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Abstract

H2-control with structured controllers is discussed, and
a way to enhance the robustness of the design with
respect to real uncertain parameters system is proposed.

Keywords: Structured H2 control, parametric ro-
bustness.

1 Introduction

It is well-known that LQG or H2-controllers often lack
robustness with respect to plant uncertainty. Here we
consider the situation when the plant has uncertain real
parameters. A theoretical tool to model parametric un-
certainty is the structured singular value µ∆ introduced
by Doyle [4], but its computation is known to be NP-
complete, [2, 3, 12], which makes it unfit for use within
an optimization procedure, where functions are called
repeatedly. It is therefore mandatory to use approxima-
tions of µ∆ or other heuristic criteria, which are suited
in constrained optimization programs. Here we propose
a new method which robustifies a given H2-performance
index P(G, K) = ‖Tw→z(G, K)‖22 by minimizing varia-
tions ∇pP(G(p),K) with respect uncertain parameters
p in the system.

A classical way to address the lack of robustness in
LQG is the well-known LQG/LTR procedure [14], which
gains robustness by trading it against a loss of perfor-
mance. We compare our new approach to LQG/LTR.

2 Preparation

2.1 Structured controllers

A controller in state-space form

K :

»
ẋK

u

–
=

»
AK BK

CK DK

– »
xK

y

–
(1)

is called structured if the matrices AK , BK , CK , DK

depend smoothly on a design parameter x,

AK = AK(x), BK = BK(x), CK = CK(x), DK = DK(x),
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varying in some parameter space Rn, or in a constrained
subset of Rn. Here n = dim(x) is typically smaller than
dim(K) = n2

K + m2nK + p2nK + m2p2, where m2 is
the number of inputs, p2 the number of outputs, nK the
order of K. We also expect nK � nx, even though this
is not formally imposed. Full order controllers satisfy
nK = nx and dim(x) = dim(K) and are referred to as
unstructured.

Typical examples of controller structures are observer-
based controllers

Kobs(x) =

»
A−B2Kc −KfC2 Kf

−Kc 0

–
,(2)

where x = (vec(Kc), vec(Kf )) ∈ Rnxm2+nxp2 . Other
practically useful controller structures include PID, de-
centralized and reduced-order controllers, or even entire
synthesis structures combining controllers and filters.

2.2 Structured H2 problem

Given a transfer matrix in standard form

G(s) =

 A B1 B2

C1 0 D12

C2 D21 0

 ,(3)

the structured H2 synthesis problem is the following op-
timization program

minimize P(x) = ‖Tw→z (G, K(x)) ‖22
subject to K(x) internally stabilizing,x ∈ Rn(4)

In contrast with the standard H2 control problem [15,
14.2], where the observer-based structure (2) arises by
itself, (4) imposes the controller structure K(x) as a con-
straint. In consequence, (4) is generally non-convex and
more difficult to solve than the standard H2 problem, and
we accept locally optimal solutions. We refer to P(x) as
the nominal performance, or simply as the performance.
The solution xnom of (4) is called the nominal design,
K(xnom) the nominal controller, and pnom = P(xnom)
the nominal performance.

2.3 Augmented system

In order to alleviate the notational burden of the formu-
las to come, we shall employ a standard trick to render
the feedback controller (1) static. The plant G is artifi-
cially augmented by

Aaug =

»
A 0
0 0

–
, Baug

2 =

»
B2

0

–
, Baug =

»
0 B
Ik 0

–
,



Caug
2 =

ˆ
C2 0

˜
, Caug =

»
0 Ik

C 0

–
,

Daug
12 =

ˆ
0 D12

˜
, Daug

21 =
ˆ

0 D21

˜
.

Switching back from Gaug to G for notational conve-
nience, we may without loss compute controllers K(x)
which are static, and at the same time structured.

