Parametric robust H_2 control

Laleh Ravanbod-Hosseini *

Dominikus Noll*

Pierre Apkarian[†]

Abstract

 H_2 -control with structured controllers is discussed, and a way to enhance the robustness of the design with respect to real uncertain parameters system is proposed.

Keywords: Structured H_2 control, parametric robustness.

1 Introduction

It is well-known that LQG or H_2 -controllers often lack robustness with respect to plant uncertainty. Here we consider the situation when the plant has uncertain real parameters. A theoretical tool to model parametric uncertainty is the structured singular value μ_{Δ} introduced by Doyle [4], but its computation is known to be NPcomplete, [2,3,12], which makes it unfit for use within an optimization procedure, where functions are called repeatedly. It is therefore mandatory to use approximations of μ_{Δ} or other heuristic criteria, which are suited in constrained optimization programs. Here we propose a new method which robustifies a given H_2 -performance index $\mathcal{P}(G, K) = ||T_{w \to z}(G, K)||_2^2$ by minimizing variations $\nabla_{\mathbf{p}} \mathcal{P}(G(\mathbf{p}), K)$ with respect uncertain parameters \mathbf{p} in the system.

A classical way to address the lack of robustness in LQG is the well-known LQG/LTR procedure [14], which gains robustness by trading it against a loss of performance. We compare our new approach to LQG/LTR.

2 Preparation

2.1 Structured controllers

A controller in state-space form

(1)
$$K: \begin{bmatrix} \dot{x}_K \\ u \end{bmatrix} = \begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix} \begin{bmatrix} x_K \\ y \end{bmatrix}$$

is called *structured* if the matrices A_K , B_K , C_K , D_K depend smoothly on a design parameter \mathbf{x} ,

$$A_K = A_K(\mathbf{x}), B_K = B_K(\mathbf{x}), C_K = C_K(\mathbf{x}), D_K = D_K(\mathbf{x}),$$

varying in some parameter space \mathbb{R}^n , or in a constrained subset of \mathbb{R}^n . Here $n = \dim(\mathbf{x})$ is typically smaller than $\dim(K) = n_K^2 + m_2 n_K + p_2 n_K + m_2 p_2$, where m_2 is the number of inputs, p_2 the number of outputs, n_K the order of K. We also expect $n_K \ll n_x$, even though this is not formally imposed. Full order controllers satisfy $n_K = n_x$ and $\dim(\mathbf{x}) = \dim(K)$ and are referred to as *unstructured*.

Typical examples of controller structures are observerbased controllers

(2)
$$K_{\rm obs}(\mathbf{x}) = \begin{bmatrix} A - B_2 K_c - K_f C_2 & K_f \\ -K_c & 0 \end{bmatrix},$$

where $\mathbf{x} = (\operatorname{vec}(K_c), \operatorname{vec}(K_f)) \in \mathbb{R}^{n_x m_2 + n_x p_2}$. Other practically useful controller structures include PID, decentralized and reduced-order controllers, or even entire synthesis structures combining controllers and filters.

2.2 Structured H_2 problem

Given a transfer matrix in standard form

(3)
$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix},$$

the structured H_2 synthesis problem is the following optimization program

(4) minimize
$$\mathcal{P}(\mathbf{x}) = \|T_{w \to z}(G, K(\mathbf{x}))\|_2^2$$

subject to $K(\mathbf{x})$ internally stabilizing, $\mathbf{x} \in \mathbb{R}^n$

In contrast with the standard H_2 control problem [15, 14.2], where the observer-based structure (2) arises by itself, (4) imposes the controller structure $K(\mathbf{x})$ as a constraint. In consequence, (4) is generally non-convex and more difficult to solve than the standard H_2 problem, and we accept locally optimal solutions. We refer to $\mathcal{P}(\mathbf{x})$ as the nominal performance, or simply as the performance. The solution \mathbf{x}^{nom} of (4) is called the nominal design, $K(\mathbf{x}^{\text{nom}})$ the nominal controller, and $p^{\text{nom}} = \mathcal{P}(\mathbf{x}^{\text{nom}})$ the nominal performance.

