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BAIRE SPACES AND GRAPH THEOREMS

DOMINIK NOLL

Abstract. We prove graph theorems and a variant of the Banach-Steinhaus theorem

in a purely topological context. We obtain characterizations of Baire spaces in the

class of metrizable spaces by means of graph theorems.

Introduction. The following abstract form of a graph theorem covers the pre-

ponderant part of work in this field:

Let f be a nearly continuous mapping from a space E to a space F which satisfies a

certain condition (frequently expressed in terms of the graph of f). Then, under

appropriate conditions on E and F, the mapping f is continuous.

The most convenient applications of this scheme deal with the case where the

graph of the mapping / is closed. The reader might consult [Ko, p. 33ff], where the

classical theory is treated, [Hu] for the situation in topological groups, [Ke], [LR] for

the case of uniform spaces, [Wi], [BP], [We] for the general topological case. In this

paper, the main interest is directed toward the case where the graph G(f) of/is a

Gs-set (more generally a set of interior condensation). In §1 we prove that if Tí is a

Baire space and if F is complete (in a certain sense) then the graph theorem above

holds for mappings / whose graph is Gs. In §2 we prove graph theorems for

mappings with measurability conditions. In this case the completeness property for

F is no longer needed. As a consequence, in §2 we obtain a purely topological

variant of the Banach-Steinhaus theorem.

§3 is devoted to the study of a converse problem arising from our graph theorems

in §§1 and 2. In view of the fact that these theorems hold for source spaces E which

are Baire spaces it is natural to pose the following question:

Let E be a space such that a certain graph theorem holds for E and all suitable f and

F. Must E then be a Baire spacel

We prove that the answer is in the positive if E is assumed to be metrizable, thus

obtaining three characterizations of Baire spaces in the framework of metrizable

topological spaces. Finally we prove that in the absence of metrizability the Baire

condition is no longer necessary.

In the final §4 we give a brief examination of a graph theorem of Wilhelm's [Wi],

in which almost continuous mappings are used instead of the nearly continuous ones

used here.
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0. Preliminaries. In this section we give a brief survey of the technical notions used

in this paper.

0.1. Nearly continuous mappings. Let E, Fbe topological spaces. A mapping/from

E to F is called nearly continuous if for every x e E and every neighborhood U of

f(x) the set/_1(c7) is a neighborhood of x. (Compare [Kö, p. 36], [We, Wi, BP].)

0.2. Complete spaces. A topological space E is called complete if there exists a pair

(<p, T) consisting of a tree T = (T, < T) (cf. [J, p. 91]) of height co and a mapping ^

from T to the topology of E such that the following conditions are satisfied:

(i) the set {<t>(t): te T}isa base for E;

(ii) whenever t e Ttben {4>(s): t < r s e 7"} is a base for <i>(0;

(iii) if b c T is a cofinal branch [J, p. 91] such that <p(t) # 0 for all t S b then

D{d>(0: t eb) * 0,too.

E is called strongly complete if the following condition (iv) holds instead of (iii):

(iv) If b c T is a cofinal branch and if ¡5 is a filter on E with ¿>(i) e g for all

t e b, then g has a cluster point in n{<|>(0: t e b).   D

Since (iv) implies (iii), every strongly complete space is complete. In the frame of

regular spaces the strongly complete spaces are known under the name 'monotoni-

cally Cech complete spaces', used in [CCN], and as 'spaces with condition Jf', used

in [WW]. The class of complete spaces is closed under arbitrary products and is

(^-hereditary. Every complete space is Baire.

0.3. Sets of interior condensation. A subset P of a topological space E is called a set

of interior condensation in E if there exists a pair (<i>, T) consisting of a tree T of

height to and a mapping (p from T to the topology of E such that the following

conditions are satisfied:

(i){¿>(/): t e T} is a cover of P;

(ii) whenever / e Tthen {(¡>(s): t <Ts e T} covers P n <j>(t);

(iii) if b c Tis a cofinal branch, then C\{<j>(t): t e b) e P.   D

Every C7s-set is a set of interior condensation. The concept of a set of interior

condensation has been introduced by Wicke and Worrell in [WW]. We have

reproduced their definition here in a slightly modified form.