3 Trade-off via mixed synthesis

The situation we are concerned with is when the open-
loop system G(p) contains uncertain parameters p. As-
suming that the nominal parameter values are p0, so that
G = G(p0), we wish to synthesize K(xrob) in such a way
that it still performs well if p differs significantly from
p0. A general heuristic strategy is to introduce a robust-
ness function R(p,x) which when minimized over x for
fixed p increases the parametric robustness of the design
around p. One may then consider the following trade-off
between nominal performance and robustness:

minimize R(p0,x)
subject to P(p0,x) ≤ pnom(1 + α)

K(x) internally stabilizing
(5)

Denoting the solution of (5) as xrob, we can roughly say
that the robust controller K(xrob) accepts a loss of α ·
100% over nominal performance pnom and uses this new
freedom to buy some additional robustness.

Several robustness measures are known in the litera-
ture. A classical idea is to use the various sensitivity
functions, see e.g. [5]. Here we propose a new idea, which
uses the variation of P directly to robustify program (4):

R(p,x) = ‖∇pP(p,x)‖2,

where ‖·‖ denotes the euclidean norm in parameter space.

3.1 Computing R(G, K)

Assuming without loss that G = G(p0) is augmented and
K is static, we put

A(G, K) = A + BKC, B(G, K) = B2 + BKD21,

C(G, K) = C2 + D12KC, D(G, K) = D12KD21 = 0.

Then the squared H2 norm can be expressed as

P(G, K) = Tr
“
B(K)>XB(K)

”
(6)

= Tr
“
C(K)Y C(K)>

”
,

where X = X(G, K) is solution of

A(G, K)>X + XA(G, K)(7)

+C(G, K)>C(G, K) = 0,

and Y = Y (G, K) is solution of

A(G, K)Y + YA(G, K)>(8)

+B(G, K)B(G, K)> = 0.

This allows to compute partial derivatives of P with re-
spect to G and K.

Lemma 1. The objective P in (6) is smooth in the open
domain of all closed-loop stabilizing pairs (G, K). For
any (G, K) in this set we have

1. ∇KP(G, K) = 2
ˆ
B>X + D>

12C(K)
˜
Y C> +

2B>XB(K)D>
21,

2. ∇AP(G, K) = 2XY ,

3. ∇BP(G, K) = 2XY C>K> + 2XB(K)D>
21K

>.

4. ∇CP(G, K) = 2K>B>XY + 2K>D>
12C(K)Y ,

5. ∇C2P(G, K) = 2C(K)Y ,

6. ∇B2P(G, K) = 2XB(K),

7. ∇D21P(G, K) = 2K>B>XB(K),

8. ∇D12P(G, K) = 2Y >C>K>,

where X solves (7) and Y solves (8).

The proof will be sketched in the appendix. Recall
that we are dealing with structured controllers. Smooth
dependence on x allows an expansion of the form K(x) =
K(x0) +

∑n
i=1 Ki(x0)(x − x0) + O(‖x − x0‖2), where

Ki(x0) = ∂K(x0)
∂xi

. Using the chain rule, we get

Corollary 1. Under the assumptions of Lemma 1
we have ∇xP(x,p) = (g1(p,x), . . . , gn(p,x)), where
gi(p,x) =

Tr

»“
2

h
B>X + D>

12C(K)
i
Y C> + 2B>XB(K)D>

21

”>
Ki(x)

–
.

�

Let us now specialize to the case where only the system
matrix A in G features uncertain parameters p. The
general case, where uncertain parameters appear in other
parts of G, can be handled analogously. Assuming a
smooth dependence on p, we get an expansion of the form
A(p) = A(p0) +

∑s
i=1 Ai(p0)(p − p0) + O(‖p − p0‖2),

where Ai(p0) = ∂A(p0)
∂pi

. We have the following

Corollary 2. Under the assumptions of Lemma 1
we have: ∇pP(p,x) = (h1(p,x), . . . , hs(p,x)), where
hi(p,x) = 2Tr(Ai(p)>XY ). �

Smallness of the variation ∇pP(p0,x) at the solution
K(x) can be assessed by controlling its size in some norm.
If a norm ‖p‖ in parameter space is given, reflecting for
instance an appropriate weighting between the uncertain
parameters, then we are led to control ∇pP in the dual
norm ‖ · ‖∗. During the following we shall consider the
Euclidean norm ‖p‖, so that ‖ · ‖∗ is also the Euclidean
norm. (The reader will easily see how to extend our ap-
proach to other choices of ‖·‖.) With these arrangements
our robustness objective should be chosen as

R(p0,x) = ‖∇pP(A(p0), K(x))‖2
2(9)

=

sX
i=1

Tr
`
2Ai(p0)

>XY
´2

=

sX
i=1

hi(p0,x)2.



