singularity) of
T. Implications of the reverse type need additional assumptions on the spaces E or F.
Recently, Snyder [22], using techniques from sequence space theory, has obtained a com-
plete duality result for strict cosingularity in the case where the space F' is separable and
the operator T' has dense range. Here T is strictly cosingular if and only if T is strictly
singular.

In the present attempt we are concerned with inclusion operators i : F' — E between
B K-spaces. We seek to express strict singularity and strict cosingularity of ¢ in terms of
the B- and vy-dual operators i?, 7. Some results of this kind, dealing with concrete duality
instead of topological duality, have been obtained by Snyder in [21] and by the author in
[12]. These investigations show that it is helpful to discuss, in this context, two sequence
space properties, which are closely related with strict singularity and cosingularity, and
which are familiar in sequence space theory.

In [21,22], Snyder considers the following property of BK-spaces E, F having & C
F C E. The relation F < E is said to hold if, given any BK-space G containing ® and
satisfying E = F + G, one must have G = E. In [22, Lemma 3.1] it is proved that F < E
always implies strict cosingularity of : : F' — E, while the converse is true when either F’
or E has AD. Actually, some assumption of this kind on F or E is needed. This may
be seen from the example ¢ — £,. Indeed, this inclusion is strictly cosingular, (cf. [18]),
but ¢ £ £. For the latter choose for G any topological complement of the sequence e
containing ® in £.

The following sequence space property, closely related to strict singularity, was dis-
cussed by Snyder [21,22] and the author [12]. Let X,Y be BK-spaces satisfying ® C X C
Y. Theinclusion ¢ : X — Y is said to have the Meyer-Konig/Zeller property (noted MKZ)
if, given any BK-space W having Y N W C X, W N X must be closed in W. For the
first time, this property was implicitely considered by Meyer-Konig and Zeller [9,10], who
proved that ¢, — £, has the MKZ. As a technical tool, they used another sequence space
property, called the gliding humps property, which was further investigated among others
in [21] and [12]. For various other examples of inclusions having MKZ or the gliding humps
property, we refer to the references above. In [12] we proved the following

Lemma 6.1 Let X,Y be BK -spaces having @ C X C Y. Then

(1) If Y = F? for a BK-space F containing ®, then strict singularity of i : X —» Y
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implies the MKZ;

(2) If X = E",Y = F" for BK -spaces E,F having ® C F C E, then strict singularity
and the MKZ for i are equivalent properties.

In general, strict singularity of ¢ : X — Y is stronger than the MKZ or the gliding
humps property. Indeed, the inclusion ¢, — £, is not strictly singular (for ¢, is closed in
), but has the MKZ (cf. [21]). The following remark is even more substantial. MKZ
does not imply strict singularity even when X is a §-dual and ¥ is a y-dual. Indeed, take
the inclusion cs — bs. Then es = bvf, bs = bv?, the inclusion is not strictly singular, for
cs is closed in bs, but it has the gliding humps property hence the MKZ (cf. [21]).

Theorem 6.2 Let E, F' be BK -spaces having ® C F C E. Suppose E has the Wilansky
property (y—W1). Then ifif : E? — FP ori7: EY — F7 is strictly singular, the inclusion
t: F' — E 15 strictly cosingular.

Proof. 1) First observe that strict singularity of :” implies strict singularity of i®. Indeed,
if i” is not strictly singular, there exists an infinite dimensional linear subspace S of E?
which is closed in F*. As F? is closed in F, we deduce that ¢” is not strictly singular.
Hence it suffices to prove the statement in the case where i# is assumed strictly singular.

2) We check the following property of the inclusion #, which is a modification of
Snyder’s property < . Given any B K-space G containing @ such that E = F + G, G must
be closed in E. Indeed, let G be of this kind. Then we have Ef = FP N G?. By Lemma
6.1, strict singularity of ¢ implies the MKZ. This means that E” is closed in G, hence by
Lemma 2.2 we obtain E7 = G7. Consequently, we may now apply the Wilansky property
(y — W1), which implies that G is closed in E.

