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THE INVERSE PROBLEM OF EMISSION TOMOGRAPHY
Daniel Gourion and Dominikus Noll

ABSTRACT. The image reconstruction process in emission computed tomog-
raphy (ECT) is an inverse problem for the photon transport equation. For
monochromatic emission sources it is closely related to the inversion of the
attenuated Radon transform, a nonlinear ill-posed inverse problem. Due to its
practical importance for medical diagnostics, this problem has been addressed
various times. Here we present the theoretical setting of ECT and discuss
some new numerical strategies based on regularization techniques. We include
experiments to compare some of the numerical approaches.

1. PROBLEM SETTING

Single Photon Emission Computed Tomography (SPECT) is a non-invasive di-
agnostic technology in nuclear medicine. It is used to show blood flow in the heart
muscle, extent of damage in stroke patients, presence and degree of malignancy of
tumors, and much else. SPECT images the function of the body through a tracer,
a biochemical molecule labeled with radioactivity. The radioactive material is in-
corporated by the patient and either metabolized by the organ or simply trapped
or bound in tissue. The emitted gamma radiation is recorded by a SPECT camera
rotating around the patient, and a 3D visualization is created from the 2D projec-
tion data via an inverse mathematical method. The setup is schematically shown
in Figures 1, 2. For additional introductory information see [77, Ch. 5, Ch. 14].

Positron Emission Tomography (PET) is a related technology with similar di-
agnostic goals. In PET, the radioactive agent is a positron emitter, attached to
the tracer molecule. Positrons annihilate quasi instantaneously with a nearby elec-
tron, and the energy equivalent to the two masses is shared by two photons, which
radiate, each at 511keV, in opposite directions. The events are recorded in coinci-
dence mode on a cylindrical detector array surrounding the patient as schematically
shown in Figure 3. See [65], [77, Ch. 6] for the principles, and [13] for the history
of PET. Emission Computed Tomography (ECT) is a generic term which refers to
SPECT, PET and a more recent imaging modality, the Compton camera [69, 70],
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FiGure 1. The principle of SPECT: Photons emitted from the
body are recorded by a rotating camera equipped with a paral-
lel hole collimator. Photon a) misses the camera, photon b) is
absorbed by the collimator, photon c¢) travels perpendicular to
the camera surface and therefore passes the collimator. Ideally,
only photons which propagate perpendicular to the camera are
recorded. Many systems use two or three camera heads.

which is still in an experimental state. All techniques of ECT are governed by the
photon transport equation and lead to typical inverse problems.

These inverse problems may be solved by two types of strategies. Either ad-
ditional transmission tomography measurements are performed to alleviate the re-
construction. Or the inversion uses the emission data only, in which case a difficult
nonlinear inverse problem has to be solved, since two unknown parameters have to
be reconstructed simultaneously. In this paper our emphasis is on the second strat-
egy. We show that it may be competitive if diligently handled. This requires the
full picture of the physical inverse problem, which we obtain in Section 2, starting
out from the photon transport equation. We then derive a numerical strategy for
simultaneous inversion, which we test numerically using a simulation and a physical
phantom study.

2. PHOTON TRANSPORT EQUATION

2.1. GENERAL CASE. For stationary emission sources, gamma radiation and
its interaction with tissue in the human body may be described by the linear sta-
tionary photon transport equation (cf. [63, 25]):

0-VI(x,0,F)+ pu(z,E)I(z,0,E) = / o(z,E' — E,0' — 0)I(x,0,E")d0" + f(z,E)
S2
(1)
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F1curr 2. SPECT attenuation and scatter: Photon a) is deviated
due to scatter effect, and the count is "missing”. The photon is
attenuated. Photon b) should be absorbed by the collimator, but
due to scatter is "erroneously” recorded. Photon c) should miss
the camera, scatters, passes the collimator and hits the camera.
Due to the large scattering angle, the energy loss (5) is recognized,
and the event is not recorded. Photon d) is attenuated due to
photoeffect and the count is ”missing”.

Here I(z, 0, E) is the specific intensity or energy transport at position z, in direction
6 € S2, and at photon energy E, f(z,E) is the unknown radioactive source at
position = and energy E, u(z, E) is the unknown linear attenuation coefficient, and
o is the unknown scattering kernel. We may assume that the attenuation coefficient
decomposes into

(2) w(z, E) = p(x) pm(E),

with p(z) the unknown electron density at position z, and p,,(E) a known term
representing all physical processes which end flights of photons at energy E. For
the energies relevant to nuclear medicine, these include photo effect, Rayleigh and
Compton scatter [63]. The unknown p(x) describes the patient anatomy, while the
unknown emission source f, the ultimate goal of the SPECT study, characterizes
the function of the organ under investigation. The scattering kernel o(z, E' —
E, ¢ — 0) decomposes into

o(z,E' — E,0' — 0) = p(z)on(E' — E,0 — 0),

where the scattering cross-section o,, is a known term, which accounts for all phys-
ical processes that cause photons with incident energy E’ traveling in the incident
direction ¢’ to interact with matter and scatter into the new direction of propaga-
tion # with the energy loss E/ — E > 0.
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FI1GURE 3. The principle of PET: The emitted positron annihilates
with a nearby electron. The energy associated with the mass of
both particles is shared by two photons, which part in opposite
directions, each one at 511keV. In case a) the event is correctly
identified as having originated on the line joining receptor tubes
8 and 30. In case b), one of the photons Compton scatters and
changes direction. If the loss of energy (5) is moderate, the event
is “erroneously” attributed to the line joining the tubes 3 and 36.
For larger scattering angles, the Compton photon is outside the
energy window about the nominal energy 511keV, and the event is
not recorded.