0.4. The Banach-Mazur game. We will use here the classical Banach-Mazur game

between players A and B both playing with perfect information (see [Ox], [Wh]). A

strategy for player A is a mapping a whose domain is the set of all decreasing

sequences (Gx,.. -,G2n_x), n > 1, of nonempty open sets such that a(Gx,... ,G2n_x)

is a nonempty open set contained in G2n_x. Dually, a strategy for player B is a

mapping ß whose domain is the set of all decreasing sequences (Ux,...,U2n), n > 0,

of nonempty open sets such that ß(Ux,...,U2n) is nonempty, open and contained in

U2n. Here « = 0 stands for the empty sequence, for which ß(0) is nonempty and

open, too. If a, ß are strategies for A, B respectively, then the unique sequence Gx,

G2, G3,... defined by ß(0)=Gx, a(Gx) = G2, ß(Gx,G2)=G3, a(Gx,G2,G3) =

G4,... is called the game of A with a against B with ß. We will say that A with a

wins against B with ß if D{ G„: n e N} ^ 0 holds for the game Gx, G2,... of A with

a against B with ß. Conversely, we will say that B with ß wins against A with a if A

with a does not win against B with ß.
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We will make use of the following theorem, essentially proved by Banach and

Mazur (cf. [Ox]):

Let E be a topological space. The following are equivalent:

(1) E is a Baire space;

(2) for every strategy ß of B there exists a strategy a of A such that A with a wins

against B with ß.    D

1. The main theorems. In this section we prove our fundamental results.

Theorem 1. Let E be a Baire space and let F be a regular complete space. Suppose

that f is a nearly continuous mapping from E to F whose graph G(f) is a set of interior

condensation in E X F. Then f is continuous.

Proof. Let (<i>, T) be given on F as in 0.2 and let (i/>, C) be given for the graph

G(f) of / as in 0.3. Fix x e E and a neighborhood U of f(x). Choose, by the

regularity of F, an open neighborhood V of f(x) with V ç U. We wish to prove

intf-l(V) ef-\U). Take y e intf~l(V). It is sufficient to prove f(y)e V. To

this end, we take an open neighborhood Wof f(y). If we can establish V n W # 0,

the proof will be finished.

We will now define a strategy ß for player B in the game described in 0.4. For this

purpose it will be helpful to have well-orders on the sets T, C, E and 11, where U is

the set of all open boxes U X V in E X F. Now we can start. _

(1) ß(0) has to be defined. Since int/_1(If ) is a neighborhood of y e f~l(V),

there exists a first (for the well-order of E) element zx e intf~1(W) n f~l(V). By

property (i) in 0.2 there exists a first (for the well-order of J) element tx e T with

f(zx) e d>(tx) c V. Now (zx, f(zx)) e G(f) and, consequently, by (i) in 0.3 there

exists a first (for the well-order of C)bxe C with (zx, f(zx)) e \p(bx). Finally, there

exists a first (for the well-order of U) Ux X Vx such that (zx, f(zx)) e Ux x Vx ç

xp(bx), Uxeintf-x(W)1_VxQd)(tx). Observe now that Ux n int/'H^) is a

neighborhood of zx e f'l(W) and therefore we find a firstyx e UXC\ int f'l{Vx)

C\f-l(W). Choose the first sxe T with f(yx) e <t>(sx) ç W and the first cx e C

with (yx, f(yx)) e 4>(cx). Then take the first Ox X Wx in U with (yx, f(yx)) e Ox X

Wx ç <//(c.), Oxc UXC\ inif-l(Vx) and Wx <z <j>(sx). Now we define ß(0):= Ox n

int f~l(Wx).

