Parametric robust H_{2} control

Laleh Ravanbod-Hosseini * Dominikus Noll* Pierre Apkarian ${ }^{\dagger}$

Abstract

H_{2}-control with structured controllers is discussed, and a way to enhance the robustness of the design with respect to real uncertain parameters system is proposed.

Keywords: Structured H_{2} control, parametric robustness.

1 Introduction

It is well-known that LQG or H_{2}-controllers often lack robustness with respect to plant uncertainty. Here we consider the situation when the plant has uncertain real parameters. A theoretical tool to model parametric uncertainty is the structured singular value μ_{Δ} introduced by Doyle [4], but its computation is known to be NPcomplete, $[2,3,12]$, which makes it unfit for use within an optimization procedure, where functions are called repeatedly. It is therefore mandatory to use approximations of μ_{Δ} or other heuristic criteria, which are suited in constrained optimization programs. Here we propose a new method which robustifies a given H_{2}-performance index $\mathcal{P}(G, K)=\left\|T_{w \rightarrow z}(G, K)\right\|_{2}^{2}$ by minimizing variations $\nabla_{\mathbf{p}} \mathcal{P}(G(\mathbf{p}), K)$ with respect uncertain parameters \mathbf{p} in the system.

A classical way to address the lack of robustness in LQG is the well-known LQG/LTR procedure [14], which gains robustness by trading it against a loss of performance. We compare our new approach to LQG/LTR.

2 Preparation

2.1 Structured controllers

A controller in state-space form

$$
K:\left[\begin{array}{c}
\dot{x}_{K} \tag{1}\\
u
\end{array}\right]=\left[\begin{array}{c|c}
A_{K} & B_{K} \\
\hline C_{K} & D_{K}
\end{array}\right]\left[\begin{array}{c}
x_{K} \\
y
\end{array}\right]
$$

is called structured if the matrices $A_{K}, B_{K}, C_{K}, D_{K}$ depend smoothly on a design parameter \mathbf{x},
$A_{K}=A_{K}(\mathbf{x}), B_{K}=B_{K}(\mathbf{x}), C_{K}=C_{K}(\mathbf{x}), D_{K}=D_{K}(\mathbf{x})$,

[^0]varying in some parameter space \mathbb{R}^{n}, or in a constrained subset of \mathbb{R}^{n}. Here $n=\operatorname{dim}(\mathbf{x})$ is typically smaller than $\operatorname{dim}(K)=n_{K}^{2}+m_{2} n_{K}+p_{2} n_{K}+m_{2} p_{2}$, where m_{2} is the number of inputs, p_{2} the number of outputs, n_{K} the order of K. We also expect $n_{K} \ll n_{x}$, even though this is not formally imposed. Full order controllers satisfy $n_{K}=n_{x}$ and $\operatorname{dim}(\mathbf{x})=\operatorname{dim}(K)$ and are referred to as unstructured.
Typical examples of controller structures are observerbased controllers
\[

K_{\mathrm{obs}}(\mathbf{x})=\left[$$
\begin{array}{c|c}
A-B_{2} K_{c}-K_{f} C_{2} & K_{f} \tag{2}\\
\hline-K_{c} & 0
\end{array}
$$\right],
\]

where $\mathbf{x}=\left(\operatorname{vec}\left(K_{c}\right), \operatorname{vec}\left(K_{f}\right)\right) \in \mathbb{R}^{n_{x} m_{2}+n_{x} p_{2}}$. Other practically useful controller structures include PID, decentralized and reduced-order controllers, or even entire synthesis structures combining controllers and filters.

2.2 Structured H_{2} problem

Given a transfer matrix in standard form

$$
G(s)=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \tag{3}\\
\hline C_{1} & 0 & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right]
$$

the structured H_{2} synthesis problem is the following optimization program

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{P}(\mathbf{x})=\left\|T_{w \rightarrow z}(G, K(\mathbf{x}))\right\|_{2}^{2} \\
\text { subject to } & K(\mathbf{x}) \text { internally stabilizing, } \mathbf{x} \in \mathbb{R}^{n} \tag{4}
\end{array}
$$

In contrast with the standard H_{2} control problem [15, 14.2], where the observer-based structure (2) arises by itself, (4) imposes the controller structure $K(\mathbf{x})$ as a constraint. In consequence, (4) is generally non-convex and more difficult to solve than the standard H_{2} problem, and we accept locally optimal solutions. We refer to $\mathcal{P}(\mathbf{x})$ as the nominal performance, or simply as the performance. The solution $\mathrm{x}^{\text {nom }}$ of (4) is called the nominal design, $K\left(\mathbf{x}^{\text {nom }}\right)$ the nominal controller, and $p^{\text {nom }}=\mathcal{P}\left(\mathbf{x}^{\text {nom }}\right)$ the nominal performance.