For incident energies E’ between 80keV and 1000keV, and for the soft and
bone tissue relevant to nuclear medicine, we may consider Compton scatter as the
dominating effect and model the scattering kernel as

(3) o(x, B — E,0' —0) = p(x) om (E, E, (0,0"))

—

where (0, 6’) is the angle between 6 and ¢, and o,,(E’, E, ¢) is the Klein-Nishina
scattering cross-section (cf. [26]):

() 0B, B.0) = (5) (5 B e ¢) ,
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where rq is the classical electron radius (see [31]). Formula (4) describes the proba-

bility distribution of Compton scattering angles ¢ = (6, ') for the incident photon
energy E’ (see [31] for details).

Notice that due to the conservation of energy and momentum in the Compton
scatter process, the energy E’ of the incident photon scattered from direction ¢’
into the direction € and the energy E of the scattered photon are linked through
the formula

E

(5) E' = 1— (B/mc2)(1 — cos ¢)

with ¢ = @ and m the electron rest mass (cf. [75]). In particular, o, (E', E, ¢) =
om(E’, @), obtained by substituting (5) into (4), is determined by the incident en-
ergy E’ and the scattering angle ¢ alone. The reader is referred to [74] for a more
complex model of o,,, where in particular Rayleigh scatter is taken into account.

Remark 1. The decompositions (2) and (3) are approximations, which may be
justified in nuclear medicine. At a closer look, the situation is way more complex,
as the attenuation coefficient depends on the Z-number of the atom causing the
interaction [31]. O

We assume that the unknown emission source and attenuation map are com-
pactly supported with supp(f), supp(u) C Z, where Z is a cylinder whose axis az
is the axis of rotation of the SPECT camera. Boundary information may then be
added to (1), firstly by assuming that there is no incoming radiation:

6 I =1z",0,E) =0 forallfeS® E>0
(6) (z7,0, ,

at every entry boundary point = € dZ, that is, 6 - v(z~) < 0 with v(z™) the
exterior normal to Z at x~. Secondly, the outgoing radiation is partially detected:

(7) IT:=1(z",0,E) =d(z",0,E) forall@ € S® withf-az=0, E>0

at every exit boundary point zt € 0Z, that is, 6 - v(zT) > 0, but only along
directions 6 perpendicular to the cylinder axis az. With these preparations, the
inverse problem for SPECT may now be cast as follows:

Find the right hand side f and the electron density map p provided that the energy
transfer terms I* on the boundary of the cylindrical region are known.

The inverse problem, even when understood in a localized sense, is largely open.
Some interesting partial results are presented in [39], and a uniqueness result which
essentially covers the case of computed tomography (CT) is given in [5, 22]. To our
knowledge, the earliest contributions are due to D.S. Anikonov (see e.g. [3]), who
considers the even more general case, where the attenuation and scatter term are
assumed independent and not linked through the common unknown p(z) as in our
cast. In [4] it is shown under suitable assumptions that if the damping coefficient p
along with scattering kernels o1, o2 produce identical boundary transport I+, then
01 = 02, f1 = fa2, an interesting mathematical support for the physically motivated
assumption (3). A more recent work on the inverse problem is [1], where a 2D
transport model is discussed.

2.2. MONOCHROMATIC SOURCES. In many applications, the radioactive tracer
is monochromatic, i.e. emits at a unique photon energy FEy, f(x, E) = f(z)d(E —
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Ep). Under that hypothesis, and if we have an ideal SPECT camera with per-
fect spatial, angular and energy resolution, equipped with a perfect parallel hole
collimator, which accepts only photons which travel perpendicular to the camera
surface, the full 3D transport model (1) simplifies. Indeed, as f(z, E) = 0 for
E > Ej, and since no incoming radiation is allowed, there is no energy transport at
energies E > Ey, i.e., I(x,0,F) =0 for E > Ey. Therefore, at the nominal energy
FEjy, the scatter term vanishes, and the equation reduces to

(8) 0-VI(x,0,Ey) + p(z, Eo) I(x,0, Ey) = f(x),

with 6 € S?, x € R3. Clearly (8) decouples into a series of equations along lines
perpendicular to the cylinder axis az. Using the boundary information (6), we may
integrate (8) on each line separately. The 3D inverse problem then decomposes into
a series of 2D inversions in transaxial slices.

