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1. Introduction

A Hausdorff topological space E is called a B-space, respectively, a Br-space, if every continuous, nearly 
open surjection, respectively bijection, f from E onto an arbitrary Hausdorff space F is open. This definition 
honors V. Pták’s famous open mapping theorem [30,31,17] for linear operators between locally convex vector 
spaces, where he calls spaces E satisfying the open mapping theorem B-complete, respectively, Br-complete. 
The concept has been extended to other categories, e.g. Husain [13] calls a separated topological group G
a B-group (a Br-group) if every continuous nearly open surjective (bijective) homomorphism f from G
into any separated topological group H is open. In the framework of topological vector spaces, B- and 
Br-completeness have been studied in [1].

Weston [35] proved that completely metrizable spaces are Br-spaces, and Byczkowski and Pol [2] extended 
this to Čech-complete spaces. In [23,26] almost Čech complete spaces were shown to be Br-spaces, while 
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locally compact spaces and Lindelöff P -spaces are B-spaces [23]. Clearly every B-space is a Br-space, while 
the converse is not true.

A natural question is whether, or in what sense, B- and Br-spaces have to be complete. Pták’s terminology 
points to the fact that locally convex spaces satisfying the open mapping theorem are indeed complete. But 
this is already different in the framework of topological groups, where B- and Br-groups may be incomplete 
and even of the first category. Since H-minimal topological spaces are Br-spaces, and since Herrlich [11]
exhibits a first category H-minimal space, the topological case seems at first to resemble the situation in 
groups. However, within metrizable spaces the situation is different, as all zero-dimensional and all sub-
orderable metrizable Br-spaces are Baire [26]. It is still an open question whether all metrizable Br-spaces 
must be Baire.

What is known is that there exist metrizable Br-spaces which do not contain any dense completely 
metrizable subspace. Yet, all presently known constructions of metrizable Br-spaces seem to require a 
somewhat strengthened form of Baire category. This is in line with the fact that metrizability and Baire 
category alone do not suffice to make a Br-space.

Presently we elucidate this situation a little further by discussing a novel variant of the Banach-Mazur 
game, where β-defavorable spaces are Br-spaces. This new variant is of interest in itself, as the β-defavorable 
case implies Baire category not just of E, but of E×E, while it still allows E×E×E to be of first category, 
and E to be barely Baire. The α-favorable case of the new game coincides with the α-favorable case of 
the classical Banach-Mazur game, but otherwise differences occur to the effect that the gap between α-
favorability and β-favorability narrows. We even identify classes of spaces where the game is determined.

It turns out that it is reasonable to consider, along with B- and Br-spaces, a third intermediate concept. 
We call a Hausdorff space E a Bq-space, if every continuous nearly open surjection f onto any Hausdorff 
space F is a quotient map. In those categories where quotient maps are by default open this offers nothing 
new, but B- and Bq-spaces differ in the topological case. In fact, on closer regard, topological B-spaces turn 
out a far more restrictive class than one would expect from the situation in groups or topological vector 
spaces. Here Bq-spaces are a better behaved and sufficiently rich class to warrant further independent 
study.

The structure of the paper is as follows. After recalling the Banach-Mazur game in Section 3, we introduce 
the novel variant in Section 4. Using the new game we obtain our first open mapping theorem in Section 5, 
followed by a second open mapping theorem in Section 6 based on the strong variant of the game. The 
quotient mapping theorem is addressed in Section 7. In Section 8 we resume the study of the new game and 
exhibit classes of spaces where it is determined. Sections 9, 10 on the other hand use the barely Baire spaces 
of [9] to show that the new game is not determined in general. In Section 11 we have a glimpse at the Michael 
and strong Choquet games and show that β-defavorability for those does not imply β-defavorability for our 
new game. In the final Section 12 we prove a variant of the closed graph theorem, where again two-person 
game characterizations play a crucial role.

2. Preparations

A mapping f : E → F is nearly open if for every x ∈ E and every neighborhood U of x the set f(U)
is a neighborhood of f(x) in F . Analogously, f : E → F is nearly continuous if for every x ∈ E and every 
neighborhood V of f(x) in F , the set f−1(V ) is a neighborhood of x.

Let E be a Hausdorff space. A pair (T, φ) consisting of a tree T = (T, �T ) of height ω and a mapping φ
from T to the non-empty open subsets of E is called a web on E if

(w1) {φ(t) : t ∈ T} is a pseudo-base of E, i.e., every non-empty open U ⊂ E contains some φ(t).
(w2) For every t ∈ T the set {φ(s) : t <T s} is a pseudo-base of φ(t), i.e., every non-empty open V ⊂ φ(t)

contains some φ(s) with t <T s.
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Definition (Completeness). A Hausdorff space E is p-complete if it admits a web (T, φ) with the following 
property:

(p) For every cofinal branch b ⊂ T the intersection 
⋂

t∈b φ(t) �= ∅ is non-empty.

The space E is c-complete if it admits a web (T, φ) with the following property:

(c) Every filter F containing all elements φ(t), t ∈ b, of a cofinal branch b ⊂ T has a cluster point in ⋂
t∈b φ(t).

Pseudo-complete space in the sense of Oxtoby [28] are p-complete, and p-completeness is also known as 
weak α-favorability for a player with perfect information [36]. Almost Čech-complete space are c-complete, 
and coincide with the almost-complete spaces of [19]. Clearly c-completeness implies p-completeness. Webs 
appear first in [7,23], and almost-sieves [19] are closely related. Our terminology generally follows [8], but 
we assume all spaces to be Hausdorff.

3. Banach-Mazur game

The Banach-Mazur game in a topological space E is played by two players α and β in the following 
way. Player β starts and chooses a non-empty open set V1. Then player α chooses a non-empty open subset 
U1 ⊂ V1. Next player β chooses a nonempty open V2 ⊂ U1, and then α a non-empty open U2 ⊂ V2, etc. 
Player α wins when 

⋂∞
n=1 Un �= ∅, while player β wins when 

⋂∞
n=1 Un = ∅.

A strategy for player β is a mapping, for simplicity also noted β, which for every sequence of non-
empty open sets V1, U1, V2, U2, . . . , Vk, Uk of even length 2k chooses a non-empty open set Vk+1 =
β(V1, U1, . . . , Vk, Uk) ⊂ Uk. This includes the sequence of length 0, where β(∅) = V1 �= ∅. Similarly, a 
strategy for player α is a mapping, noted α, which for every sequence V1, U1, . . . , Vk of non-empty open sets 
of odd length 2k− 1 chooses a non-empty open Uk = α(V1, U1, . . . , Vk) ⊂ Vk. The play of α against β is the 
sequence V1 ⊃ U1 ⊃ V2 ⊃ U2 . . . satisfying V1 = β(∅), U1 = α(V1), V2 = β(V1, U1), U2 = α(V1, U1, V2), etc. 
We call this the BM-game.

Theorem 1. E is a Baire space if and only if for every strategy β in the BM-game there exists a strategy α
beating it. �

The class of spaces E where α has a winning strategy has been characterized by White [36], who called 
them weakly α-favorable for a player with perfect information. These are precisely the p-complete spaces 
above.

It is custom to call a space α-favorable if player α has a winning strategy, and α-defavorable if it has not. 
The terms β-favorable and β-defavorable are used in the same sense. This terminology will also be used for 
variants of the BM-game, and all variants will use perfect memory.

4. Tandem Banach-Mazur game

Now we introduce a variant of the Banach-Mazur game. We have two players α′ and β′. Player β′ first 
chooses a non-empty open V1, to which player α′ responds with a non-empty open V ′

1 ⊂ V1. The second 
move of player β′ is a non-empty open W1, to which player α′ responds with a non-empty open W ′

1 ⊂ W1. 
Then player β′ switches back to the V -side and chooses a non-empty open V2 ⊂ V ′

1 , to which α′ responds 
with a non-empty open V ′

2 ⊂ V2. Then β′ chooses W2 ⊂ W ′
1, and α′ responds by W ′

2 ⊂ W2, and so on. 
Players alternate between the V -side and the W -side, playing one move each on one side, before switching 
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to the other side and playing one move each there, etc. The play therefore generates two nested sequences 
V1 ⊃ V ′

1 ⊃ V2 ⊃ V ′
2 ⊃ . . . and W1 ⊃ W ′

1 ⊃ W2 ⊃ W ′
2 ⊃ . . . , but arranged in the following meandering order

β′ α′ β′ α′ β′

V1 → V ′
1 V2 → V ′

2 . . .

↓ ↑ ↓ ↑
W1 → W ′

1 W2 → W ′
2

β′ α′ β′ α′

We assume that both players have full information of the past from both boards as time follows the arrows. 
Player α′ wins when both 

⋂∞
n=1 Vn �= ∅ and

⋂∞
n=1 Wn �= ∅, while player β′ wins as soon as at least one of 

these intersections is empty. We call this the tandem Banach-Mazur game, or for short, the BM′-game.

Proposition 1. Player α has a winning strategy in the BM-game if and only if player α′ has a winning 
strategy in the BM′-game.

Proof. 1) Suppose α is winning. We construct a winning strategy α′ by forgetting about the intertwined 
nature of the BM′-game and by reacting to the moves of β′ on the V - and W -board as if those were two non-
cooperating players βV , βW in the role of β in the standard BM-game. Since α wins against all strategies, 
it wins against these two, hence α′ is winning as well.

