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Abstract. We discuss a branch and bound algorithm for global optimization of NP-
hard problems related to robust stability. This includes computing the distance to insta-
bility of a system with uncertain parameters, computing the minimum stability degree
of a system over a given set of uncertain parameters, and computing the worst case H∞
norm over a given parameter range. The success of our method hinges (i) on the use of
an efficient local optimization technique to compute lower bounds fast and reliably, (ii)
a method with reduced conservatism to compute upper bounds, and (iii) the way these
elements are favorably combined in the algorithm.
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1. Introduction

Physical system models are invariably corrupted by various types of uncertainty. Real
parametric uncertainty includes phenomena like poorly identified or incompletely known
physical parameters such as masses, inertia, aerodynamic coefficients, data in economics
models, but also time-varying parameters due to aging, degrading component variations,
thermal effects, and much else. Whether or not stability and performance of a system
can be maintained despite such a mismatch between the mathematical model and reality
is a key concern of modern design. Quantifying the degree of robustness of a systems is
therefore of importance, but generally leads to challenging global optimization problems.
Here we are interested in the analysis of stability and performance of a linear time-

invariant dynamical system in the presence of real uncertain parameters. Typical quanti-
ties which allow to assess the robustness of such a system include (a) its stability margin
or distance to instability, (b) its worst-case spectral abscissa or minimum stability degree
over a given range of uncertain parameters, and (c) its worst case H∞ performance over
that range. Unfortunately computation of these quantities is NP-hard, cf. [21, 11, 27],
and this makes the use of good heuristic methods mandatory. These heuristics may then
be combined with branch and bound to obtain global robustness certificates.
The importance of parametric robust stability and performance was recognized in the

late 1970s and 1980s. The principled mathematical tool proposed to describe these prop-
erties is the µ-singular value [29], which originated from work by Safonov [24] and Doyle
[12]. Our present approach still owes much to this classical line as we use µ-upper bounds
according to Fan et al. [14] and Graham et al. [13] to obtain conservative stability tests
for evaluation, see Section 5.
Branch and bound methods for the computation of the minimum stability degree of

a system have previously been presented by De Gaston and Safonov [16], Balakrishnan
and Boyd [4], Balakrishnan et al. [5], and Sideris and Peña [26]. Related branch and
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Figure 1. Robust system interconnection

bound approaches in robust stability are Bemporad et al. [9], Romero-Monsivais et al.
[24], or Sakizlis et al. [26]. Here we discuss a novel branch and bound algorithm, which has
three key ingredients leading to a significantly better performance. Firstly, we use a highly
dedicated local optimizer, based on a trust-region strategy, which computes excellent lower
bounds reliably and speedily. Secondly, we present pruning tests that avoid the explicit
computations of upper bounds, which leads to an improvement in speed. And thirdly,
we present a new way to include frequency information in the setup, which has the effect
that when branching occurs due to failure of pruning, it is at least possible to reduce the
frequency band on which robust stability will have to be certified at the next level of the
arborescence. Experiments with a test bench of 116 challenging examples indicate that
our method is a promising tool for engineering control practice.

The structure of the paper is as follows. In section 2 we explain the setup and introduce
the three quantities used to assess parametric robustness. In section 3 we develop the
branch and bound algorithm for the worst-case spectral abscissa of a system. Finite
termination of the method is proved in section 4. Evaluation procedures which do not
require the explicit computation of upper bounds are discussed in section 5. In section 6
we show how exploiting frequency information for subproblems can reduce the number of
bisections in the branch and bound algorithm. Experiments with the minimum stability
degree are reported in section 7. Branch and bound for computing the maximum H1-
performance and the distance to instability are discussed respectively in sections 8 and
10, while their associated experiment results are reported in sections 9 and 11.

2. Problem setting

Consider a Linear Fractional Transform (LFT) plant with real parametric uncertainties
Fu(P,�) as in Figure 1, where

(1) P (s) :

8
<

:

ẋ = Ax + Bp + Bww
q = Cx + Dp + Dqww
z = Czx + Dzpp + Dzww

and x 2 Rn is the state, w 2 Rn2 a vector of exogenous inputs, and z 2 Rn1 a vector of
regulated outputs. The uncertainty channel is defined as
(2) p = �q,

where the uncertain matrix � has the block-diagonal form
(3) � = diag [�1Ir1 , . . . , �mIrm ] ,

with �1, . . . , �m representing real uncertain parameters, and ri giving the number of repeti-
tions of �i. Here we assume without loss that � = 0 2 � represents the nominal parameter
value, and we consider � 2 � in one-to-one correspondence with the matrix � in (3). For
practical applications it is generally sufficient to consider the case � = [�1, 1]m. Note
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bound approaches in robust stability are Bemporad et al. [8], Romero-Monsivais et al.
[23], or Sakizlis et al. [25], see also [22]. Here we discuss a novel branch and bound
algorithm, which has three key ingredients leading to a significantly better performance.
Firstly, we use a highly dedicated local optimizer, based on a trust-region strategy, which
computes excellent lower bounds reliably and speedily. Secondly, we present pruning tests
that avoid the explicit computations of upper bounds, which leads to an improvement in
speed. And thirdly, we present a new way to include frequency information in the setup,
which has the effect that when branching occurs due to failure of pruning, it is at least
possible to reduce the frequency band on which robust stability will have to be certified
at the next level of the arborescence. Experiments with a test bench of 116 challenging
examples indicate that our method is a promising tool for engineering control practice.
The structure of the paper is as follows. In section 2 we explain the setup and introduce

the three quantities used to assess parametric robustness. In section 3 we develop the
branch and bound algorithm for the worst-case spectral abscissa. Finite termination
of the method is proved in section 4. Evaluation procedures which do not require the
explicit computation of upper bounds are discussed in section 5. In section 6 we show
how exploiting frequency information for subproblems can reduce the number of bisections
in the branch and bound algorithm. Experiments with the minimum stability degree are
reported in section 7. Branch and bound for computing the maximum H∞-performance
and the distance to instability are discussed in sections 8 and 10, while corresponding
experimental results are reported in sections 9 and 11.

2. Problem setting

Consider a Linear Fractional Transform (LFT) plant with real parametric uncertainties
Fu(P,∆) as in Figure 1, where

(1) P (s) :

 ẋ = Ax + Bp + Bww
q = Cx + Dp + Dqww
z = Czx + Dzpp + Dzww

and x ∈ Rn is the state, w ∈ Rn2 a vector of exogenous inputs, and z ∈ Rn1 a vector of
regulated outputs. The uncertainty channel is defined as

(2) p = ∆q,

where the uncertain matrix ∆ has the block-diagonal form

(3) ∆ = diag [δ1Ir1 , . . . , δmIrm ] ,

with δ1, . . . , δm representing real uncertain parameters, and ri giving the number of repeti-
tions of δi. Here we assume without loss that δ = 0 ∈ ∆ represents the nominal parameter
value, and we consider δ ∈ ∆ in one-to-one correspondence with the matrix ∆ in (3). For
practical applications it is generally sufficient to consider the case ∆ = [−1, 1]m. Note
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that every system with real-rational uncertain parameters can be represented by such an
LFT.
To analyze the performance of (1) in the presence of the uncertain δ ∈ Rm we compute

the worst-case H∞-performance

(4) h∗ = max{∥Twz(δ)∥∞ : δ ∈ ∆},
where ∥·∥∞ is the H∞-norm, and where Twz(s, δ) = Fu(P (s),∆) is obtained by closing the
loop between (1) and p = ∆q with (3) in Figure 1. The solution δ∗ ∈ ∆ of (4) represents a
worst possible choice of the parameters δ ∈ ∆, which is an important element in analyzing
performance and robustness of the system.
Our second criterion is similar in nature, as it allows to verify whether the uncertain

system (1) is robustly stable over a given parameter range ∆. This can be tested by
maximizing the spectral abscissa of the system A-matrix over the parameter range

(5) α∗ = max{α(A(δ)) : δ ∈ ∆},
where A(δ) = A+ B∆(I −D∆)−1C, and where the spectral abscissa of a square matrix
A is defined as α(A) = max{Reλ : λ eigenvalue of A}. Since A is stable if and only if
α(A) < 0, robust stability of (1) over ∆ is certified as soon as α∗ < 0, while a destabilizing
δ∗ ∈ ∆ is found as soon as α∗ ≥ 0.
Note however that a decision in favor of robust stability over ∆ based on α∗ < 0 is only

valid when the global maximum over ∆ is computed. This renders (5) a difficult problem,
and it is in fact known that solving (5) globally is NP-hard. In [21] Poljak and Rohn have
shown that for a gives set of matrices A0, . . . , Ak, deciding whether A0+r1A1+ · · ·+rkAk

is stable for all ri ∈ [0, 1] is NP-hard, and Braatz et al. [11] show that deciding whether a
system with real (or mixed or complex) uncertainties is robustly stable over a range ∆ =
[−1, 1]m is harder than globally solving a nonconvex quadratic programming problem,
hence is NP-hard. For additional information on NP-hardness in control see also Toker
and Özaby [27], or Blondel and Tsitsiklis [10], Blondel et al. [9].
Our third analysis problem is related to the previous ones and concerns computation

of the distance to instability. Assuming A(δ) stable at the nominal value δ = 0, we ask
for the largest variation in the parameter δ under which the system remains stable. This
leads to

(6) d∗ = max{d : A(δ) stable for all |δ|∞ < d},
where |δ|∞ = max{|δ1|, . . . , |δm|} is the maximum norm. This quantity is also known as
the stability margin, or as the radius of stability of (1). A formulation of (6) which does
not require A(0) to be stable is

d∗ = min{|δ|∞ : A(δ) unstable},
and this still works when A(δ) is stable for all δ, because then d∗ = min ∅ = +∞. This
latter version can be given the form of a constrained optimization program

minimize t
subject to −t ⩽ δi ⩽ t, i = 1, . . . ,m

−α(A(δ)) ⩽ 0
(7)

with decision variable (t, δ) ∈ R1+m.