2.3 Augmented system

In order to alleviate the notational burden of the formulas to come, we shall employ a standard trick to render the feedback controller (1) static. The plant G is artificially augmented by

$$A^{\text{aug}} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, B_2^{\text{aug}} = \begin{bmatrix} B_2 \\ 0 \end{bmatrix}, B^{\text{aug}} = \begin{bmatrix} 0 & B \\ I_k & 0 \end{bmatrix},$$

^{*}Université Paul Sabatier, Institut de Mathématiques, Toulouse, France {L.Hosseini, D.Noll}@math-univ.fr

[†]ONERA, Department of Systems Control and Flight Dynamics, Toulouse, France {**P.Apkarian**}**@onera.fr**

$$C_2^{\text{aug}} = \begin{bmatrix} C_2 & 0 \end{bmatrix}, C^{\text{aug}} = \begin{bmatrix} 0 & I_k \\ C & 0 \end{bmatrix},$$
$$D_{12}^{\text{aug}} = \begin{bmatrix} 0 & D_{12} \end{bmatrix}, D_{21}^{\text{aug}} = \begin{bmatrix} 0 & D_{21} \end{bmatrix}.$$

Switching back from G^{aug} to G for notational convenience, we may without loss compute controllers $K(\mathbf{x})$ which are static, and at the same time structured.

3 Trade-off via mixed synthesis

The situation we are concerned with is when the openloop system $G(\mathbf{p})$ contains uncertain parameters \mathbf{p} . Assuming that the nominal parameter values are \mathbf{p}_0 , so that $G = G(\mathbf{p}_0)$, we wish to synthesize $K(\mathbf{x}^{\text{rob}})$ in such a way that it still performs well if \mathbf{p} differs significantly from \mathbf{p}_0 . A general heuristic strategy is to introduce a robustness function $\mathcal{R}(\mathbf{p}, \mathbf{x})$ which when minimized over \mathbf{x} for fixed \mathbf{p} increases the parametric robustness of the design around \mathbf{p} . One may then consider the following trade-off between nominal performance and robustness:

(5) minimize
$$\mathcal{R}(\mathbf{p}_0, \mathbf{x})$$

 $\mathcal{P}(\mathbf{p}_0, \mathbf{x}) \le p^{\text{nom}}(1+\alpha)$
 $K(\mathbf{x})$ internally stabilizing

Denoting the solution of (5) as \mathbf{x}^{rob} , we can roughly say that the robust controller $K(\mathbf{x}^{\text{rob}})$ accepts a loss of $\alpha \cdot$ 100% over nominal performance p^{nom} and uses this new freedom to buy some additional robustness.

Several robustness measures are known in the literature. A classical idea is to use the various sensitivity functions, see e.g. [5]. Here we propose a new idea, which uses the variation of \mathcal{P} directly to robustify program (4):

$$\mathcal{R}(\mathbf{p}, \mathbf{x}) = \| \nabla_{\mathbf{p}} \mathcal{P}(\mathbf{p}, \mathbf{x}) \|^2,$$

where $\|\cdot\|$ denotes the euclidean norm in parameter space.

3.1 Computing $\mathcal{R}(G, K)$

Assuming without loss that $G = G(\mathbf{p}_0)$ is augmented and K is static, we put

$$\mathcal{A}(G,K) = A + BKC, \quad \mathcal{B}(G,K) = B_2 + BKD_{21},$$

 $\mathcal{C}(G,K) = C_2 + D_{12}KC, \quad \mathcal{D}(G,K) = D_{12}KD_{21} = 0.$ Then the squared H_2 norm can be expressed as

(6)
$$\mathcal{P}(G,K) = \operatorname{Tr}\left(\mathcal{B}(K)^{\top}X\mathcal{B}(K)\right) = \operatorname{Tr}\left(\mathcal{C}(K)Y\mathcal{C}(K)^{\top}\right)$$

where X = X(G, K) is solution of

(7)
$$\mathcal{A}(G,K)^{\top}X + X\mathcal{A}(G,K) + \mathcal{C}(G,K)^{\top}\mathcal{C}(G,K) = 0,$$

and Y = Y(G, K) is solution of

(8)
$$\mathcal{A}(G,K)Y + Y\mathcal{A}(G,K)^{\top} + \mathcal{B}(G,K)\mathcal{B}(G,K)^{\top} = 0.$$

This allows to compute partial derivatives of \mathcal{P} with respect to G and K.