3.2 Computing ∇xR(p,x)

This seems to indicate that almost no extra work is
needed for the new robustness function, but the ques-
tion is how to compute derivatives of R with respect to
x. We have

∇xR(p,x) =

sX
i=1

hi(p,x)∇xhi(p,x),

where the hi are given in Corollary 2 and are readily
computed from X, Y . We can therefore concentrate on
how gradients ∇xhi are computed. We recognize this
as a matrix realization of the mixed second derivative
D2

x,pP. Unfortunately, unlike first-order derivatives, it
is not clear how to compute matrix representations at
the second order level. In [13] a representation of the
Hessian ∇2

KKP is obtained, but closer inspection shows
that Kronecker products are used and matrix inversions
are required. Here we favour an approach where parts of
the mixed second derivative are pre-calculated, while the
rest is computed on the fly. There are two possibilities
to represent D2

x,pP, namely, Dp∇xP or Dx∇pP. In the
case where dim(p) < dim(x) we compute Dp∇xP. We
have

〈∇xhi(x,p0), ∆x〉 = Dxhi(x,p0)∆x

= DxDpP(x,p0)∆pi∆x

= 〈Dpi∇xP(x,p0), ∆x〉
= 〈DA∇xP(A(p0), K(x))Ai(p0), ∆x〉

=

nX
k=1

〈DA∇KP(A(p0), K(x))Ai(p0), Kk(x)〉∆xk.

Substituting the expression in item 1 of Lemma 1 for
∇KP, we get

DA∇KP(A(p0), K(x))Ai(p0) = 2B>ΦiY C>

+2[B>X + D>
12C(K(x))]ΨiC

>

+2B>ΦiB(K(x)D>
21,

where

Φi = DAXAi(p0), Ψi = DAY Ai(p0), i = 1, . . . , s.

Then, putting

Λi = 2B>ΦiY C> + 2[B>X + D>
12C(K(x))]ΨiC

>(10)

+2B>ΦiB(K(x)D>
21,

i = 1, . . . , s, and Λ =
Ps

i=1 hi(x,p0)Λi, we obtain the
gradient ∇xR as

∇xR(x) =
“
Tr(Λ>K1(x)), . . . , Tr(Λ>Kn(x))

”
.

The final link is now to compute Φi and Ψi, which re-
quires another set of Lyapunov equations. We have the
following

Proposition 1. Computing R(p0,x) and its gradient
∇xR(p0,x) with respect to x is possible by solving 2(s+1)
Lyapunov equations. Those are (7) for X, (8) for Y ,

[A + BK(x)C]>Φi + Φi[A + BK(x)C] =(11)

−Ai(p0)
>X −XAi(p0)

for the Φi, i = 1, . . . , s, and

[A + BK(x)C]Ψi + Ψi[A + BK(x)C]> =(12)

−Y Ai(p0)
> −Ai(p0)Y

for the Ψi, i = 1, . . . , s. �

We have the following
Algorithm to compute R and its gradient ∇xR

Parameters: Precomputed data Ai = ∂A(p0)
∂pi

and pos-

sibly Kν = ∂K(x)
∂xν

.
1: Given x compute K = K(x), solution X of (7), and

solution Y of (8).
2: For i = 1, . . . , s compute A>i XY and R using (9).
3: For i = 1, . . . , s compute Φi solution of (11), and Ψi

solution of (12).
4: Let h(p0,x) =

(
Tr

(
2A>1 XY

)
, . . . ,Tr

(
2A>s XY

))
ac-

cording to Corollary 2.
5: For i = 1, . . . , s compute Λi according to (10). Then

compute Λ =
∑s

i=1 hiΛi.
6: If K(x) is not affine then compute Kν(x). Otherwise

take the precomputed Kν .
7: Obtain ∇xR =

`
Tr(Λ>K1(x)), . . . , Tr(Λ>Kn(x)

´
.