2) Conversely, suppose α′ is winning. We construct a winning strategy α. Observe that players β′ may 
choose their moves such that Wi ⊂ V ′

i , and also, Vi+1 ⊂ W ′
i , in which event the play in the BM′-game 

will consist of one single nested sequence and will correspond to a play in the BM-game. Therefore we may 
reinterpret β as such a willful strategy β′. The moves of the winning strategy α′ on the V - and W -board 
may then be translated back to moves of a strategy α in the BM-game, which is winning since α′ is. �

Differences between the two games are expected when no winning strategy α exists. Let us observe that 
in order to win player β′ has only to arrange for one of the nested sequences Vi ⊃ Vi+1 or Wi ⊃ Wi+1 to 
have empty intersection. It is therefore clear that a winning strategy β in the standard BM-game gives rise 
to a winning strategy for β′ in the BM′-game, by just concentrating on winning on one of the boards.

Proposition 2. Suppose β has a winning strategy in the BM-game, then β′ has a winning strategy in the 
BM′-game.

We will see later (Remarks 2 and 14) that the converse is not true, i.e., β′ may have a winning strategy, 
while β has none.

An easy consequence of Proposition 2 is that if in E the BM′-game is β′-defavorable, then E is a Baire 
space. But we have the following stronger

Theorem 2. Suppose for every strategy β′ in the BM′-game on E there exists a strategy α′ which wins against 
β′. Then E ×E is a Baire space.

Proof. We look at the Banach-Mazur game in the space E ×E with players α, β, and associate with them 
players α′, β′ in the BM′-game on E.

We may without loss of generality assume that β plays with non-empty open boxes. Suppose β(∅) =
V1 ×W1. We interpret V1 as the first move of player β′ in the BM′-game on E on the V -board, to which 
player α′ responds by V ′

1 ⊂ V1 nonempty. Normally, in the BM′-game players β′ have now the possibility to 
choose their move W1 by taking V1, V ′

1 into account. But we take W1 as the second component of the first 
move of β and let this be the second move of β′ in the BM′-game, now on the W -board. More formally, 
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with p1, p2 the projections on first and second coordinate, β′(p1(β(∅)), V ′
1) = p2(β(∅)) independently of the 

choice V ′
1 ⊂ V1 = p1(β(∅)). In other words, β′ wastes the option to take V ′

1 , V1 into account. Player α′ reacts 
by choosing W ′

1 ⊂ W1 based on all the previous information. Then we re-interpret V ′
1 ×W ′

1 as the move of 
player α in E × E in response to V1 ×W1, i.e., α(V1 ×W1) = V ′

1 ×W ′
1 = α′(V1) × α′(V1, α′(V1), W1). We 

repeat this procedure in the following sweeps.
Once this wasteful strategy β′ in the BM′-game is defined, by hypothesis there exists α′ beating β′. The 

play so obtained may now be read as a play V1 ×W1 ⊃ V ′
1 ×W ′

1 ⊃ V2 ×W2 ⊃ . . . between α and β in the 
BM-game on E×E. Since α′ wins, we have 

⋂∞
i=1 Vi �= ∅ and 

⋂∞
i=1 Wi �= ∅, hence of course 

⋂∞
i=1 Vi×Wi �= ∅, 

hence α beats β. By Theorem 1, E ×E is a Baire space. �
Remark 1. This construction generates a BM-strategy α on E × E winning against β, where α plays with 
open boxes in E×E. It is not clear whether such a strategy exists when it is only known that E×E is Baire. 
We can assume that β plays with open boxes, but it is by no means clear whether this can be arranged for 
the α beating it.

Definition (τ -Baire space). A topological space E in which for every strategy β′ in the BM′-game there 
exists a strategy α′ beating it is called a τ -Baire space.

Remark 2. It is well-known that there exist Baire spaces E whose square E × E is no longer Baire (see [9]
and Section 10), and such a space is Baire but not τ -Baire. In Remark 14 we will see that even when E×E

is Baire, this still does not mean that E is τ -Baire.

5. First open mapping theorem

A Hausdorff space F is called a δ-space if it admits a web (T, φ) with the following property:

(d) For every cofinal branch b ⊂ T the intersection 
⋂

t∈b φ(t) contains at most one point.

Recall that a Hausdorff space is called semi-regular if the family of regular-open sets is a basis for the 
topology; [8, p. 58]. We are now ready to prove our first open mapping theorem:

Theorem 3. Let E be a semi-regular τ -Baire space, F a δ-space. If f : E → F is a continuous nearly open 
bijection, then f is open.

Proof. Let (T, φ) be a web on F satisfying (d). We have to show that f is open. Let x ∈ E and U a 
neighborhood of x. Using semi-regularity, choose an open neighborhood V of x with V ◦ ⊂ U . It suffices to 
prove f(V )◦ ⊂ f(U), as this will show openness at x.

Let y ∈ f(V )◦, y = f(z). We will show z ∈ V ◦, as this gives z ∈ U . By continuity of f there exists an 
open O with z ∈ O and f(O) ⊂ f(V )◦. Proving O ⊂ V will now be sufficient. Take w ∈ O and an arbitrary 
open neighborhood W of w, which may be assumed to satisfy W ⊂ O. It remains to prove V ∩W �= ∅, as 
this will show w ∈ V .

We define a strategy β′ in the BM′-game on E. We start with the definition of β′(∅). Since {φ(t) : t ∈ T}
is a pseudo-base of F by (w1), the set D1 =

⋃
{φ(t) : t ∈ T, φ(t) ⊂ f(V )◦} is open dense in f(V )◦. On the 

other hand we have f(W ) ⊂ f(V )◦. Now we apply Lemma 1 (below) with the choices G = D1, H = f(V )◦, 
O = V , U = W . We conclude that D1 ∩ f(W )◦ ∩ f(V ) �= ∅. By the definition of D1 we can pick t1 ∈ T with 
φ(t1) ⊂ f(W )◦ and x1 ∈ V satisfying f(x1) ∈ φ(t1). Now by continuity find an open V1 with x1 ∈ V1 ⊂ V

and f(V1) ⊂ φ(t1). Our move is β′(∅) = V1.
Let V ′

1 ⊂ V1 be a potential response of player α′. We have to define β′(V1, V ′
1). The set D2 =

⋃
{φ(t) :

t ∈ T, t1 <T t} is open dense in φ(t1) by (w2), while from V ′
1 ⊂ V1 we obtain f(V ′

1) ⊂ φ(t1) ⊂ f(W )◦. We 
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may therefore apply Lemma 1 with the choices G = D2, H = φ(t1), U = V ′
1 and O = W . The conclusion is 

that f(V ′
1)◦ intersects f(W ) ∩D2. By the definition of D2 choose t2 ∈ T with t1 <T t2 and φ(t2) ⊂ f(V ′

1)◦, 
together with y1 ∈ W such that f(y1) ∈ φ(t2). By continuity find W1 open with y1 ∈ W1 ⊂ W satisfying 
f(W1) ⊂ φ(t2), and let β′(V1, V ′

1) = W1 be our move.
Now let W ′

1 ⊂ W1 be nonempty open, then we have to define β′(V1, V ′
1 , W1, W ′

1). Note that D3 :=
⋃
{φ(t) :

t2 <T t} is dense in φ(t2), while f(W ′
1) ⊂ φ(t2) ⊂ f(V ′

1)◦. This allows us to apply Lemma 1 with the choices 
H = φ(t2), G = D3, U = W ′

1 and O = V ′
1 . We conclude that f(W ′

1)
◦ intersects f(V ′

1) ∩D3. We can therefore 
pick t3 ∈ T with t2 <T t3 satisfying φ(t3) ⊂ f(W ′

1)
◦ and x2 ∈ V ′

1 with f(x2) ∈ φ(t3). Pick an open V2 with 
x2 ∈ V2 ⊂ V ′

1 satisfying f(V2) ⊂ φ(t3), and put β′(V1, V ′
1 , W1, W ′

1) = V2.
Let V ′

2 ⊂ V2 be nonempty open. We have to define β′(V1, V ′
1 , W1, W ′

1, V2, V ′
2). The set D4 =

⋃
{φ(t) :

t3 <T t} is dense in φ(t3), while f(V ′
2) ⊂ f(V2) ⊂ φ(t3) ⊂ f(W ′

1)
◦. So we apply Lemma 1 with the choices 

G = D4, H = φ(t3), O = W ′
1, U = V ′

2 . The consequence is that f(V ′
2)◦ intersects f(W ′

1) ∩ D4. We pick 
t4 ∈ T , t3 <T t4 with φ(t4) ⊂ f(V ′

2)◦ and y2 ∈ W ′
1 with f(y2) ∈ φ(t4). Then we choose an open set W2 with 

y2 ∈ W2 ⊂ W ′
1 such that f(W2) ⊂ φ(t4), and let β′(V1, V ′

1 , W1, W ′
1, V2, V ′

2) = W2 be our move.
Continuing in this way defines a strategy β′ in the BM′-game, and since E is τ -Baire, we find a strategy 

α′ winning against β′. Let V1, V ′
1 , W1, W ′

1, V2, V ′
2 , W2, W ′

2, . . . be their play. Then we find v ∈
⋂∞

i=1 Vi �= ∅
and w ∈

⋂∞
i=1 Wi �= ∅. In particular, v ∈ V and w ∈ W . At the same time f(v) ∈ f(Vi) ⊂ φ(t2i−1) and 

f(w) ∈ f(Wi) ⊂ φ(t2i). Hence f(v), f(w) ∈
⋂∞

i=1 φ(ti), and since t1 <T t2 <T t3 <T . . . is a cofinal branch 
in T , we get f(v) = f(w) from (d). With f being injective, this gives v = w, hence V ∩W �= ∅. That ends 
the proof. �
Lemma 1. Let f : E → F be continuous and nearly open. Let O, U ⊂ E be open and G, H ⊂ F open with 
G ⊂ H ⊂ G. Suppose f(U) ⊂ H ⊂ f(O)◦. Then G ∩ f(U)◦ ∩ f(O) �= ∅.