Lemma 1. The objective \mathcal{P} in (6) is smooth in the open domain of all closed-loop stabilizing pairs (G, K). For any (G, K) in this set we have

- 1. $\nabla_K \mathcal{P}(G, K) = 2 \left[B^\top X + D_{12}^\top \mathcal{C}(K) \right] Y C^\top + 2B^\top X \mathcal{B}(K) D_{21}^\top,$
- 2. $\nabla_A \mathcal{P}(G, K) = 2XY$,
- 3. $\nabla_B \mathcal{P}(G, K) = 2XYC^\top K^\top + 2X\mathcal{B}(K)D_{21}^\top K^\top.$
- 4. $\nabla_C \mathcal{P}(G, K) = 2K^\top B^\top XY + 2K^\top D_{12}^\top \mathcal{C}(K)Y,$
- 5. $\nabla_{C_2} \mathcal{P}(G, K) = 2\mathcal{C}(K)Y,$
- 6. $\nabla_{B_2} \mathcal{P}(G, K) = 2X\mathcal{B}(K),$
- $\gamma_{D_{21}} \mathcal{P}(G, K) = 2K^{\top} B^{\top} X \mathcal{B}(K),$
- 8. $\nabla_{D_{12}} \mathcal{P}(G, K) = 2Y^{\top} C^{\top} K^{\top},$
- where X solves (7) and Y solves (8).

The proof will be sketched in the appendix. Recall that we are dealing with structured controllers. Smooth dependence on \mathbf{x} allows an expansion of the form $K(\mathbf{x}) = K(\mathbf{x}_0) + \sum_{i=1}^{n} K_i(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \mathcal{O}(||\mathbf{x} - \mathbf{x}_0||^2)$, where $K_i(\mathbf{x}_0) = \frac{\partial K(\mathbf{x}_0)}{\partial \mathbf{x}_i}$. Using the chain rule, we get

Corollary 1. Under the assumptions of Lemma 1 we have $\nabla_x \mathcal{P}(\mathbf{x}, \mathbf{p}) = (g_1(\mathbf{p}, \mathbf{x}), \dots, g_n(\mathbf{p}, \mathbf{x}))$, where $g_i(\mathbf{p}, \mathbf{x}) =$

$$\operatorname{Tr}\left[\left(2\left[B^{\top}X+D_{12}^{\top}\mathcal{C}(K)\right]YC^{\top}+2B^{\top}X\mathcal{B}(K)D_{21}^{\top}\right)^{\top}K_{i}(\mathbf{x})\right].$$

Let us now specialize to the case where only the system matrix A in G features uncertain parameters \mathbf{p} . The general case, where uncertain parameters appear in other parts of G, can be handled analogously. Assuming a smooth dependence on \mathbf{p} , we get an expansion of the form $A(\mathbf{p}) = A(\mathbf{p}_0) + \sum_{i=1}^{s} A_i(\mathbf{p}_0)(\mathbf{p} - \mathbf{p}_0) + \mathcal{O}(||\mathbf{p} - \mathbf{p}_0||^2),$ where $A_i(\mathbf{p}_0) = \frac{\partial A(\mathbf{p}_0)}{\partial \mathbf{p}_i}$. We have the following

Corollary 2. Under the assumptions of Lemma 1 we have: $\nabla_p \mathcal{P}(\mathbf{p}, \mathbf{x}) = (h_1(\mathbf{p}, \mathbf{x}), \dots, h_s(\mathbf{p}, \mathbf{x}))$, where $h_i(\mathbf{p}, \mathbf{x}) = 2 \operatorname{Tr}(A_i(\mathbf{p})^\top X Y)$.