3) We next prove that the statement of 2) above holds for arbitrary BK -spaces G not
necessarily containing ®. We prove this using the reduction technique applied in [21]. Let
G be any BK-space satisfying E = F +G. Let z be a sequence of entries z, # 0 such that
zf; C E and the inclusion z¢; — E is compact. Let G, = G + z¢;. Then G, is a BK-space
containing @, hence part 2) guarantees that G, is closed in E. Therefore 2z, is compactly
included in G,. Now let {v* : a € I} be a dense set of vectors in the unit ball of G,. Find
bounded sets {z* : @ € I} in G, {y* : a € I} in z¢; having v* = z* + y®. Now define
operators A,B,C : £,(I) = G, by AX = ¥ A2, BA = T A, y%,CA = ¥ A, v®. Then C
is an open mapping, i.e. it is surjective, Moreover, A(¢;(1)) C G, B(4,(1)) C 2£,. So B
is compact, hence using an argument from perturbation theory, the equality A = C — B
shows that A(¢;(I)) has finite codimension in G,. So G has finite codimension in G,, hence
in particular is closed in G, and so is closed in E as well.

4) Let us now check that i : F — E is strictly cosingular. Let M be a closed subspace
of E, let ¢ : E — E/M be the quotient mapping, and suppose g o i is surjective. We
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have to prove that ¥ = E/M is finite dimensional. Let L be any BK-space having
M c L C E. Then we have E = F + L. Indeed, given any = € E, we find y € F having
q(z) = q(i(y)) = ¢(y), so z =y + (z — y) withz —y EKer ¢ = M c L. Consequently,
by part 3), any such L must be closed in E. It remains to prove that this implies that M
must have finite codimension in E.

5) Assume that Y is infinite dimensional. Then it is possible to select a linearly
independent sequence (y") of vectors in Y having ||y"|| = 1, which converges to 0 weakly.
Now select a basic subsequence of (y") also denoted by (y"). Define a linear operator
T:4, — Y by setting

i=1

1

|y‘

Observe that T is well-defined and continuous in view of ||y*|ly = 1. Moreover it is injective
since (%y') is a basic sequence in Y. Let Z denote the image of £, under T with norm
induced by £, i.e. ||z]lz = ||Alloo in case z = TA. Then Z is a Banach space. Observe
that, consequently, Z is not a closed subspace of Y, for the sequence (Zy") has norm 1 in
Z. Now let L = ¢"}(Z), then we have M C L C E, and L can be made into a BK-space
by taking as a norm ||z|| = ||z||e + |la(z)||z. By part 4) above, L should be closed in E,
but this is absurd. For let (z") be a bounded sequence in E having ¢(z") = y". Then
(z™) would be bounded in L, hence (y") had to be bounded in Z, which is not the case as
(Ly") is bounded away from 0 in Z. This completes our argument. O

Remarks. 1) If the space F above is assumed AD, then the Wilansky property (W)
for E is sufficient to give the statement of the Theorem. For in this case, any space G
containing @ and satisfying E = F + G is automatically dense in E, so part 2) of the proof
works with property (W).

2) Theorem 6.2 above admits a converse under more restrictive assumptions on the
space E (cf. [12]). The statement is that strict cosingularity of ¢ implies strict singularity
of i” when E is a BK-AK -space such that the closure of ® in E’ has a separable topological
complement. No special assumptions on the space F' are needed.

Another converse result is obtained if F' is assumed to have AB. In this case no
restrictions on the space E are needed, but something additional has to be required for
the mapping i.

Proposition 6.3 Let E, F be BK-spaces having ® C F C E. Suppose F has AB and
i+ F — E is strictly cosingular. Suppose that either (i) F' is separable and dense in E, or
(ii) i is weakly compact. Then i¥ and i are strictly singular.

Proof. Both conditions (i) and (ii) guarantee that the adjoint operator i : E' — F” is
strictly singular. In case (i) this is Snyder’s result [22], in case (ii) this was proved in [18].
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But now ## = i’ | E is strictly singular as a mapping E? — F'. As F has AB, F” is closed
in F', so i? is as well strictly singular as a mapping EP — FP. This ends the proof of the
B-dual version. The 5-dual part is proved analogously. [J

In the final part of this section we ask for a y-dual version of Pelczyriski's result stating
that strict cosingularity of the adjoint 7" implies strict singularity of T. Here the situation
is less satisfactory.

Proposition 6.4 Let E, F be BK -spaces having ® C F C E. Suppose F has AK and E
has AB. Then strict cosingularity of EY — F7 implies strict singularity of F — E.