Let us restrict  to one of these 2D slices, which we rename R?. Choose a
standard parametrization (6, s) for the lines in R? by letting § = (cos ¢, sin ¢), and
9+ = (—singp,cosp) € S', s € R: represent  on the line (s,0) as x = t0 + s0=.
On setting p(z) := p(x, Ey), using the boundary information (7) and on letting
d(z*,0) := I(z™,0, Ey), the boundary value problem in that slice is equivalent to
the nonlinear integral equation

) —/ (u(s0+ +70) dr
e t

9) RS0 = [ ss0" 10 at = d(o, ),

to be solved for the unknown f and g simultaneously. For fixed u, the linear
operator f — R[u]f is known as the attenuated Radon transform (cf. [56]).

Remark 2. Notice that (9) is usually introduced as a simplified version of (1),
where the scatter terms have been omitted. Our argument shows that it is the
correct model for monochromatic sources. O

Following [60, 58], inverting the attenuated Radon transform refers to the inversion
of f — R[u]f for given p. The problem of finding or estimating p (and possibly f)
from the emission data d = R[u]f prior to solving for the unknown f is sometimes
referred to as the identification problem.

Even for monochromatic emission sources, very little is known about the inverse
problem for (1). Some partial positive answers under strong additional assumptions
are presented in [39]. Now, as we have just learned, if we neglect the scattering
contribution and look at the nominal energy level Ey only, it seems natural to ask
whether the nonlinear operator (f, ) — R[u]f is invertible, or whether at least
appropriate classes of functions f and p may be identified where such a statement
is valid.

Recently, a major step toward a solution of this problem has been obtained by
Novikov [60, 58], who presented an inversion formula for the attenuated Radon
transform, which is structurally of the form N{u]d = f for R[u]f = d. That is, it
inverts f — R[u]f. Invertibility of the attenuated Radon transform may also be
derived from the result in [1], when the scattering kernel in the 2D transport model
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is ignored. Local uniqueness results for generalized attenuated Radon transforms
had been obtained before in [32, 53].

Remark 3. The situation in PET is similar to the monochromatic case in SPECT,
as the pair of photons is always emitted at Ey = 511keV. With a perfect energy
resolution, and with perfect electronic collimation, scattered photons are identified,
and (1) decouples into equations along lines. In contrast with SPECT, the boundary
information in PET is symmetric: I(z",0, Ey) = I(z™T, —0, Ey), where 271 is the
exit point opposite to 7 on the same line. This leads to the known nonlinear
integral equation (cf. [7]):

(10) exp{—-Ru}Rf = d

which is simpler than (9). The major advantage of (10) over its alter ego (9) is
that as soon as p(z) is known, the data may be corrected for attenuation, and the
problem reduces to inverting the Radon transform. (|

3. CAMERA BLURRING

The transport equation (1) and its special case (9) assume an ideal camera with
perfect spatial angular and energy resolution, a mathematical fiction. A real camera
will of course have a finite spatial resolution and scan a finite number of directions
only. In addition, a realistic model will have to account for the imperfections of the
collimator, which will in practice have a nonzero opening angle. Geometric models
assuming cylindrical holes are for instance given in [26, 74]. In reality, we have to
add knowledge about the internal resolution of the camera photo multiplier tubes
and include effects like septal penetration in the lead collimator. Then we obtain
the full camera response function, or camera blurring. It turns out that the response
of a point source §, at a position p at distance d to the camera may very accurately
be described as Rp[0]6p = 1 - Go(dy» Where ¢g(q) is a 2D Gaussian centered at the
projection p’ of p on the camera, with variance o(d) = o¢9 + md a known affine
function of d, and where 7 is the efficiency of the collimator, which is of the order
of 10~* or even 107%; see [8, 48] for details. In other terms, a real camera blurs
with a distance dependent Gaussian filter. Finally, a realistic camera will use an
energy window FEy + AE about the nominal photon energy Ey. This means that
scatter effects re-enter the scene even for monochromatic emission sources, since
the ideal model in Section 3 was based on a fictional perfect energy resolution.

In order to account for these effects we will have to consider discretized ver-
sions of (1) or (9). In our numerical tests we use a standard discretization as for
instance given in [71, 15, 6]. An interesting alternative discretization was pro-
posed by Dicken [26, 27]. Another possible choice is a wavelet basis [76]. With
the appropriate changes, our method may use any of these discretizations.

For further use, let us introduce a mnemonic notation to discern among the different
models. While R[] refers to the attenuated Radon transform (9), R[] is the
modification of (9) which accounts for camera blurring and attenuation, but ignores
scatter effects. Similarly, Rs[-] stands for the operator form of (1), for instance
[25, 74], so it includes attenuation and scatter effects, but ignores blurring. Finally,
Rsp[-] stands for the complete model [74], which accounts for both effects. We will
use the operator symbols for both continuous and discrete models, as it will always
be clear from the context which case we have in mind.
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FIGURE 4. Effect of collimator blurring correction: Left hand im-
age uses parallel geometry, right hand image reconstructed with
collimator response

4. PHYSICAL ATTENUATION AND SCATTER CORRECTION

The current trend in SPECT image reconstruction is to alleviate the difficulties
of the inversion of (1) or (9) by estimating the tissue attenuation y prior to solving
for f. This is done by performing a transmission scan either in succession or in
parallel with the SPECT scanning, and the approach is referred to as transmission
SPECT. Similar lines are taken in PET. Algorithmically, this may be cast as:

Method 1

19 Using the transmission data dy, invert the Radon transform R.u = d; to
obtain the attenuation map u(z, E1) at the energy level E; of the (usually
monochromatic) transmission source.