Smallness of the variation $\nabla_p \mathcal{P}(\mathbf{p}_0, \mathbf{x})$ at the solution $K(\mathbf{x})$ can be assessed by controlling its size in some norm. If a norm $\|\mathbf{p}\|$ in parameter space is given, reflecting for instance an appropriate weighting between the uncertain parameters, then we are led to control $\nabla_p \mathcal{P}$ in the dual norm $\|\cdot\|_*$. During the following we shall consider the Euclidean norm $\|\mathbf{p}\|$, so that $\|\cdot\|_*$ is also the Euclidean norm. (The reader will easily see how to extend our approach to other choices of $\|\cdot\|$.) With these arrangements our robustness objective should be chosen as

(9)
$$\mathcal{R}(\mathbf{p}_0, \mathbf{x}) = \|\nabla_p \mathcal{P}(A(\mathbf{p}_0), K(\mathbf{x}))\|_2^2$$
$$= \sum_{i=1}^s \operatorname{Tr} \left(2A_i(\mathbf{p}_0)^\top XY \right)^2 = \sum_{i=1}^s h_i(\mathbf{p}_0, \mathbf{x})^2.$$

3.2Computing $\nabla_x \mathcal{R}(\mathbf{p}, \mathbf{x})$

This seems to indicate that almost no extra work is needed for the new robustness function, but the question is how to compute derivatives of \mathcal{R} with respect to **x**. We have

$$abla_x \mathcal{R}(\mathbf{p}, \mathbf{x}) = \sum_{i=1}^s h_i(\mathbf{p}, \mathbf{x}) \nabla_x h_i(\mathbf{p}, \mathbf{x}),$$

where the h_i are given in Corollary 2 and are readily computed from X, Y. We can therefore concentrate on how gradients $\nabla_x h_i$ are computed. We recognize this as a matrix realization of the mixed second derivative $D^2_{x,p}\mathcal{P}$. Unfortunately, unlike first-order derivatives, it is not clear how to compute matrix representations at the second order level. In [13] a representation of the Hessian $\nabla_{KK}^2 \mathcal{P}$ is obtained, but closer inspection shows that Kronecker products are used and matrix inversions are required. Here we favour an approach where parts of the mixed second derivative are pre-calculated, while the rest is computed on the fly. There are two possibilities to represent $D_{x,p}^2 \mathcal{P}$, namely, $D_p \nabla_x \mathcal{P}$ or $D_x \nabla_p \mathcal{P}$. In the case where $\dim(\mathbf{p}) < \dim(\mathbf{x})$ we compute $D_p \nabla_x \mathcal{P}$. We have

$$\langle \nabla_x h_i(\mathbf{x}, \mathbf{p}_0), \Delta x \rangle = D_x h_i(\mathbf{x}, \mathbf{p}_0) \Delta x$$

= $D_x D_p \mathcal{P}(\mathbf{x}, \mathbf{p}_0) \Delta \mathbf{p}_i \Delta \mathbf{x}$
= $\langle D_{p_i} \nabla_x \mathcal{P}(\mathbf{x}, \mathbf{p}_0), \Delta x \rangle$
= $\langle D_A \nabla_x \mathcal{P}(A(\mathbf{p}_0), K(\mathbf{x})) A_i(\mathbf{p}_0), \Delta \mathbf{x} \rangle$
= $\sum_{k=1}^n \langle D_A \nabla_K \mathcal{P}(A(\mathbf{p}_0), K(\mathbf{x})) A_i(\mathbf{p}_0), K_k(\mathbf{x}) \rangle \Delta \mathbf{x}_k.$

Substituting the expression in item 1 of Lemma 1 for $\nabla_K \mathcal{P}$, we get

$$D_A \nabla_K \mathcal{P}(A(\mathbf{p}_0), K(\mathbf{x})) A_i(\mathbf{p}_0) = 2B^\top \Phi_i Y C^\top + 2[B^\top X + D_{12}^\top \mathcal{C}(K(\mathbf{x}))] \Psi_i C^\top + 2B^\top \Phi_i \mathcal{B}(K(\mathbf{x}) D_{21}^\top,$$

where

 $\Phi_i = D_A X A_i(\mathbf{p}_0), \quad \Psi_i = D_A Y A_i(\mathbf{p}_0), \quad i = 1, \dots, s.$