Proof. Observe that G ∩f(U)◦ �= ∅. For had we G ∩f(U)◦ = ∅, then also G∩f(U)◦ = ∅, hence H∩f(U)◦ = ∅
due to H ⊂ G. But due to near openness that contradicts the assumption f(U) ⊂ H. Hence G ∩ f(U)◦ �= ∅.

From f(U) ⊂ f(O)◦ follows f(U)◦ ⊂ f(O)◦, and since G ⊂ f(O)◦ anyway, the open set G ∩ f(U)◦ is 
contained in f(O). As it is nonempty by the above, it must intersect the dense subset f(O) of f(O). �

Following Jayne and Rogers [14], a topological space F is fragmentable if there exists a metric d on F such 
that for every ε > 0 and every nonempty set X ⊂ F there exists an open set U in F such that Y = X ∩U is 
nonempty and has diameter ≤ ε with respect to d. For a game-theoretic characterization of fragmentability 
see [16].

Following Čoban et al. [4,5] a space F is open-fragmentable if the above condition applies to open sets 
X ⊂ F only, in which case Y is also open. The authors call this a fos-space and obtain a related game-
theoretic characterization, namely, using plays V1 ⊃ W1 ⊃ V2 ⊃ W2 ⊃ . . . where player α wins if 

⋂∞
i=1 Wi

consists of at most one point. Then F is open-fragmentable iff player α has a winning strategy in this game 
called the FO-game. See also [34] for further properties of this class.

Lemma 2. A space F is open-fragmentable iff it is a δ-space.

Proof. 1) Suppose F is open-fragmentable. Define a tree T of height ω as follows. The elements t of T
are finite sequences of nonempty open sets t = (U1, U2, . . . , Un) with U1 ⊃ U2 ⊃ · · · ⊃ Un satisfying 
diam(Ui) ≤ 1/i. The order relation is extension of sequences. The mapping φ is (U1, . . . , Un) → Un. It is 
clear that if t1 <T t2 <T . . . is a cofinal branch, then this gives rise to a nested sequence U1 ⊃ U2 ⊃ . . . with ⋂∞

i=1 Ui containing at most one point, hence property (d) is guaranteed. We still have to prove that (T, φ)
is a web. Let us check property (w2). Let t = (U1, . . . , Un) ∈ T . For every nonempty open O ⊂ Un there 
exists a nonempty open Un+1 ⊂ O with diam(Un+1) ≤ 1/(n + 1). Hence {Un+1 : (U1, . . . , Un, Un+1) ∈ T} is 
a pseudo-base of the set Un = φ(t). The argument for (w1) is similar.



D. Noll / Topology and its Applications 322 (2022) 108330 7
2) For the converse, a web (T, φ) satisfying (w1), (w2), (d) may obviously be used to define a winning 
strategy for α in the FO-game. Construction of a metric which fragments open sets then follows as in [5]. �
6. Second open mapping theorem

Now we consider the strong version of the BM′-game, where player α′ wins the play (V1, V ′
1 , W1, W ′

1, V2,

V ′
2 , . . . ) strongly against β′ if every filter FV with Vi ∈ FV for all i has a cluster point in 

⋂∞
i=1 Vi, and every 

filter FW with Wi ∈ FW for all i has a cluster point in 
⋂∞

i=1 Wi. If for every strategy β′ there exists a 
strategy α′ winning strongly against β′, then we call E a τ∗-Baire space. The c-complete spaces of Section 2
are those where players α, or α′, have a strong winning strategy, so c-complete spaces are τ∗-Baire.

Theorem 4. Every semi-regular τ∗-Baire space E is a Br-space.

Proof. Consider a continuous nearly open bijection f : E → F . We have to show that f is open. Let x ∈ E

and U a neighborhood of x. Using semi-regularity, choose an open neighborhood V of x with V ◦ ⊂ U . It 
suffices to prove f(V )◦ ⊂ f(U), as this will show openness at x.

Let y ∈ f(V )◦, y = f(z). We will show z ∈ V ◦, as this gives z ∈ U . By continuity of f there exists an 
open O with z ∈ O and f(O) ⊂ f(V )◦. Proving O ⊂ V will now be sufficient. Take w ∈ O and an arbitrary 
open neighborhood W of w, which may be assumed to satisfy W ⊂ O. It remains to prove V ∩W �= ∅, as 
this will show z ∈ V .

We are going to define a strategy β′ in the BM′-game on E. To start, observe that f(W )◦ ∩ f(V ) �= ∅, 
because f(V ) is dense in f(V )◦, and f(W )◦ intersects f(V )◦, given that f(W ) ⊂ f(O) ⊂ f(V )◦. Since 
f(W )◦ ∩ f(V ) �= ∅, we can find a nonempty open set V1 with f(V1) ⊂ f(W )◦ ∩ f(V ). Our first move is 
β′(∅) = V1.

Now α′ reacts to this by choosing ∅ �= V ′
1 ⊂ V1, and we have to define β′(V1, V ′

1). We have f(V ′
1)◦∩f(W ) �=

∅. Hence we can find a nonempty open W1 with W1 ⊂ W and f(W1) ⊂ f(W ) ∩ f(V ′
1)◦. The corresponding 

move is now W1 = β′(V1, V ′
1).

Now player α′ will react to this by providing ∅ �= W ′
1 ⊂ W1. Since f(W ′

1) ⊂ f(W1) ⊂ f(V ′
1)◦, we have 

f(W ′
1)

◦ ∩ f(V ′
1) �= ∅, so we pick a nonempty open V2 with V2 ⊂ V ′

1 and f(V2) ⊂ f(V ′
1) ∩ f(W ′

1)
◦. Let 

V2 = β′(V1, V ′
1 , W1, W ′

1) be our move.
Next player α′ chooses ∅ �= V ′

2 ⊂ V2, and we have to define β′(V1, V ′
1 , W1, W ′

1, V2, V ′
2). From f(V ′

2) ⊂
f(V2) ⊂ f(W ′

1)
◦ follows f(V ′

2)◦ ∩ f(W ′
1) �= ∅, so we can choose a nonempty open W2 ⊂ W ′

1 with f(W2) ⊂
f(V ′

2)◦. The move is now β′(V1, V ′
1 , W1, W ′

1, V2, V ′
2) = W2. Etc.

Having defined β′ in this way, let α′ be a strategy which wins strongly against β′. Let V1 ⊃ V ′
1 ⊃ V2 ⊃

V ′
2 ⊃ . . . and W1 ⊃ W ′

1 ⊃ W2 ⊃ W ′
2 ⊃ . . . be the two nested sequences generated by their play. We have

i. f(W ′
i ) ⊂ f(Wi) ⊂ f(V ′

i )
◦, W ′

i ⊂ Wi ⊂ W ′
i−1, W1 ⊂ W ;

ii. f(V ′
i+1) ⊂ f(Vi+1) ⊂ f(W ′

i )
◦, V ′

i ⊂ Vi ⊂ V ′
i−1, V1 ⊂ V .

Now choose a sequence wi ∈ W ′
i . As α′ is strongly winning against β′, wi has a cluster point w ∈⋂∞

n=1 Wn ⊂ W . Hence the sequence f(wi) has cluster point f(w). Now for every open neighborhood G
of f(w) there exist numbers n(G, 1) < n(G, 2) < . . . such that f(wn(G,i)) ∈ G for all i. By fact i. above 
f(wn(G,i)) ∈ f(Vn(G,i))◦, hence there exist vn(G,i) ∈ Vn(G,i) with f(vn(G,i)) ∈ G for all i. Let the set G of 
pairs (G, i) be ordered by (G, i) � (G′, i′) iff G′ ⊆ G and i′ ≥ i. Then as α′ is strongly winning the net 
N = 〈vn(G,i) : (G, i) ∈ G 〉 has a cluster point v ∈

⋂∞
i=1 Vi ⊂ V , hence f(N ) has cluster point f(v). But by 

construction the net f(N ) converges to f(w), hence f(w) = f(v). As f is injective, we deduce w = v, and 
since v ∈ V , w ∈ W , V ∩W �= ∅ follows. �
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Remark 3. Consider a space E possessing a web (T, φ) with the following property:

(μ) For every cofinal branch b ⊂ T , if
⋂

t∈b φ(t) �= ∅ then every filter F containing all φ(t), t ∈ b, has
a cluster point in

⋂
t∈b φ(t).

Then in E the notions τ -Baire and τ∗-Baire coincide, and so do p- and c-completeness.
In particular, the notions τ -Baire and τ∗-Baire coincide in metrizable spaces, where (T, φ) with (μ)

may be obtained by letting T the tree of finite sequences (U1, . . . , Ui) of non-empty open sets satisfying 
diam(Ui) ≤ 1/i and U i ⊂ Ui−1, ordered by extension of sequences, with φ denoting (U1, . . . , Ui) → Ui.

7. Inclusion and quotient mapping theorem

In this section we ask how to extend the open mapping theorem to more general continuous nearly open 
mappings f : E → F . We consider the cases (a) f injective and dense, i.e., f(E) dense in F , but no longer 
surjective, (b) f surjective and no longer injective, and (c) f dense, and neither injective nor surjective. We 
start with case (a), where the answer is easy.