4 Numerical Experiment

4.1 Benchmark Example

We consider the mass-spring system in Figure 1, which
can be considered as a prototype of a flexible system.

Figure 1: Mass-spring system. Nominal data are m1 =

m2 = 0.5kg, k = 1N/m, f = 0.0025Ns/m, V = W = 1.

Measured output is y = x2, control force u acts on m1.

We perform an LQG study where we expect the LQG
controller to be robustly stable with respect to 30% vari-
ation in m2 and k. The LQG set-up has W = BBT ,
V = I, Q = CT C, R = I and is as usual transformed to



a standard H2 plant (3). The data are

A =

2664
0 1 0 0

− k
m1

− f
m1

k
m1

f
m1

0 0 0 1
k

m2

f
m2

−k
m2

−f
m2

3775 ,(13)

B =

2664
0
1

m1

0
0

3775 , C =
ˆ

0 0 1 0
˜
, D = 0.

Since an observer-based controller (2) is of order nK =
4, we have to augment the system from A ∈ R4×4 to
Aaug ∈ R8×8, as in section 2.3. The non-linear expression
A(p) = A(p0 + ∆p) is2664

0 1 0 0

− k+∆k
m1

− f
m1

k+∆k
m1

f
m1

0 0 0 1
k+∆k

m2+∆m2

f
m2+∆m2

−k−∆k
m2+∆m2

−f
m2+∆m2

3775
= A(p0) + DpA(p0)∆p +O(‖∆p‖2),

which gives us DpA(p0)∆p =26664
0 0 0 0

−∆k
m1

0 ∆k
m1

0

0 0 0 0
m2∆k−k∆m2

m2
2

−f∆m2
m2

2

−m2∆k+k∆m2
m2

2

f∆m2
m2

2

37775 .

A1(p) =
∂A

∂k
=

2664
0 0 0 0

− 1
m1

0 1
m1

0

0 0 0 0
1

m2
0 − 1

m2
0

3775 ,

A2(p) =
∂A

∂m2
=

2664
0 0 0 0
0 0 0 0
0 0 0 0

− k
m2

2
− f

m2
2

k
m2

2

f

m2
2

3775 .

Putting Z = 2Y X, we obtain h1(p,x) = Tr(ZA1) =
Z32/m1 + Z34/m2 − Z12/m1 + Z14/m2 and h2(p,x) =
−kZ14/m2

2 − fZ24/m2
2 + kZ34/m2

2 + fZ44/m2
2. �

4.2 Results

As can be seen in Figure 2 top, the nominal LQG con-
troller Knom = K(Kc

nom,Knom
f ) misses this goal. Pro-

gram (5) with (9) is used to enhance parametric robust-
ness of the nominal controller. The result is Krob =
K(Krob

c ,Krob
f ) and its parametric robustness is shown

in Figure 2 middle. Notice that in program (5) the
observer structure has to be imposed as a constraint.
As a curiosum, no algebraic Riccati equations are ob-
tained for Krob

c ,Krob
f , but the observer structure is nev-

ertheless maintained. Robustness leads to a degrada-
tion of nominal performance from P(G, Knom) = 3.99 to
P(G, Krob) = 27.98.

A classical method to enhance robustness of LQG is
the LTR procedure, which we applied here for the pur-
pose of comparison to the input sensitivity function. This

generates a family K(ρ) of LQG controllers based on
modified plants G(ρ), where ρ = 0 corresponds to the
nominal case G. As ρ increases, the stability region of
K(ρ) increases, while P(G, K(ρ)) degrades. In this study
LTR was unable to achieve parametric robustness over
the square of 30% parameter variations. Figure 2 (bot-
tom) shows the stability region of Kltr := K(ρ), adjusted
so that P(G, Kltr) = 27.98.
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Figure 2: Stability region of LQG controller (top), robust

LQG controller based on (5) (middle), and LQG/LTR con-

troller (bottom). The value α = 45 is used to compute the

robust LQG controller. Robust and LTR controller have the

same nominal performance.