Then, putting

(10)
$$\Lambda_i = 2B^{\top} \Phi_i Y C^{\top} + 2[B^{\top} X + D_{12}^{\top} \mathcal{C}(K(\mathbf{x}))] \Psi_i C^{\top} + 2B^{\top} \Phi_i \mathcal{B}(K(\mathbf{x}) D_{21}^{\top},$$

 $i = 1, \ldots, s$, and $\Lambda = \sum_{i=1}^{s} h_i(\mathbf{x}, \mathbf{p}_0) \Lambda_i$, we obtain the gradient $\nabla_x \mathcal{R}$ as

$$abla_x \mathcal{R}(\mathbf{x}) = \left(\operatorname{Tr}(\Lambda^\top K_1(\mathbf{x})), \dots, \operatorname{Tr}(\Lambda^\top K_n(\mathbf{x})) \right).$$

The final link is now to compute Φ_i and Ψ_i , which requires another set of Lyapunov equations. We have the following

Proposition 1. Computing $\mathcal{R}(\mathbf{p}_0, \mathbf{x})$ and its gradient $\nabla_x \mathcal{R}(\mathbf{p}_0, \mathbf{x})$ with respect to \mathbf{x} is possible by solving 2(s+1)Lyapunov equations. Those are (7) for X, (8) for Y,

(11)
$$[A + BK(\mathbf{x})C]^{\top} \Phi_i + \Phi_i[A + BK(\mathbf{x})C] = -A_i(\mathbf{p}_0)^{\top}X - XA_i(\mathbf{p}_0)$$

for the Φ_i , $i = 1, \ldots, s$, and

(12)
$$[A + BK(\mathbf{x})C]\Psi_i + \Psi_i[A + BK(\mathbf{x})C]^\top = -YA_i(\mathbf{p}_0)^\top - A_i(\mathbf{p}_0)Y$$

for the
$$\Psi_i$$
, $i = 1, \dots, s$.

We have the following

Algorithm to compute \mathcal{R} and its gradient $\nabla_x \mathcal{R}$

- **Parameters:** Precomputed data $A_i = \frac{\partial A(\mathbf{p}_0)}{\partial \mathbf{p}_i}$ and possibly $K_{\nu} = \frac{\partial K(\mathbf{x})}{\partial \mathbf{x}_{\nu}}$. 1: Given \mathbf{x} compute $K = K(\mathbf{x})$, solution X of (7), and
 - solution Y of (8).
- 2: For $i = 1, \ldots, s$ compute $A_i^{\top} XY$ and \mathcal{R} using (9).
- 3: For $i = 1, \ldots, s$ compute Φ_i solution of (11), and Ψ_i solution of (12).
- 4: Let $h(\mathbf{p}_0, \mathbf{x}) = \left(\operatorname{Tr} \left(2A_1^\top XY \right), \dots, \operatorname{Tr} \left(2A_s^\top XY \right) \right)$ according to Corollary 2.
- 5: For i = 1, ..., s compute Λ_i according to (10). Then compute $\Lambda = \sum_{i=1}^{s} h_i \Lambda_i$.
- 6: If $K(\mathbf{x})$ is not affine then compute $K_{\nu}(\mathbf{x})$. Otherwise take the precomputed K_{ν} .
- 7: Obtain $\nabla_x \mathcal{R} = (\operatorname{Tr}(\Lambda^\top K_1(\mathbf{x})), \dots, \operatorname{Tr}(\Lambda^\top K_n(\mathbf{x}))).$

4 Numerical Experiment

Benchmark Example 4.1

We consider the mass-spring system in Figure 1, which can be considered as a prototype of a flexible system.

FIGURE 1: Mass-spring system. Nominal data are $m_1 =$ $m_2 = 0.5$ kg, k = 1N/m, f = 0.0025Ns/m, V = W = 1. Measured output is $y = x_2$, control force u acts on m_1 .