Proposition 3. Let E be a Br space and f : E → F a continuous, dense, injective and nearly open mapping 
into a Hausdorff space F . Then f is a homeomorphic embedding.

Proof. It suffices to observe that f considered as a mapping f : E → f(E) is still nearly open, as follows 
from Lemma 3 below. Then by the definition of a Br-space it is open, hence E � f(E). �
Lemma 3. Let f : E → F be a mapping such that f(E) is dense in F . Then f is nearly open if and only if 
f : E → f(E) is nearly open.

Proof. 1) Let f be nearly open as a mapping E → f(E). Let V ⊂ E be open. Then the closure of f(V ) in 
f(E) is clf(E)f(V ) = f(V )∩ f(E). By assumption there exists O relatively open in f(E) such that f(V ) ⊂
O ⊂ clf(E)f(V ). Let O = OF ∩ f(E) for OF open in F . Then f(V ) ⊂ OF ∩ f(E) ⊂ clf(E)f(V ) ⊂ f(V ). 
Hence OF ∩ f(E) ⊂ f(V ). But f(E) is dense in F , hence OF ∩ f(E) = OF , proving f(V ) ⊂ OF ⊂ f(V ). 
Hence f : E → F is nearly open.

2) Conversely, suppose f : E → F is nearly open. Let V ⊂ E be open. Then f(V ) ⊂ OF ⊂ f(V ) for 
an open set OF in F . Therefore f(V ) ⊂ OF ∩ f(E) ⊂ f(V ) ∩ f(E). But f(V ) ∩ f(E) = clf(E)f(V ), and 
O = OF ∩ f(E) is relatively open in f(E), hence f : E → f(E) is nearly open. �

Concerning question (b) we have the following partial answer.

Theorem 5. Let E be τ∗-Baire, f : E → F a continuous and nearly open surjection. Suppose f is factorized 
as f = g ◦ h with h : E → G a continuous surjection onto a semi-regular space G and g : G → F a 
continuous bijection. Then g is open.

Proof. Note that g is nearly open, because if U ⊂ G is open, then h−1(U) is open in E, hence f(h−1(U)) ⊂
f(h−1(U))◦ by near openness of f . But clearly f(h−1(U)) = g(U).

Let x ∈ G and U ′ a neighborhood of x. Using semi-regularity of G, choose an open neighborhood V ′ of 
x with V ′◦ ⊂ U ′. It suffices to prove g(V ′)◦ ⊂ g(U ′), as this will show openness of g at x.

Let y ∈ g(V ′)◦, y = g(z). We will show z ∈ V ′◦, as this gives z ∈ U ′. By continuity of g there exists 
an open O′ with z ∈ O′ and g(O′) ⊂ g(V ′)◦. Proving O′ ⊂ V ′ will now be sufficient. Take w ∈ O′ and 
an arbitrary open neighborhood W ′ of w, which may be assumed to satisfy W ′ ⊂ O′. It remains to prove 
V ′ ∩W ′ �= ∅, as this will show z ∈ V ′.
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Now let U = h−1(U ′), V = h−1(V ′), W = h−1(W ′). We define a strategy β′ on E in exactly the same 
way as in the proof of Theorem 4. Following the proof all along will furnish elements v ∈

⋂∞
i=1 Vi ⊂ V and 

w ∈
⋂∞

i=1 Wi ⊂ W for which f(v) = f(w). Now a difference occurs, as f is no longer injective. But g is, so 
from f = g ◦ h we obtain h(v) = h(w). Hence h(v) = h(w) ∈ h(V ) ∩ h(W ) = V ′ ∩W ′, so V ′ ∩W ′ �= ∅, and 
that was to be shown. �

For the following recall that the semi-regularization of a space E, denoted Es, is the point-set E endowed 
with the coarser topology generated by the regular-open sets of E [8, p. 58]. The regularization of a space 
E, denoted Er, is the point-set of E endowed with the finest regular topology coarser than the given one 
[32]. Note that Er can be defined explicitly using the ultra-closure operator of [32], where the author calls 
Er the associated regular space.

Suppose E is regular, ∼ an equivalence relation on E, E/∼ the quotient space, φ : E → E/∼ the quotient 
map. Since E/∼ is not necessarily regular, we use its regularization (E/∼)r and consider φ as a mapping 
φ : E → (E/∼)r. We call φ a regular-quotient map and (E/∼)r the regular-quotient, because it preserves 
the following universal property of quotients: if g : (E/∼)r → F is any mapping into a regular space F , 
then g is continuous iff f = g ◦ φ is continuous. In the same vein, we call a continuous surjection f from a 
regular space E onto a regular space F regular-quotient if F � (E/∼)r for the equivalence relation x ∼ y iff 
f(x) = f(y).

Corollary 1. Let E be a regular τ∗-Baire space, F a regular space, and f : E → F a continuous nearly open 
surjection. Then f is a regular-quotient mapping, i.e. the topology on F is the regularization, and also the 
semi-regularization, of the quotient topology.

Proof. Consider the equivalence relation x ∼ y iff f(x) = f(y) and let E/∼ be the quotient space with the 
usual quotient topology, φ : E → E/∼ the quotient map, f̃ : E/∼ → F the continuous bijection satisfying 
f̃ ◦ φ = f . Then E/∼ is Hausdorff because F is, but E/∼ need not be semi-regular. Let (E/∼)s be the 
semi-regularization of E/∼. Then (E/∼)s is still Hausdorff and φ : E → (E/∼)s is continuous. The point is 
now that f̃ : (E/∼)s → F remains continuous due to regularity of F , see [15, I.3.(3)] or [29, Prop. 2.2g]. We 
may therefore apply Theorem 5 with G = (E/∼)s, h = φ, g = f̃ , which shows that f̃ is a homeomorphism. 
That gives (E/∼)s � F , so (E/∼)s is regular.

Now by definition the regularization of the quotient (E/∼)r carries the finest regular topology coarser 
than the quotient topology on E/∼, and since (E/∼)s was shown to be regular with a topology coarser than 
the quotient topology, we have continuity (E/∼)r → (E/∼)s � F . This means we can apply Theorem 5
again, now with G = (E/∼)r, and now this implies (E/∼)r � (E/∼)s, hence the claim (E/∼)r � F . �
Remark 4. At first it seems that the correct setting for Corollary 1 ought to be semi-regular spaces, not 
regular spaces. Unfortunately, the semi-regularization Es lacks the universal property of Er, i.e., when 
f : E → F is continuous and F = Fs, then we do not necessarily get continuity of f : Es → F . What 
is amiss is that τ ⊂ τ ′ on F does not imply τs ⊂ τ ′s. We could also say that the category of semi-regular 
Hausdorff spaces is not a reflective subcategory of the category of Hausdorff spaces.

Yet in the above situation we get (E/∼)s = (E/∼)r, hence (E/∼)s is quotient (extremal epimorphism) in 
the category of regular spaces, and at the same time has the convenient construction as semi-regularization 
of E/∼.

For completely regular spaces we proceed similarly. The complete-regularization of a given space E is the 
point-set E endowed with the finest completely regular topology coarser than the given one, denoted Ecr. 
Assuming that there exists at least one Hausdorff completely regular topology coarser than the given one, 
Ecr is Hausdorff. For E completely regular and E/∼ the usual quotient, we call (E/∼)cr a completely-regular 
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quotient. Then a continuous surjection f : E → F onto a completely regular space F is completely-regular 
quotient if F � (E/∼)cr, where x ∼ y iff f(x) = f(y).

Corollary 2. Let E, F be completely regular and suppose E is a τ∗-Baire space. Let f : E → F be a continuous 
nearly open surjection. Then f is completely-regular quotient. Moreover, F � (E/∼)cr = (E/∼)s.

Remark 5.

1) The completely-regular quotient may also be characterized as the initial or limit topology with respect 
to C(E/∼, R), i.e. the coarsest topology on E/∼ such that all real-valued functions continuous in the 
quotient topology are continuous.

2) Yet another way to describe completely-regular quotients is as follows. Let U , V be uniformities on E, F
inducing the topologies and such that f is uniformly continuous. (E.g. let U be the fine uniformity, 
then V does not matter.) Then the topology on F is the one induced by the quotient uniformity [12], 
and this is (E/∼)s under the assumptions of Corollary 2.

Application of Theorem 3 gives the following analogous:

Theorem 6. Let E be a (completely) regular τ -Baire space, F a (completely) regular δ-space. Suppose f :
E → F is a continuous nearly open surjection. Then f is a (completely) regular-quotient map.

Remark 6. The reason why we cannot expect f to be open is that quotient maps in the category of Hausdorff 
spaces need not be open, and even when they are, E/∼ need not be semi-regular. One would need openness 
of E → (E/∼)s to deduce openness of f .

Our third question (c) has now an immediate answer. For f : E → F continuous nearly open and dense 
we can expect f(E) with the topology induced from F to be a quotient of E, and this occurs under the 
hypotheses of Theorems 5 or 6.

The above findings motivate the following

Definition (Open mapping spaces). Let K be a class of Hausdorff spaces. A Hausdorff space E is a B(K )-
space, respectively, a Br(K )-space, if every continuous nearly open surjection, respectively, bijection, f
from E onto any F ∈ K is open.

A Hausdorff space E is a Bq(K )-space if every continuous nearly open surjection f : E → F onto 
any F ∈ K is a quotient map in the following sense: for any factorization f = g ◦ h with h : E → G

continuous surjective onto a semi-regular Hausdorff space G and g : G → F continuous bijective, it follows 
that g is a homeomorphism. When H is the class of all Hausdorff spaces, then we say Bq-space instead of 
Bq(H )-space.