3. Worst case spectral abscissa

In this section we consider computation of the global maximum

(8) α∗ = max
δ∈[−1,1]m

α (A(δ)) ,
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where A(δ) = A + B∆(I −D∆)−1C, and where ∆ is in one-to-one correspondence with
δ via (3). Robust stability of (1) over [−1, 1]m is guaranteed as soon as α∗ < 0, and in
that case −α∗ is also called the minimum stability degree of (1) over [−1, 1]m, see [16, 5].
Namely, solutions of ẋ = A(δ)x then decay at least as fast as eα

∗t for all δ ∈ [−1, 1]m.
Here we develop a branch and bound algorithm for (5), whose elements are discussed in
detail in the following subsections.

3.1. Global lower bound. We use a local optimization technique Trust based on a
non-smooth bundling trust-region algorithm [1] to compute a locally optimal solution α
of (5), which gives a lower bound α ⩽ α∗ for (5). More details on Trust are given in
section 3.5.
Suppose the current best lower bound α is attained at δ ∈ [−1, 1]m. Then δ is our

candidate for the global optimum, and following standard terminology, we call δ the
incumbent.

3.2. Subboxes and subproblems. The branch-and-bound method on [−1, 1]m uses
subproblems of (8) specified by subboxes of the form ∆ =

∏m
i=1[ai, bi], where −1 ⩽

ai < bi ⩽ 1. The subproblem associated with ∆ is

α∗(∆) := max
δ∈∆

α (A(δ)) .(9)

Two subboxes ∆,∆′ are non-overlapping if they are disjoint or have only boundary points
in common. During the algorithm we maintain a list L = {∆1, . . . ,∆N} of pairwise
non-overlapping subboxes of [−1, 1]m, which we call the list of doables. Every such box
represents a subproblem (9), which remains to be evaluated. The algorithm stops when
the list of doables L is empty.

3.3. Evaluating a subproblem. A function α(·) defined on subboxes ∆ ⊂ [−1, 1]m is
called an upper bound if it satisfies

(10) α∗(∆) = max
δ∈∆

α (A(δ)) ⩽ α(∆).

Any useful upper bound gets better as the boxes get smaller in the sense that

(11) lim
diam(∆)→0

α(∆)− α∗(∆) = 0.

Following standard terminology one evaluates a subproblem ∆ ∈ L by computing its
upper bound α(∆). One then makes the following decision{

if α(∆) ⩽ α then pruning ∆
otherwise not−pruning

(12)

Following standard terminology, the term pruning refers to the fact that one can remove
∆ from the list L without successors, because α∗(∆) ⩽ α(∆) ⩽ α, so that ∆ cannot
contain any solution better than the present incumbent. So here the list of doables shrinks.
On the other hand, in case of the decision not−pruning one has to replace ∆ by two new
boxes in the list L , which makes L grow by one.
To get these new boxes we divide ∆ into two subboxes of half volume by cutting a

longest edge in two. This gives ∆′, ∆′′, which we add to L . More explicitly, suppose
∆ =

∏m
i=1[ai, bi], then choose a coordinate i0 with the largest bi0−ai0 and take the obvious

∆′ = [a1, b1]× · · · × [ai0 ,
ai0+bi0

2
]× · · · × [am, bm],

∆′′ = [a1, b1]× · · · × [
ai0+bi0

2
, bi0 ]× · · · × [am, bm].
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When operating the algorithm, it is reasonable to allow tolerances in the decision, that
is, one might replace (12) by the following test

Pub :

{
if α(∆) ⩽ α + ϵ then pruning ∆
otherwise not−pruning

(13)

where ϵ ⩾ 0 is some level of tolerance.

3.4. Evaluation without upper bound. We discuss a variant of evaluation, where it
is not necessary to know a numerical value of α(∆). To reach the decision (12) is would
suffice to know whether α∗(∆) ⩽ α or not, and similarly in (13). Since this decision has
to be conservative, we propose the the following

Definition 1. A decision procedure P which, given a box ∆ and a reference value α on
input, and being allowed a tolerance level ϵ ⩾ 0, issues a decision between pruning ∆
and not−pruning, is called a pruning test if the decision pruning ∆ is only issued when
it is certified that α∗(∆) ⩽ α+ ϵ. □
In other words, the decision P(∆, α, 0) = pruning gives a certificate that the box ∆

contains no value better than α, and can therefore be pruned when α is a lower bound of
α∗. Similarly, P(∆, α, ϵ) = pruning certifies that ∆ cannot improve over α + ϵ.

Lemma 1. The test Pub in (13) based on the upper bound α(∆) is a pruning test.

Proof. Indeed, since pruning occurs when α(∆) ⩽ α+ϵ, and since an upper bound satisfies
α∗(∆) ⩽ α(∆), the decision Pub(∆, α, ϵ) = pruning certifies that α∗(∆) ⩽ α + ϵ. □
Every upper bound gives rise to a pruning test, and inversely, a pruning test could be

used to define an upper bound by way of bisections.

Proposition 1. Suppose P is a pruning test and let ϵ ⩾ 0. Define α(·) by
α(∆) = sup{α ∈ R : P(∆, α, ϵ) = not−pruning}.

Then α(·) is an ϵ-upper bound, i.e., α∗(∆) ⩽ α(∆) + ϵ.

Proof. Suppose the estimate is wrong, then one can choose α such that α(∆) < α <
α∗(∆)− ϵ. Due to the first inequality ∆ is pruned by P when given the value α on entry.
But since P is a pruning test, this implies α∗(∆) ⩽ α + ϵ, a contradiction. □
This result indicates why it may in general be too costly to compute an explicit upper

bound, and our present approach avoids this. Several pruning procedures without explicit
computation of an upper bound will be discussed in section 5.

3.5. Local trust-region optimization. In this section we briefly discuss the local trust-
region method Trust, which is the key element in our branch and bound approach for
(5), because it gives excellent lower bounds α very speedily.
To understand the context, recall that Balakrishnan et al. [5] use the following very

simple lower bound. For every box ∆ ∈ L they evaluate α (A(δ∆)) at the center δ∆ of
∆, and take the maximum of these values as lower bound:

α
(n)
lb = max

k⩽n
max
∆∈Lk

α (A(δ∆)) ⩽ α∗

where at iteration n maximization is over all instances L1 ∪ · · · ∪ Ln of the list up to
the present instance Ln. This bound is updated fairly often, as its quality is poor at the
beginning. The fact that α computed by Trust is much more accurate gives our method
an advantage for pruning. For a detailed analysis of the trust-region method we refer to
[1, 3, 20, 19, 2]. For the current analysis it suffices to know that if Trust is started at an
initial guess δ0, then it finds a locally optimal solution δ∗ such that α(A(δ∗)) ⩾ α(A(δ0)).
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The best value so achieved is chosen as lower bound α, and the monotony property is
exploited in the branch and bound algorithm. With that it is easy to improve on α by
starting Trust at the center of the box ∆.

3.6. Ranking boxes ∆ ∈ L . As soon as two new boxes ∆′,∆′′ enter the list L ,
replacing an evaluated box ∆ which could not be pruned, we pass old information already
known about ∆, and new information obtained during its evaluation process, on to the
new boxes. This includes of course size and depth in the tree, but also the position
δ(∆) ∈ ∆ of the local minimizer obtained when running Trust inside the box ∆. For
instance, δ(∆) ∈ ∆′ \∆′′ is a strong indicator that ∆′′ might be easier to prune than ∆′.
Nearness α(∆) ≈ α indicates that the box ∆′ might in the end still give an improvement
of the lower bound, while α(∆) ≪ α might indicate that both boxes ∆′,∆′′ should be
good for pruning.
In addition to these rather standard informations, we shall also store additional fre-

quency information, which we shall discuss in section 6.

Algorithm 1. Branch and bound to compute α∗ in program (5).

Parameters: Pruning tolerance ϵ ⩾ 0.
Subroutines: Trust for local optimization, P for pruning, R for ranking.

1: Lower bound. Call local solver Trust to compute lower bound α of α∗. Let δ ∈
[−1, 1]m be a local maximum called the incumbent.

2: Initialize list. Put L = {[−1, 1]m}.
3: while L ̸= ∅ do
4: Choose element ∆ ∈ L ranked first for evaluation.
5: Call pruning test P for ∆ with tolerance ϵ.
6: if P(∆, α, ϵ) = pruning then
7: Remove ∆ from L
8: else
9: Remove ∆ and replace it by two successors ∆′, ∆′′ in L

10: Call local solver within ∆. Update lower bound and incumbent.
11: end if
12: Call R to update ranking of L
13: end while
14: Return d and δ.

4. Convergence and finite termination

In order to assure convergence or finite termination of algorithm 1, we have to assure
that our conservative pruning test gets more and more accurate as the boxes ∆ get
smaller. The following definition is helpful.

Definition 2. Let P be a pruning test. We say that P is weakly consistent if for every
ϵ > 0 there exists η > 0 such that whenever the diameter of the box ∆ is smaller than η
and α ⩾ α∗ is used as reference value with tolerance ϵ, then ∆ is pruned. We say that
P is consistent if the above is even true for every α ⩾ α∗(∆). □
For short weak consistency says that for every ϵ > 0 there exists η > 0 such that

P(∆, α∗ + a, ϵ) = pruning whenever diam(∆) < η and a ⩾ 0.

For consistency the short form is: for every ϵ > 0 there exists η > 0 such that

P(∆, α∗(∆) + a, ϵ) = pruning whenever diam(∆) < η and a ⩾ 0.
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Remark 1. Let us convince ourselves that the pruning test Pub based on an upper bound
α(∆) is consistent as soon as (11) holds. Indeed, from (11), given ϵ > 0 we can find η > 0
such that for all boxes of diameter less than η we have α(∆) ⩽ α∗(∆) + ϵ. Therefore, if
we choose a level α ⩾ α∗(∆), then α + ϵ ⩾ α∗(∆) + ϵ ⩾ α(∆) in the test, hence ∆ is
pruned.