We perform an LQG study where we expect the LQG controller to be robustly stable with respect to 30% variation in m_2 and k. The LQG set-up has $W = BB^T$, $V = I, Q = C^T C, R = I$ and is as usual transformed to a standard H_2 plant (3). The data are

(13)
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k}{m_1} & -\frac{f}{m_1} & \frac{k}{m_1} & \frac{f}{m_1} \\ 0 & 0 & 0 & 1 \\ \frac{k}{m_2} & \frac{f}{m_2} & \frac{-k}{m_2} & \frac{-f}{m_2} \end{bmatrix},$$
$$B = \begin{bmatrix} 0 \\ \frac{1}{m_1} \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}, D = 0.$$

Since an observer-based controller (2) is of order $n_K = 4$, we have to augment the system from $A \in \mathbb{R}^{4\times 4}$ to $A^{\text{aug}} \in \mathbb{R}^{8\times 8}$, as in section 2.3. The non-linear expression $A(\mathbf{p}) = A(\mathbf{p}_0 + \Delta \mathbf{p})$ is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k+\Delta k}{m_1} & -\frac{f}{m_1} & \frac{k+\Delta k}{m_1} & \frac{f}{m_1} \\ 0 & 0 & 0 & 1 \\ \frac{k+\Delta k}{m_2+\Delta m_2} & \frac{f}{m_2+\Delta m_2} & \frac{-k-\Delta k}{m_2+\Delta m_2} \end{bmatrix} = A(\mathbf{p}_0) + D_p A(\mathbf{p}_0) \Delta \mathbf{p} + \mathcal{O}(\|\Delta \mathbf{p}\|^2),$$

which gives us $D_p A(\mathbf{p}_0) \Delta \mathbf{p} =$

Putting Z = 2YX, we obtain $h_1(\mathbf{p}, \mathbf{x}) = \text{Tr}(ZA_1) = Z_{32}/m_1 + Z_{34}/m_2 - Z_{12}/m_1 + Z_{14}/m_2$ and $h_2(\mathbf{p}, \mathbf{x}) = -kZ_{14}/m_2^2 - fZ_{24}/m_2^2 + kZ_{34}/m_2^2 + fZ_{44}/m_2^2$.

4.2 Results

As can be seen in Figure 2 top, the nominal LQG controller $K_{\text{nom}} = K(K_c^{\text{nom}}, K_f^{\text{nom}})$ misses this goal. Program (5) with (9) is used to enhance parametric robustness of the nominal controller. The result is $K_{\text{rob}} = K(K_c^{\text{rob}}, K_f^{\text{rob}})$ and its parametric robustness is shown in Figure 2 middle. Notice that in program (5) the observer structure has to be imposed as a constraint. As a curiosum, no algebraic Riccati equations are obtained for $K_c^{\text{rob}}, K_f^{\text{rob}}$, but the observer structure is nevertheless maintained. Robustness leads to a degradation of nominal performance from $\mathcal{P}(G, K_{\text{nom}}) = 3.99$ to $\mathcal{P}(G, K_{\text{rob}}) = 27.98$.

A classical method to enhance robustness of LQG is the LTR procedure, which we applied here for the purpose of comparison to the input sensitivity function. This generates a family $K(\rho)$ of LQG controllers based on modified plants $G(\rho)$, where $\rho = 0$ corresponds to the nominal case G. As ρ increases, the stability region of $K(\rho)$ increases, while $\mathcal{P}(G, K(\rho))$ degrades. In this study LTR was unable to achieve parametric robustness over the square of 30% parameter variations. Figure 2 (bottom) shows the stability region of $K_{\text{ltr}} := K(\rho)$, adjusted so that $\mathcal{P}(G, K_{\text{ltr}}) = 27.98$.

FIGURE 2: Stability region of LQG controller (top), robust LQG controller based on (5) (middle), and LQG/LTR controller (bottom). The value $\alpha = 45$ is used to compute the robust LQG controller. Robust and LTR controller have the same nominal performance.

Notice another curiosity: the LTR controller is also observer-based with $K_f^{\rm ltr}, K_c^{\rm ltr}$ now satisfying algebraic Riccati equations, but the wrong ones so to say, because $G(\rho)$ replaces G.