Remark 7. Every B(K )-space is a Bq(K )-space, and every semi-regular Bq(K )-space is a Br(K )-space. 
Every Br-space is semi-regular. For the latter, observe that the identity iE : E → Es is a continuous nearly 
open bijection. Since Es is Hausdorff and E is Br, iE is open, so E = Es.

Remark 8. Let D be the class of δ-spaces. Then Theorem 6 says that every semi-regular τ -Baire space is a 
Bq(D)-space, hence also a Br(D)-space.

Example 7.1. Let E = R \ Q ⊕ R, F = R, and let f : E → F be defined as f |R = iR, f |R \ Q = ιR\Q
the inclusion R \Q → R. Then f is a continuous nearly open surjection which is not open, as the image of 
R \Q is not open in F . But E is completely metrizable, so f is a quotient map, which one can of course see 
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directly as E/∼ � R for the equivalence relation x ∼ y iff f(x) = f(y). So E is a Bq-space, hence a Br-space, 
but not a B-space.

Remark 9. Recall that a Hausdorff space E is H-minimal [8, p. 223] if there is no strictly coarser Hausdorff 
topology on E, and it is H-closed if it is closed in every Hausdorff space containing E as a subspace. A 
space is H-minimal iff it is H-closed and semi-regular; [15, I.3]. Clearly H-minimal spaces are Br-spaces.

Remark 10. In [11] the author constructs a first category H-minimal space which according to [24, p. 593]
is not a B-space. This is in contrast with the following:

Proposition 4. Every H-minimal space is a Bq-space.

Proof. Let f = g ◦ h with h : E → G surjective, g : G → F bijective, and G semi-regular. Since G is the 
continuous image of a H-closed space E, it is H-closed by a result of Katětov; cf. [8, p. 223], [15]. Since G
is also semi-regular, it is H-minimal. In consequence g is a homeomorphism. �
Theorem 7. Let E be a semi-regular space containing a dense Bq-subspace D. Then E is a Bq-space.

Proof. Let f : E → F be a continuous nearly open surjection, factorized as f = g ◦ h with h : E → G

surjective, g : G → F bijective, and G semi-regular. We have to show that g is a homeomorphism.
Since D is dense in E, Lemma 4 below shows that the restriction f |D to D remains nearly open as a 

mapping D → F . But then since f(D) is dense in F , Lemma 3 shows that f |D is still nearly open as a 
mapping D → f(D).

Now consider the restriction h|D : D → h(D) of h on D, and the restriction g|h(D) : h(D) → f(D) of g
on h(D). Then f |D = (g|h(D)) ◦ (h|D) is a factorization with g|h(D) bijective. Since h(D) is dense in G, 
it is semi-regular, hence the factorization is amenable to Theorem 5. Since D is by hypothesis a Bq-space, 
g|h(D) is a homeomorphism.

From here, based on near openness of g, denseness of h(D) in G, and semi-regularity of G, we conclude 
using [24, Lemma p. 589] that g is also a homeomorphism. That completes the argument. �
Lemma 4. Let f : E → F be continuous and surjective. Let V ⊂ E be open, D ⊂ E dense. Then f(V ) =
f(V ∩D).

Proof. Let y ∈ f(V ). Fix a neighborhood OF of y in F . Then OF ∩ f(V ) �= ∅, hence f−1(OF ) ∩ V is a 
nonempty open set in E. Since D is dense in E, f−1(OF ) ∩V ∩D �= ∅, and that implies OF ∩f(V ∩D) �= ∅. 
Since OF was an arbitrary neighborhood of y, we have y ∈ f(V ∩D). �
Remark 11. Theorem 7 marks a difference between B-spaces and Bq-spaces. For let E be a non-discrete 
Lindelöff P -space, then according to [24, §7] E is a B-space and so is the topological sum E ⊕ E, while 
E ⊕ βE fails to be a B-space. Yet, due to the above, E ⊕ βE is a Bq-space.

Lemma 5. Let f = g ◦ h with g, h both continuous and nearly open. Then f is nearly open.

Proof. Let x ∈ E and U a neighborhood of x. Since h is nearly open, we have h(U) ⊂ O ⊂ h(U) for some 

open O in G. Since g is also nearly open, we have f(U) = g(h(U)) ⊂ g(O) ⊂ g(O)◦ ⊂ g(O) ⊂ g(h(U)) ⊂
g(h(U)) = f(U) using continuity of g. �

For this result see also [33, Lemma 8].
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Proposition 5. Let E be a Bq-space and h a continuous nearly open surjection onto a semi-regular space G. 
Then G is a Br-space.

Proof. Let g : G → F be a continuous nearly open bijection onto the space F . Then f = g ◦ h : E → F is a 
continuous surjection, which by Lemma 5 is nearly open. As E is a Bq-space, g is a homeomorphism. That 
proves the claim. �
8. Determined game

An infinite two-person game with two possible outcomes is called determined if either player α or player 
β has a winning strategy. The classical BM-game is not determined, as there exist Baire spaces which 
are not weakly α-favorable. In contrast, we shall see that for certain classes of spaces E the BM′-game is 
determined.

Proposition 6. Let E be a metrizable locally convex vector space which is τ -Baire. Then E is complete.

Proof. Since E is a Br-space by Theorem 5, it is also a Br-complete separated locally convex vector spaces 
in the sense of Pták. Hence, as the nomenclature suggests, E is complete, as follows from [17, §34, 2.(1)]. �

This means the BM′-game is determined in the class of metrizable locally convex vector spaces E. Because 
if β′ has no winning strategy, then E is τ -Baire, hence is completely metrizable by Proposition 6, so that by 
Proposition 1 player α′ has a winning strategy. The same is true when we work in the category of separated 
topological vector spaces, where B- and Br-completeness can be defined accordingly [1].

Proposition 7. Let G be a metrizable topological group which is τ -Baire. Then G is completely metrizable.

Proof. Let G̃ be the completion of G in its two-sided uniformity. Suppose x̃ ∈ G̃ \ G. We form the space 
F = G ∪ x̃G equipped with the topology induced from G̃. Let G ⊕G be the topological sum in the sense of 
[8, p. 74] and define the function f : G ⊕G → F as follows. Let the point-set of G ⊕G be G ×{1} ∪G ×{2}, 
and let f(x, 1) = x, f(x, 2) = x̃x. Then f is continuous and bijective, the latter since G ∩ x̃G = ∅. Since G
and x̃G are both dense in G̃, the mapping f is nearly open by Lemma 4. Since G is τ -Baire and metrizable, 
it is a Br-space. By [25, Thm. 1] the topological sum G ⊕G is also Br, hence f is open, so that both G and 
x̃G are open in G̃. That, however, is impossible. Hence G = G̃. �
Remark 12. The reasoning here differs from the one in Proposition 6, because Br-groups need not be 
complete. For instance Q = {e2πiq : q ∈ Q} is a H-minimal group, [10], hence a Br-group. Clearly Q is not 
a Br-space in the topological sense.

Remark 13. Proposition 7 shows that in a metrizable topological group, one of the players α′, β′ has a 
winning strategy, so again in that category the BM′-game is determined.

Remark 14. In Remark 2 we remarked that Baire spaces need not be τ -Baire. Now we remark that even 
spaces E where E ×E is Baire need not be τ -Baire. Let E be a separable metrizable locally convex vector 
space which is Baire but not complete. Then E × E is Baire by a result of Kuratowski [8, p. 201], but by 
Proposition 6 above β′ has a winning strategy, so E is not τ -Baire. This also shows that the converse of 
Proposition 2 is incorrect.

Remark 15. Kuratowski’s result gives even En Baire for every n.
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Let G be a topological group acting continuously on a Hausdorff space X. The G-flow on X is said to be 
minimal if every orbit Gx is dense in X. Then, expanding on the technique in Proposition 7, we have the 
following

Proposition 8. Suppose the G-flow is minimal. Let E = Gx be an orbit which is a Br-space in the topology 
induced by X. Then Gx is not homeomorphic to any other orbit Gx′.

Proof. Let E = {gx : g ∈ G} for some x ∈ X, and suppose E � E′ = {gx′ : g ∈ G} for another x′ ∈ X. 
Let h : E → E′ be a homeomorphism. We let E ⊕E be the topological sum of two copies of E represented 
on the set E × {1} ∪ E × {2}. Then we define f : E ⊕ E → X as f(x, 1) = x, f(x, 2) = h(x). Then f is a 
continuous bijection onto the dense subset E∪E′ of X, where injectivity is due to E∩E′ = ∅. Since E ↪−→ X

and E′ ↪−→ X are dense embeddings and h is a homeomorphism, f is nearly open. Since E is a Br-space, so 
is E ⊕ E by [25, Thm. 1]. Hence f is a homeomorphism onto E ∪ E′. But that means E, E′ are both open 
in E ∪ E′, contradicting the fact that they are both dense. �
Remark 16. It is known [37] that if G is a Polish group, X a compact Hausdorff space, and if the G-flow 
on X is minimal and metrizable, then there exists an orbit Gx0 which is residual in X. That means Gx0
contains a dense Gδ subset of X, hence has a dense Čech-complete subspace, hence is a Br-space [2,24]. 
Then Gx0 cannot be homeomorphic to any other orbit.

However, even when no residual orbit exists, as soon as we have a τ∗-Baire orbit, it is not homeomorphic 
to any other orbit.