4.1. Convergence for consistent P. In the case of a consistent pruning test finiteness
of the algorithm can be guaranteed.

Theorem 1. Suppose the pruning test P is consistent. Fix ϵ > 0 and run the branch
and bound algorithm based on P and tolerance ϵ. Then the algorithm stops after a finite
number of steps with an empty list L , and it provides an incumbent and lower bound α
such that α ⩾ α∗ − ϵ.

Proof. 1) Since δ 7→ α (A(δ)) is a continuous function of δ ∈ Rm, it is uniformly continuous
on [−1, 1]m, hence there exists η > 0 such that for all δ, δ′ ∈ [−1, 1]m, |δ − δ′| < η implies
|α(A(δ))−α(A(δ′))| < 1

2
ϵ. Therefore, as soon as a box ∆ with diameter < η is evaluated,

Trust finds a value α(∆) which is 1
2
ϵ-close to α∗(∆). Since α is updated when an

improvement is found, we know for such an evaluated box that α∗(∆) ⩽ α + 1
2
ϵ.

2) Using consistency of P, by further reducing the η found in 1), we can assume that
the decision P(∆, α∗(∆) + a, 1

2
ϵ) = pruning occurs for every ∆ with diameter < η and

every a ⩾ 0.
3) Let us now show that if the algorithm ends after a finite number of steps, then we

must have α ⩾ α∗ − ϵ. Indeed, since in the end the list is empty, there must have been
at some counter n a box ∆∗ ∈ L which contains the global maximum δ∗ and which was
pruned based on the current lower bound α(n), which was no better than the final value
of the lower bound α. But since we are using a pruning test, we know from definition 1
that α∗ = α∗(∆∗) ⩽ α(n) + ϵ ⩽ α + ϵ was satisfied when pruning occurred.
4) Let us next observe that if there exists an iteration index n0 ∈ N and η > 0 such that

for counters n ⩾ n0 all boxes with diameter less than η are automatically pruned, then
the algorithm terminates finitely. Indeed, after a finite number of steps we are running
out of boxes larger than η.
5) Let us now assume that the algorithm does not halt and create a sequence α(n) of

lower bounds with α(1) ⩽ α(2) ⩽ · · · → α. Then by 4) there must exist boxes ∆k with
arbitrarily small diameters ⩽ ηk → 0, which are evaluated but not pruned. For those
boxes, lim supα∗(∆k) ⩽ α + 1

2
ϵ. Let us assume that ∆k occurs at counter nk. Then for

k large enough, α∗(∆k) < α(nk) + 1
2
ϵ, hence P(∆k, α

(nk), ϵ) = P(∆k, α
(nk) + 1

2
ϵ, 1

2
ϵ) =

P(∆k, α
∗(∆k) + ak,

1
2
ϵ) = pruning due to part 2), where ak = α(nk) + 1

2
ϵ− α∗(∆k) ⩾ 0.

This is a contradiction, because ∆k was not pruned. □

4.2. Convergence for weakly consistent P. The following result uses a similar ar-
gument. We say that the algorithm follows the width-first rule if

(14) max{diam(∆) : ∆ ∈ Ln} → 0 (n → ∞),

with Ln denoting the list at the nth iteration of the algorithm. This very tolerant rule
says only that we are not allowed to drive the binary tree representing subproblems in the
list to arbitrary hight while leaving large boxes in the bottom unevaluated, as we would
do in a depth-first scenario.

Theorem 2. Suppose P is weakly consistent, ϵ > 0 is fixed and used as tolerance for
pruning. Suppose the width-first rule is applied. Then the algorithm halts after a finite
number of steps with a lower bound α ⩾ α∗ − ϵ.
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(15), (16)
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∆̃
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1
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+
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2

F 1/2 F 1/2

Figure 2. On the left � $ � 2 � =

Qm
i=1[ai, bi], on the right, e

� $ e� 2
�̃ = [�1, 1]

m. The two loops are equivalent under (15), (16). Note that
M(s) = C(sI � A)

�1B + D, and fM(s) =

eC(sI � eA)

�1 eB +

eD.

Proof. Assuming that the algorithm does not come to halt, the width-first rule assures
that ↵(n) ! ↵⇤. Namely, if we fix a global maximum �⇤ and call �⇤

n the box in Ln

which contains �⇤, then every now and then this box will have to be evaluated due to the
width-first rule, and then its diameter will eventually have to go down. In other words, we
will improve the lower bound by evaluating these boxes, and therefore ↵(n) will get closer
to ↵⇤ and if the algorithm turns infinitely, it will converge to ↵⇤. But then we can modify
part 5) of the proof of Theorem 1 such that P(�k, ↵

(nk), ✏) = P(�k, ↵
(nk)

+

1
2✏,

1
2✏) =

P(�k, ↵
⇤

+ ak,
1
2✏) = pruning, where ak = ↵(nk)

+

1
2✏ � ↵⇤ � 0, so that the same

contradiction occurs, now using only weak consistency. ⇤
Remark 2. Using the same width-first rule, and reducing the tolerance to ✏ = 0, we can
still prove convergence of the branch and bound method to the global maximum.

Remark 3. The width-first rule can be replaced by the following weaker assumption.
If Ln is the list at iteration n, and �n 2 Ln is the element chosen for evaluation,
then it must be guaranteed that the current best lower bound ↵(n) based on the history
�1, . . . ,�n satisfies ↵(n) ! ↵⇤. This is an even weaker hypothesis than (14).

5. Evaluation procedures

In this section we examine evaluation procedures without upper bounds in more detail.
Following [6] we first apply a loop transformation so that the system (A, B, C, D) with
uncertainty � 2 � is transformed to a system (

eA, eB, eC, eD) which has its uncertainty e�
with the same structure (3) in [�1, 1]

m, (see Figure 2). Assuming � =

Qm
i=1[ai, bi], and

putting
K =

1
2diag [(a1 + b1)Ir1 , . . . , (am + bm)Irm ] ,

F =

1
2diag [(b1 � a1)Ir1 , . . . , (bm � am)Irm ] ,

(15)

we define
eA = A + B(I � KD)

�1KC, eB = B(I � KD)

�1F 1/2,

eC = F 1/2
(I � DK)

�1C, eD = F 1/2D(I � KD)

�1F 1/2.
(16)

Then we have the following

Lemma 2. (Balakrishnan et al. [6]). For any ↵ 2 R the following are equivalent:

Figure 2. On the left ∆ ↔ δ ∈ ∆ =
∏m

i=1[ai, bi], on the right, ∆̃ ↔ δ̃ ∈
∆̃ = [−1, 1]m. The two loops are equivalent under (15), (16). Note that

M(s) = C(sI − A)−1B +D, and M̃(s) = C̃(sI − Ã)−1B̃ + D̃.

Proof. Assuming that the algorithm does not come to halt, the width-first rule assures
that α(n) → α∗. Namely, if we fix a global maximum δ∗ and call ∆∗

n the box in Ln

which contains δ∗, then every now and then this box will have to be evaluated due to the
width-first rule, and then its diameter will eventually have to go down. In other words, we
will improve the lower bound by evaluating these boxes, and therefore α(n) will get closer
to α∗ and if the algorithm turns infinitely, it will converge to α∗. But then we can modify
part 5) of the proof of Theorem 1 such that P(∆k, α

(nk), ϵ) = P(∆k, α
(nk) + 1

2
ϵ, 1

2
ϵ) =

P(∆k, α
∗ + ak,

1
2
ϵ) = pruning, where ak = α(nk) + 1

2
ϵ − α∗ ≥ 0, so that the same

contradiction occurs, now using only weak consistency. □
Remark 2. Using the same width-first rule, and reducing the tolerance to ϵ = 0, we can
still prove convergence of the branch and bound method to the global maximum.

Remark 3. The width-first rule can be replaced by the following weaker assumption.
If Ln is the list at iteration n, and ∆n ∈ Ln is the element chosen for evaluation,
then it must be guaranteed that the current best lower bound α(n) based on the history
∆1, . . . ,∆n satisfies α(n) → α∗. This is an even weaker hypothesis than (14).

5. Evaluation procedures

In this section we examine evaluation procedures without upper bounds in more detail.
Following [5] we first apply a loop transformation so that the system (A,B,C,D) with

uncertainty δ ∈ ∆ is transformed to a system (Ã, B̃, C̃, D̃) which has its uncertainty δ̃
with the same structure (3) in [−1, 1]m, (see Figure 2). Assuming ∆ =

∏m
i=1[ai, bi], and

putting

K = 1
2
diag [(a1 + b1)Ir1 , . . . , (am + bm)Irm ] ,

F = 1
2
diag [(b1 − a1)Ir1 , . . . , (bm − am)Irm ] ,

(15)

we define

Ã = A+B(I −KD)−1KC, B̃ = B(I −KD)−1F 1/2,

C̃ = F 1/2(I −DK)−1C, D̃ = F 1/2D(I −KD)−1F 1/2.
(16)

Then we have the following

Lemma 2. (Balakrishnan et al. [5]). For any α ∈ R the following are equivalent:



BRANCH AND BOUND ALGORITHM WITH APPLICATIONS TO ROBUST STABILITY 9

i. α (A+B∆(I −D∆)−1C) < α for every δ ∈ ∆ =
∏m

i=1[ai, bi];

ii. α
(
Ã+ B̃∆̃(I − D̃∆̃)−1C̃

)
< α for every δ̃ ∈ [−1, 1]m.

Here ∆̃ ↔ δ̃, ∆ ↔ δ via (3). Moreover, the uncertainties ∆, ∆̃ are in one-to-one corre-
spondence via

(17) ∆̃ = F−1/2(∆−K)F−1/2, ∆ = K + F 1/2∆̃F 1/2.

