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ABSTRACT. A topological space satisfying the open mapping theorem is called
a Br-space. We investigate the question whether completely regular B,-spaces
must be Baire spaces. The answer we obtain is twofold and surprising. On the
one hand there exist first category completely regular B,-spaces. Examples
are provided in the class of Lindelof P-spaces. On the other hand, we obtain
a partial positive answer to our question. We prove that every suborderable
metrizable Br-space is in fact a Baire space. We conjecture that this is true
for metrizable Br-spaces in general. Our paper is completed by some appli-
cations. For instance, we establish the existence of a metrizable B,-space E
whose square E x E is no longer a B,-space.

Introduction. A Hausdorff topological space E is called a B,-space (resp. a B-
space) if every continuous, nearly open bijection (resp. surjection) f from E onto
an arbitrary Hausdorff topological space F' is open.

Every locally compact Hausdorff space is a B-space and every B-space is a B,-
space. Every Cech complete space is known to be a B,-space (see [BP]). B,-spaces
have been investigated in several papers; see [We, BP, N, Nj].

In our paper [N2] we have examined the problem of invariance of the class of B,-
spaces under the operation of taking finite sums. We have obtained the following
result.

Let E be a completely regular B,-space. Then the following statements are
equivalent:

(1) E is a Baire space.

(2) Whenever F is a Cech complete space, then the topological sum E @ F is
again a B,-space.

We left open in [N2] the question whether completely regular B,-spaces are
Baire-spaces in general, i.e., whether statement (2) above is true for arbitrary com-
pletely regular B,-spaces E. In fact, one is tempted to conjecture that the answer
to this question is in the positive if one takes into account the following facts:

(a) Given an arbitrary B,-space E, the sum E @ E is again a B,-space (see [Ng,
Theorem 1]), and the same is true for any sum E@ L, where L is an arbitrary locally
compact Hausdorff space. So why should not E & F be a B,-space for arbitrary
Cech complete spaces F'?

(b) There is a partial positive answer to our question in the class of strongly
zero-dimensional metrizable B,-spaces (which we shall prove in the present paper)
stating that every strongly zero-dimensional metrizable B,-space is in fact a Baire
space.
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For all that, the answer to our question is in the negative in general. The
counterexample we present is provided by an utterly pathological class of spaces.
We prove that every Lindelof P-space is a B,-space and then give an example of a
first category space of this type. Nevertheless, the question whether metrizable B,-
spaces are Baire spaces in general remains open. I conjecture that this is actually
the case.

The remainder of our paper is devoted to some applications of the main results
stated above. For instance we establish the existence of a strongly zero-dimensional
metrizable B,-space E whose square E x E is no longer a B,-space. The existence
of such a counterexample is suggested by the situation in the categories of locally
convex vector spaces and topological groups, where the corresponding counterex-
amples are known to exist (see [K&, p. 31 and Gr]. Finally, we examine the class
of B-spaces. We give an example of a completely metrizable space which is not a
B-space. We prove that the sum of two B-spaces need not be a B-space in general
and we prove the surprising fact that given a nondiscrete Lindelof P-space E, the
product E x FE is a B-space while the product E x SE is not.

Our basic terminology is from the book [E]. A mapping f:E — F is called
nearly open if for every z € E and every neighborhood U of z the set f(U) is a
neighborhood of f(z).

1. Metrizable B,-spaces. All metrizable B,-spaces known up to now are
Baire spaces. I conjecture that this is true in general, but in the present paper we
only obtain a partial positive answer in the framework of strongly zero-dimensional
metrizable spaces and, as a consequence, in the case of suborderable metrizable
spaces.

Before stating our first result we recall that a topological space is called strongly
zero-dimensional if it has dimension zero with respect to the covering dimension
dim.

PROPOSITION 1. Every strongly zero-dimensional metrizable B,-space E 13 a
Baire space.

PROOF. For X C E we denote by w(X) the weight of the subspace X. Every
nonempty open subset U of E contains some clopen nonempty subset V' which is
minimal with respect to w in the sense that w(V') = w(O) holds for every nonempty
clopen subset O of V. On the other hand, every clopen subspace V of E is itself a
B,-space. So it is sufficient to prove that every strongly zero-dimensional metrizable
B,-space E which is minimal with respect to w in the sense above is of the second
category. So let E be of this type.

Assume that E is of the first category and choose a sequence G;,Ga, ... of dense
open subsets of E with Gp4+1 C Gy having ({{Gn:n € N} = &. There exists a
sequence (U,)5%, of open covers of E with the following properties:

(1) Each 0, is disjoint, i.e. VNV’ ' =D for V,V' € B,, V £ V".