20 Estimate u(z, Eg) from u(z, Er).

3% With p = u(-, Ep) known, obtain f by inverting Rp[u]f = d., where d.
are the emission data at the energy Ej of the emission source.

The appealing aspect of Method 1, which is used in practice, is that step 3 may
be performed via iterative methods based on the EM-algorithm and its variations,
so that it may include attenuation, scatter and blurring effects: Rgp[u]f = de. In
the latter case, step 2° requires estimating u(-, E) from u(-, B1) for every E in
an appropriate energy window about Ey. Along with these positive points, this
approach also encounters several problems, which we need to discuss in order to
understand the complexity of the problem.

In configurations where the emission/transmission data are acquired simulta-
neously, it has been observed that the higher energy isotope, usually the SPECT
tracer, will down scatter into the energy window of the transmission isotope, gen-
erating cross-talk between the two procedures. If not accounted for, this leads to
artifacts in the reconstructed images. This has been studied in [18], and the au-
thors suggest that if the transmission source used the higher energy isotope than
the SPECT tracer, the impact of the cross-talk could be somewhat reduced.
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Formally, the cross-talk implies that the data acquired are d.(F) + d(E), and
that we are not able to segregate them into d.(FEp) and di(E7). This could be
addressed by the following:

Method 2

19 Solve Rsp + Rsp[p]f = de + dy simultaneously for the unknown f and pu
(or p).

20 Keep the u so obtained, and reconstruct f by solving Rep[u]f = de for f.
While adapted to the physical nature of the problem, this approach encounters
major numerical difficulties due to the nonlinearity in u, and is hardly feasible at
present. This means that the Method 1 has to be maintained. Reference [18] makes
propositions how to deal with the cross-talk effect.

As a remedy to the spilling over effect of the higher energy isotope into the lower
energy window, it has been proposed that the transmission scan be performed in
succession with the SPECT scan. Unfortunately, this provokes a new problem:
co-registration of two images acquired with different geometries, a nontrivial task.
Moreover, if X-ray CT imaging or other sources with several energy peaks are used
for the transmission part, step 2 in Method 1 becomes a major problem. The
phenomenon is sometimes referred to as beam hardening effect (see e.g. [77]).

In cases where the mentioned drawbacks of transmission SPECT are tolerable,
a new reconstruction method for 360° scans may be obtained via Novikov’s inversion
formula [60, 58]:

Method 3

1% Use the transmission data d; to invert the Radon transform Rsu = d; and
obtain u(x, Ey) at the energy level E; of the transmission source.

20 Estimate u(-, Ep) from u(-, E1).

3% With g = pu(-, Eo) known, divide the 3D region of interest into transaxial
slicesv =1,...,T, and regroup i and the emission data d. accordingly. In
each slice, invert the 2D attenuated Radon transform through Novikov’s
formula ¥ = N{u”]dY.

4% Obtain f by stacking the f¥, v =1,...,T together.

Numerical approaches to f = N[u]d are proposed in [58, 43]. Unfortunately,
despite its beauty, the inversion formula is unlikely to improve on existing ap-
proaches like Method 1, as it is not clear in which way it could account for the col-
limator blurring effects. It is known that camera blurring has to be accounted for in
order to improve the visual resolution of the reconstructed images, as demonstrated
by Figure 4. A competitive implementation of the inversion formula f = N[u]d
would have to find ways to take this effect into account.

5. MATHEMATICAL ATTENUATION AND SCATTER CORRECTION

5.1. METHODS. Transmission SPECT or PET clearly sets the benchmark for
the other approaches to be discussed here, since it introduces additional information
into the process. On the other hand, performing the additional transmission scan
has several drawbacks. It clearly increases the radioactive impact of the procedure,
and requires maintaining an additional source of radioactivity in the clinical envi-
ronment. Moreover, it may produce artifacts in the reconstruction methods due to
the cross-talk between the emission and transmission isotopes.
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In consequence, it is attractive to estimate p and f using the emission data
only. We refer to these methods as analytical or mathematical correction methods,
and the most general approach could be based on the following

Method 4

19 Solve Rgp[u]f = d simultaneously for the unknown f and pu.
20 Keep the i so obtained, and reconstruct f by solving R [u]f = d for f
using an iterative procedure.

The crucial part is step 1 here, which leads to a difficult large scale optimization
problem. If we replace Ry, by the sparser Ry, the problem is within the reach
of large scale optimization procedures, even though matrix vector product require
calculations on the fly. In order to reduce the numerical burden of Method 4, we
propose the following mixed strategy, which simplifies step 1° in Method 4:

Method 5

19 Divide the 3D region of interest into transaxial slices, v = 1,...,T, and
regroup the emission data accordingly. In each slice, invert the 2D trans-
form (9) R[p”]f¥ = d” simultaneously with respect to f¥ and p”.