For the proof see [5]. □

5.1. Evaluations based on µ-upper bounds. Now we can present a first evaluation
based on the following test:

Pµ̃ :

{
if µ̃∆(M̃α) := ∥(Ã− αI, B̃, C̃, D̃)∥∞ < 1 then pruning ∆
else not−pruning

(18)

In fact, the H∞-norm here is an overestimate of the µ-singular value of the shifted system

M̃α = (Ã − αI, B̃, C̃, D̃), hence a value µ̃∆(M̃α) < 1 gives µ∆(M̃α) < 1, hence gives

a certificate of parametric robustness of Ã(δ̃) − αI = Ã − αI + B̃∆̃(I − D̃∆̃)−1C̃ over

δ̃ ∈ [−1, 1]m, hence of A(δ) − αI over the box δ ∈ ∆ by Lemma 2, and this assures
α∗(∆) ⩽ α, so that ∆ can be pruned. The version with tolerance ϵ > 0 is as follows. We

prune as soon as µ̃∆(M̃α+ϵ) < 1.
A second less conservative stability test could be based on the µ-upper bound proposed

in [14, 15], see also [7], defined as

µ̂∆(M) = inf
G∆=∆G,D∆=∆D

sup
ω

inf
{
β ⩾ 0 : M(jω)HDM(jω) + j

(
GM(jω)−M(jω)HG

)
− β2D ⪯ 0

}
.(19)

The pruning test based on (19) is then

Pµ̂ :

{
if µ̂∆(M̃α) < 1 then pruning ∆
else not−pruning

(20)

where M̃α = (Ã−αI, B̃, C̃, D̃) is again the shifted system obtained from the box ∆ as in

(15), (16). Again we obtain a version with tolerance if we prune as soon as µ̂∆(M̃α+ϵ) < 1.
We conclude with the following observation.

Lemma 3. The procedures Pµ̃,Pµ̂ are pruning tests. If α in (18), (20) is replaced by
α+ ϵ, then they are pruning tests with tolerance level ϵ ≥ 0.

Proof. Indeed, as we have seen above, the decision pruning ∆ in (18) is only issued when
α(A + B∆(I − D∆)−1C) < α for every δ ∈ ∆. In other words α∗(∆) ⩽ α, so that ∆
may indeed be pruned. The case with tolerance ϵ is similar. □

Proposition 2. Suppose (1) is nominally stable and well-posed over [−1, 1]m. Then the
pruning tests Pµ̃,Pµ̂ are consistent.

Proof. Since µ∆ ⩽ µ̂∆ ⩽ µ̃∆, it suffices to consider the test Pµ̃ based on the µ-upper
bound µ∆ ⩽ µ̃∆. We have to show that there exists η > 0 such that when diam(∆) <
η, α ⩾ α∗(∆), and ϵ > 0, then Pµ̃(∆, α, ϵ) = pruning. By (25) the latter means

µ̃∆(M̃α+ϵ) < 1, where M̃α = (Ã− αI, B̃, C̃, D̃) is the shifted system (15), (16) for ∆.
For the proof we may assume α = α∗(∆). Now since (1) is well-posed over [−1, 1]m

and Ã − (α + ϵ)I is stable, the structured singular value of M̃α+ϵ may be expressed as
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µ∆(M̃α+ϵ) = sup{1/σ(∆̃) : Ã− (α+ ϵ)I + B̃∆̃(I − D̃∆̃)−1C̃ unstable, δ̃ ∈ [−1, 1]m}. This
follows from the fact that the closed-loop characteristic polynomial can be written as

|sI − (Ã(δ̃)− (α + ϵ)I)| = |sI − (Ã− (α + ϵ)I||I − D̃∆̃|−1|I − M̃α+ϵ(s)∆̃|,
where the first and second term on the right are non-zero. Similarly, the upper bound µ̃∆

may be expressed as

µ̃∆(M̃α+ϵ) = sup{1/σ(Ξ̃) : Ã− (α+ ϵ)I + B̃Ξ̃(I − D̃Ξ̃)−1C̃ unstable, Ξ̃ complex},
where size(∆) = size(Ξ), but where Ξ is unstructured. Now suppose the statement is

incorrect, then there exist boxes ∆ of arbitrarily small diameter such that µ̃∆(M̃α+ϵ) > 1

for the corresponding shifted system. Pick a complex Ξ̃ such that 1/σ(Ξ̃) > 1 and

Ã− (α+ ϵ)I+ B̃Ξ̃(I− D̃Ξ̃)−1C̃ unstable. Applying the inverse loop transformation shows
that there exists a complex Ξ such that A− (α + ϵ)I +BΞ(I −DΞ)−1C is unstable and

Ξ = K + F 1/2Ξ̃F 1/2. Then A := A− (α + ϵ)I +BΞ(I −DΞ)−1C is also unstable.

Now pick δ̃ ∈ [−1, 1]m such that α(Ã + B̃∆̃(I − D̃∆̃)−1C̃) = α = α∗(∆), and let

∆ = K+F 1/2∆̃F 1/2 be its inverse under the loop transform. Then δ ∈ ∆ by construction,
and α(A + B∆(I − D∆)−1C) = α. Now we may decompose the unstable matrix A as
follows

A =
[
A+B∆(I −D∆)−1C − αI − ϵI

]
+BΞ(I −DΞ)−1C −B∆(I −D∆)−1C

= A(∆) + B(Ξ,∆)

where the first term A(∆) := [A+B∆(I −D∆)−1C − αI − ϵI] satisfies α(A(∆)) = −ϵ,
and the second term is B(Ξ,∆) = BΞ(I −DΞ)−1C −B∆(I −D∆)−1C. Since this works
for arbitrarily small boxes ∆, we can pick K,F → 0 such that B(Ξ,∆) → 0, α → α∞ for
some limit, and A(∆) → A − α∞I − ϵI. Then A → A − α∞I − ϵI, which has spectral
abscissa = −ϵ. This contradicts the fact that each A is unstable. □
5.2. LMI-based evaluation. The test (13) is easy to compute, but rather conservative.
Test (20) is less conservative but computationally more demanding. The following test
offers an alternative which also reduces conservatism over (18). We use the following

Lemma 4. (Graham et al. [13]). Fix 0 < ω0 < ∞. Suppose there exist Hermitian
matrices Z1, Z2 ≻ 0 commuting with the ∆, Hermitian matrices Y1, Y2 commuting with
the ∆, and complex matrices F,G such that[

C̃HZ1C̃ C̃HZ1D̃ − jC̃HY1

∗ D̃HZ1D̃ − Z1 + jY1D̃ + ∗

]
+

[
F
G

] [
(−Ã+ αI) − B̃

]
+ ∗ ≺ 0(21)

[
C̃HZ2C̃ C̃HZ2D̃ − jC̃HY2

∗ D̃HZ2D̃ − Z2 + jY2D̃ + ∗

]
+

[
F
G

] [
(jω0I − Ã+ αI) − B̃

]
+ ∗ ≺ 0(22)

and there exist Hermitian matrices Z3, Z4 ≻ 0, Hermitian matrices Y3, Y4, all commuting

with the ∆, and complex matrices F̃ , G̃ such that[
C̃HZ3C̃ C̃HZ3D̃ − jC̃HY3

∗ D̃HZ3D̃ − Z3 + jY3D̃ + ∗

]
+

[
F̃

G̃

]
[jI 0] + ∗ ≺ 0(23)

[
C̃HZ4C̃ C̃HZ4D̃ − jC̃HY4

∗ D̃HZ4D̃ − Z4 + jY4D̃ + ∗

]
+

[
F̃

G̃

] [
(jI − ω−1

0 Ã+ ω−1
0 αI) − ω−1

0 B̃
]
+ ∗ ≺ 0.

(24)

Then α∗(∆) < α.
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Proof. Indeed, if the LMIs (21), (22) are satisfied for Z1, Z2, Y1, Y2, F,G, then by [13,

Theorem 1] (applied with η = 1, ω1 = 0, ω2 = ω0) we have µ∆(M̃α(jω)) ⩽ 1 for every

ω ∈ [0, ω0], where M̃α = (Ã− αI, B̃, C̃, D̃). Similarly, if the LMIs (23), (24) are satisfied,

then by [13, Theorem 2] (applied with η = 1, γ1 = 0, γ2 = 1/ω0) we have µ∆(M̃α(jω)) ⩽ 1
for every ω ∈ [ω0,∞]. Combining both, we have µ∆ ⩽ 1, which gives robust stability of

(Ã− αI, B̃, C̃, D̃) over [−1, 1]m. Hence

α
(
Ã− αI + B̃∆̃(I − D̃∆̃)−1C̃

)
< 0

for every δ̃ ∈ [−1, 1]m, and therefore α
(
Ã+ B̃∆̃(I − D̃∆̃)−1C̃

)
< α for every δ̃ ∈

[−1, 1]m. Hence by Lemma 2, α (A+B∆(I −D∆)−1C) < α for every δ ∈ ∆. □

Note that (21), (22) are coupled through F,G, and (23), (24) are coupled through F̃ , G̃,
but both blocks can be checked independently. In particular, if the first one fails, then
we do not have to check the second one in order to reach our decision:

PLMI :

{
if (21) – (24) hold for ∆ and α then pruning ∆
otherwise not−pruning

(25)

We conclude with the following immediate consequence of Lemma 4.

Lemma 5. The procedure PLMI is a consistent pruning test.

Proof. Since PLMI is less conservative than Pµ̃, the result follows from the corresponding
properties of Pµ̃. □

6. Frequency information

A particularity of the three pruning tests (18), (20), (25) is that they may provide
useful information even when the decision is P = not−pruning.

Lemma 6. Let ∆ be a subbox of [−1, 1]m. Let M = (A,B,C,D), M̃α = (Ã−αI, B̃, C̃, D̃)
the shifted system (15), (16) for ∆, and suppose α ⩾ 0. Let ω0 be a frequency such that

µ∆(M(jω0)) < 1. Then also µ∆(M̃α(jω0)) < 1.