(2) ß(Gx, G2) has to be defined, where Gx, G2 are nonempty and open with

G2 ç G,. Examine whether ß(0) = Gx. If not, then we may define ß(Gx, G2) as we

like, say ß(Gx,G2) = G2. If ß(0) = G, then Gx = Oxn intf~l(Wx), i.e. the con-

struction of (1) above is available. Hence G2 £ OxC\ intf'x(Wx) and, since Ox ç

intf'l(Vx), there exists a first (for the well-order of E) z2 e G2 n f'l(Vx). Now we

have f(z2) e Vx c <¡>(tx). Hence, by condition (ii) in 0.2, there exists t2e T with

tx <Tt2 such that f(z2) e <¡>(t2) c Vx and, in addition, t2 is the first for the

well-order of T with this property. But now we have (z2, f(z2)) e Ox X Vx ç Ux X

Vx ç \p(bx). Hence, by condition (ii) in 0.3 there exists a first (for the well-order of

C) element b2e C with bx <cb2 and (z2, f(z2)) e 4>(b2). Let U2 X V2 be the first

element of 11 such that (z2, f(z2)) e U2 X V2 c ip(b2), U2 ç G2 and V2 e <p(t2).
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Now U2 n int/_1(F2) is a neighborhood of z2e G2 ç f~l(Wx). Hence there

exists a first y2 e U2 n int/-1(K2) n/-1^,). Let s2 S T be the first (for the

well-order of T) such that sx <Ts2 and/(j2) e <j>(s2) ç Wx, which exists by (ii) in

0.2 and the fact that Wx c <j>(sx). Let c2e C be the first with cx <cc2 and

(a. /i^)) G *(<*)> which exists since (ä. f(yii) ^U2xWxeOxXWxe d,(cx).

Finally, let 02 X W2 be the first element of 11 with (y2, f(y2)) e 02 X W2 Q j>(c2),

W2 ç <j>(s2), 02e U2r\ int/_1(^2) and then define yS(G1( G2):= 02 n int/_1(W2)-

(3) In this way we proceed to define ß by recursion. At every stage we examine

whether the sequence (Gx,...,G2n) has been defined 'along our route'. If not, then

the next move will be of no importance, i.e. we may define ß(Gx,...,G2n) = G2„.

But if ß(0) = Gx and ß(Gx,...,G2k) = G2k + X for all k < n, then all the former

steps are available and we can define G2n + X in analogy with (2).

Suppose now that ß has been defined. Since E, by assumption, is a Baire space,

there exists a strategy a for player A such that A with a wins against B with ß (see

0.4). Let Gx, G2,... be the game of A with a against B with ß. Then, by the

definition of ß, there exist sequences (U„), (Vn), (On), (Wn), (tn), (s„), (b„), (c„) and

(yn), (zn) such that the following conditions are satisfied:

(1) G2n_x = 0„ n intrH^Jand G2„ c G2n_x,

(2) zn + x is the first (for the well-order on E) element of G2n C\ f'l(Vn);

(3) tn + x is the first (for the well-order on T) element of T with tn <T t„ + x and

(4) bn + x is the first element of C with b„ < c bn + x, (z„ + x, f(zn + x)) e 4<(bn + x);

(5) Un+1 X Vn+X is the first element of U with zn+x e Un+X c G2n, f(zn+x) e

Vn + x C Htn + l) and Un+X X Vn + X c HK + xY_

(6)yn + 1 is the first element of Un+X n int/'H^+J n/"1^);

(7)J„+1 g ris the first withs„ <Ts„ + x,f(yn + x) e <¡>(s„ + x) e Wn;

(8) cH + l c > cn is the first with (yn + x, f(yn + l)) e ^(cn+x); _

(9) 0„+x X W„+i is the first in u with yn+i G 0H+x c £/B+1 n int/-1(^+1),

/(ä+i) g ^» + i c <J»(^„ + 1)andO„ + 1X Wn + X c i//(c„ + 1);

(10) G2n+1 - On+1 O int/"l(»;+1).

By (1), (5) and (9) we have f]{Gn: n e N) = f){U„: n e N) = f]{On: n e N}. But

note that a is winning, hence this intersection is nonempty. Choose u herein. By the

definition of completeness (see 0.2) there exist elements v e n{<i>(/„): n G N} and

w e f]{(j>(sn): n e N}, both by condition (iii) in 0.2. By (5) and (3) we have

(u, v) e Un X Vn c \p(bn) for all n, which yields (u, v) e G(f) in view of condition

(iii) in 0.3. Hence, v = f(u). A similar argument using (9) and (7) yields (u, w) e

G(f), hence w = f(u), hence v = w. But note that v e <j>(tx) c V and w e <f>(sx) c

W. Thus V n W =é 0 is established and the proof is finished.   D

The following closed graph theorem essentially uses the same method of proof.