2.3 Augmented system

In order to alleviate the notational burden of the formulas to come, we shall employ a standard trick to render the feedback controller (1) static. The plant G is artificially augmented by

$$
A^{\text {aug }}=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right], B_{2}^{\text {aug }}=\left[\begin{array}{c}
B_{2} \\
0
\end{array}\right], B^{\text {aug }}=\left[\begin{array}{cc}
0 & B \\
I_{k} & 0
\end{array}\right],
$$

$$
\begin{aligned}
& C_{2}^{\text {aug }}=\left[\begin{array}{ll}
C_{2} & 0
\end{array}\right], C^{\text {aug }}=\left[\begin{array}{cc}
0 & I_{k} \\
C & 0
\end{array}\right], \\
& D_{12}^{\text {aug }}=\left[\begin{array}{ll}
0 & D_{12}
\end{array}\right], D_{21}^{\text {aug }}=\left[\begin{array}{ll}
0 & D_{21}
\end{array}\right] .
\end{aligned}
$$

Switching back from $G^{\text {aug }}$ to G for notational convenience, we may without loss compute controllers $K(\mathbf{x})$ which are static, and at the same time structured.

3 Trade-off via mixed synthesis

The situation we are concerned with is when the openloop system $G(\mathbf{p})$ contains uncertain parameters \mathbf{p}. Assuming that the nominal parameter values are \mathbf{p}_{0}, so that $G=G\left(\mathbf{p}_{0}\right)$, we wish to synthesize $K\left(\mathbf{x}^{\mathrm{rob}}\right)$ in such a way that it still performs well if \mathbf{p} differs significantly from \mathbf{p}_{0}. A general heuristic strategy is to introduce a robustness function $\mathcal{R}(\mathbf{p}, \mathbf{x})$ which when minimized over \mathbf{x} for fixed \mathbf{p} increases the parametric robustness of the design around \mathbf{p}. One may then consider the following trade-off between nominal performance and robustness:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{R}\left(\mathbf{p}_{0}, \mathbf{x}\right) \\
\text { subject to } & \mathcal{P}\left(\mathbf{p}_{0}, \mathbf{x}\right) \leq p^{\text {nom }}(1+\alpha) \tag{5}\\
& K(\mathbf{x}) \text { internally stabilizing }
\end{array}
$$

Denoting the solution of (5) as $\mathbf{x}^{\text {rob }}$, we can roughly say that the robust controller $K\left(\mathbf{x}^{\text {rob }}\right)$ accepts a loss of α. 100% over nominal performance $p^{\text {nom }}$ and uses this new freedom to buy some additional robustness.

Several robustness measures are known in the literature. A classical idea is to use the various sensitivity functions, see e.g. [5]. Here we propose a new idea, which uses the variation of \mathcal{P} directly to robustify program (4):

$$
\mathcal{R}(\mathbf{p}, \mathbf{x})=\left\|\nabla_{\mathbf{p}} \mathcal{P}(\mathbf{p}, \mathbf{x})\right\|^{2}
$$

where $\|\cdot\|$ denotes the euclidean norm in parameter space.

3.1 Computing $\mathcal{R}(G, K)$

Assuming without loss that $G=G\left(\mathbf{p}_{0}\right)$ is augmented and K is static, we put

$$
\begin{gathered}
\mathcal{A}(G, K)=A+B K C, \quad \mathcal{B}(G, K)=B_{2}+B K D_{21} \\
\mathcal{C}(G, K)=C_{2}+D_{12} K C, \quad \mathcal{D}(G, K)=D_{12} K D_{21}=0
\end{gathered}
$$

Then the squared H_{2} norm can be expressed as

$$
\begin{align*}
\mathcal{P}(G, K) & =\operatorname{Tr}\left(\mathcal{B}(K)^{\top} X \mathcal{B}(K)\right) \tag{6}\\
& =\operatorname{Tr}\left(\mathcal{C}(K) Y \mathcal{C}(K)^{\top}\right),
\end{align*}
$$

where $X=X(G, K)$ is solution of

$$
\begin{align*}
& \mathcal{A}(G, K)^{\top} X+X \mathcal{A}(G, K) \tag{7}\\
& +\mathcal{C}(G, K)^{\top} \mathcal{C}(G, K)=0
\end{align*}
$$

and $Y=Y(G, K)$ is solution of

$$
\begin{align*}
& \mathcal{A}(G, K) Y+Y \mathcal{A}(G, K)^{\top} \tag{8}\\
& +\mathcal{B}(G, K) \mathcal{B}(G, K)^{\top}=0
\end{align*}
$$

This allows to compute partial derivatives of \mathcal{P} with respect to G and K.