Proof. Suppose µ∆(M̃α(jω0)) ⩾ 1, then also µ∆(M̃(jω0)) ⩾ 1, because α ⩾ 0 and µ∆ is

decreasing with respect to α. Hence there exists a structured perturbation ∆̃ as in (3)

such that I − M̃(jω0)∆̃ is singular and 1/σ(∆̃) ⩾ 1. Now we have two cases. Suppose
first that I −M(jω0)K is singular. Then it suffices to observe that K is itself a ∆ with
δ ∈ ∆, namely the midpoint δ∆ of ∆. That implies µ∆(M(jω0)) ⩾ 1/σ(K) ⩾ 1 due to
−1 ⩽ ai < bi ⩽ 1.
The second case is when I−M(jω0)K is regular. In that case we may write M̃(jω0) =

F 1/2(I −M(jω0)K)−1M(jω0)F
1/2 and ∆̃ = F−1/2(∆−K)F−1/2, hence

I − M̃(jω0)∆̃ = I − F 1/2(I −M(jω0)K)−1M(jω0)(∆−K)F−1/2

= F 1/2
[
I − (I −M(jω0)K)−1M(jω0)(∆−K)

]
F−1/2

= F 1/2(I −M(jω0)K)−1 [I −M(jω0)K −M(jω0)(∆−K)]F−1/2

= F 1/2(I −M(jω0)K)−1(I −M(jω0)∆)F−1/2.

Therefore I − M(jω0)∆ is singular. But σ(∆̃) ⩽ 1, hence δ̃ ∈ [−1, 1]m, hence δ ∈ ∆,
hence σ(∆) ⩽ max{|ai|, |bi|} ⩽ 1. That implies µ∆(M(jω0)) ⩾ 1/σ(∆) ⩾ 1. □
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Remark 4. Obviously, the same holds for any box ∆ with α and any of its subboxes

∆′ with α′ ⩾ α. In other words, if M̃α is the shifted system for ∆ with α, and M̃α′ the

shifted system for ∆′ with α′ ⩾ α, then µ∆(M̃α(jω0)) < 1 implies µ∆(M̃α′(jω0)) < 1.

This result allows the following improvement of the evaluations based on any of the µ-
upper bounds. We represent it for µ̂∆. Suppose we evaluate ∆ ∈ L at the current lower

bound α found by Trust. Suppose the stability test µ̂∆(M̃α)
?
< 1 delivers the decision

not−pruning, so that ∆ will have to be divided into two successor boxes ∆′, ∆′′, which
enter the list L . Suppose however that we have a partial stability result in the sense that

µ∆(M̃α(jω)) ⩽ µ̂∆(M̃α(jω)) < 1 say for all ω ∈ [0, ω♭] ∪ [ω♯,∞], where [0, ω♭] is a low
frequency band, [ω♯,∞] a high frequency band (ω♭ < ω♯). Then we store this information
along with ∆′,∆′′ ∈ L , so that when these boxes turn up for evaluation, it will be clear
that the stability test can be limited to the frequency band [ω♭, ω♯]. Note that the tests
(13), (18), (20) can all be restricted to frequency bands, which increases the chances for
pruning.
Should the stability test for say the box ∆′ fail again, even though now restricted to

[ω♭, ω♯], we may at least succeed to improve on the cutoff frequencies ω♭, ω♯ in the sense
that ω♭ → ω♭+∆ω♭ gets bigger, ω♯ → ω♯−∆ω♯ gets smaller. In consequence the successors
of ∆′ get an even smaller frequency band on which µ∆ < 1 has to be checked. Note also
that if the lower bound α changes between two such stages, this is no hindrance due to
lemma 6, as the value increases, so that the information is not lost. For the LMI-based
pruning test, the banded version takes the following form

PLMI(ω
♭, ω♯) :

{
if (27)-(28) hold pruning ∆
otherwise not−pruning

(26)

where[
C̃HZ1C̃ C̃HZ1D̃ − jC̃HY1

∗ D̃HZ1D̃ − Z1 + jY1D̃ + ∗

]
+

[
F
G

] [
(jω♭I − Ã+ αI) − B̃

]
+ ∗ ≺ 0(27)

[
C̃HZ2C̃ C̃HZ2D̃ − jC̃HY2

∗ D̃HZ2D̃ − Z2 + jY2D̃ + ∗

]
+

[
F
G

] [
(jω♯I − Ã+ αI) − B̃

]
+ ∗ ≺ 0(28)

Remark 5. In order to compute the low and high frequency bands [0, ω♭] and [ω♯,∞] it
is helpful to start the search using information obtained from the local solver. Suppose
the best lower bound is attained at α = Reλ for λ = α+ jω, then we search for ω♭ in the
range [0, 0.9ω], and for ω♯ in the range [2ω,∞].

7. Experiments for minimum stability degree

In this section we present the results achieved by our branch and bound algorithm
for program (5) applied to the 32 benchmarks of Table 1. The tests were realized using
Matlab R2014b and on a 64-bit PC with 2.70GHz dual-core and 16, 0 Go RAM.
In Table 1 column n shows the number of states in (1), while the columns named struc-

ture allows to retrieve the uncertain structure [r1, . . . , rm] of (3). For instance [133111] =
[1 1 1 3 1] = [r1 r2 r3 r4 r5] in benchmark Beam 3, and [132414] = [1 1 1 2 2 2 2 1 1 1 1] =
[r1 . . . r11] in benchmark Hard-Disk-Driver 4. The number of decision variables in (21)-
(24) and (27)-(28) is given in column ndec.
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♯ Benchmark n Struct. ndec ♯ Benchm. n Struct. ndec

1 Beam3 11 133111 338 17 Hydraulic servo4 9 19 266
2 Beam4 11 133111 338 18 Mass-spring3 8 12 112
3 Dashpot system1 17 16 534 19 Mass-spring4 8 12 112
4 Dashpot system2 17 16 534 20 Missile3 35 1363 3174
5 Dashpot system3 17 16 534 21 Missile4 35 1363 3174
6 DC motor3 7 1122 162 22 Missile5 35 1363 3174
7 DC motor4 7 1122 162 23 Filter3 8 11 92
8 DVD driver2 10 11331131 542 24 Filter4 8 11 92
9 Four-disk system3 16 113514 1112 25 Filter-Kim3 3 12 32
10 Four-disk system4 16 113514 1112 26 Filter-Kim4 3 12 32
11 Four-disk system5 16 113514 1112 27 Satellite3 11 116111 460
12 Four-tank system3 12 14 268 28 Satellite4 11 116111 460
13 Four-tank system4 12 14 268 29 Satellite5 11 116111 460
14 Hard disk driver3 22 132414 1258 30 Mass-spring-damper3 13 11 212
15 Hard disk driver4 22 132414 1258 31 Mass-spring-damper4 13 11 212
16 Hydraulic servo3 9 19 266 32 Mass-spring-damper5 13 11 212

Table 1. Benchmarks from [3] used for (5) and (6).

7.1. Test with µ-upper bound pruning. In Table 2, the third column α gives the
best (final) lower bound achieved by the local solver during branch and bound, where the
algorithm uses P = Pµ̂, while ranking R pushes those ∆ ∈ L towards the end of the
list, in which a δ associated with the current α occurs.
Column α corresponds to the value α = α + ϵ = α + |α| · tol, where ϵ is scaled to

the initial value α such that the relative error is fixed to tol. On exit the branch and
bound algorithm believes that the global maximum is α, and certifies that the true global
maximum α∗ lies between α and α = α+|α|·tol = α+ϵ. The branch and bound algorithm
converged in t∗ seconds CPU.
Branch and bound was initialized by the value α of column 3, computed in t seconds

CPU, where the local solver was run as stand-alone. For comparison we also tested the
algorithm with P = Pµ̃. This corresponds to an improved version of the method of [4].
Here the CPU is exceedingly long due to the strong conservatism of the pruning test,
which has the effect that only very tiny boxes are pruned. We do not report the CPUs
here.

7.2. Test with frequency sweep. Branch and bound was then tested with the fre-
quency sweep P(∆, α, ϵ, ω♭, ω♯) as in (26). In the case of benchmarks 20-22, the LMI
solver failed in the computation of ω♭, ω♯ due to the large number of decision variables
(see Table 1, column ndec). In the remaining cases, the search for ω♭ and ω♯ turned out
time consuming. For example, for the first benchmark, computing these frequencies for
∆ = [−1, 1]5 takes 20.22 respectively 204.87 seconds, leading to ω♭ = 0.05 and ω♯ = 0.1.

Subsequently, both ∆′ =

[
[−1 0]
[−1 1]4

]
and ∆′′ =

[
[0 1]

[−1 1]4

]
are pruned rapidly, because

P(∆′, α, ϵ, 0.05, 0.1) = pruning and P(∆′′, α, ϵ, 0.05, 0.1) = pruning. The final t∗ for
the first two benchmarks are 228.43 and 234.2 instead of 2.03 and 0.73 seconds reported
in Table 2.
In the last test we run the algorithm with P = Pµ̃ using a frequency sweep. The

frequencies ω♭ and ω♯ are computed by bisection and evaluation of the H∞-norm on the
low- and high-frequency bands. We observed that evaluation of ω♭ and ω♯ was considerably
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♯ α α tol t∗ t αZM tZM αLMI tLMI