Theorem 2. Let E be a Baire space and let F be a regular strongly complete space

(i.e. a monotonically Cech complete space). Suppose that f is a nearly continuous

mapping from E to F whose graph is closed. Then f is continuous.
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Proof. Let (<p, T) be given for F as in 0.2 with condition (iv) instead of (iii). Now

let U, V, W and x, y have the same meaning as in the proof of Theorem 1. Again we

have to prove V n W =t= 0. To this end we define a strategy ß for player B in the

Banach-Mazur game. _ _

(1) ß(0) has to be defined. We have int/_1(K) Pi intf'^W) ¥= 0. Hence we

find zx e int f-\W) n f'\V) and tx e T with f(zx) e d,(tx) c V. Now

intf~l(<¡>(tx)) is a neighborhood of zx e f~l(W). Hence we have ïn\f~l{$(tx)) n

f-l(W) # 0. Choose y, herein. Take jx G T with /(;/,) e <f>(s,) C If. Define

0(0):= int/"1^^)) n intZ-H^iii)).
(2) ß(Gx,G2) has to be defined. If Gx * ß(0) then define ß(Gx,G2):= G2.

Assume ß(0) = Gx. Thus the construction of (1) is available. Choose z2e G2C\

f~l(4>(tx)). By (ii) in 0.2 choose t2e T with tx <Tt2 and /(z2) g £(r2). Now

int/_1(d>(/2)) is a neighborhood of z2 e G2 c f~1(<p(sx)). Hence there exists

y2e G2C) intf~1{(j>(t2)) r\f~\4>(Sx)). Let s2T> sx be an element of T with f(y2)

e <¡>(s2). Now define ß(Gx,G2):= G2 n intf-l(d>(t2)) nintf-l((j>(s2)).

This process may be continued in analogy with the proof of Theorem 1 in order to

obtain the strategy ß.

Suppose that ß has been defined. Since £ is a Baire space there exists a strategy a

for A such that A with a wins against B with ß. Let Gx, G2,... be the game of A

with a against B with ß. By the construction of ß there exist sequences (tn), (sn) and

(y„), (zn) such that the following conditions are satisfied:

(1) zB+1 e G2n c int/^OKO) n int/^fXO), /(2„+i) G <K/n+i) and i„
<7-'„+i.^(ii)c V;      _

(2)^ + 1 6 G2Bnint/-1(*(fB + 1)), /(Ä+i)eT(j.t|) and s„<rJB+1, <Í»(í,)c

H7; _ _

(3) G2n + X = G2„ n int/-x(*(ín+1)) n int/-1(«í»(ín+1)).

Now we find u e (~){Gn: n e N}. Let 9JÎ be the set of all pairs (N, k) where N is a

neighborhood of u contained in G2k+X- For (N, n) e WI we have N n /'H'í'í'n)) ^

0 and A^ n/_1(«r>(i„)) * 0 by conditions (1) and G2„ + 1 C G2„. Choose x(N, n) e

f'\Wn)) and y(N,ri)ef-\$(sJ) with x(N,n), y(N,n)eN. Suppose that

(N, i) ■< (N',i') holds if and only if N' c N and »'> i. Obviously, the nets

(x(N, ;')) and (y(N, i)) both converge to u. On the other hand, the net (f(x(N, /')))

has a cluster point d e (~){4>(tn): n e N} c F and the net (f(y(N, /))) has a cluster

point w e C){d)(sn): n e N} c W^. Since the graph G(f) of/is closed we conclude

(u, v) e G(f) and (u, w) e G(f). Hence v = w. This proves K n W7 # 0.    D.

2. Applications. In this section we prove two consequences of Theorem 1. Theorem

4 below may be regarded as a variant of the Banach-Steinhaus theorem.