Lemma 1. The objective \mathcal{P} in (6) is smooth in the open domain of all closed-loop stabilizing pairs (G, K). For any (G, K) in this set we have

1. $\nabla_{K} \mathcal{P}(G, K)=2\left[B^{\top} X+D_{12}^{\top} \mathcal{C}(K)\right] Y C^{\top}+$ $2 B^{\top} X \mathcal{B}(K) D_{21}^{\top}$,
2. $\nabla_{A} \mathcal{P}(G, K)=2 X Y$,
3. $\nabla_{B} \mathcal{P}(G, K)=2 X Y C^{\top} K^{\top}+2 X \mathcal{B}(K) D_{21}^{\top} K^{\top}$.
4. $\nabla_{C} \mathcal{P}(G, K)=2 K^{\top} B^{\top} X Y+2 K^{\top} D_{12}^{\top} \mathcal{C}(K) Y$,
5. $\nabla_{C_{2}} \mathcal{P}(G, K)=2 \mathcal{C}(K) Y$,
6. $\nabla_{B_{2}} \mathcal{P}(G, K)=2 X \mathcal{B}(K)$,
7. $\nabla_{D_{21}} \mathcal{P}(G, K)=2 K^{\top} B^{\top} X \mathcal{B}(K)$,
8. $\nabla_{D_{12}} \mathcal{P}(G, K)=2 Y^{\top} C^{\top} K^{\top}$,
where X solves (7) and Y solves (8).
The proof will be sketched in the appendix. Recall that we are dealing with structured controllers. Smooth dependence on \mathbf{x} allows an expansion of the form $K(\mathbf{x})=$ $K\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n} K_{i}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathcal{O}\left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}\right)$, where $K_{i}\left(\mathbf{x}_{0}\right)=\frac{\partial K\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}_{i}}$. Using the chain rule, we get
Corollary 1. Under the assumptions of Lemma 1 we have $\nabla_{x} \mathcal{P}(\mathbf{x}, \mathbf{p})=\left(g_{1}(\mathbf{p}, \mathbf{x}), \ldots, g_{n}(\mathbf{p}, \mathbf{x})\right)$, where $g_{i}(\mathbf{p}, \mathbf{x})=$
$\operatorname{Tr}\left[\left(2\left[B^{\top} X+D_{12}^{\top} \mathcal{C}(K)\right] Y C^{\top}+2 B^{\top} X \mathcal{B}(K) D_{21}^{\top}\right)^{\top} K_{i}(\mathbf{x})\right]$.

Let us now specialize to the case where only the system matrix A in G features uncertain parameters \mathbf{p}. The general case, where uncertain parameters appear in other parts of G, can be handled analogously. Assuming a smooth dependence on \mathbf{p}, we get an expansion of the form $A(\mathbf{p})=A\left(\mathbf{p}_{0}\right)+\sum_{i=1}^{s} A_{i}\left(\mathbf{p}_{0}\right)\left(\mathbf{p}-\mathbf{p}_{0}\right)+\mathcal{O}\left(\left\|\mathbf{p}-\mathbf{p}_{0}\right\|^{2}\right)$, where $A_{i}\left(\mathbf{p}_{0}\right)=\frac{\partial A\left(\mathbf{p}_{0}\right)}{\partial \mathbf{p}_{i}}$. We have the following
Corollary 2. Under the assumptions of Lemma 1 we have: $\nabla_{p} \mathcal{P}(\mathbf{p}, \mathbf{x})=\left(h_{1}(\mathbf{p}, \mathbf{x}), \ldots, h_{s}(\mathbf{p}, \mathbf{x})\right)$, where $h_{i}(\mathbf{p}, \mathbf{x})=2 \operatorname{Tr}\left(A_{i}(\mathbf{p})^{\top} X Y\right)$.

Smallness of the variation $\nabla_{p} \mathcal{P}\left(\mathbf{p}_{0}, \mathbf{x}\right)$ at the solution $K(\mathbf{x})$ can be assessed by controlling its size in some norm. If a norm $\|\mathbf{p}\|$ in parameter space is given, reflecting for instance an appropriate weighting between the uncertain parameters, then we are led to control $\nabla_{p} \mathcal{P}$ in the dual norm $\|\cdot\|_{*}$. During the following we shall consider the Euclidean norm $\|\mathbf{p}\|$, so that $\|\cdot\|_{*}$ is also the Euclidean norm. (The reader will easily see how to extend our approach to other choices of $\|\cdot\|$.) With these arrangements our robustness objective should be chosen as

$$
\begin{array}{r}
\mathcal{R}\left(\mathbf{p}_{0}, \mathbf{x}\right)=\left\|\nabla_{p} \mathcal{P}\left(A\left(\mathbf{p}_{0}\right), K(\mathbf{x})\right)\right\|_{2}^{2} \tag{9}\\
=\sum_{i=1}^{s} \operatorname{Tr}\left(2 A_{i}\left(\mathbf{p}_{0}\right)^{\top} X Y\right)^{2}=\sum_{i=1}^{s} h_{i}\left(\mathbf{p}_{0}, \mathbf{x}\right)^{2}
\end{array}
$$