20 Form a 3D attenuation map p by stacking the slices p”.

3% Invert the 3D transform Ry[u]f = d with respect to f.

This method has been used in our numerical experiments. The numerical details
of step 19 will be discussed in Section 8 and 9.

5.2. THE IDENTIFICATION PROBLEM. Methods 4 and 5 suggests that we take
a look at the various ways in which step 1° could be attacked. This is referred to
as the identification problem, and the methods used in the past may roughly be
divided into three groups. We recall the most important approaches and discuss
whether they will be feasible in 3D (Method 4), and whether they may serve to
include scatter correction.

A first approach, initiated by F. Natterer [55], tries to estimate the unknown
wu(z) using the Helgason consistency formula [56, Theorem II. 6.2]. Structurally,
it is of the form Clu]ld = 0, whenever d = R[u]f. Unfortunately, it does not
fully characterize the unknown p, while its alter ego, the corresponding consistency
formula for the PET projection data, does (see [56] for the details). A consistency
formula for SPECT which fully characterizes the range of the attenuated Radon
transform has been obtained by Novikov [61].

The Helgason consistency formula was used in [72] to obtain a rough estimate
of the unknown attenuation map. The resulting method, called ConTraSPECT was
further tested in [44, 35]. The idea of ConTraSPECT is not to try to estimate p
exactly, but use an approximation featuring a uniformly attenuating ellipse with
five unknown parameters to compensate for the attenuation effects. The limitation
of this approach is that the Helgason formula is only valid for a full 360° scan, while
in clinical practice it is often preferable to acquire data on a 180% tour. Further
limitations are that the attenuation map so obtained is not suitable to include
scatter correction. Moreover, a 3D analogue as for instance required in Method 4
does not exist.

A second type of identification methods, also pioneered by Natterer, [57], tries
to solve (9) by fitting a template or reference pg to the unknown p. Here a de-
formation procedure carrying pg into p has to be specified, and the parameters
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of that process are fitted using (9), the consistency formula, or a combination of
both. This idea has been revived various times, leading for instance to automatized
learning procedures which, starting out with a list of known “good” cases (f, u),
try to fit the template based on this prior knowledge. As opposed to the first type
of methods, the attenuation maps so obtained may very well be used to include
scatter correction, and they are in principle open to 3D optimization as Method 4.

The third type of mathematical approaches was initiated by Censor et al. [19],
who solved the discretized equation (9) directly for (f, 1) via an iterative procedure.
A more recent approach of this type is V. Dicken [26, 27]. The author proposes a
functional analytic setting for (9), and then derives regularization strategies in the
sense of Tychonov motivated by the operator theoretic form of the problem. This
leads to an optimization problem of the form

(@) min|RES — dI? + Silu) + SaIf

where the smoothing terms S [u], S2[f] are based on a Tychonov regularization in
an appropriate Sobolev space, and where || - || stands for the corresponding Sobolev
norm. Work in the same spirit is for instance Krol et al. [41], where again an
optimization problem of the form (G), but with the standard L?*-norm, is used to
solve for f and p. We notice that model (G) arises from a Gaussian law for the
measurement noise.

An interesting way to solving (G) has recently been developed by Bronnikov
[10, 11, 12]. Using the fact that the operator R[u]f is linear in the variable f,
and adopting Golub and Pereira [34], the author splits the joint minimization (G)
over (f,p) into an outer minimization over p and an inner minimization over f,
solving the inner linear least squares problem using the pseudo-inverse R[u]f. As
a consequence, problem (G) may now be cast as an optimization over u alone:

min | R[uR[u]'d — dl|3 + Si[u]

The inconvenience here is that derivatives will depend on the pseudo-inverse R [u]
of R[u], and that the objective may even be discontinuous at positions where R[u]
changes rank. Nonetheless, the method is reported to work well with synthetic
data, and the reconstruction has the additional advantage that the cross talk effect
reported in [26, 27, 41]; see also Section 14, is avoided. Notice in addition that the
inner minimization may be stabilized by including a Tychonov regularizing term
Sa[f] = al|f]|?, or more general quadratic expressions in f.

As already observed in [71, 19], see also [15], there is strong reason to model
radioactive emissions through a Poisson statistic. This means that we are led to
replace the Gaussian optimization problem (G) by the Poisson likelihood function.
After discretizing the operator (9), this leads to a minimization problem of the form

mmzz(zgwkm Jklog<zzzuk[u () + sl

j=1k=1 i=1

where dj; are the discrete data, and Rijk[-] stands for the discretized operator (cf.
[71, 6, 26]). Notice that in this setting, the regularizing term S|y, f] = S1[p]+S2[f]
may be interpreted as a Bayesian prior defined on the parameter spaces for u and f.
In our experiments we will compare model (P) to the Gaussian model (G), where
both programs use suitable regularizers to address the ill-posedness of the problem.
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Except for the numerical difficulties, this could be extended to 3D (Method 4), and
the attenuation map p so obtained may be used to include scatter correction.