The first result is obtained for mappings which are Borel measurable of class one.

Recall that /: E -» F is called Borel measurable of class one if the preimages of open

sets are F0-sets. We have the following proposition:

Let fbe a mapping from a topological space E to a regular d-refinable (cf. [WW1])

space F whose diagonal AFis a Gs-set in F X F. Suppose that f is Borel measurable of

class one. Then f has a Gs-graph in E X F.
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Proof. Since F is regular and has a Gs-diagonal, there exists a sequence (IX„:

n e N) of open covers of F such that x e U„ e U„ for n e N implies

C\{Un: n e N} = {x} (see [Ce]). By the definition of 0-refinability [WW1] there exist

sequences (U„ m: m e N) of open covers of F such that XX nm refines XXn and for

every n e N and every x e F there exists m(«,x)eN such that x is in at most

finitely many elements of XXnm(n x). By assumption, the sets/_1(c/), U e XX nm are

Gs. Hence we can find open sets G(U, 1) z> G(<7,2) d • • • with C\{G(U, k): k e N}

= /-'(c7). Define F(«, m, *:):= U{G(t7, k) X Í7: i/eU„). Then we have

graph(/) = C\{V(n, m, k): n, m, k e N}.    D

Remark 1. If preimages of open sets are Gs-sets, then the same proof works if we

choose open sets G(U,1) D G(U,2) 3 • • • with (~){G(U, k): k e N} = f~\U). In

this case the regularity of F is not needed. A mapping with this property will be

called Gs-continuous.

Now we obtain the following consequence of Theorem 1 and the proposition

above:

Theorem 3. Let E be a Baire space and let F be a subspace of the product of a

family of regular B-refinable complete spaces Fiti e 7, where each F¡ has a Gg-diagonal.

Then every nearly continuous mapping f from E to F which is either Borel measurable of

class one or Gs-continuous is in fact continuous.

Proof. Let F be embedded into the product i~l{F¡: i e I}. If p¡ denotes the

projection onto the z'th coordinate space, then we have to prove the continuity of

Pi ° f, i e I. Each p¡ ° / is nearly continuous and Borel measurable of class one

(respectively Gs-continuous). Hence the p¡ ° f are continuous by the results above

together with Theorem 1.    D

Corollary. Let E be a Baire space and let F be a completely regular space. Then

every nearly continuous mapping f from E to F which is either Borel measurable of class

one or Gs-continuous, is in fact continuous.

Proof. Every completely regular space is a subspace of a product of lines. D

Remark 2. A mapping/: E -» F which is the pointwise limit of a sequence (/„) of

continuous mappings is called 'of the Baire class one'. Now if Fis completely regular

then, for every g e C( F, R), g ° / is again of the first Baire class and, consequently,

is Borel measurable of class one. Indeed, if C c R is closed there exist open sets G,,

G2,... with G„+, c Gn and C = D{G„: n e N}. But now we have

/-'{g-'iC)) = n{U{ A-HrHC.)): k>m}:n,meN).

Using this we could derive another graph theorem for nearly continuous mappings

of the first Baire class from Theorem 3. However, it turns out that there is a direct

way to obtain an application of Theorem 1 to mappings of the first Baire class not

using Theorem 3.

We have the following proposition:

Let f be a mapping from a space E to a regular space F whose diagonal AFis a set of

interior condensation in F X F. Suppose that f is the pointwise limit of a sequence (f )
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of continuous mappings. Then the graph G(f) of f is a set of interior condensation in

E X F.

Proof. Let (<i>, T) be given for the diagonal of F as in 0.3. Since F X Fis regular

we may assume that t' <T t implies <¡>(t) C ¿>(0- in fact, this is an argument quite

familiar in the base of countable order theory as expounded in [WW] and subse-

quent papers of the same authors. Now let B be the set of all sequences

((nx,tx),...,(nk,tk)) with nx < n2 < ■■■ < nk in N and tx <T t2 < T ■ ■ ■ <Ttk.

Hence B is a tree of height to if we assume that ((nx,tx),...,(nk,tk))<

((mx, sx),... ,(mr, sr)) holds if and only if k < r and («,, t¡) = (m¡, s¡) for i < k.