3.2 Computing $\nabla_{x} \mathcal{R}(\mathbf{p}, \mathrm{x})$

This seems to indicate that almost no extra work is needed for the new robustness function, but the question is how to compute derivatives of \mathcal{R} with respect to x. We have

$$
\nabla_{x} \mathcal{R}(\mathbf{p}, \mathbf{x})=\sum_{i=1}^{s} h_{i}(\mathbf{p}, \mathbf{x}) \nabla_{x} h_{i}(\mathbf{p}, \mathbf{x}),
$$

where the h_{i} are given in Corollary 2 and are readily computed from X, Y. We can therefore concentrate on how gradients $\nabla_{x} h_{i}$ are computed. We recognize this as a matrix realization of the mixed second derivative $D_{x, p}^{2} \mathcal{P}$. Unfortunately, unlike first-order derivatives, it is not clear how to compute matrix representations at the second order level. In [13] a representation of the Hessian $\nabla_{K K}^{2} \mathcal{P}$ is obtained, but closer inspection shows that Kronecker products are used and matrix inversions are required. Here we favour an approach where parts of the mixed second derivative are pre-calculated, while the rest is computed on the fly. There are two possibilities to represent $D_{x, p}^{2} \mathcal{P}$, namely, $D_{p} \nabla_{x} \mathcal{P}$ or $D_{x} \nabla_{p} \mathcal{P}$. In the case where $\operatorname{dim}(\mathbf{p})<\operatorname{dim}(\mathbf{x})$ we compute $D_{p} \nabla_{x} \mathcal{P}$. We have

$$
\begin{array}{r}
\left\langle\nabla_{x} h_{i}\left(\mathbf{x}, \mathbf{p}_{0}\right), \Delta x\right\rangle=D_{x} h_{i}\left(\mathbf{x}, \mathbf{p}_{0}\right) \Delta x \\
=D_{x} D_{p} \mathcal{P}\left(\mathbf{x}, \mathbf{p}_{0}\right) \Delta \mathbf{p}_{i} \Delta \mathbf{x} \\
=\left\langle D_{p_{i}} \nabla_{x} \mathcal{P}\left(\mathbf{x}, \mathbf{p}_{0}\right), \Delta x\right\rangle \\
=\left\langle D_{A} \nabla_{x} \mathcal{P}\left(A\left(\mathbf{p}_{0}\right), K(\mathbf{x})\right) A_{i}\left(\mathbf{p}_{0}\right), \Delta \mathbf{x}\right\rangle \\
=\sum_{k=1}^{n}\left\langle D_{A} \nabla_{K} \mathcal{P}\left(A\left(\mathbf{p}_{0}\right), K(\mathbf{x})\right) A_{i}\left(\mathbf{p}_{0}\right), K_{k}(\mathbf{x})\right\rangle \Delta \mathbf{x}_{k} .
\end{array}
$$

Substituting the expression in item 1 of Lemma 1 for $\nabla_{K} \mathcal{P}$, we get

$$
\begin{array}{r}
D_{A} \nabla_{K} \mathcal{P}\left(A\left(\mathbf{p}_{0}\right), K(\mathbf{x})\right) A_{i}\left(\mathbf{p}_{0}\right)=2 B^{\top} \Phi_{i} Y C^{\top} \\
+2\left[B^{\top} X+D_{12}^{\top} \mathcal{C}(K(\mathbf{x}))\right] \Psi_{i} C^{\top} \\
+2 B^{\top} \Phi_{i} \mathcal{B}\left(K(\mathbf{x}) D_{21}^{\top},\right.
\end{array}
$$

where

$$
\Phi_{i}=D_{A} X A_{i}\left(\mathbf{p}_{0}\right), \quad \Psi_{i}=D_{A} Y A_{i}\left(\mathbf{p}_{0}\right), \quad i=1, \ldots, s
$$

Then, putting
(10) $\quad \Lambda_{i}=2 B^{\top} \Phi_{i} Y C^{\top}+2\left[B^{\top} X+D_{12}^{\top} \mathcal{C}(K(\mathbf{x}))\right] \Psi_{i} C^{\top}$

$$
+2 B^{\top} \Phi_{i} \mathcal{B}\left(K(\mathbf{x}) D_{21}^{\top}\right.
$$

$i=1, \ldots, s$, and $\Lambda=\sum_{i=1}^{s} h_{i}\left(\mathbf{x}, \mathbf{p}_{0}\right) \Lambda_{i}$, we obtain the gradient $\nabla_{x} \mathcal{R}$ as

$$
\nabla_{x} \mathcal{R}(\mathbf{x})=\left(\operatorname{Tr}\left(\Lambda^{\top} K_{1}(\mathbf{x})\right), \ldots, \operatorname{Tr}\left(\Lambda^{\top} K_{n}(\mathbf{x})\right)\right) .
$$