1 -1.2e-7 -1.2e-7 0.01 2.03 0.19 -1.2e-7 32.70 x x
2 -1.7e-7 -1.7e-7 0.01 0.73 0.04 -1.7e-7 33.00 x x
3 1.88e-2 1.86e-2 0.01 588.45 0.23 1.86e-2 90.25 x x
4 -5e-7 -1e-6 0.50 53019.7 0.39 -1e-6 39.63 x x
5 -9.9e-7 -1e-6 0.01 0.71 0.08 -1e-6 39.63 x x
6 -9.9e-4 -1e-3 0.01 1.68 0.02 -1e-3 20.53 x x
7 -9.9e-4 -1e-3 0.05 1.79 0.02 -1e-3 20.74 x x
8 -4.9e-3 -1.65e-2 0.7 3.30e5 0.04 -1.65e-2 42.29 x x
9 1.02e-2 8.9e-3 0.15 669.84 0.10 8.9e-3 159.91 x x
10 -7.5e-7 -7.5e-7 0.01 4.12 0.29 -7.5e-7 73.86 x x
11 -1e-7 -1e-7 0.01 5.35 0.29 -1e-7 74.63 x x
12 -6e-6 -6e-6 0.01 0.67 0.02 -6e-6 26.03 x x
13 -6e-6 -6e-6 0.01 0.25 0.02 -6e-6 26.20 x x
14 2.72e2 2.66e2 0.02 3578.4 0.20 2.66e2 1252.5 x x
15 -1.57 -1.60 0.02 1.52 0.06 -1.6026 80.40 x x
16 -2.97e-1 -3e-1 0.01 0.57 0.04 -3e-1 51.41 x x
17 -2.97e-1 -3e-1 0.01 0.72 0.02 -3e-1 50.95 x x
18* -5.3e-3 -5.4e-3 0.01 6.3 0.01 -5.4e-3 31.59 x x
19 -3.65e-2 -3.68e-2 0.01 5.0 0.01 -3.68e-2 16.94 x x
20 2.29e1 2.26e1 0.01 39.43 0.07 2.26e1 104.18 x x
21 -4.9e-1 -5e-1 0.01 17.32 0.07 -5e-1 51.78 x x
22 -4.9e-1 -5e-1 0.01 22.55 0.07 -5e-1 52.24 x x

23+ -1.46e-2 -1.48e-2 0.01 0.1 0.06 -1.48e-2 7.05 x x
24+ -1.46e-2 -1.48e-2 0.01 0.1 0.02 -1.48e-2 6.89 x x
25* -2.47e-1 -2.5e-1 0.01 0.24 0.01 -2.5e-1 12.83 -2.47e-1 0.25
26* -2.42e-1 -2.5e-1 0.03 0.22 0.01 -2.5e-1 12.90 -2.47e-1 0.26
27 4.2e-5 3.9e-5 0.05 1557.7 0.02 3.9e-5 44.02 x x
28 -2.55e-2 -2.69e-2 0.05 0.45 0.02 -2.69e-2 26.02 x x
29 -2.65e-2 -2.69e-2 0.01 0.45 0.02 -2.69e-2 26.08 x x

30+ 2.04e-1 2.02e-1 0.02 0.24 0.01 2.02e-1 8.30 x x
31+ -9.9e-2 -1e-1 0.01 0.16 0.01 -1e-1 6.91 x x
32+ -9.9e-2 -1e-1 0.01 0.2 0.01 -1e-1 6.94 x x

Table 2. The most rapid results obtained with branch and bound Al-
gorithm 1 and its frequency sweep based versions for the benchmarks of
Table 1. (*) signifies by frequency sweep version of Pµ̃. (+) signifies by
frequency sweep version of Pµ̃ and PLMI (mixed approach). Others are
obtained using Pµ̂.

faster than with the LMI method, but µ̃∆ computed on [ω♭, ω♯] remained very conservative,
so that pruning occurred only for tiny boxes. Except for benchmarks 23-24 and 30-32,
which have a very simple uncertain structure, t∗ was extremely large and we do not report
the result here. In contrast, we observed that pruning by the LMI method, and evaluation
of ω♭ and ω♯ by the H∞-norm method reduced t∗ considerably. We refer to this as the
mixed approach.
Figure 3 illustrates different stages of the algorithm for benchmark ♯ = 18, where the

pruning test P = Pµ̂ is used. Dark gray squares are pruned, light gray squares are
further divided. The global minimum is attained at δwc = (−1, 1) indicated by the star,
and found by the local solver. The algorithm converges in 21.3 seconds. Figure 4 shows
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Figure 3. Pruning for benchmark 18 using Pµ̂. Dark squares are pruned,
light squares are divided. The method converges in 21.3 seconds.
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Figure 4. Pruning for benchmark 18 by frequency sweep (mixed ap-
proach). The algorithm converges after 6.3 seconds.

the corresponding steps based on the mixed approach. Here convergence occurred after
6.3 seconds.
For the first two benchmarks, t∗ improved to 45.8 and 42.9 seconds. In our numerical

tests, the mixed approach turned out fastest for ndec ≤ 112, except for very simple struc-
tured uncertainty (i.e. Struct.=11), where the frequency sweep Pµ̃ was the best.

7.3. Test with Zheng method and polynomial optimization. We also tested two
alternative global optimizers, the methods of Zheng et al. [28] which is a probabilistic
optimizer shown as Algorithm 2, and Lasserre’s method [18].
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Algorithm 2. Zheng-method for α∗ = max
x∈∆

f(x).

1: Initialize. Choose initial α < α∗.
2: Loop. Compute

α+ =

∫
[f⩾α]

f(x) dµ(x)

µ[f ⩾ α]
.

3: Stopping. If progress of α+ over α is marginal stop, otherwise α → α+ and loop on
with step 2.

Lasserre’s method solves the problem (8) by a hierarchy of LMIs. Following Henrion et
al. [17], robust stability of A(δ)− αI over ∆ is certified when the value of the following
polynomial optimization problem is > 0:

minimize det(H(δ))
subject to δ ∈ ∆

where H(δ) is the so-called Hermite-matrix of A(δ) − αI. The method uses GloptiPoly,
and Maple 14 to compute this determinant.
In table 2 the results αZM of the Zheng-method computed in tZM seconds and αLMI of

Lasserre’s method are also reported. αLMI improves over α in cases 25 and 26, but in the
remaining cases no certificate could be obtained even when feasibility of the SDP-solver
SeDuMi was enlarged to 103, and a large number of LMIs was considered. The bottleneck
of Lasserre’s method is slow convergence of the LMI approximation, that lower bounds
can not be taken into account, and the necessity to compute the determinant formally.
For instance, for the benchmark 6 (DC motor 3), Maple produces 75 pages output for the
determinant. In all other aspects the method is very promising.

Remark 6. For the benchmarks in Table 2 the branch and bound method certifies the
lower bounds α found by the local trust-region solver within a very mild tolerance ϵ.
The results are in almost perfect agreement with αZM found by the probabilistic Zheng
method (algorithm 2).
The CPUs of the local solver are orders of magnitude faster than those of the global

techniques. The performance of the branch and bound technique hinges in large parts
on the severeness of conservatism of the µ-upper bound pruning test. A large number
of repetitions ri in (3) usually leads to strong conservatism, and in consequence, to slow
convergence.

8. Worst-case H∞-performance

A branch and bound algorithm for problem (4) can be organized in much the same way
as for (5) by using a similar pruning test. Analogous µ-upper bounds can be based e.g.
on [29, Theorem 11.9], where parametric robust H∞-performance is identified as a special
case of parametric robust stability with regard to a suitably augmented system, see (1).

Theorem 3. Let P =

[
P11 P12

P21 P22

]
be a stable, real-rational transfer function with n1+m1

inputs and n2 + m2 outputs. Fix β > 0. For every ∆ ∈ Cm1×m2 with σ(∆) < 1/β, the
linear fractional transform Fu(∆, P ) = P22+P21∆(I−P11∆)−1P12 is well-posed, internally
stable, and satisfies ∥Fu(P,∆)∥∞ ⩽ β if and only if

sup
ω∈R

µ∆e(P (jω)) ⩽ β,
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m, while �p 2 Cn1⇥n2 is invariant. The two loops are
equivalent under (30), (31). Note that P (s) = C0(sI � A0)

�1B0 + D0, and
eP (s) =

eC0(sI � eA0)
�1 eB0 +

eD0.

where
�e :=

⇢
� 0

0 �p

�
: � 2 Cm1⇥m2 , �p 2 Cn1⇥n2

�
.

⇤
For the proof see [31]. In the following we use the last theorem and also the following

result, which is proved in [31]:

Lemma 7.

(29) max

�(�)61
kFu(P, �)k1  � , max

!2[0,1]
µ�e

✓
P11(j!) P12(j!)

P21(j!)/� P22(j!)/�

�◆
6 1.

⇤
Based on these results, we now propose a variant of the branch and bound algorithm

1 for program (4). The algorithm is initialized with � = h(1 + tol), where 0 < tol ⌧ 1 is
the desired precision. A box � is pruned if

bµ�e

✓ eP11
eP12

eP21/� eP22/�

�◆
< 1.

If � cannot be pruned, it is bisected and Trust is called to find a new local worst-case
gain and its associated worst-case � $ �. The final result is denoted by h, computed in
t seconds. According to the choice of tol > 0 we have h 6 h⇤ 6 h = h(1 + tol) on exit, so
that for small tol the value h⇤ is tightly bounded.

Remark 7. Due to �p 2 Cn1⇥n2 , which does not depend on �, the loop transformation
(15), (16) is modified to

K0 = diag(K, 0n1⇥n2),

F1 = diag(F, In1),
F2 = diag(F, In2),

(30)

and
eA0 = A0 + B0(I � K0D0)
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Figure 5. On the left ∆ ↔ δ ∈ ∆ =
∏m

i=1[ai, bi], on the right ∆̃ ↔
δ̃ ∈ ∆̃ = [−1, 1]m, while ∆p ∈ Cn1×n2 is invariant. The two loops are
equivalent under (30), (31). Note that P (s) = C0(sI − A0)

−1B0 +D0, and

P̃ (s) = C̃0(sI − Ã0)
−1B̃0 + D̃0.

where

∆e :=

{[
∆ 0
0 ∆p

]
: ∆ ∈ Cm1×m2 ,∆p ∈ Cn1×n2

}
.

□
For the proof see [29]. In the following we use the last theorem and also the following

result, which is proved in [29]:

Lemma 7.

(29) max
σ(∆)⩽1

∥Fu(P,∆)∥∞ ≤ γ ⇔ max
ω∈[0,∞]

µ∆e

([
P11(jω) P12(jω)

P21(jω)/γ P22(jω)/γ

])
⩽ 1.

□
Based on these results, we now propose a variant of the branch and bound algorithm

1 for program (4). The algorithm is initialized with γ = h(1 + tol), where 0 < tol ≪ 1 is
the desired precision. A box ∆ is pruned if

µ̂∆e

([
P̃11 P̃12

P̃21/γ P̃22/γ

])
< 1.