9. Barely Baire spaces

We recall a construction from [9]. A subset S ⊂ ω1 is cofinal if |S| = ω1, and it is closed when closed in 
the order topology on ω1. A subset S ⊂ ω1 is stationary if it intersects every closed cofinal subset of ω1. 
Let ω1 be endowed with the discrete topology and give ωω

1 the product topology. Then ωω
1 is metrizable. 

For S ⊂ ω1 cofinal put S∗ = {f ∈ ωω
1 : f∗ := supn f(n) ∈ S}, endowed with the topology induced by the 

product topology. Then by [9, Example 1, p. 234] S∗ is a Baire space iff S is stationary. Moreover, if S, T
are two stationary subsets of ω1 such that S ∩ T is not stationary, then S∗, T ∗ are Baire, but S∗ × T ∗ is 
not, hence S∗, T ∗ are what the authors of [9] call barely Baire. In addition, if we arrange S ∩ T = ∅, then 
the topological sum S∗ ⊕ T ∗ is no longer a Br-space, nor is the product S∗ × T ∗, see [9, p. 183]. In [9] it is 
also proved that S∗ contains a dense completely metrizable subspace iff S is closed cofinal, which here due 
to metrizability is equivalent to weak α-favorability of S∗, or to p- and c-completeness.

Proposition 9. Let S be stationary. Then S∗ is a τ -Baire space, i.e., player β′ has no winning strategy.

Proof. Recall that sets of the form B(γ) = {f ∈ S∗ : f(i) = γi, i = 1, . . . , k} for finite sequences γ =
(γ1, . . . , γk) of ordinals γi < ω1 form a basis for S∗. We consider a strategy β′ playing with basic sets. 
Suppose V = B(γ) and V ′ = B(γ′) are basic open sets with V ′ ⊂ V , then γ′ is a prefix of γ. Therefore play 
sequences V1, V ′

1 , W1, W ′
1, . . . , Vr, V ′

r , . . . give rise to finite sequences of ordinals γ1 ⊂ γ′
1 ⊂ γ2 ⊂ γ′

2 ⊂ . . .

and δ1 ⊂ δ′1 ⊂ δ2 ⊂ δ′2 ⊂ . . . . We may therefore consider β′ as a function on finite sequences of ordinals 
β′(γ1, γ′

1, δ1, δ
′
1, . . . , δr, δ

′
r) = γr+1, respectively β′(γ1, γ′

1, δ1, δ
′
1, . . . , γr, γ

′
r) = δr.

We say that an ordinal η < ω1 is a fixed point of β′ if max(γr) < η, max(δr) < η together with 
β′(γ1, γ′

1, δ1, δ
′
1, . . . , δr, δ

′
r) = γr+1 imply max(γr+1) < η, and at the same time max(δr−1) < η, max(γr) < η

together with β′(γ1, γ′
1, δ1, δ

′
1, . . . , γr, γ

′
r) = δr, imply max(δr) < η.

We let F be the set of fixed points of β′. Clearly F is cofinal and closed. Now using stationarity of S, let 
η ∈ S ∩ F . Fix a sequence η1 < η2 < . . . converging to η. Now define α′(γ1, γ′

1, δ1, δ
′
1, . . . , γr) = γ�

r ηr =: γ′
r
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and α′(γ1, γ′
1, δ1, δ

′
1, . . . , δr) = δ�r ηr =: δ′r. Then the play of α′ against β′ generates two sequences δ1 ⊂ δ′1 ⊂

δ2 ⊂ δ′2 ⊂ . . . and γ1 ⊂ γ′
1 ⊂ γ2 ⊂ γ′

2 ⊂ . . . with supi γi = supi δi = supi ηi = η. Let f =
⋃∞

i=1 γi and 
g =

⋃∞
i=1 δi, then f∗ = g∗ = η ∈ S, hence f, g ∈ S∗. We have f ∈

⋂∞
k=1 B(γk) and g ∈

⋂∞
k=1 B(δk), hence 

α′ wins against β′. �
Corollary 3. If S is stationary, then S∗ × S∗ is Baire, S∗ is a Bq-space, and hence a Br-space.

Proof. The first statement is from [9]. The second statement follows with Proposition 9 in tandem with 
Theorem 6. �
Corollary 4. Suppose S is stationary, but does not contain any closed cofinal set. Then neither α′ nor β′

have winning strategies, so in this class of spaces S∗ the BM′-game is not determined.

Proof. By Proposition 9 player β′ has no winning strategy.
On the other hand, suppose α′ has a winning strategy on S∗. Then by Proposition 1, so has α. As in the 

proof of Proposition 9 we can consider α a function on finite sequences of ordinals: α(γ1, δ1, γ2, δ2, . . . , γr) =
δr, where γ1 ⊂ δ1 ⊂ γ2 ⊂ δ2 ⊂ . . . . Let F be the set of fixed-points of α, then F is closed cofinal in 
ω1. We show that F ⊂ S. Indeed, let η ∈ F and fix a sequence η1 < η2 < . . . converging to η. Define a 
strategy β for the second player as follows: β(γ1, δ1, . . . , γr, δr) = δ�r ηr =: γr+1. Let γ1, δ1, . . . be the play 
of α against β. By the definition of F and the ηi we have supi γi = supi δi = η. But α wins against β, so 
the function f =

⋃
i γi =

⋃
i δi belongs to S∗, which implies η = f∗ ∈ S. That proves the second claim by 

contraposition. �
Remark 17. Amusingly, if we consider only cofinal sets S ⊂ ω1 which are Borel in the order topology of ω1, 
then either S or ω1 \S contains a closed cofinal set. Hence in this class of spaces S∗, the BM′-game is again 
determined.

10. Barely τ -Baire spaces

We recall a second construction from [9]. Let c = 2ω, c+ the successor cardinal of c, Cωc
+ the set of 

ordinals α < c+ with cofinality cf(α) ≤ ω. We select a family {Ay : y ∈ 3ω} of mutually disjoint stationary 
subsets of Cωc

+. Then for x ∈ 3ω define

Bx =
⋃

{Ay : y ∈ 3ω, y(n) �= x(n) for all n ∈ ω}.

Note that this is in particular possible because Cωc
+ is itself a stationary subset of c+. Now we endow 3

and c+ with the discrete topology and define

E = {(x, f) ∈ 3ω × (c+)ω : f∗ = sup
n

f(n) ∈ Bx},

endowed with the topology induced by the product topology. Since 3ω × (c+)ω is metrizable, so is E. Basic 
sets of E are indexed by finite sequences σ = ((α0, β0), . . . , (αr, βr)) ∈ (3 × (c+))r+1, that is,

B(σ) = {(x, f) ∈ E : x(i) = αi, f(i) = βi, i = 0, . . . , r}.

Following the line of [26, Example 3, p. 675] we have

Proposition 10. The space E is τ -Baire.
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Proof. Let β′ be a strategy in the BM′-game. We may assume that it plays with basic open sets B(σ), 
B(τ). Again if B(σ) ⊂ B(σ′), then σ′ ⊂ σ is sequence extension. A play gives therefore rise to two sequences 
σ1 ⊂ σ′

1 ⊂ σ2 ⊂ σ′
2 ⊂ . . . and τ1 ⊂ τ ′1 ⊂ τ2 ⊂ τ ′2 ⊂ . . . intertwined as in the figure. Hence a strategy β′

defines a mapping, also denoted β′, with

β′(σ1, σ
′
1, τ1, τ

′
1, . . . , σr, σ

′
r) = τr, β′(σ1, σ

′
1, . . . , τr, τ

′
r) = σr+1.

We can see this as two mappings Θ1, Θ2 on finite sequences σ = (σ1, σ′
1, σ2, σ′

2, . . . ) and τ = (τ1, τ ′1, τ2, τ ′2, . . . )
such that Θ1(σ, τ) ⊃ τ and Θ2(σ, τ) ⊃ σ. Now let W be the set of ordinals 2 < α < c+ with the following 
property:

There exist sequences (σn) and (τn) such that Θ1(σ0, τ0) = σ1, σ1 ⊂ σ′
1, |σ′

1| = |σ1| + 1, Θ2(σ1, τ0) = τ1, 
τ1 ⊂ τ ′1, |τ ′1| = |τ1| + 1, etc., such that 

⋃
n σn = (x, g), 

⋃
n τn = (y, h) with g∗ = h∗ = α.

The set W is stationary in c+. Indeed, if C is closed cofinal in c+, define the extensions σ′
i of the σi and τ ′i

of the τi such that max σ′
i ≤ max τ ′i+1 ≤ max σ′

i+1 and such that supi σ
′
i = supi τ

′
i ∈ C. Then 

⋃
n σn = (x, g)

and 
⋃

n τn = (y, h) have g∗ = h∗ ∈ C ∩W . This proves stationarity of W .
Now fix z ∈ 3ω and let Wz be the set of those α ∈ W where (x, g), (y, h) exist as above, with g∗ = h∗ = α, 

but z(n) /∈ {x(n), y(n)} for all n. Then

W =
⋃

{Wz : z ∈ 3ω}

and since W cannot be the union of c < c+ non-stationary sets, one of the Wz is stationary. Now we use 
the following auxiliary result [9, Lemma 1]:

If K ⊂ (c+)ω is closed and W = {f∗ : f ∈ K} is stationary, then there exists a closed cofinal subset C
of c+ such that C ∩ Cωc

+ ⊂ W .
We apply this to the stationary Wz found above in order to find C ∩ Cωc

+ ⊂ Wz. For that let K be 
the set of all ((x, g), (y, h)) with 

⋃
n σn = (x, g) and 

⋃
n τn = (y, h), g∗ = h∗ = α, for sequences as in the 

definition of W , having z(n) /∈ {x(n), y(n)} for every n. Then K is closed in 3ω × (c+)ω × 3ω × (c+)ω, and 
we have Wz = {ψ∗ : ψ ∈ K}.