The final link is now to compute Φ_{i} and Ψ_{i}, which requires another set of Lyapunov equations. We have the following

Proposition 1. Computing $\mathcal{R}\left(\mathbf{p}_{0}, \mathbf{x}\right)$ and its gradient $\nabla_{x} \mathcal{R}\left(\mathbf{p}_{0}, \mathbf{x}\right)$ with respect to \mathbf{x} is possible by solving $2(s+1)$ Lyapunov equations. Those are (7) for X, (8) for Y,

$$
\begin{array}{r}
{[A+B K(\mathbf{x}) C]^{\top} \Phi_{i}+\Phi_{i}[A+B K(\mathbf{x}) C]=} \tag{11}\\
-A_{i}\left(\mathbf{p}_{0}\right)^{\top} X-X A_{i}\left(\mathbf{p}_{0}\right)
\end{array}
$$

for the $\Phi_{i}, i=1, \ldots, s$, and

$$
\begin{align*}
{[A+B K(\mathbf{x}) C] \Psi_{i} } & +\Psi_{i}[A+B K(\mathbf{x}) C]^{\top}= \tag{12}\\
& -Y A_{i}\left(\mathbf{p}_{0}\right)^{\top}-A_{i}\left(\mathbf{p}_{0}\right) Y
\end{align*}
$$

for the $\Psi_{i}, i=1, \ldots, s$.

We have the following

Algorithm to compute \mathcal{R} and its gradient $\nabla_{x} \mathcal{R}$

Parameters: Precomputed data $A_{i}=\frac{\partial A\left(\mathbf{p}_{0}\right)}{\partial \mathbf{p}_{i}}$ and possibly $K_{\nu}=\frac{\partial K(\mathbf{x})}{\partial \mathbf{x}_{\nu}}$.
1: Given \mathbf{x} compute $K=K(\mathbf{x})$, solution X of (7), and solution Y of (8).
2: For $i=1, \ldots, s$ compute $A_{i}^{\top} X Y$ and \mathcal{R} using (9).
For $i=1, \ldots, s$ compute Φ_{i} solution of (11), and Ψ_{i} solution of (12).
: Let $h\left(\mathbf{p}_{0}, \mathbf{x}\right)=\left(\operatorname{Tr}\left(2 A_{1}^{\top} X Y\right), \ldots, \operatorname{Tr}\left(2 A_{s}^{\top} X Y\right)\right)$ according to Corollary 2.
5: For $i=1, \ldots, s$ compute Λ_{i} according to (10). Then compute $\Lambda=\sum_{i=1}^{s} h_{i} \Lambda_{i}$.
6: If $K(\mathbf{x})$ is not affine then compute $K_{\nu}(\mathbf{x})$. Otherwise take the precomputed K_{ν}.
7: Obtain $\nabla_{x} \mathcal{R}=\left(\operatorname{Tr}\left(\Lambda^{\top} K_{1}(\mathbf{x})\right), \ldots, \operatorname{Tr}\left(\Lambda^{\top} K_{n}(\mathbf{x})\right)\right.$.

4 Numerical Experiment

4.1 Benchmark Example

We consider the mass-spring system in Figure 1, which can be considered as a prototype of a flexible system.

Figure 1: Mass-spring system. Nominal data are $m_{1}=$ $m_{2}=0.5 \mathrm{~kg}, k=1 \mathrm{~N} / \mathrm{m}, f=0.0025 \mathrm{Ns} / \mathrm{m}, V=W=1$. Measured output is $y=x_{2}$, control force u acts on m_{1}.

We perform an LQG study where we expect the LQG controller to be robustly stable with respect to 30% variation in m_{2} and k. The LQG set-up has $W=B B^{T}$, $V=I, Q=C^{T} C, R=I$ and is as usual transformed to
a standard H_{2} plant (3). The data are

$$
\begin{gather*}
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k}{m_{1}} & -\frac{f}{m_{1}} & \frac{k}{m_{1}} & \frac{f}{m_{1}} \\
0 & 0 & 0 & 1 \\
\frac{k}{m_{2}} & \frac{f}{m_{2}} & \frac{-k}{m_{2}} & \frac{-f}{m_{2}}
\end{array}\right], \tag{13}\\
B=\left[\begin{array}{c}
0 \\
\frac{1}{m_{1}} \\
0 \\
0
\end{array}\right], C=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right], D=0 .
\end{gather*}
$$