Proof. Let E, be the closure of ® in E™. Then we have F C E, by the assumptions.
Moreover, E, = E7, so the inclusion i” : E¥ — F" is just the restriction mapping 1’ : E/ —
F', which by assumption is strictly cosingular. Hence by Pelczyriski’s result, the inclusion
F — E, is strictly singular. As E has AB, we have E, C E by Lemma 3.1,s0 F — E is
strictly singular. This ends the proof. O

Remark. Notice that Proposition 6.4 is rather a general scheme than a theorem.
Using the very same reasoning, we might obtain a result for any pair P, P’ of properties
of linear operators such that P’ for T implies P for T, More precisely, under the above
assumptions on E, F' we derive the statement that P’ for i” implies P for i, at least when
property P stands for a right ideal of operators.

In the following we prove a somewhat more involved result. Relaxing the assumptions
on the spaces E, F', which are quite restrictive in Proposition 6.4 above, we obtain a weaker
conclusion on F' — E. First let us recall a definition.

A sequence (z") of vectors z™ # 0 in @ is called a block sequence if there exists a
strictly increasing sequence (k) of indices such that z} # 0 only for k,—; < k < k,.

Let E, F be BK-spaces having ® C F' C E. The inclusion F' — E is said to have the
gliding humps property if, given any block sequence (z") having ||2"||r = 1, there exists a
sequence A € £, such that

oo .
z =) Mz' € E\F,
=1
where the sum is understood in the pointwise sense. For details concerning this notion see

[21,12,13]. In [12] we proved that strict singularity of F' — E implies the gliding humps
property if E has AB.

With these definitions we may now state the following
Theorem 6.5 Let E,F be BK-AB-spaces having ® C F C E. Suppose F does not

contain an tsomorphic copy of {,. Then strict cosingularity of i” implies that F — E has
the gliding humps property.



148 Noll
Proof. 1) Let (2") be a block sequence having ||z"||r = 1. Let L be defined by

L= {i)«;-zi:)\efm}.

=1

Similarly, we define L, as the subspace of L consisting of those z € L having A € ¢,. Then
L,L, are BK-spaces with the norm ||z|| = ||A||, hence in particular L = £, L, = ¢,.
We have to prove that ENL ¢ F. Assume the contrary, i.e. ENL C F. Let G be the
BK-space G = F + L, then we have ENG = F. We claim that G has AB. Indeed,
let z € G,z =y+2z withye F,z€ L,z =Y A\z'. Let k € N, and choose n having
k._1 < k < k,. Then we have

Pz = Py + Pi,_,z + An: Pi2".
This implies

| Pezllc 1Py + A« Pez"||F + [| Peaos 2l
1Peyllr + Moo - 1Px2"lF + | Prass 2l
C-llylr+C - Mo - [I2%1l7 + | Mlleo
(C +1)-(llyllr + ll=llz),

where C > 0 is a constant having || Pry||r < C-||y||F for all y € F, k € N. By the definition
of the norm on G (cf. [6]), this implies

IAN A IA A

Pezlle < (C+1)- izl

Hence G has AB.

2) Now we apply [6, Satz 2.3(c)], which implies E' + G = F". As E" — F" is
assumed strictly cosingular, [22, Theorem 3.2] gives that G” has finite codimension in F7,
and this means G* = F" by Lemma 2.3. Consequently, we have L C F", This implies
L, C F,, where F, denotes the closure of ® in F"7. Hence L, C F, for F has AB.

3) Next observe that L,, when endowed with the norm || - ||z, is a closed subspace of
F. Indeed, let z € L,, z = ¥ M\;z'. Then we have

Pal = [Aaz"l|F
n n—1 ,
IS0 - S,

"Pknz - Pkﬂ—lz"F
2C Izl

IA

proving ||z||L £ 2C - ||z||r. Hence L, is closed in F.
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4) Next observe that EY = E!,F" = F!, so by the result of Pelczyniski [18], strict
cosingularity of ¢” implies that F, — E, is strictly singular, hence in view of the fact that
E has AB, the inclusion F, — E is strictly singular. This means that L,, being infinite
dimensional, cannot be closed in E. Consequently the norms ||z"||g of the vectors 2" may
not be bounded away from 0 in E, for otherwise the argument used in part 3) above would

show L, as a closed subspace of E. Let us therefore choose a sequence (n}) of indices such
that ¥ ||z™||g < co.

5) Let M be the subspace of L consisting of all z = 3¢ A, 2™, A € £s. Then M C E
by the above choice of the sequence (n;). So our assumption EN L C F implies M C F.
Now the argument from part 3) shows that M must be closed in F. As M = £, we obtain

a contradiction with the fact that F' does not contain a copy of £,,. This ends the proof.
|

Remark. The AB assumption on E may not be omitted here, even when F has AK.
This may be seen from the main example in section 7.