Notice another curiosity: the LTR controller is also
observer-based with K ltr

f ,K ltr
c now satisfying algebraic

Riccati equations, but the wrong ones so to say, because
G(ρ) replaces G.

In Fig. 3 the relative performance
P(G(k,m2),K)−P(G(k0,m0

2,K)

P(G(k0,m0
2),K)

× 100% is plotted over
the square Ω = (k0 ± 30%k0,m0

2 ± 30%m0
2) and for

K ∈ {Knom,Krob,Kltr}. For Klqg = Knom this value is
not finite everywhere and reaches 600% in the region
where the system is still stabilized. In contrast, the
robustified LQG controller Krob holds a fairly uniform
performance level over the entire square (less than 1%
variation), but performs worse at the nominal parameter
value p0. To compare (5) with the LQG/LTR procedure,
the stability domain is compared for two controllers
achieving the same performance P = 27.98 at p0.

5 Conclusion

Lack of parametric robustness of LQG controllers and
more general structured H2 controllers was addressed by
a constrained program (5), which accepts a quantified
loss of nominal performance in order to gain additional
robustness. We proposed to use a suitable norm of the
variation of the performance criterion as a robustness
index. In the context of LQG the new procedure was
compared to the LQG/LTR procedure based on the in-
put sensitivity function, which is a classical procedure to
enhance system robustness.

6 Appendix

The first item follows readily from [13, Theorem 3.2].
We elaborate on items 2. - 8. For a function P :
H1 × H2 → R, where H1,H2 are Hilbert spaces, we let
DxP(x, y) denote the partial derivative with respect to
x ∈ H1, which is a continuous linear functional on H2.
The gradient ∇xP(x, y) ∈ H2 is related to DxP(x, y)
by DxP(x, y)∆y = 〈∇xP(x, y),∆y〉 for every ∆y ∈ H2.
Notice that

DGP∆G = Tr
“
{DGX∆G}BB>

”
+ 2Tr

“
X{DGB∆G}B>

”
,

omitting arguments, where Φ := DGX∆G solves the
Lyapunov equation

A>Φ + ΦA = −{∆GA∆G}>X −X{∆GA∆G}(14)

−{DGC∆G}>C − C>{DGC∆G}.

We multiply (14) with Y from the right, and
match it with (8) multiplied with Φ from the left.
Taking traces, the two left hand sides are iden-
tical, hence the same is true for the two right
hand sides. This gives the identity Tr

`
ΦBB>

´
=

2Tr
`
{DGA∆G}>XY

´
+ 2Tr

`
{DGC∆G}>CY

´
. Substitut-

ing this back in the formula for DGP∆G gives DGP∆G =

2Tr
`
{DGA∆G}>XY

´
+ 2Tr

`
{DGC∆G}>CY

´
+ 2Tr

`
X{DGB∆G}B>

´
.

Now observe that

DGA(G, K)∆G = ∆A + ∆BKC + BK∆C,

DGC(G, K)∆G = ∆C2 + ∆D12KC + D12K∆C,

DGB(G, K)∆G = ∆B2 + ∆BKD21 + BK∆D21.

Hence

〈∇GP(G, K), ∆G〉 = Tr
“
(∆A + ∆BKC + BK∆C)>2XY

”
+Tr

“
(∆C2 + ∆D12KC + D12K∆C)>2(C2 + D12KC)Y

”
+Tr

“
2X(∆B2 + ∆BKD21 + BK∆D21)B>

”
.

From that we can readily read off the answers 2. - 8.,
bearing in mind that

〈∇GP, ∆G〉 = 〈∇AP, ∆A〉+ · · ·+ 〈∇D12P, ∆D12〉.

�
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