Since an observer-based controller (2) is of order $n_{K}=$ 4 , we have to augment the system from $A \in \mathbb{R}^{4 \times 4}$ to $A^{\text {aug }} \in \mathbb{R}^{8 \times 8}$, as in section 2.3. The non-linear expression $A(\mathbf{p})=A\left(\mathbf{p}_{0}+\Delta \mathbf{p}\right)$ is

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k+\Delta k}{m_{1}} & -\frac{f}{m_{1}} & \frac{k+\Delta k}{m_{1}} & \frac{f}{m_{1}} \\
0 & 0 & 0 & 1 \\
\frac{k+\Delta k}{m_{2}+\Delta m_{2}} & \frac{f}{m_{2}+\Delta m_{2}} & \frac{-k-\Delta k}{m_{2}+\Delta m_{2}} & \frac{-f}{m_{2}+\Delta m_{2}}
\end{array}\right]
$$

which gives us $D_{p} A\left(\mathbf{p}_{0}\right) \Delta \mathbf{p}=$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-\frac{\Delta k}{m_{1}} & 0 & \frac{\Delta k}{m_{1}} & 0 \\
0 & 0 & 0 & 0 \\
\frac{m_{2} \Delta k-k \Delta m_{2}}{m_{2}^{2}} & \frac{-f \Delta m_{2}}{m_{2}^{2}} & \frac{-m_{2} \Delta k+k \Delta m_{2}}{m_{2}^{2}} & \frac{f \Delta m_{2}}{m_{2}^{2}}
\end{array}\right]} \\
A_{1}(\mathbf{p})=\frac{\partial A}{\partial k}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-\frac{1}{m_{1}} & 0 & \frac{1}{m_{1}} & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{m_{2}} & 0 & -\frac{1}{m_{2}} & 0
\end{array}\right] \\
A_{2}(\mathbf{p})=\frac{\partial A}{\partial m_{2}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{k}{m_{2}^{2}} & -\frac{f}{m_{2}^{2}} & \frac{k}{m_{2}^{2}} & \frac{f}{m_{2}^{2}}
\end{array}\right]
\end{gathered} .
$$

Putting $Z=2 Y X$, we obtain $h_{1}(\mathbf{p}, \mathbf{x})=\operatorname{Tr}\left(Z A_{1}\right)=$ $Z_{32} / m_{1}+Z_{34} / m_{2}-Z_{12} / m_{1}+Z_{14} / m_{2}$ and $h_{2}(\mathbf{p}, \mathbf{x})=$ $-k Z_{14} / m_{2}^{2}-f Z_{24} / m_{2}^{2}+k Z_{34} / m_{2}^{2}+f Z_{44} / m_{2}^{2}$.

4.2 Results

As can be seen in Figure 2 top, the nominal LQG controller $K_{\mathrm{nom}}=K\left(K_{c}{ }^{\text {nom }}, K_{f}^{\text {nom }}\right)$ misses this goal. Program (5) with (9) is used to enhance parametric robustness of the nominal controller. The result is $K_{\text {rob }}=$ $K\left(K_{c}^{\mathrm{rob}}, K_{f}^{\mathrm{rob}}\right)$ and its parametric robustness is shown in Figure 2 middle. Notice that in program (5) the observer structure has to be imposed as a constraint. As a curiosum, no algebraic Riccati equations are obtained for $K_{c}^{\mathrm{rob}}, K_{f}^{\mathrm{rob}}$, but the observer structure is nevertheless maintained. Robustness leads to a degradation of nominal performance from $\mathcal{P}\left(G, K_{\text {nom }}\right)=3.99$ to $\mathcal{P}\left(G, K_{\text {rob }}\right)=27.98$.

A classical method to enhance robustness of LQG is the LTR procedure, which we applied here for the purpose of comparison to the input sensitivity function. This
generates a family $K(\rho)$ of LQG controllers based on modified plants $G(\rho)$, where $\rho=0$ corresponds to the nominal case G. As ρ increases, the stability region of $K(\rho)$ increases, while $\mathcal{P}(G, K(\rho))$ degrades. In this study LTR was unable to achieve parametric robustness over the square of 30% parameter variations. Figure 2 (bottom) shows the stability region of $K_{\text {ltr }}:=K(\rho)$, adjusted so that $\mathcal{P}\left(G, K_{\text {ltr }}\right)=27.98$.

Figure 2: Stability region of LQG controller (top), robust LQG controller based on (5) (middle), and LQG/LTR controller (bottom). The value $\alpha=45$ is used to compute the robust LQG controller. Robust and LTR controller have the same nominal performance.