Now define \p by

xP((nx,tx),...,(nk,tk))

:= {(x, y)eExF: (y, y) e dy(tk), [fnj(x), y) e <,(*,) for; < k).

Obviously, these are open sets. We have to check properties (i)-(iii) in 0.3. We prove

(ii) and (iii). Assume (x, f(x)) e ^((nx,tx),...,(nk,tk)). Hence (f(x),f(x))e

<t>(tk). By (ii) in 0.3 there exists tk + x >Ttk such that (f(x),f(x)) e <¡>(tk + x). But

<b(tk + x) is open, and therefore there exists nk + x > nk such that (/„ (x), f(x)) e

Hh + 1% hence (x,f(x))e xp((nx,tx),...,(nk + x,tk + x)). This proves (ii). To prove

(iii) assume that (x, y) e <//((«,, tx),...,(nk, tk)) for k e N. This yields (/„ (x), y)

e $(tj) C dy{tj) C <¡>(tk) forj > k, hence (f(x), y) e <f>(tk). This implies (f(x), y)

e kF.   D

In connection with Theorem 1 this yields the announced Banach-Steinhaus type

theorem. Note that the class of spaces F for which this theorem holds is again very

large. In particular, it contains all completely regular spaces.

Theorem 4. Let E be a Baire space and let F be a subspace of a product of regular

complete spaces each having a diagonal which is a set of interior condensation. Then

every nearly continuous mapping f from E to F which is the pointwise limit of a

sequence of continuous mappings is in fact continuous.

Proof. The same argument as in the proof of Theorem 3 applies. D

Remark 3. In the classical antecedents of this theorem one can, in addition, give

some information on the 'degree of convergence' of the sequence (/„) under

consideration. Namely, one can prove that the convergence is uniform on every

compact subset of E. The reader will, however, convince himself that this is not

possible in the general topological case. Counterexamples can easily be given in R.

3. Converse theorems. In this section we pose the following question. Let F be a

topological space for which the statements of Theorem 1, respectively of Theorems 3

or 4, hold true. Must E then be a Baire space? It turns out that the answer to this

question is in the positive if E is assumed to be metrizable. However, if E is only

assumed to be Hausdorff, then the answer is in the negative, i.e. there exist first

category Hausdorff spaces for which the statements of the graph theorems in §§1

and 2 hold true.
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Theorem 5. Let E be a metrizable topological space. The following statements are

equivalent:

(1) E is a Baire space;

(2) every nearly continuous real-valued mapping f on E which is Borel measurable of

class one is continuous;

(3) every nearly continuous real-valued mapping f on E whose graph is a Gs-set is

continuous;

(4) every nearly continuous real-valued mapping f on E which is the pointwise limit of

a sequence of continuous mappings is itself continuous.

Proof. (1) implies (2), (3) and (4) by Theorems 3,1 and 4, respectively. (3) implies

(2) since every /: E -» R which is Borel measurable of class one has a Gs-graph.

Indeed, define cp: E X R -» R by <p(x, y) := \f(x) - y\, then cp is Borel measurable

of class one and therefore G(f) = <p_1(0) is a Gâ-set. (4) implies (2) by [Ku, Theorem

7, p. 391] where it is proved that a real-valued mapping/on a metrizable space E

which is Borel measurable of class one is in fact the pointwise limit of a sequence of

continuous mappings. Proving that (2) implies (1) remains. This will be done in two

steps.

(I) First we show that every separable nonempty open subset of E must be of the

second category. Assume not. Hence there exists a separable nonempty open subset

U of E which is of the first category. Since E is metrizable, there exists a sequence

Cj, C2,... of nowhere dense closed sets with C, c C2 c • • • and U{ C„: n e N) = U.