If ∆ cannot be pruned, it is bisected and Trust is called to find a new local worst-case
gain and its associated worst-case δ ↔ ∆. The final result is denoted by h, computed in
t seconds. According to the choice of tol > 0 we have h ⩽ h∗ ⩽ h = h(1 + tol) on exit, so
that for small tol the value h∗ is tightly bound.

Remark 7. Due to ∆p ∈ Cn1×n2 , which does not depend on γ, the loop transformation
(15), (16) is modified to

K0 = diag(K, 0n1×n2),

F1 = diag(F, In1),
F2 = diag(F, In2),

(30)

and

Ã0 = A0 +B0(I −K0D0)
−1K0C0, B̃0 = B0(I −KD0)

−1F
1/2
2 ,

C̃0 = F
1/2
1 (I −D0K0)

−1C0, D̃0 = F
1/2
1 D0(I −K0D0)

−1F
1/2
2 ,

(31)
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where

A0 = A, B0 =
[
B Bw

]
, C0 =

[
C
Cz

]
, D0 =

[
D Dqw

Dzp Dzw

]
,

and where all the involved matrix are given in (1), (15), (16). By inspecting Figure 5 one
easily proves that

diag(∆̃,∆p) = F
−1/2
1 (diag(∆,∆p)−K0)F

−1/2
2 .

9. Experiments with worst-case H∞

♯ Benchmark n Structure h h hwc tol t t

1 Beam1 11 133111 1.71 1.74 1.70 0.02 0.4 412.9
2 Beam2 11 133111 1.29 1.32 1.29 0.02 0.3 199.2
3 DC motor1 7 1122 0.72 0.73 0.72 0.01 0.2 2.2
4 DC motor2 7 1122 0.50 0.50 0.50 0.01 0.1 0.18
5 DVD driver1 10 11331131 45.45 47.72 45.46 0.05 0.2 42412.3
6 Four-disk system1 16 113514 4.56 4.60 3.5 0.01 0.6 1.6
7 Four-disk system2 16 113514 0.68 0.69 0.69 0.01 0.4 22.74
8 Four-tank system1 12 14 5.60 5.65 5.6 0.01 0.5 2.3
9 Four-tank system2 12 14 5.57 5.62 5.6 0.01 0.4 13.1
10 Hard disk driver1 22 132414 7526.6 failed Inf - 2.1 -
11 Hard disk driver2 22 132414 30e-3 31e-3 30e-3 0.03 0.2 784.4
12 Hydraulic servo1 9 19 1.17 1.20 1.17 0.03 0.3 31.3
13 Hydraulic servo2 9 19 0.70 0.72 0.70 0.03 0.3 1814.1
14 Mass-spring1 8 12 6.19 6.25 3.71 0.01 0.3 8.2
15 Mass-spring2 8 12 6.84 7.05 7.16 0.03 0.9 1069.9
16 Missile1 35 1363 5.15 5.3 5.12 0.03 0.4 107.9
17 Missile2 35 1363 1.82 1.92 1.83 0.05 0.2 168.5
18 Filter1 8 11 4.86 4.91 4.86 0.01 0.4 3.3
19 Filter2 8 11 2.64 2.66 2.63 0.01 0.3 3.2
20 Filter-Kim1 3 12 2.96 2.99 2.95 0.01 0.2 2.3
21 Filter-Kim2 3 12 2.79 2.82 2.79 0.01 0.1 1.2
22 Satellite1 11 116111 0.16 0.17 0.16 0.01 0.4 99.9
23 Satellite2 11 116111 0.15 0.16 0.15 0.03 0.2 803.4
24 Mass-spring-damper1 13 11 8.85 8.93 7.63 0.01 0.2 3.9
25 Mass-spring-damper2 13 11 1.65 1.66 1.65 0.01 0.1 4.63

Table 3. Benchmark problems for (4) and some results.

In table 3, h denotes the best lower bound of the worst-case gain found by Trust
in t seconds CPU. Column h is the result obtained by branch and bound in t seconds
CPU. Column hwc is the worst-case gain upper bound obtained by the wcgain function
of MATLAB [30]. As can be seen, with the exception of problems 6, 14 and 24, wcgain
gives results close to those found by Trust and branch and bound. In order to achieve
a compromise between the execution time of the branch and bound algorithm and its
precision, we increased tol for example from 0.01 for the simple uncertainty structures
to 0.05 for the more complex ones. Note that an uncertain structure (3) is the more
complicated, the larger the numbers ri of repetitions, as this renders the µ-based pruning
tests sensibly more conservative.
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10. Distance to instability

In this section we discuss a variant of the branch-and-bound algorithm for computation
of the distance to instability (6), or stability margin d∗, of (1). If A is nominally stable,
the margin could be defined as

d∗ = sup{d : A(δ) stable for all |δ|∞ < d}.
We work under the assumptions that A is nominally stable, that some δ0 ∈ Rm is known
for which A(δ0) is unstable, but that (1) is well-posed in the box |δ|∞ ⩽ |δ0|∞. In
consequence (6) may also be represented as the minimization problem

d∗ = inf {|δ|∞ : A(δ) unstable}
and this can be written as

minimize t
subject to −t ⩽ δi ⩽ t, i = 1, . . . ,m

α(A(δ)) ⩾ 0
(32)

with decision variable (t, δ) ∈ R1+m. Due to the form (32) the problem is now a global
minimization problem, which means that the terminology of the previous sections has to
be adapted to this change of sign.

10.1. Local solver. We have once again our local solver Trust at our disposal, which
computes a local minimum d of (32) that serves as an upper bound of the global minimum
d∗, that is, d∗ ⩽ d. Note that Trust is in fact applied to the following penalized form of
(32), which is amenable to the approach in [1, 3]:

min{max{t, kmax{0,−α(A(δ))}} : (t, δ) ∈ C},
where the penalty constant k > 0 is suitably adapted, and where C represents the convex
constraints in (32). In the branch and bound algorithm we re-evaluate d regularly on
boxes representing subproblems, which occasionally leads to an improved upper bound.
Running the local solver within ∆ also helps to rank subproblems in the list of doables.
A parameter δ ∈ [−d, d]m, where the current best value obtained by Trust is d, is stored
and named the incumbent.

10.2. Subproblems. Let d be the current best upper bound found by the local solver.
Then subproblems are specified by axe-parallel subboxes of the box [−d, d]m, and the
current list of doables L contains finitely many subproblems. Every subproblem can be
formally defined as

d∗(∆) = min{|δ|∞ : δ ∈ ∆, A(δ) unstable}.
Suppose the current list is L = {∆1, . . . ,∆r}, and suppose the local solver finds an

improved upper bound d
′
< d and incumbent δ

′
. Then we replace each element ∆i ∈ L

by ∆′
i = ∆i∩ [−d

′
, d

′
]m, because it is then no longer of interest to search for destabilizing

δ’s outside [−d
′
, d

′
]m. We abbreviate this operation by L → L ′. It may occasionally

reduce the length of the list, as some ∆′
i may be empty, but its main benefit is that it

makes the subproblems easier for pruning.

10.3. Pruning test. Let d be the current best upper bound, and let ∆ be a subbox of
[−d, d]m. As soon as it is known that d∗(∆) ⩾ d, it is not necessary to evaluate ∆, as no
improvement over the current d could be found.
In order to provide a pruning test, we use once again µ-upper bounds. If the system

(A,B,C,D) is robustly stable over ∆ and if a tolerance ϵ > 0 is allowed, we know that
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Figure 6. The hollow hyperbox [−d + ϵ, d − ϵ]m \ [−d0, d0]
m shown for

m = 2 on the left is covered by 2m = 4 partly overlapping subboxes.

µ−1
∆ ≤ d − ϵ. This means that no δ ∈ ∆ can improve over the incumbent δ within that

tolerance ϵ, and ∆ can therefore be pruned.
In order to decide, we apply the loop transformation (15), (16) to shift (A,B,C,D) with

uncertainty on ∆ to the equivalent system (Ã, B̃, C̃, D̃) with uncertainty δ̃ ∈ [−1, 1]m.
Then we check robust stability over [−1, 1]m using any of the µ-upper bounds µ̂∆, µ̃∆, or
the LMI-variant, the justification coming again from Lemma 2. In other words, with the
notation of section 3 we compute the test P(∆, 0, 0).
Naturally, we may as before store low and high frequency bands on which robust stabil-

ity is already certified, so that the pruning test can be limited to the band [ω♭, ω♯]. Here
we write P(∆, 0, 0, ω♭, ω♯). If a box in L is evaluated but cannot be pruned, then we
divide it into two non-overlapping subboxes, where we cut one of the longest edges in two
halves.

10.4. Initialization of the list L . In contrast with section 5 we shall apply a different
initialization. Suppose the list of doables L is first initialized with the sole box [−d, d]m.

Let M̃d−ϵ be the shifted system for this initial box with the tolerance ϵ > 0 taken into

account, then µ̂∆(M̃d−ϵ) > 1, because otherwise the procedure ends successfully after the
first step. Now we define

(33) d0 = sup{d ⩾ 0 : µ̂∆(M̃d) < 1} ⩽ d− ϵ,

where M̃d is the shifted system for the box [−d, d]m. In other words, we apply a con-
servative test which assures robust stability of A(δ) over the smaller box [−d0, d0]

m.
In order to certify d up to the tolerance ϵ, it remains to test robust stability over the
region R = [−d + ϵ, d − ϵ]m \ [−d0, d0]

m. As this set has a hole, it is not easily cov-
ered by axe-parallel boxes, in fact, one needs 2m such boxes, which are of the form
[−d+ ϵ,−d0]× [−d+ ϵ, d− ϵ]m−1 and [d0, d− ϵ]× [−d+ ϵ, d− ϵ]m−1, and similarly for the
other coordinates. This means that the list of doables starts with 2m elements, and those
are now partly overlapping. For a visualization of the two-dimensional case see Figure 6.