(2) @ ¢ B, and V,, 1 refines V,,.

(3) Each V € U, has diameter < 1/n (with respect to some fixed metric for E).

(4) card{V € V;:V ¢ G} = card{V € U;:V C G1}.

(5) For every n € N and every V € 0,

card{W € ‘Iln+1:W cV, W ¢ Gn+1} = card{W € ‘Dn.H:W cV,WwWc Gn+l}'
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Note that (B, ) may be found satisfying (4) and (5) in view of the imposed minimal-
ity with respect to the weight function w. Now by induction we define mappings
*:0, — V,, n=1,2,..., such that the following conditions are satisfied:

(a) V** =V for each V € U,,.

(b) V€D, and V ¢ G,, implies V* C G,,.

() VeB,, WeD,r1,and W CV* imply W* C V.

Let B denote the set of all V = VUV*, V € Dy, n € N. We claim that B
is a basis for a new topology on E. Indeed, let z € VAW,V € D, W € Dy,
n>m. ffzeVNW, then V C W, hence V* C W*, giving V Cc W. Assume
£ €V NW?*; then V C W*, hence V* C W, giving V C W by condition (a). Next
assume ¢ € V*NW. This gives V** € W* by (c), hence V C W by (a) again.
Finally assume that z € V* N W*. Again conditions (a) and (c) imply V c W. So
B generates a topology on E which is strictly coarser than the original topology,
in view of the fact that V # V* whenever V € B,,, V ¢ G,,.

Let F denote the set E with this new topology. We prove that F is Hausdorff.
Let 2,y € E, = # y. Assume that y € clp U holds for every U having z € U. This
provides a sequence V1,Va,... withV,, € B, suchthatz € V,,,y € V5, n=1,2,....
But z € V;, implies V,, ¢ G,, for some ng and all n > ng, hence V,* C G, holds for
n > ng in view of condition (b). This yields y € G, n > ng, a contradiction. So F
is in fact a Hausdorff space.

Finally, we prove that the identity mapping id: E — F is nearly open. Since E is
a B,-space, this implies £ = F', a contradiction, as desired. To prove the claim it is
sufficient to show that V C clg V. Since V C clp V is clear, we prove V* CeclpV.
Letz € V*. LetV € U,, m >n,z € W € U,,. We have to prove that W intersects
V. But note that W C V* gives W* C V and this proves WNV # @. O

A topological space E is called suborderable if it is a subspace of some linearly
orderable space (see [Lu]). Now we obtain the following

THEOREM 1. Every suborderable metrizable B,-space E is a Baire space.

PROOF. Following [Lu, 2.9], E may be represented as a dense subspace of some
compact linear ordered space E. Suppose that F is not Baire. Then there exists a
nonempty open subset U of E which is of the first category. Consequently, every
nonempty open subset V' of U must contain a gap, i.e. for 7,y € V, z < y there
exists u € E \ E such that £ < u < y. Let u,v with u < v be fixed gaps with
[u,v] N E contained in U. Clearly [u,v] N E is clopen in E and so is B,. Moreover,
this space is strongly zero-dimensional since the gaps are dense in [u, v]. This proves
that [u,v] N E is of the second category in E. 0O

In view of the theorem stated in the introduction (which is Theorem 2 in [N2])
we obtain the following

COROLLARY. Let E be a suborderable metrizavle B,-space and let F be a Cech
complete space. Then E® F 1s a B,-space. O

2. P-spaces. A topological space E is called a P-space if every Gs subset of
E is open. Some authors call this a quasi P-space and reserve the term P-space
for completely regular spaces of this type. A topological space E is called locally
Lindelof if every z € E admits a base of neighborhoods which are Lindelof with
their induced topologies. Now we can state the following theorem.
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THEOREM 2. Ewvery Hausdorff locally Lindelof P-space E is a B-space.

PROOF. Let f: E — F be a continuous, nearly open surjection onto the Haus-
dorff space F. We may assume that F is semiregular. Indeed, if Fs denotes the
semiregularization of F then Fy is Hausdorff and f: E — Fj is still continuous and
nearly open. But under this assumption F' must be a P-space. For let G be a Gs
set in F, G = ({Gr:n € N} for open sets G, and let y € G, y = f(z) for some z.