Notice another curiosity: the LTR controller is also observer-based with $K_{f}^{\text {ltr }}, K_{c}^{\text {ltr }}$ now satisfying algebraic Riccati equations, but the wrong ones so to say, because $G(\rho)$ replaces G.
In Fig. 3 the relative performance $\frac{\mathcal{P}\left(G\left(k, m_{2}\right), K\right)-\mathcal{P}\left(G\left(k^{0}, m_{2}^{0}, K\right)\right.}{\mathcal{P}\left(G\left(k^{0}, m_{2}^{0}\right), K\right)} \times 100 \%$ is plotted over the square $\Omega=\left(k^{0} \pm 30 \% k^{0}, m_{2}^{0} \pm 30 \% m_{2}^{0}\right)$ and for $K \in\left\{K_{\text {nom }}, K_{\text {rob }}, K_{\text {ltr }}\right\}$. For $K_{\text {lqg }}=K_{\text {nom }}$ this value is not finite everywhere and reaches 600% in the region where the system is still stabilized. In contrast, the robustified LQG controller $K_{\text {rob }}$ holds a fairly uniform performance level over the entire square (less than 1% variation), but performs worse at the nominal parameter value \mathbf{p}_{0}. To compare (5) with the LQG/LTR procedure, the stability domain is compared for two controllers achieving the same performance $\mathcal{P}=27.98$ at \mathbf{p}_{0}.

5 Conclusion

Lack of parametric robustness of LQG controllers and more general structured H_{2} controllers was addressed by a constrained program (5), which accepts a quantified loss of nominal performance in order to gain additional robustness. We proposed to use a suitable norm of the variation of the performance criterion as a robustness index. In the context of LQG the new procedure was compared to the LQG/LTR procedure based on the input sensitivity function, which is a classical procedure to enhance system robustness.

6 Appendix

The first item follows readily from [13, Theorem 3.2]. We elaborate on items 2. - 8. For a function \mathcal{P} : $H_{1} \times H_{2} \rightarrow \mathbb{R}$, where H_{1}, H_{2} are Hilbert spaces, we let $D_{x} \mathcal{P}(x, y)$ denote the partial derivative with respect to $x \in H_{1}$, which is a continuous linear functional on H_{2}. The gradient $\nabla_{x} \mathcal{P}(x, y) \in H_{2}$ is related to $D_{x} \mathcal{P}(x, y)$ by $D_{x} \mathcal{P}(x, y) \Delta y=\left\langle\nabla_{x} \mathcal{P}(x, y), \Delta y\right\rangle$ for every $\Delta y \in H_{2}$. Notice that
$D_{G} \mathcal{P} \Delta G=\operatorname{Tr}\left(\left\{D_{G} X \Delta G\right\} \mathcal{B B}^{\top}\right)+2 \operatorname{Tr}\left(X\left\{D_{G} \mathcal{B} \Delta G\right\} \mathcal{B}^{\top}\right)$, omitting arguments, where $\Phi:=D_{G} X \Delta G$ solves the Lyapunov equation

$$
\text { (14) } \begin{aligned}
\mathcal{A}^{\top} \Phi+\Phi \mathcal{A}= & -\left\{\Delta_{G} \mathcal{A} \Delta G\right\}^{\top} X-X\left\{\Delta_{G} \mathcal{A} \Delta G\right\} \\
& -\left\{D_{G} \mathcal{C} \Delta G\right\}^{\top} \mathcal{C}-\mathcal{C}^{\top}\left\{D_{G} \mathcal{C} \Delta G\right\} .
\end{aligned}
$$

We multiply (14) with Y from the right, and match it with (8) multiplied with Φ from the left. Taking traces, the two left hand sides are identical, hence the same is true for the two right hand sides. This gives the identity $\operatorname{Tr}\left(\Phi \mathcal{B B}^{\top}\right)=$ $2 \operatorname{Tr}\left(\left\{D_{G} \mathcal{A} \Delta G\right\}^{\top} X Y\right)+2 \operatorname{Tr}\left(\left\{D_{G} \mathcal{C} \Delta G\right\}^{\top} \mathcal{C} Y\right)$. Substituting this back in the formula for $D_{G} \mathcal{P} \Delta G$ gives $D_{G} \mathcal{P} \Delta G=$
$2 \operatorname{Tr}\left(\left\{D_{G} \mathcal{A} \Delta G\right\}^{\top} X Y\right)+2 \operatorname{Tr}\left(\left\{D_{G} \mathcal{C} \Delta G\right\}^{\top} \mathcal{C} Y\right)$ $+2 \operatorname{Tr}\left(X\left\{D_{G} \mathcal{B} \Delta G\right\} \mathcal{B}^{\top}\right)$.
Now observe that

$$
\begin{array}{r}
D_{G} \mathcal{A}(G, K) \Delta G=\Delta A+\Delta B K C+B K \Delta C \\
D_{G} \mathcal{C}(G, K) \Delta G=\Delta C_{2}+\Delta D_{12} K C+D_{12} K \Delta C \\
D_{G} \mathcal{B}(G, K) \Delta G=\Delta B_{2}+\Delta B K D_{21}+B K \Delta D_{21}
\end{array}
$$