The most prominent way to solving a maximum likelihood problem is the Ex-
pectation Maximization (EM) algorithm, and not surprisingly, there exists an abun-
dance of literature on EM approaches to the inverse problem of ECT. The EM algo-
rithm, [71, 15, 6], along with its modifications like OSEM [38] or RBI [14], works
best on the linear inverse problem when g is known. Moreover, due do the limited
number of iterations, the EM algorithm is ideally suited for the full scatter and
blurring model R, see e.g. [54]. Tts drawback is that regularizing terms reflecting
a Bayesian approach are not easily included, or may only be added at the cost of
a considerable slowdown. A way how this could at least be partially overcome see
[68].

In the case where both f and p are unknown, extensions of the usual EM scheme
are required. Three such approaches are [62], [41] and [64], which use sophisticated
definitions of the incomplete data space and/or suitable linearizations to address
the nonlinear problem.

In our numerical experiments we have solved both the Poisson program (P) and
the Gaussian program (G) via nonlinear optimization techniques. Our approach
differs from previous work in two important points. We use physically motivated
regularizers, and we optimize the variables (f, u) jointly. Except [10, 11, 12], to
our knowledge all previous approaches based on (P) or (G) alleviated the difficulties
of a joint minimization by a succession of separate minimizations in p and f. This
coordinate descent approach has a bad reputation in optimization due to failure of
convergence.

6. REGULARIZERS - OLD AND NEW

In this section we shall present possible choices of regularizers Sy [u] and Sa[f]
for problems (G) and (P). Since there is no risk of ambiguity, we will continue to
use the same operator symbols for both continuous and discrete models.

6.1. TRADITIONAL CHOICES. Despite its merits as a classical and well-analyzed
prototype, Tychonov regularization, appearing as S[f] = | f||3 or S[f] = «||Vf||3,
is known to have too strong a smoothing effect. As a remedy, the so-called flat
zone regularizer S[f] = «||Vf||1 has been proposed (cf. [21]), and in numerical
experiments, confirmed by several groups, turned out an interesting alternative,
particularly so in cases where images with large regions of homogeneous gray level
are reconstructed. Our own experience with the flat zone regularizer in dynamic
tomography [9] confirms this behavior.

Remark 3. We present a heuristic argument explaining the success of the flat zone
regularizer. Consider for simplicity the 1D penalty program

(Pa) min||Rf — d|l3 + ol £

with a linear operator R. The related tolerance program is

(7¢)

Observe that a solution to (P,) is also a Kuhn-Tucker point for (T¢) with € =
e(a) = ||Rf — d||2. Conversely, if the inequality constraint is active at a solution

minimize || f/[|1
subject to  ||Rf —d||2 <€
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f of (T¢), the latter turns out a solution of (P,) for an appropriate a = af(e).
So both approaches may be considered equivalent, since the inequality constraint
will be active in all cases of practical interest. Now consider a finite difference
discretization of (T¢). Making the change of variables g; = f; — fi+1, we recast (T¢)
as

(7)) minimize  ||g|1
¢’ subject to ||RAg—d|2 <e

where f = Ag is that change of variables. This means that we minimize the 1-norm
of g over an elliptic cylinder, and the minimum is found by scaling the norm ball
until it touches the cylinder from outside. Now recall that the 1-norm ball has 2n
extreme points, n the dimension of the discretized g, and it is highly likely that
the contact is in one of the extreme points, or an extreme k-face. At any rate, the
contact point is bound to have many differences ¢g; equal zero, which produces the
flat zones observed in numerical experiments with this regularizer. Needless to say,
the same phenomenon could be obtained by many other choices of norms, which
renders the use of ||V f||; somewhat accidental. O

Remark 4. The equivalence of the tolerance model and the penalty model suggest
a search strategy for the correct choice of the penalty parameter a. Suppose that
the error terms e; = (Rf); — d; are independent random square integrable. Then
we have E||Rf —d||? =Y | E(e?) = 3.1, V(d;). Therefore, if for instance the d;
are Poisson distributed, E(e;) = V(e;), and a good estimate would be

(11) IRf —dll* =Y di =: €.
=1

This means that the correct choice of the penalty parameter is « = «(e) for that
€. Since this formula is not explicit, a line search in « is required. The tolerance

condition may be used as a stopping criterion in the numerical procedures (cf. [9]).
O

6.2. PROBLEM ORIENTED REGULARIZATION. One may argue that the flat
zone regularizer is appropriate if a bird’s view of the situation is taken. On the
other hand, regularizers specially adapted to the physical nature of the image gen-
erating process in ECT should be expected to give better results. In [37], several
possibilities motivated by the nuclear medicine context have been discussed. Here
we propose regularizers based on physically motivated penalty terms. A first ex-
ample, proposed in [50, 51], uses high pass filtering to penalize high frequencies
which may a priori be identified as noise contributions.