Now for every n there exists an open set V,, with z € V,, and with int f(V,) C G,.
Now V =(){V,:n € N} is open in E and clearly we have int f(V) C G, for every
n, which proves that y is an interior point of G.

Now let £ € E and some Lindelof neighborhood U of = be fixed. We show
that f(U) is closed in F. Assume the contrary and let y € f(U) \ f(U). Let §
be the filter of neighborhoods of y. Now {f(U) \ A: A € §} is an open cover of
f(U) and consequently has a countable subcover, say f(U) = J{f(U)\ An:n € N}
for A, € 3. But this yields N{An:n € N} N f(U) = @, a contradiction since
we have (J{An:n € N} € §. This proves that f(U) is closed. But now we have
f(z) € int f(U) = int f(U), hence f must be open. O

REMARKS. (1) Every Hausdorff locally Lindelof P-space is completely regular
(see [Ca, Corollary 7.4]). This is why we did not use the term quasi P-space here.

(2) The first part of the proof of Theorem 2 may be used to prove that every
Hausdorff minimal P-space is a B-space. Note that Hausdorff minimal P-spaces
need not be regular in general (see [Ca, Example 9.1]), but are semiregular as a
consequence of the fact that every B,-space is semiregular.

(3) Theorem 2 may easily be generalized to higher cardinalities. If F is called a
P, space in case the intersection of any family {G,: a < «} of open sets is open, then
every Hausdorff P-space with the property that every open cover has a subcover
of cardinality < k is in fact a B-space.

(4) Hausdorff Lindel6f P-spaces may be obtained by the following process. Let
E be a compact scattered space and let E denote the set E with the Gs-topology,
i.e., the topology generated by the Gs sets in E. Then E? is a Lindelof P-space.

EXAMPLE 1. We are going to construct a first category Lindelof P-space. Let
F denote the set of all ordinals o < w; and let {a}, (o, w;] be open sets in F for
a < wy. Clearly F is a Lindelof P-space. Let FN have the box-product topology.
Again FN is a P-space. Finally let E denote the subspace of F' consisting of all
f € FN with f(n) = w; for almost all n. Clearly E is a P-space. We claim that
E is also Lindelof. Indeed, let E(n) denote the set of f € FN with f(k) = w;
for all k > n. We have E = |J{E(n):n € N}. It is therefore sufficient to prove
that all E(n) are Lindelof. But note that E(1) is a one-point space while we have
E(n) = F~! for n > 2, which proves that E(n) is Lindelof since finite products
of Lindelof P-spaces are known to be Lindelof P. Finally note that £ must be of
the first category since it is the union of the closed nowhere dense subsets E(n),
n € N. Clearly E is a Hausdorff space. This yields the desired counterexample.
Note that E being Lindelof and regular it is also paracompact.

EXAMPLE 2. Let E be the space constructed in Example 1. Then there exists a
Cech complete space F such that E @ F is not a B,-space. We may choose F to be
any dense G subset of SE having ENF = J. Of course the existence of F' may
as well be deduced from our theorem stated in the introduction.
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3. Products of B,-spaces. In [N3] we have provided examples of strongly
zero-dimensional metrizable B,-spaces E, F whose product E x F' is no longer a
B,-space. In this section we obtain a stronger negative result, i.e., we prove the
existence of a strongly zero-dimensional metrizable B,-space E whose square E X E
is no longer B,.

EXAMPLE 3. There exists a strongly zero-dimensional metrizable B,-space E
whose square E x E is a Baire space but whose cube E x E x E is of the first
category.

Our construction is based on an example given by Fleissner and Kunen (see
[FK, Ex. 4]). Let ¢ = 2 and let C,c* denote the set of ordinals o < ¢t with
cf(a) € w, where ¢t denotes the successor-cardinal of ¢. Let Ay, y € 3“, be
mutually disjoint stationary subsets of C,c*. Recall that a subset S of a cardinal
k is called stationary if it intersects every closed and cofinal subset C of k, where
closed refers to the order-topology on . Note that C,,c* itself is a stationary subset
of ¢ct. For z € 3¥ define a stationary subset B, of C,c* by

B; = U{Ay:y € 3%, y(n) # z(n) for all n}.

Let 3 and ¢t each be discretely topologized and let 3“ x (¢*)“ have the product
topology. Let E denote the set of all (z, f) € 3¥ x (¢*)“ having f* = sup{f(n):n €
w} € B;. Then E is a strongly zero-dimensional metrizable space since it is a
subspace of 3% x (¢t)“. It follows from [FK] that E x E is a Baire space while
E x E x E is not. It therefore remains to prove that E is a B,-space.