We will construct a sequence (P„: n e N) of mutually disjoint F„-sets P„ such that

U{ Pn: n e N} = U and P„ = U for all n e N. Let {G„: n e N} be a base for U. By

induction we define a sequence «(1), «(2),... of natural numbers with n(i) <

n(i + 1) such that the following relations hold:

Cnmr\Gx* 0,

(Q2)\ C„ay) n G2 * 0,   (Q3)\ CB{2)) n G2 # 0,

(C«(4)\CB(3)) nG3* 0,   (CB(S)\CB(4)) nG3* 0,   (C„(6)\C„(5)) nG3* 0,

etc.

¿V= Qtt)U(cB(2)\cB(1))u(cB(4)\cB(3))u(c;(7)\cB(6))u ■••,

P2-= (Q(3,\Q,2,)u(Q(5)\Cn(4))u(Cn(8)\C„(7))u ••-,

p,-= (Q(6,\Q(5))u(c„(9)\cn(8))u(c„(13)\c„(12))u •••,

Each Pn is an F„-set and, by construction, the P, are mutually disjoint. We have

P¡ n G„ t<= 0 for n ^ i. But note that for every i the set {G„: n ^ /'} must be a base

for U, too, for otherwise f/ would have an isolated point, which is impossible.

Now let (^„: n ^ 0) be an enumeration of the rationals. Define /: E -* R by

f(P„)= {qn), n > 1, and f(E\U)= {q0}- Obviously, / is Borel measurable of

class one. We prove that it is nearly continuous. Fix x e E and a neighborhood W

of f(x) = qn. There exist numbers «(1) < n(2) < ■ ■ •   such that W C\ Q = {q„0):
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i e N}. Consequently, we have f~l(W) = U{P„(/): / e N} if qQ € W and f~\W) =

(E\U)U U{PB(Í): i > 1} if q0 e W. In the first case this yields f~l(W) = Ü and

in the second case f'x(W) = E. Therefore, / is nearly continuous. It is clear that

(qn) can be chosen such that / is not continuous. Hence, we have arrived at a

contradiction. This proves (I).

(II) Now we treat the general case. Assume that E is not Baire and choose a

nonempty open set U which is of the first category. Let Cx, C2,... be a sequence of

closed nowhere dense sets with Q c C2 c C, c • • • and U{C„: n e N} = U. As in

part (I) we construct a sequence (Pn) of mutually disjoint Fa-subsets of U with union

U and each Pn dense in U. The mapping / defined in (I) will then appear again and

finish the proof. Let 38n, n e N, be discrete sets of nonempty open sets such that

38 = U{â?„: n e N} is a base for U. We construct sequences (F(n): n e N), (H(n):

n e N) of subsets of U with the following properties:

(a) F(n), H(n) are Gs-sets as well as F„-sets;

(b) F(n), H(n) are nowhere dense, C„ c \J{F(i): i < «} U U{ H(i): /'<«};

(c) for », m G N, « # w, F(w) n F(w) = 0 and //(«) n 77(w) = 0 ;

(d)U{F(«):« e N} nU{//(«):« G N} = 0;

(e) each F(n) is the union of a sequence (F(n, /'): /' g N) of Fa-sets F(n,i) # 0

such that F(w, i) n F(«, y) = 0 for z #y and such that F(«, i) n B * 0 for ail

Let « = 1. For every B e 38x there exists «(B) g N such that fi n C„(B) is an

infinite set. For otherwise £ = U{finC,:/ieN} would have to be countable, and

therefore by (I) would be of the second category, contradicting our assumption. Now

for every B e 38x there exists a sequence F(B, /), ; e N, of mutually disjoint

nonempty F„-subsets of B n Cn(B) with 0{F(B, k): k e N} = B n CB(B). Now

define F(l,i):= \J{F(B,i): Be3Sx) and F(l):= U{F(1, i): i e N}. We have

F(l) = U{ 5 n CB(B): 7i g ^j}. Since 38x is discrete we derive that F(l) is both a Gs

and an Fa. Using the discreteness of 38x we also conclude that F(l) is nowhere dense.

Now define 7/(1) := Cx \ F(l). Since F(l) is a Gs as well as an Fa the same is true for

77(1). Obviously, 77(1) is nowhere dense.