As the sets Ay arising in the construction of E are stationary, we have Wz ∩ Az ∩ Cωc
+ �= ∅. Choose γ

herein and let (σn), (τn) be sequences as above giving rise to 
⋃

n σn = (x, g), 
⋃

n τn = (y, h) with g∗ = h∗ = γ

and z(n) /∈ {x(n), y(n)}. Since γ ∈ Az, we have (x, g), (y, h) ∈ E. But (x, g) is in the intersection of the 
B(σ), and (y, h) is in the intersection of the B(τ), hence both intersections are non-empty, and strategy α′

is winning against strategy β′. That proves the claim. �
Remark 18. The interest in this space is that E ×E is Baire, (cf. Theorem 2), but E ×E ×E is no longer 
Baire [9]. This gives a metrizable τ -Baire space E whose square E × E is no longer τ -Baire (even though 
E × E is Baire).

Secondly this gives rise to a metrizable Br-space whose square is no longer Br. Namely, either (a) E×E

is not a Br-space. Then E, which is Br by Theorem 4, is the space we are looking for. Or (b) E×E is again 
Br. Then (E × E) × (E × E) is no longer a Br-space, because it is not Baire, but due to [26] ought to be 
Baire if it were Br. So here we have the Br-space E × E whose square is no longer Br.

Remark 19. It would be interesting to know which of the two cases (a), (b) above is true. If (b) holds with 
E × E still Br, then we have a metrizable Br-space E × E, which is Baire, but not τ -Baire. Currently no 
such space is known.
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11. Michael game

The following variation of the Banach-Mazur game was introduced by Michael [18]. Players β and α choose 
successively non-empty sets B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ . . . such that Ai is open in Bi, that is, Ai = Bi ∩ Ui

for some open set Ui in E. Player α playing with the sets Ai wins the game if 
⋂∞

n=1 An �= ∅. Player α wins 
strongly if every filter F with Ai ∈ F for every i has a cluster point, i.e., 

⋂
{F : F ∈ F} �= ∅. In [18, Thm. 

7.3] the author proves that α has a winning strategy if and only if E has a complete, exhaustive sieve.
We say that E is a m-Baire space if player β does not have a winning strategy in the Michael game. It 

is clear that every m-Baire space is Baire, because if player β plays with open sets, then α automatically 
responds with open sets, and the play coincides with the Banach-Mazur game.

Proposition 11. Let E be a regular m-Baire space. Then every Gδ subset G of E is a m-Baire space.

Proof. Let G =
⋂∞

n=1 Gn with open sets G1 ⊃ G2 ⊃ . . . , and let βG be a strategy for player β in the 
Michael game on G. We define a strategy β on the whole space.

Suppose βG(∅) = B1. By regularity we may choose a set V1 open in E such that V 1 ⊂ G1 and B′
1 =

B1 ∩ V1 �= ∅. Then define β(∅) = B′
1. Now let A1 ⊂ B′

1 be non-empty and relatively open in B′
1, i.e., 

A1 = B′
1 ∩ U1 for some open U1 in E. We have to define β(B′

1, A1). Note that A1 ⊂ B′
1 ⊂ B1 and 

A1 = B′
1 ∩ U1 = B1 ∩ V1 ∩ U1, and since A1 ⊂ G, A1 = B1 ∩ (V1 ∩ U1 ∩G), so A1 is relatively open in B1

with regard to the space G. Hence B2 = βG(B1, A1) is defined and is a non-empty subset of A1. We choose 
a set V2 open in E such that V 2 ⊂ G2 and B′

2 = B2 ∩ V2 �= ∅. Define β(B′
1, A1) = B′

2. Etc.
By assumption E is m-Baire, so there exists a strategy α winning against β. Let us define a strategy 

αG on G which wins against βG. We have to define αG(B1), where B1 = βG(∅). We recall the construction 
of B′

1 ⊂ B1, B′
1 = β(∅) and define αG(B1) = α(B′

1) = A1. Next we have to define αG(B1, A1, B2). We 
recall the construction of B′

2 ⊂ B2 and define αG(B1, A1, B2) = α(B′
1, A1, B′

2) = A2. Etc. It is clear from 
the construction that the play of αG against βG and the play of α against β are interlaced as follows: 
B1 ⊃ B′

1 ⊃ A1 ⊃ B′
2 ⊃ B2 ⊃ A2 ⊃ . . . . Since α wins, we have 

⋂∞
n=1 An �= ∅, where the closure is with 

respect to E. Choose x within. Since Ai ⊂ Bi ∩ Vi ⊂ V i ⊂ Gi, we have x ∈ G. But Ai ⊂ G, hence 
clG(Ai) = Ai ∩G, hence x ∈ clG(Ai). That shows 

⋂∞
n=1 clG(An) �= ∅, hence αG wins against βG. �

Since in a metrizable space closed sets are Gδ-sets, we have the following

Corollary 5. Every metrizable m-Baire space E is hereditary Baire. In particular, E × F is Baire for every 
Baire space F .

Proof. This follows from a result of Moors [21]. �
Remark 20. As a consequence we see that the τ -Baire spaces S∗ of Section 9 and [9] are not m-Baire, 
because if S, T are disjoint stationary subsets of ω1, then S∗, T ∗ are metrizable Baire, but S∗ × T ∗ is not 
Baire. Hence S∗ is not hereditary Baire by [21], and so cannot be m-Baire.

In yet another well-known modification of the Banach-Mazur game player β chooses open sets Vk and 
points xk ∈ Vk, while player α has to respond with open sets Uk satisfying xk ∈ Uk ⊆ Vk. Player β wins 
when 

⋂∞
k=1 Uk = ∅, otherwise α wins. The game is played with perfect information. The space is said to be 

strongly α-favorable if player α has a winning strategy [6]. We are interested in the undetermined case, i.e. 
when neither α nor β have winning strategies. This game was proposed by Choquet [3] and is thoroughly 
discussed in [6], and we write αc, βc for the corresponding strategies, all assumed to have complete memory. 
In the βc-defavorable case we call the space c-Baire.
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Proposition 12. Every metrizable c-Baire space is m-Baire.

Proof. Let E be metrizable and consider a strategy βm in the Michael game. We define an associated 
strategy βc. Suppose βm(∅) = B1. We pick b1 ∈ B1 and choose an open set V1 with d(V1) ≤ 1/1 and 
b1 ∈ V1. Put βc(∅) = (b1, V1). Suppose now U1 satisfies b1 ∈ U1 ⊂ V1, so that it could be a move of α in 
response to the move βc(∅). In that case we put A1 = B1 ∩U1 and interpret A1 as a move of α in response 
to βm(∅).

Suppose now that B2 = βm(B1, A1). If A1 = B1 ∩ U1 with U1 constructed as above, then V1 is available 
due to perfect memory, and we want to define βc((b1, V1), U1) = (b2, V2). We pick b2 ∈ B2 and V2 such that 
b2 ∈ V2 ⊂ U1 satisfying d(V2) ≤ 1/2. Then (b2, V2) is our βc move.

Continuing in this way gives a strategy βc in the Choquet game. Let αc be a strategy which wins against 
βc. We use it to define a strategy αm which wins against βm. We have to define αm(B1, A1, . . . , Bi), where 
Aj = Bj ∩ Uj for 1 ≤ j ≤ i − 1. In those cases where βc has been derived from βm as above, we have 
access to the corresponding (bi, Vi), so we get αc((b1, V1), U1, (b2, V2), U2, . . . , (bi, Vi)) = Ui. We then define 
αm(B1, A1, . . . , Bi) = Ai := Bi ∩ Ui. In all other cases we define αm at leisure.

Suppose now B1, A1, B2, A2, . . . is the play of αm against βm. Then we get the play (b1, V1), U1, (b2, V2),
U2, . . . of αc against βc, and here αc is winning, so we have 

⋂∞
i=1 Ui �= ∅. Pick x̄ herein, then due to 

d(Vi) ≤ 1/i we have bi → x̄, hence x̄ ∈
⋂∞

i=1 Bi =
⋂∞

i=1 Ai, hence αm wins against βm. �
Remark 21. As a consequence, τ -Baire spaces S∗ are not c-Baire either, i.e., for S ⊂ ω1 stationary but not 
containing a closed cofinal subset, S∗ is βc-favorable, even though a τ -Baire space.

Remark 22. A variant of the BM-game which bears some resemblance with our BM′-game is the 
Reznichenko-game of [22], but neither game seems stronger than the other.

12. Closed graph theorem

Moors [20, Thm. 2] proves that every nearly continuous closed graph mapping f : E → F from a Baire 
space E to a partition complete space F is continuous. Partition complete spaces, also known as cover 
complete spaces [18], are those where player α has a strong winning strategy in the Michael game.

The key observation here is that c-completeness of F is by a little margin too weak to prove the closed 
graph theorem, which is why in [27] a notion called strict c-completeness, equivalent to α-favorability in the 
strong Choquet game, was used. But that notion is now by a little margin too strong. The point made by 
[20] is that partition completeness, settled in between these twain, is just about right. This can also be seen 
in the light of Proposition 12 and Remark 21.