10.5. Tolerances. On exit the branch and bound algorithm certifies that d = d − ϵ <
d∗ ⩽ d. In order to obtain a scale-invariant procedure, we steer the method such that

ϵ = d · tol,

where we want tol as small as possible and if possible, the same in each test. The actual
values of tol we achieved are given in the forth column of Table 4.
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10.6. Running local solver at evaluation. One could use the following procedure.

Re-center ∆ into ∆̃. Then maximize α(Ã(δ̃)) locally over ∆̃ using Trust. If a value

α ⩾ 0 is found at δ̃ ∈ ∆̃, then the upper bound d is reduced as follows. Transform δ̃ back
to δ ∈ ∆, and put d = |δ|∞.

Algorithm 3. Branch and bound for d∗ in program (6).

Parameters: Tolerance ϵ > 0.
Subroutines: Local solver Trust, P for pruning, R for ranking.

1: Lower bound. Call local solver to compute upper bound d and incumbent δ. Com-
pute d0 according to (33). If d− d0 ⩽ ϵ stop. Otherwise continue.

2: Initialize list. Compute 2m boxes covering [−d+ ϵ, d− ϵ]m \ [−d0, d0]
m and initialize

list L with those. Call R to rank boxes in L .
3: while L ̸= ∅ do
4: Choose element ∆ ∈ L ranked first for evaluation.
5: Call pruning test P for ∆ with tolerance ϵ.
6: if P(∆, 0, 0) = pruning then
7: Remove ∆ from L
8: else
9: Remove ∆ and replace it by two successors ∆′, ∆′′ in L

10: Call local solver within ∆. Update upper bound and incumbent and actualize
list using operation L → L ′.

11: end if
12: Call R to update ranking of L
13: end while
14: Return d and δ.

11. Experiments with distance to instability

In this section we report experiments on computation of the distance to instability.
First our branch and bound method is evaluated, and then comparison is made with an
alternative method from [6].

11.1. Results for algorithm 3. Table 4 reports the results of the branch and bound
algorithm 3 for program (6) using the 32 examples of the test bench of Table 1. On exit,
the branch and bound algorithm believes that the correct distance to instability is d∗ = d,
and certifies that d∗ satisfies d ⩽ d∗ ⩽ d. The result is achieved in t seconds CPU. The
local solver needs t seconds CPU to compute a first upper bound d in stand-alone mode,
and this result is scarcely improved at the end of branch and bound, reported in column
2.
We have also tested the variant with frequency sweep. In test cases 6 and 8 it was

not possible to compute ω♯, as even frequencies ω > 1020 did not lead to a stable high
pass band. In all other cases the search for ω♭, ω♯ was rapidly successful when the
method of remark 5 was used in the following adapted form. If α(A(δ)) = Reλ with
λ = α + jω, then we search for ω♭ in [0, 0.9ω], and for ω♯ in [2ω, 20ω]. In several cases
(6,7,8,12,13,16,17,25,26,28,29) the value ω = 0 was obtained, in which event ω♭ = 0 was
chosen.
In a number of cases the algorithm turns much faster with the frequency sweep method

to reach the same precision. In studies 1 and 20 the time was reduced by 50%. In study
3 the basic method had not even achieved 20% of its work, when the frequency based
method already touched base.
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♯ d d tol t t

1 3.7517 3.6767 0.020 0.27 540.10
2 4.3509 4.2639 0.020 0.18 855.60
3 0.1398 0.1370 0.020 0.36 7994.10
4 1.0329 0.7230 0.300 0.35 27471.40
5 1.2868 1.2740 0.010 0.30 118.75
6 3.3333 3.2667 0.002 0.28 212.8
7 3.3333 3.3008 0.010 0.29 42.26
8 3.0303 0.6061 0.80 0.90 7927.36
9 0.7484 0.7334 0.020 0.78 51201.10
10 1.2087 1.1845 0.020 0.98 18464.30
11 1.8597 1.5808 0.15 1.15 38125.24
12 6.6680 6.6346 0.005 0.18 25.67
13 6.6711 6.6378 0.005 0.16 35.14
14 0.8447 0.8194 0.030 1.06 712.1
15 1.4571 1.4134 0.030 1.15 2859.60
16 1.5000 1.47 0.020 0.36 2933.7
17 1.5000 1.4550 0.030 0.35 7140.50
18 1.0816 1.0762 0.005 0.08 17.83
19 1.3813 1.3122 0.05 0.54 487.48
20 0.2610 0.2580 0.005 1.26 448.89
21 1.5146 1.5070 0.005 1.29 515.61
22 3.1663 2.53 0.2 1.34 34087.6
23 1.3333 1.3177 0.012 0.24 13.29
24 1.3333 1.3177 0.012 0.13 12.96
25 3.3333 3.3073 0.008 0.06 55.06
26 3.3333 3.3301 0.001 0.15 1.50
27 0.9994 0.9867 0.013 0.41 2.99
28 2.4432 2.4188 0.01 0.59 53.2
29 2.4432 2.4188 0.01 0.52 54.7
30 0.5815 0.5741 0.013 0.22 28.72
31 1.2309 1.2153 0.013 0.19 17.18
32 1.3718 1.3557 0.012 0.25 16.76

Table 4. The results with Algorithm 3 for the benchmarks of Table 1.

Remark 8. Posterior inspection of those cases where locating a robustly stable high
frequency band [ω♯,∞] failed indicates that this is never due to an active frequency
ω = ∞, contrary to the case of an active ω = 0, which does indeed occur. A practical
solution for these cases is to run the entire method on a band [0, ω♯] only, where ω♯ is
fixed throughout. In consequence the final certificate is then only obtained on [0, ω♯].

For benchmarks 4,9,11 and 22 the execution time of branch and bound was excessively
large even with a relatively large value tol. Not surprisingly CPUs are very sensitive to the
choice of the tolerance tol. For instance, in test case 9 slightly relaxing the tolerance from
tol = 0.02 to tol = 0.05 reduced execution time from t = 51201.1 seconds to t = 1981.3
seconds.

11.2. Comparative results. A new benchmark from our colleagues [6], available in
[31], is also considered to illustrate the efficiency of Algorithm 3. The results are shown
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♯ Benchmark n Structure d dF/d d/d t t

33 Academic example 5 11 0.79 1 1 0.15 21.5
34 Academic example 4 13 3.41 1 0.98 0.13 8.8
35 Academic example 4 22 0.58 1 0.98 0.15 22.6
36 Inverted pendulum 4 13 0.84 1 0.98 0.22 1756.6
37 DC motor 4 12 21 11 1.25 1 0.98 0.19 137.5
38 Bus steering system 9 21 31 1.32 0.99 0.98 0.37 17.3
39 Satellite 9 21 12 1.01 0.99 0.98 0.3 1782.1
40 Bank-to-turn missile 6 14 0.60 0.99 0.98 0.17 2.9
41 Aeronautical vehicle 8 14 0.61 0.99 0.98 0.19 79.8
42 Four-tank system 10 14 6.67 0.99 0.99 0.27 4.7
43 Re-entry vehicle 6 31 21 31 6.20 1 0.99 0.44 7.0
44 Missile 14 14 7.99 1 0.99 0.25 3.6
45 Cassini spacecraft 17 14 0.06 1 0.97 0.13 90126.3
45 Mass-spring-damper 7 16 1.17 1 0.99 0.17 5.5
46 Spark ignition engine 4 17 1.22 0.99 0.98 0.41 9.4
47 Hydraulic servo system 8 18 1.50 0.99 0.98 0.41 689.4
48 Academic example 41 21 13 1.18 0.99 0.99 0.57 6.0
49 Drive-by-wire vehicle 4 12 27 1 0.99 0.77 0.96 31.5
50 Re-entry vehicle 7 13 61 41 1.02 0.98 0.97 0.42 152.4
51 Space shuttle 34 19 0.79 0.99 0.99 0.8 4 .1
52 Rigid aircraft 9 114 5.42 1 0.99 0.54 27042.7
53 Fighter aircraft 10 31 151 16 21 11 0.59 0.99 0.90 1.31 2860.3
54 Flexible aircraft 46 120 0.22 0.99 0.94 1.26 57.1
55 Telescope mockup 70 120 0.02 0.99 0.92 1.37 1385.1
56 Hard disk drive 29 18 24 111 0.82 1 0.95 2.87 358.5
57 Launcher 30 12 22 12 31 61 112 28 1.16 0.99 0.88 4.08 103.5
58 Helicopter 12 304 0.08 0.99 0.99 0.85 163.7
59 Biochemical network 7 3913 1.4e-3 1 failed 36.76 -

Table 5. Benchmarks of [6, 31] and different estimations of d∗.

in Table 5. In the test cases 49 and 57 where the value of d/d is relatively small, we could
not implement the second step. In these cases numerical errors due to excessively large
conditioning number of I −KD and I −DK (see (16)) occurred. The failure of case 59
is again due to numerical problem. This is explained because the uncertainty structure is
very complex Structure=3913. In table 5, the estimation of d∗ found by the method of
[6] is termed dF .

12. Conclusion

We have presented a branch and bound scheme to compute typical quantities in the
robustness analysis of dynamical systems with real uncertain parameters. Since eigenvalue
functions of non-symmetric matrices do not easily lend themselves to interval arithmetics,
we have developed problem-specific pruning tests, which avoid the explicit computation
of upper bounds. A novel method to include frequency domain information in the pruning
test often leads to an additional gain of speed. The method was tested on a bench of
116 challenging problems featuring systems with up to 70 states, up to 28 uncertain
parameters, and with up to 20 repetitions. Heuristic bounds were computed speedily and
reliably using a non-smooth local optimization method based on a bundle trust-region
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method from [1]. In all cases the branch and bound algorithm succeeded in certifying
the bound delivered by the local solver, with CPUs ranging from seconds to days in some
difficult cases.
Future work should extend the present approach to complex uncertainties, and use

these methods in controller synthesis. Speeding up the pruning test remains a principal
issue of the branch and bound approach. It may also be worthwhile to investigate whether
interval arithmetic techniques can be extended to address eigenvalue functions like α of
the H∞-norm.
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