/g)serve that in the absence of tissue attenuation, the Fourier slice theorem:
Rf(-,0)(c) = f(0h), cf. [56], tells us that every detail present in the unknown
image f should be visible in some of the projections Rf(-,6). In other terms,
any detail finer than 27/b in a candidate image f (b the known bandwidth of the
sinogram R f) could not originate from the true source f, and should be attributed
to a noise source. This statement remains at least approximately correct if the
effect of tissue attenuation is taken into account without being predominant (see

[47]). We therefore propose a regularizing high pass filter of the form
(12) SIf) = allHe(N)ll3 = allds - f15,
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FIGURE 5. The 2D spectrum of the Radon transform 7/%7 is con-
centrated on a region of bowtie shape in the frequency plane. This
remains qualitatively correct for the attenuated Radon transform.
The first and second image show the spectrum @ of a Gauss-
ian source with different resolution, corresponding to signals with
different spatial bandwidth. The fourth image shows the bowtie
belonging to the spectrum of the Radon transform of a physical
source defined by a small hot bottle shown in image 3.

with cut-off bandwidth b fixed moderately above the known bandwidth of the sino-
gram bg.

It was observed in [67, 56] that the 2D spectrum Rf (0, k) of the Radon trans-
form R f(s,6) is concentrated on a region of bowtie shape in the (o, k) frequency
plane (see Figure 5). This suggests a cutoff function ¢, having ¢p m(0, k) ~ 1
outside, and ¢y (0, k) = 0 inside a bowtie region of horizontal bandwidth |o| < b,
thickness |k| < m at the axis o = 0, and slope ~ 1 for a source f supported on the
unit disk. This leads to a structured high pass filter of the form

(13) SIf] = a|HomRNIZ = alldom - RII3.

Following the analysis in [47], a similar result is even correct for the attenuated
Radon transform, suggesting the even better adapted joint filter

(14) Sl f] = alHem(RIul )3

Due to the nonlinearity in u, however, (14) is numerically demanding.

The spatial bandwidth b in (13) should be moderately above the known spatial
bandwidth of the sinogram, while the thickness m of the bowtie region has to be
adapted to the dynamics of the attenuation map p. For details we refer to [47].

It is near at hand to use the same type of regularizers for the unknown atten-
uation map u, possibly with different cutoff frequencies b. In practice it is easy to
obtain estimates for the bandwidth of the attenuation map p by evaluating recon-
structions obtained via transmission data processed in parallel with the SPECT
scan (cf. [17, 16]). As already observed by Natterer [57], and confirmed by our
experiments here, if model (9) is used, it is not necessary to know p to a high preci-
sion. What is required is knowledge exp{—Du(x,0)} at certain points = and along
certain directions #. In consequence, only mild regularization on p is required, and
the effect of different regularizers on the quality of the reconstructed f is marginal.

In our numerical tests we have compared the 1-norm, the 2-norm and the high-
pass regularizer (12) using the Gaussian model (G) and the Poisson model (P). The
bowtie regularizer was tested in [46] and in [9] for dynamic emission tomography
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(dSPECT). Notice that all the regularizers discussed either immediately generalize
to the 3D case, or have natural 3D analogues.

6.3. CONVERCENCE THEOREM. In order to justify our choice of regularizer

Sl f1 = a(lHo el + Hoy 0o (RIZ + [ Hoo FII3 + [Hba0(RF)2)

we proceed to prove a convergence theorem in the spirit of [29, 30] or [42]. In order
to do this, we first have to give a precise functional analytic setting for problem

(9).

We recall that (u, f) — R[u]f is continuous as an operator defined on the
positive cone L?(D), x L*(D) of the Hilbert space L?(D) x L?(D), taking values
in the Hilbert space L?*(Z,w) with weight w(s) = (1 — s?)"%/2. We shall use
the notation || - ||, for the induced norm. Here we assume the unknown f and
u supported on the unit disk D in R?, which means that the attenuated Radon
transform is defined on the cylinder Z = [—1,1] x S!, ¢f. [26, 27, 56] for details.

Notice that a singular value decomposition for the Radon transform R as an
operator between L?(D) and L?(Z,w) was established by Louis [45], showing that
R is ill-posed on these spaces. However, R is also continuous as an operator map-
ping L3(D) in L?(Z) with the standard norm, and it seems convenient to measure
data in this norm || - [|2. In particular, R is still ill-posed with respect to this norm,
and the same observation is true for the attenuated Radon transform. Many nu-
merical approaches are in fact based on the standard L?-norm on the data space
(see [10, 41]).