In Fig. 3 the relative performance $\frac{\mathcal{P}(G(k,m_2),K)-\mathcal{P}(G(k^0,m_2^0,K))}{\mathcal{P}(G(k^0,m_2^0),K)} \times 100\%$ is plotted over the square $\Omega = (k^0 \pm 30\% k^0, m_2^0 \pm 30\% m_2^0)$ and for $K \in \{K_{\text{nom}}, K_{\text{rob}}, K_{\text{ltr}}\}$. For $K_{\text{lgg}} = K_{\text{nom}}$ this value is not finite everywhere and reaches 600% in the region where the system is still stabilized. In contrast, the robustified LQG controller K_{rob} holds a fairly uniform performance level over the entire square (less than 1% variation), but performs worse at the nominal parameter value \mathbf{p}_0 . To compare (5) with the LQG/LTR procedure, the stability domain is compared for two controllers achieving the same performance $\mathcal{P} = 27.98$ at \mathbf{p}_0 .

5 Conclusion

Lack of parametric robustness of LQG controllers and more general structured H_2 controllers was addressed by a constrained program (5), which accepts a quantified loss of nominal performance in order to gain additional robustness. We proposed to use a suitable norm of the variation of the performance criterion as a robustness index. In the context of LQG the new procedure was compared to the LQG/LTR procedure based on the input sensitivity function, which is a classical procedure to enhance system robustness.

6 Appendix

The first item follows readily from [13, Theorem 3.2]. We elaborate on items 2. - 8. For a function \mathcal{P} : $H_1 \times H_2 \to \mathbb{R}$, where H_1, H_2 are Hilbert spaces, we let $D_x \mathcal{P}(x, y)$ denote the partial derivative with respect to $x \in H_1$, which is a continuous linear functional on H_2 . The gradient $\nabla_x \mathcal{P}(x, y) \in H_2$ is related to $D_x \mathcal{P}(x, y)$ by $D_x \mathcal{P}(x, y) \Delta y = \langle \nabla_x \mathcal{P}(x, y), \Delta y \rangle$ for every $\Delta y \in H_2$. Notice that

$$D_G \mathcal{P} \Delta G = \operatorname{Tr} \left(\{ D_G X \Delta G \} \mathcal{B} \mathcal{B}^\top \right) + 2 \operatorname{Tr} \left(X \{ D_G \mathcal{B} \Delta G \} \mathcal{B}^\top \right),$$

omitting arguments, where $\Phi := D_G X \Delta G$ solves the Lyapunov equation

$$(14)\mathcal{A}^{\top}\Phi + \Phi\mathcal{A} = -\{\Delta_G\mathcal{A}\Delta G\}^{\top}X - X\{\Delta_G\mathcal{A}\Delta G\} - \{D_G\mathcal{C}\Delta G\}^{\top}\mathcal{C} - \mathcal{C}^{\top}\{D_G\mathcal{C}\Delta G\}.$$

We multiply (14) with Y from the right, and match it with (8) multiplied with Φ from the left. Taking traces, the two left hand sides are identical, hence the same is true for the two right hand sides. This gives the identity $\text{Tr}(\Phi \mathcal{B} \mathcal{B}^{\top}) =$ $2\text{Tr}(\{D_G \mathcal{A} \Delta G\}^{\top} XY) + 2\text{Tr}(\{D_G \mathcal{C} \Delta G\}^{\top} \mathcal{C} Y)$. Substituting this back in the formula for $D_G \mathcal{P} \Delta G$ gives $D_G \mathcal{P} \Delta G =$ $2\text{Tr}\left(\{D_G \mathcal{A} \Delta G\}^\top XY\right) + 2\text{Tr}\left(\{D_G \mathcal{C} \Delta G\}^\top \mathcal{C} Y\right) \\ + 2\text{Tr}\left(X\{D_G \mathcal{B} \Delta G\} \mathcal{B}^\top\right).$ Now observe that

$$D_G \mathcal{A}(G, K) \Delta G = \Delta A + \Delta B K C + B K \Delta C,$$

$$D_G \mathcal{C}(G, K) \Delta G = \Delta C_2 + \Delta D_{12} K C + D_{12} K \Delta C,$$

$$D_G \mathcal{B}(G, K) \Delta G = \Delta B_2 + \Delta B K D_{21} + B K \Delta D_{21}.$$