For 0 = ((a,B0),---5(ar, Br)) € 371 x (c*)™*1 we denote by B(o) the set of
(z,9) € E having z(3) = as, g(¢) = B; for ¢ < r. The sets B(o) form a basis for E.
Let F'S denote the set of all such finite sequences o.

Let f: E — F be a continuous, nearly open bijection onto some Hausdorff space
F. Let (z0,90) € E and a neighborhood U = B(0p) of (zo,90) with oo = (zo,90) |
n be fixed. It is sufficient to prove that f(U) is closed in F, for then intm =
int f(U) proves the openness of f. Let zg € TU), 20 = f(yo, ho)- Since U is closed,
it is sufficient to prove U NV # @ for an arbitrary neighborhood V' of (yo, ho).
We may choose V of the form V = B(r) with 7o = (yo, ho) | m. Consider any
fixed well-order on FS. We define two mappings 6©1,0,:FS x FS — FS along the
following rules.

(1) ©1(o,7) = p if p is the first (for the well-order of FS) in FS with B(p)
contained in f~!(int f(B(0)) N f(B(r))) and (0, 7) = 7 if no such p exists.

(2) ©2(0,7) = p if p is the first (for the well-order of FS) in FS with B(p)
contained in f~!(int f(B(r)) N f(B(0))) and O2(0,7) = o if no such p exists.

Since f is injective and B(p;) C B(p2) implies p; D p2, we deduce that ©;(o,7)
D 7 and ©3(0,7) D o hold for all o, 7 in FS.

Let W denote the set of all ordinals @ having 2 < a < ¢t with the following
property:

There exist sequences (0,,) and (7,,) such that ©4(00,70) = 71, 72 D 71, |T2| =
1] + 1, ©2(00,72) = 01, 02 D 01, |o2| = |o1| + 1, ete. with U,,0n = (z,9),
U, ™ = (y,h), and g* = h* = a. (Here 09, 7o have the meaning defined above.)

For z € 3“ let W, denote the set of all ordinals « € W for which (z, g) and (y, h)
exist as above with ¢* = h* = o and with 2(n) ¢ {z(n),y(n)} for all n. Then we
have W = |J{W,:z € 3“}.
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We claim that W is stationary in ¢t. Indeed, let C be closed and cofinal in c*.

Define 15, 74,... and 02,04,... such that
|T2n| = |T2n-—1| +1, |0'2'n| = |U2n—1l +1
and
SUp 02,1 < supoa, € C, Sup Ton—1 < sup e, € C,
SUp Ogn < SUP Tont2 < SUPO2n+2,
where in case p = ((@0,7),---,(@r,7r)) supp denotes sup, ;. Then we have

Unon = (2,9) and U, 7» = (y,h) with g* = h* € CNW. This proves that W is
stationary.

But note that W cannot be the union of 2¥ nonstationary subsets, hence some
W, must be stationary as well. Now we shall use the following lemma, which is
Lemma 1 in [FK].

LEMMA. If K C (c*)¥ is closed and W = {f*: f € K} is stationary, then there
exists a closed cofinal subset C of ¢t such that CNC,ect CW. O

Hence there exists a closed cofinal set C in ¢t with C N C,cT C W,. Note that
the lemma may be applied if we define the set K consisting of all ((z, g), (y, h)) with
U, on =(2,9), U, ™ = (y, k), g* = h* for sequences (0,), () as in the definition
of W such that, in addition, z(n) ¢ {z(n),y(n)} holds for all n. Indeed, K is closed
in 3% X (¢*)¥ x 3* x (¢*)¥ ~ (c*)¥ and we have W, = {¢v*: ¢ € K}.

Since A, is stationary in C,cT, we have W, N A, # @. Let a € W, N A, and
let (o), (7n) be sequences as in the definition of W, with U, on = (z,9), U, ™ =
(y,h), g* = h* = q, 2(n) & {z(n),y(n)} for all n. « € A, implies (z,g), (y,h) € E.
On the other hand we have (z,9) € U, (y,h) € V, and f(z,g) € int f(B(r)) for all
n. This proves (z,9) = (y, h) and hence U NV # O is proved.

EXAMPLE 4. Let E be the strongly zero-dimensional metrizable B,-space con-
structed in Example 3. If E x E is not a B,-space, we have found the desired
counterexample. Otherwise F = E x E is a Baire space in view of Proposition 1.
But then F is the desired counterexample, for F' x F is of the first category since
E x FE x E is, and hence cannot be a B,-space in view of Proposition 1. So we have
established the existence of a B,-space whose square is no longer B,.