Hence

$$
\begin{array}{r}
\left\langle\nabla_{G} \mathcal{P}(G, K), \Delta G\right\rangle=\operatorname{Tr}\left((\Delta A+\Delta B K C+B K \Delta C)^{\top} 2 X Y\right) \\
+\operatorname{Tr}\left(\left(\Delta C_{2}+\Delta D_{12} K C+D_{12} K \Delta C\right)^{\top} 2\left(C_{2}+D_{12} K C\right) Y\right) \\
+\operatorname{Tr}\left(2 X\left(\Delta B_{2}+\Delta B K D_{21}+B K \Delta D_{21}\right) \mathcal{B}^{\top}\right) .
\end{array}
$$

From that we can readily read off the answers 2. - 8., bearing in mind that

$$
\left\langle\nabla_{G} \mathcal{P}, \Delta G\right\rangle=\left\langle\nabla_{A} \mathcal{P}, \Delta A\right\rangle+\cdots+\left\langle\nabla_{D_{12}} \mathcal{P}, \Delta D_{12}\right\rangle .
$$

Acknowledgement

This work was supported by research grants Technicom from the Fondation d'Entreprise EADS and Survol from Fondation de Recherche pour l'Aéronautique et l'Espace.

References

[1] P. Apkarian, L. Ravanbod-Hosseini, D. Noll. Time domain constrained H_{∞} synthesis. Int. J. of Rob. and Nonlin. Contr., in press.
[2] R. P. Braatz, P. M. Young, J. C. Doyle, M. Morari. Computational complexity of μ calculations. IEEE Transactions on Automatic Control, vol. 39, no. 5, pp. $1000-1002$.
[3] J. W. Demmel. The component-wise distance to the nearest singular matrix. SIAM Journal on Matrix Analysis and Applications, vol. 13, 1992, pp. 10 19.
[4] J.C. Doyle. Structured uncertainty in control system design. Proc. 24th Conference on Decision and Control, Ft. Lauderdale, Fl, 1985, pp. $260-265$.
[5] J. Doyle, K. Glower, P.P. Kargonekar, B. Francis. State-space solutions to the standard H_{2} and H_{∞} control problems. IEEE Trans. Autom. Control, vol. 34, no. 8, 1989, pp. 831-847.
[6] J. Doyle, A. Packard, K. Zhou. Review of LTS's, LMI's, and μ. Proceedings of the IEEE Conference on Decision and Control, vol. 2, Brighton 1991, pp. $1227-1232$.
[7] J. Doyle, G. Stein. Robustness with observers, IEEE Transactions on Autom. Control, vol. AC-24, 1979, pp. $607-611$.

Figure 3: Relative performance of $K_{\text {lqg }}, K_{\text {rob }}, K_{\text {ltr }}$ is plotted over the robustness square. Upper graph shows LQG controller, middle image shows robust controller based on (5), lower image shows LQG/LTR controller.
[8] J. Doyle, G. Stein. Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, vol. AC26, no. 1,1981 , pp. $4-16$.
[9] J. Doyle. Guaranteed margins for $L Q G$ regulators. IEEE Trans. on Auto. Control, vol. 23, no.4, 1978, pp. 756-757.
[10] C.-M. Fransson, T. Wik, B. Lennartson, M. Saunders, P.-O. Gutman. Nonconservative robust control: optimized and constrained sensitivity functions. IEEE Transactions on Control System Technology, vol. 17, no. 2, 2009, pp. 298 - 308.
[11] H. Kwakernaak. Optimal low-sensitivity linear feedback systems. Automatica, vol. 5, 1969, pp. 279 - 285.
[12] S. Poljak, J. Rohn. Checking robust nonsingularity is NP-hard. Math. Contr. Signals Syst., vol. 6, 1993, pp. $1-9$.
[13] T. Rautert, E. Sachs. Computational design of optimal output feedback controllers. SIAM J. Optim., vol. 7, no. 3, 1997, pp. 837-852.
[14] A. Saberi, Ben M. Chen, P. Sannuti. Loop transfer recovery: analysis and design. Communication and Control Engineering Series, Springer Verlag 1993.
[15] K. Zhou. Essentials of robust control. Prentice Hall, 1998.

[^0]: *Université Paul Sabatier, Institut de Mathématiques, Toulouse, France $\{$ L.Hosseini, D.Noll\}@math-univ.fr
 ${ }^{\dagger}$ ONERA, Department of Systems Control and Flight Dynamics, Toulouse, France $\{$ P.Apkarian $\}$ @onera.fr