Hence

$$\langle \nabla_G \mathcal{P}(G, K), \Delta G \rangle = \operatorname{Tr} \left((\Delta A + \Delta BKC + BK\Delta C)^\top 2XY \right)$$

+
$$\operatorname{Tr} \left((\Delta C_2 + \Delta D_{12}KC + D_{12}K\Delta C)^\top 2(C_2 + D_{12}KC)Y \right)$$

+
$$\operatorname{Tr} \left(2X(\Delta B_2 + \Delta BKD_{21} + BK\Delta D_{21})\mathcal{B}^\top \right).$$

From that we can readily read off the answers 2. - 8., bearing in mind that

$$\langle \nabla_G \mathcal{P}, \Delta G \rangle = \langle \nabla_A \mathcal{P}, \Delta A \rangle + \dots + \langle \nabla_{D_{12}} \mathcal{P}, \Delta D_{12} \rangle.$$

Acknowledgement

This work was supported by research grants *Technicom* from the Fondation d'Entreprise EADS and *Survol* from Fondation de Recherche pour l'Aéronautique et l'Espace.

References

- [1] P. APKARIAN, L. RAVANBOD-HOSSEINI, D. NOLL. Time domain constrained H_{∞} synthesis. Int. J. of Rob. and Nonlin. Contr., in press.
- [2] R. P. BRAATZ, P. M. YOUNG, J. C. DOYLE, M. MORARI. Computational complexity of μ calculations. IEEE Transactions on Automatic Control, vol. 39, no. 5, pp. 1000 – 1002.
- [3] J. W. DEMMEL. The component-wise distance to the nearest singular matrix. SIAM Journal on Matrix Analysis and Applications, vol. 13, 1992, pp. 10 – 19.
- [4] J.C. DOYLE. Structured uncertainty in control system design. Proc. 24th Conference on Decision and Control, Ft. Lauderdale, Fl, 1985, pp. 260 – 265.
- [5] J. DOYLE, K. GLOWER, P.P. KARGONEKAR, B. FRANCIS. State-space solutions to the standard H₂ and H_∞ control problems. IEEE Trans. Autom. Control, vol. 34, no. 8, 1989, pp. 831 – 847.
- [6] J. DOYLE, A. PACKARD, K. ZHOU. Review of LTS's, LMI's, and μ. Proceedings of the IEEE Conference on Decision and Control, vol. 2, Brighton 1991, pp. 1227 – 1232.

 J. DOYLE, G. STEIN. Robustness with observers, IEEE Transactions on Autom. Control, vol. AC-24, 1979, pp. 607 - 611.

FIGURE 3: Relative performance of K_{lqg} , K_{rob} , K_{ltr} is plotted over the robustness square. Upper graph shows LQG controller, middle image shows robust controller based on (5), lower image shows LQG/LTR controller.

- [8] J. DOYLE, G. STEIN. Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, vol. AC-26, no. 1, 1981, pp. 4 – 16.
- J. DOYLE. Guaranteed margins for LQG regulators. IEEE Trans. on Auto. Control, vol. 23, no.4, 1978, pp. 756-757.
- [10] C.-M. FRANSSON, T. WIK, B. LENNARTSON, M. SAUNDERS, P.-O. GUTMAN. Nonconservative robust control: optimized and constrained sensitivity functions. IEEE Transactions on Control System Technology, vol. 17, no. 2, 2009, pp. 298 – 308.
- [11] H. KWAKERNAAK. Optimal low-sensitivity linear feedback systems. Automatica, vol. 5, 1969, pp. 279 – 285.
- [12] S. POLJAK, J. ROHN. Checking robust nonsingularity is NP-hard. Math. Contr. Signals Syst., vol. 6, 1993, pp. 1 – 9.
- [13] T. RAUTERT, E. SACHS. Computational design of optimal output feedback controllers. SIAM J. Optim., vol. 7, no. 3, 1997, pp. 837 – 852.
- [14] A. SABERI, BEN M. CHEN, P. SANNUTI. Loop transfer recovery: analysis and design. Communication and Control Engineering Series, Springer Verlag 1993.
- [15] K. ZHOU. Essentials of robust control. Prentice Hall, 1998.