Using Example 4 from [FK], one may construct for every n < w a strongly zero-
dimensional metrizable space E such that E" is a B,-space but E™*2 is not since
it is of the first category. We do not know, however, whether in these cases E"t!
is B, or not. In particular we do not know whether F x E must be a Baire space
in case F is a strongly zero-dimensional metrizable B,-space.

4. B-spaces. It has been an open question for a long time whether every B,-
complete locally convex vector space was B-complete. Finally, this question has
been answered in the negative by Valdivia (see [V]). In the category of topological
groups the situation is comparatively simple. A B,-group which is not a B-group
may be found in [Su)]. In the topological case the gap between B- and B,-spaces is
rather wider. The following example shows that even completely metrizable space
need not be B-spaces.

EXAMPLE 5. Let E = R\Q®R, F = R and define f: E — F by f|R\Q = er\q,
fIR = idr. Clearly f is a continuous surjection. Since R\ Q is dense in R, it is
nearly open but not open.



BAIRE CATEGORY AND B,-SPACES 677

The class of B-spaces may be of some interest, nevertheless, since it contains
all locally compact Hausdorff spaces. It turns out that locally compact Hausdorff
spaces play a peculiar role among B-spaces at least when we ask for the invariance
of the class of B-spaces under sums.

PROPOSITION 2. Let E be a completely regular space. Then the following state-
ments are equivalent: ’

(1) For every locally compact Hausdorff space L the sum E @ L is a B-space.

(2) For every compact Hausdorff space K the sum E @ K s a B-space.

(3) E@® BE is a B-space.

(4) E is locally compact.

PROOF. Clearly (1) implies (2) and (2) implies (3). Assume (3) and let f: E &
BE — [BE be defined by f|E = eg, f|BF = idge. Then f is a continuous nearly
open surjection and, consequently, is open. So E is open in SE, hence is locally
compact. Finally, assume (4) and let f: E @ L — F be a continuous, nearly open
surjection onto the Hausdorff space F. Let £ € E @ L and let U be a compact
neighborhood of . Then f(U) = f(U), hence f(z) is an interior point of f(U) and
so f must be open. 0[O

REMARKS. (1) The situation for B-spaces is completely different from the B,
case. For given a B,-space E and a locally compact Hausdorff space L it is easy to
see that F & L is again a B,-space.

(2) Let E be a nondiscrete Hausdorff Lindel6f P-space. Then

(a) E & E is a B-space (since it is Lindelof P);

(b) E @ BE is not a B-space (since E is not locally compact).

This proves that a completely regular space containing a dense subspace which
is a B-space need not be a B-space itself, i.e., the class of B-spaces is not closed
with respect to the operation of taking Hausdorff extensions. This is once more a
surprising fact, since the corresponding result is true for B,-spaces.

THEOREM 3. Let E be a Hausdorff semiregular space containing a dense sub-
space F' which is a B,-space. Then E 13 itself a B,-space.

PROOF. Let f: E — G be a continuous, nearly open bijection onto the Hausdorff
space G. Then the restriction f|F:F — f(F) is continuous and bijective and
moreover is nearly open. So we have F = f(F). Now fix £ € E and a neighborhood
U of z. Choose a regular-open neighborhood V of z having V. C U. We prove
int f(V) € f(U). Let y € int f(V), y = f(2). Let W be an open neighborhood of
z with f(W) C int f(V). It is sufficient to prove W C V. So let w € W and some
regular-open neighborhood O of w having O C W be fixed. It remains to prove
onv #d.

O, V being regular-open in £, ON F and V N F are regular-open in F and
consequently f(ONF) and f(V NF) are regular-open in f(F). On the other hand,

the sets int f(O) N f(F), int f(V) N f(F) are regular-open sets in f(F) densely

containing the previous ones. This implies f(O) N f(F) =int f(O) N f(F), f(V)N
f(F) =it f(V) N f(F). Since O C W yields int f(O) C int f(V), hence f(O) N
f(F) C f(V), we obtain the desired relation ONV # J. O

We may derive the following result which we have obtained in [Ny, Theorem 1]

by a direct argument.
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COROLLARY. Every Hausdorff semiregular space E containing a dense Cech
complete subspace is a B,-space.

PROOF. This follows from Theorem 3 and the fact, proved in [BP], that every
Cech complete space is a B,-space. 0O
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