7 The Main Example

In this section we present an example which was quoted at some place or other during the
previous sections.

Let E = {z € &, : ((2n)*z2n — (2n + 1)*22041) € ¢,}. Then E is a separable BK-space
under its natural norm. Obviously, E is a proper dense subspace of ¢;. Nevertheless, we
have the following

Claim 1. Ef =¢,..

Indeed, let y ¢ €., and choose a sequence (n;) such that |y,,| > . We may assume
that all n; are either even or odd. Assume they are even. Define a sequence z by

L

2
n: + 1) Ty Ty =10 otherwise

Tn, = i_-zy T, 41 = (

Clearly = € ¢, and (2n)*z3, — (2n + 1)’z2,41 = 0. Hence z € E. But zy ¢ cs, for
Tp,Yn;, » 0. This proves the claim in the case where the n; are even. A similar argument
works when they are assumed odd.

Let F = {z € w: (n’z,) € ¢,}. Then F is a BK-AK-space which is isomorphic with
¢, and is contained in E. Let us now establish several facts on the inclusions F' — E and
EP — FP,

Claim 2. E? — F? is compaet.

Indeed, this follows from Schauder’s Theorem combined with the fact that the inclu-
sion F' — £, is compact, the latter in view of F' & ¢, (cf. [8, §42]).
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Claim 3. F' — E is not compact.

Let = € w be the sequence z, = ('71,]:, and consider the sequence (P, z) of sections of .
Clearly || P.z||F = 1, so compactness of the inclusion F' — E would imply the existence of
a convergent subsequence in E. Clearly, the only possible choice for a limit of a convergent
subsequence could be z. But notice that z ¢ E in view of (2n)?z2, — (2n + 1)’ z2n41 = 2.
This proves the claim. As an immediate consequence we obtain the next

Claim 4. F — E is not weakly compact.

Indeed, this follows from the fact that F' = ¢, and that weakly compact operators
with source space ¢, are compact (cf. [8, §42]).

Claim 5. F — E is not strictly singular.

Notice that F' = C(S) for a space C(S) of continuous functions on a compact Hausdorft
space. Hence Pelczyriski’s result [18, Theorem 1] tells that strict singularity of the inclusion
would imply weak compactness here, and the latter is not valid by Claim 4.

Claim 6. F — E does not have the MKZ.
Indeed, let W be the BK -space defined by

W = {z € & : ((2n)*z20 + (2n + 1)’ Z2n41) € ¢}

Then we have W N E = F. Indeed, a sequence z € W N E satisfies
(2n)ze, — (2n + 1)*2n41 — 0,
(2n)’z9n + (2n + 1)2z9,41 — 0,

giving (2n)%z,, — 0 and (2n + 1)%z2,41 — 0, hence n?z, — 0.

But F is not closed in W, as it should if F — E had the MKZ. Indeed, take the
sequence ¢ having z, = %ﬂ, then P,z — z in W, but Py,z » zin F, for z ¢ F.

Claim 7. F — E does not have the gliding humps property.

Indeed, the gliding humps property would imply MKZ here by [21, Theorem 1], con-
trary to Claim 6.

Completing our list of abhorrend properties of the inclusion ¥ — E, we add the
following

Claim 8. F' — E is not strictly cosingular.

As F has AK, it suffices to show that F' £ E, for strict cosingularity and Snyder’s
property are equivalent, then.
Le]
Let G = {z € & : ©, | (2n)%22, — (2n + 1)?z2,41 |< o0}, then G is a proper BK-
subspace of E containing ®. We prove that E = F' 4+ G, which shows F £ E.

Let z € E be fixed. Define y € w by
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2n+1
2n

2
Yon = Ton — ( ) Ton41s Yon41 = 0.

Then we have (2n)%yan = (2n)%22n — (2n + 1)%22p41 = 0,50 y € F. Let 2 = 2 — y. We
have to check that z € G. Observe that

2n 4+ 142
21 = I, 2o = ( on ) Tan41y Zm41 = T2n41s

so actually (2n)?z3, — (2n + 1)*22,41 = 0, proving z € G. This proves our claim.

Clearly, Claim 8 implies Claim 3, for compact operators are strictly cosingular. But
a direct proof of Claim 3 is fairly easy.
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