Suppose now that F(i), H(i) have been defined for ; < n such that (a)-(e) are

satisfied. For every B e 3Sn there exists n(B) e N such that

(B\(\J{F(i): i <n}u\J{H(i): i < «})) n Cn{B) =:XB

is infinite. For otherwise,

B\(\J{F{i);i<n}u\J{H{i):i<n})

would be a nonempty countable open subset of U, which again by (I) yields a

contradiction. Choose nonempty and mutually disjoint Fa-subsets F( B, i ) of XB with

unionXBand defineF(n, /):= \J{F(B, i): B e 38„) and F(n):= \J{F(n, i): i e N}.

We have F(n) = U{ XB: B e 38n) and this proves that F(n) is nowhere dense and an

Fa as well as a Gs. Now we define

H(n):= C„\{\J{F(t): i < n) v\J{H(i): i < «}),

Then (a)-(e) are satisfied.
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Suppose now that F(n), H(n), n G N have been constructed and define

P„:= H(n)UÖ{F(k, n):keN},n G N.    □

Next we prove that Theorem 5 does no longer hold true if the metrizability of E is

dropped.

Let (E, t) be a topological space. There exists a topology t0 on E, finer than t such

that the following hold true:

(1) XE: (E, t) -* (E, t0) is nearly continuous,

(2) if f: (E, t0) -» F is nearly continuous, then it is in fact continuous (no matter

what graph it has).

Proof. The proof uses the Kuratowski-Zorn lemma. Let WI be the set of all

topologies a 3 t such that 1£: (E, t) -» (E, a) is nearly continuous. Define an order

-< on WI by the postulate that ox < a2 if and only if XE: (E, ax) -» (E, a2) is nearly

continuous and ax c a2. It is easily seen that every chain in WI has a supremum.

Consequently, a maximal element t0 of WI exists. Now we claim that every dense set

in (E, t0) is open. Indeed, if D is dense in (E, t0) then t0 U {D Pi W: W e t0} is

the base of a new topology tx on E with t0 < tx. Since t0 is maximal we conclude

t0 = tx. Hence D e t0. But now we can derive (2) from this property of (E, t0). In

fact, if/: (£,t0)-* F is nearly continuous then D:= (E\f~1(U))Uf-\U) is

dense, hence open for open U c F. Thus/^1(i/) = inl f'l(U) n £> is open.    D

Note that if we start with a first category space (E, t) we will arrive at a first

category space (F, t0). Hence we obtain 'many' counterexamples.

4. Almost continuous mappings. In [Wi] Wilhelm proves two graph theorems for

almost continuous mappings, a concept which goes back to [BG] and seems to be

closely related to the concept of nearly continuous mappings used here. /: E ~* F is

called almost continuous if for every x e E and every neighborhood U of f(x) the

set D(f~l(U)) is a neighborhood of x. Here D(X) denotes the set of all x e E such

that X is of the second cateogry relative to x (see [KM, p. 84]). The set D(X) is

always closed and contained in X. Hence every almost continuous mapping is nearly

continuous. (For details about the operator D we refer to [KM, p. 428ff].) Wilhelm

proves that:

Every almost continuous mapping f from a Baire space E to a regular space F which

is lower Baire (i.e. preimages of open sets are sets with the Baire property; see [Wi])

must be continuous. (See [Wi].)   D

In view of our Theorem 3 this makes us conjecture that 'almost continuity',

although defined along quite similar lines, must be a far stronger property than

'nearly continuity'. This is corroborated by the following observation. Let WI be the

model of set theory, constructed by Solovay [J], in which (i) the axiom of dependent

choices holds, (ii) every set of reals is Lebesgue measurable, (iii) every set of reals has

the Baire property. Consequently, in WI every mapping /: R -» R is lower Baire. In

view of Wilhelm's theorem this yields that:

In WI every almost continuous mapping f: R -* R is continuous.    □
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This means that in the model SO? we are not able to find an almost continuous real

mapping which is not continuous. However, it is easy to find nearly continuous

mappings /: R -> R which are not continuous. Take for example f(x) = 0 for x

rational and f(x)= 1 for x irrational, then / is nearly continuous but not continu-

ous. Note that in view of Theorem 4 / cannot be of the first Baire class.
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