There are two ways to expand from here. We may introduce a tandem Michael game on F and weaken α-
favorability to β′-defavorability, while strengthening Baire category of E to α-favorability. A second option 
is to keep the weaker hypotheses: Baire category of E and c-completeness of F , and require instead a little 
more on f . We shall follow this second line.

Lemma 6. Let f : E → F be nearly open and nearly continuous with closed graph. Let E be Baire and F c-
complete. Suppose G is a dense Gδ in F , V open in F , H a dense Gδ in E. Then f−1(V ) = f−1(V ∩G) ∩H.

Proof. It suffices to prove f−1(V ) ⊂ f−1(V ∩G) ∩H. Let z ∈ f−1(V ), and take an open neighborhood W
of z. We have to show W ∩ f−1(V ∩G) ∩H �= ∅.

Let (T, φ) be a web on F satisfying (w1), (w2) and (c) from Section 2. Write H =
⋂∞

n=1 Hn and G =⋂∞
n=1 Gn with Gn, Hn dense open and decreasing. We shall define a strategy β for the BM-game on E.
We have to define β(∅). The set X1 =

⋃
{φ(t) : t ∈ T, φ(t) ⊂ V ∩ G1} is dense in V , while W ∩ H1

is dense in W . Now f(W ∩H1) ∩ V is a neighborhood of f(z), hence it intersects X1, as X1 is dense in 
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V . By the definition of X1 there exists x1 in this intersection and t1 ∈ T with x1 ∈ φ(t1) ⊂ V ∩ G1. Now 
φ(t1) ∩f(W ∩H1) �= ∅. Choose y1 ∈ W ∩H1 with f(y1) ∈ φ(t1). Since f−1(φ(t1)) is a neighborhood of y1, it 
intersects W∩H1. Let z1 be in this intersection. We pick an open set W1 with z1 ∈ W1 ⊂ W∩H1∩f−1(φ(t1)). 
There exists w1 ∈ W1 ∩ f−1(φ(t1)). Let β(∅) = W1.

Let W ′
1 ⊂ W1 be nonempty open, then we have to define β(W1, W ′

1). Now D2 = W ′
1 ∩ H2 is dense in 

W ′
1, while X2 =

⋃
{φ(t) : t1 <T t, φ(t) ⊂ G2} is dense in φ(t1). Hence f(D2) ∩ X2 is nonempty. By the 

definition of X2 there exists x2 in this intersection and t2 with t1 <T t2 and x2 ∈ φ(t2) ⊂ G2. That implies 
φ(t2) ∩ f(D2) �= ∅. Choose y2 ∈ D2 with f(y2) ∈ φ(t2). Then f−1(φ(t2)) is a neighborhood of y2, so cuts 
D2. Choose z2 ∈ f−1(φ(t2)) ∩ D2 and an open W2 with z2 ∈ W2 ⊂ W ′

1 ∩ H2 ∩ f−1(φ(t2)). There exists 
w2 ∈ W2 ∩ f−1(φ(t2)). We let β(W1, W ′

1) = W2.
Continuing in this way defines a strategy β in the BM-game. Let α be a strategy winning against β. Let 

W1 ⊃ W ′
1 ⊃ W2 ⊃ W ′

2 ⊃ . . . be their play. Then by construction we have

i. Di = W ′
i−1 ∩Hi dense in W ′

i−1,
ii. Xi =

⋃
{φ(t) : ti−1 <T t, φ(t) ⊂ Gi} dense in φ(ti−1), xi ∈ φ(ti) ⊂ Gi, ti−1 <T ti.

iii. yi ∈ W ′
i−1 ∩Hi, zi ∈ Wi ⊂ W ′

i−1 ∩Hi ∩ f−1(φ(ti)), wi ∈ Wi ∩ f−1(φ(ti)).

Since α is winning, there exists w ∈
⋂∞

i=1 Wi. Let N be the set of pairs (N, k), where N is a neighborhood of 
w contained in Wk. For every such pair N ∩ f−1(φ(tk)) �= ∅ by iii. We pick w(N, k) ∈ N with f(w(N, k)) ∈
φ(tk). Consider N directed by the relation (N, n) � (N ′, n′) iff N ′ ⊆ N and n′ ≥ n. Then the net 
N = 〈w(N, n) : (N, n) ∈ N 〉 converges to w, while the net f(N ) converges to a point v ∈

⋂∞
i=1 φ(ti). Since 

the graph of f is closed, we deduce v = f(w). But f(w) ∈ φ(ti) ⊂ Gi for every i implies f(w) ∈ G, while 
f(w) ∈ φ(t1) ⊂ V gives f(w) ∈ V . On the other hand, w ∈ Wk ⊂ Hk for every k gives w ∈ H. We have 
shown w ∈ W ∩ f−1(V ∩G) ∩H. �
Theorem 8. Let E be Baire, F regular and c-complete, f : E → F a nearly continuous and nearly open 
mapping with closed graph. Then f is continuous.

Proof. By assumption F admits a web (T, φ) satisfying property (c) in the definition of c-completeness; cf. 
Section 2. Now let x ∈ E and U a neighborhood of f(x). By regularity of F choose an open neighborhood V
of f(x) with f(x) ∈ V ⊂ V ⊂ U . Since f−1(V ) is a neighborhood of x, it suffices to prove f−1(V ) ⊂ f−1(U). 
Let y ∈ f−1(V ), it suffices to prove f(y) ∈ V . To this end let W be an open neighborhood of f(y). It remains 
to prove V ∩W �= ∅. We define a strategy β in the BM-game on E.

We have to define β(∅). We have f−1(V ) = f−1(
⋃
{φ(t) : φ(t) ⊂ V }) by Lemma 6, and since f−1(W )◦

is a neighborhood of y, we have f−1(W )◦ ∩ f−1(
⋃
{φ(t) : φ(t) ⊂ V }) �= ∅. We choose t1 ∈ T and z1 ∈

f−1(W )◦ with f(z1) ∈ φ(t1) ⊂ V . Now f−1(W ) = f−1(
⋃
{φ(s) : s ∈ T, φ(s) ⊂ W}) by Lemma 6, and 

since f−1(φ(t1))
◦ is a neighborhood of z1, it intersects f−1(

⋃
{φ(s) : s ∈ T, φ(s) ⊂ W}). We choose 

s1 ∈ T with φ(s1) ⊂ W and y1 ∈ f−1(φ(t1))
◦ such that f(y1) ∈ φ(s1) ⊂ W . Then the open U1 =

f−1(φ(t1))
◦ ∩ f−1(φ(s1))

◦ is nonempty, and we let β(∅) = U1.
Now let U ′

1 ⊂ U1 be nonempty open. We have to define β(U1, U ′
1). Since U ′

1 ⊂ U1 ⊂ f−1(φ(t1))
◦ and 

f−1(φ(t1)) = f−1(
⋃
{φ(t) : t1 <T t}) by Lemma 6, U ′

1 intersects f−1(
⋃
{φ(t) : t1 <T t}). Choose t2 ∈ T

with t1 <T t2 and z2 ∈ U ′
1 ∩ f−1(φ(t2)). Now f(z2) ∈ φ(t2), hence f−1(φ(t2))

◦ is a neighborhood of 
z2 ∈ U ′

1 ⊂ f−1(φ(s1))
◦. But f−1(φ(s1)) = f−1(

⋃
{φ(s) : s1 <T s}) by Lemma 6, hence U ′

1 ∩ f−1(φ(t2))
◦

intersects f−1(
⋃
{φ(s) : s1 <T s}). Find s2 ∈ T with s1 <T s2 and y2 ∈ U ′

1 ∩ f−1(φ(t2))
◦ such that 

f(y2) ∈ φ(s2). It follows that U2 = U ′
1∩f−1(φ(t2))

◦∩f−1(φ(s2))
◦ is nonempty, and we put β(U1, U ′

1) = U2.
Continuing to define β in this way, let α be a strategy winning against β. Then their play U1 ⊃ U ′

1 ⊃
U2 ⊃ U ′

2 ⊃ . . . has the following properties:
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1. U ′
k ⊂ Uk = U ′

k−1 ∩ f−1(φ(tk))
◦ ∩ f−1(φ(sk))

◦.
2. zk+1 ∈ U ′

k ∩ f−1(φ(tk+1)), tk <T tk+1.
3. yk+1 ∈ U ′

k ∩ f−1(φ(tk+1))
◦, f(yk+1) ∈ φ(sk+1), sk <T sk+1.

Since α beats β, there exists u ∈
⋂∞

i=1 Ui �= ∅. Let N be the set of all pairs (N, k) where N is a neighborhood 
of u contained in Uk, ordered by the relation (N, k) � (N ′, k′) iff N ′ ⊆ N and k′ ≥ k. For (N, k) ∈ N we have 
N ∩ f−1(φ(tk)) �= ∅, and also N ∩ f−1(φ(sk)) �= ∅, due to property 1. above. Pick v(N, k) ∈ N ∩ f−1(φ(tk))
and w(N, k) ∈ N ∩ f−1(φ(sk)). Clearly the nets 〈v(N, k)〉 and 〈w(N, k)〉 both converge to u. On the 
other hand, by the completeness property (c) of the web (T, φ) the net 〈f(v(N, k))〉 has a cluster point 
v ∈

⋂∞
i=1 φ(ti) ⊂ V and similarly, the net 〈f(w(N, k))〉 has a cluster w ∈

⋂∞
i=1 φ(si) ⊂ W , so v ∈ V and 

w ∈ W . But by closedness of the graph we have (u, v) ∈ graph(f) and (u, w) ∈ graph(f), hence v = w, 
proving V ∩W �= ∅. �
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