Let us now define the correct setting for the Fourier transform and for the
corresponding high pass filters. Let €2 be a domain containing D, and let F be the
2D Fourier transform restricted to L2(f2), as an operator with values in L?(RR?).
Then F* is the inverse Fourier transform followed by the restriction operator. The
high pass filter H;, may then be defined on L?(Q) as

(15) Hyu = F* ¢y - Fu,

where ¢, will for simplicity be the ideal cutoff function ¢, = 0 for |s| < b, ¢(s) =1
for |s| > b, defining a diagonal operator @ — ¢, - @ in the frequency L?(R?). Notice

that if Q = [—w,uJ]Q, every f € LZ([—w, w]2) may be written as a Fourier series
F= S e o) = e,
keZ?

with f = (f,ur) the Fourier coefficients of f on [~w,w]?. In that case, the ideal
high and low pass filters are defines as

Hof = Y foun, Lof = > et

|k|>b |k|<b

For fixed by,ba > 0, let D C 2 = [~w,w]?. Fix an upper bound ji > 0 for the
unknown attenuation map, and a lower bound — f with f > 0 for f. We consider
the Tychonov or penalty type regularization problem

minimize  ||R[plf — d|If, + a(|[He, fI1? + | Ho, pll?)

(Fout)  qubject to fope L3(D), f>~f,0< p <
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We assume that there exist ideal data d. which satisfy d. = R[u.]f« for certain
0<p.<pand f. > —fin L?(D).

Theorem. Let a,, — 07, 6, — 0% and €, — 0", with §2 /o, — 0 and €,/a,, — 0.
Let the observed data d,, satisfy ||d« — dp|| = 0n. Suppose (fn,pn) is feasible for
(Pa,.d,) and an €,-approzimate solution for that problem. Suppose Hp, px = 0,
Hp, [« = 0. Then

(1) There exist subsequences fn, — f. jin, — ft convergent in L*(D), such
that (f, i) is a solution to Rlu|f = d.. Moreover, Hy, f =0 and Hp,ft =
0.

(2) If (f«, i) 18 the only low frequency solution of R[u]f = d«, the sequences
Un — s and fn, — fi« converge in L*(D). Moreover, if we let oy, ~ 6y,
€n ~ 02, then fu— fo = O6:/%), pn = e = O(1?),

Proof. Notice first that an e,-approximate solution to (P,, q,) means a pair
(frs ki) satistying

IR {pn] fo = dnll5, + cn (1 Hy, pnl|* + | Hby fn]?) <
(16) R[S = dnllsy + o (| Hoypell* + [|Hoo fII?) + €n

for every feasible (f, ). As a consequence, on substituting f. and p. on the right
hand side of (16), we find Hp, fn — 0, Hp, i, — 0 for

52

€
1Mo, pn|* + 1My ful * < P Mo, gl + M, fulP — 0

with the last two terms on the right hand side vanishing by assumption.

Observe that u, is bounded in LQ(D) due to the constraint 0 < p < . We
argue that f, is bounded in L?(D), too. Clearly R[uy]f, is bounded in L?(Z,w),
and since f, > —f and p, < ji, Rfy is bounded in L?(Z,w). Now since Hy, fn
is bounded, it remains to show that Ly, f, is bounded. Observe that R(Ly, f,,) is
bounded as well. Now by definition the low frequency space is finite dimensional,
and R, restricted to this space, has a bounded inverse, which means that L, f,, is
bounded as soon as its image sequence R(Ls, fn) is.

Observe that f, = Lo, fn + Hs, fr and Hyp, fr, — 0 implies that f, has a norm
convergent subsequence f,, — f , the low frequency space being finite dimensional.
Similarly pin, — fi. Then Run, | fn. — R[S and Hy, fi = 0, Hp,f = 0. But
observe that (12) also implies R[jin]fn — d, and therefore R[ji]f = d., i.e., (71, f)
is a solution. This proves (1).

In order to establish the rate of convergence in the case where the low frequency
solution (f., p«) is unique, observe that (12) implies Hp,ptn = O(01), Hoyfr =
O(6y,). Therefore, again from (12), R[us]frn — di = O(6,). But now the argument

proceeds along the classical lines (like [42, 29, 30]). O

Remark 5. Let us make a few points of importance for the practice. Firstly,
to make the Theorem more realistic, we may include a discretization of the opti-
mization problem, and by properly relating the discretization parameter h,, to the
penalty parameter a,, obtain a convergence theorem for the discretized program.
This could be done along the lines [59].
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Secondly, we have to be aware that the observed data d™ belonging to the
discretized problem will never do us the favor to converging to d.. What is need to
guarantee this is a regression procedure, the easiest example being a histogram es-
timator producing the sequence d,, = S,d"™) — d,. Naturally, the filtering induced
by S, for instance a nearest neighbor filter, has to be adapted to the discretization
and the constant «,. For an example from a different setting how this could be
managed see [59]. O

Remark 6. Notice that our hypothesis of a low frequency signal d. = R[u.]fx is
somewhat opposite to the point of view in [26, 27], where the author presents a
regularization approach valid even for discontinuous, or at least infinite bandwidth
signals. Clearly in that case a high pass filter with fixed cutoff frequency could
not be completely adapted to the situation, as we do it in the Theorem. As a
consequence, a high pass filter would essentially act like the classical Tychonoff
term S[f] = «/ f||3, and hypotheses as in [29, 30, 42] would be required to prove
convergence. O

7. EXPERIMENTS

In order to validate Method 5, we have performed two experiments, a simulated
case study, and a study using a physical phantom.

7.1. DATA AcQUISITION. The Mathematical Cardiac Torso (MCAT) phantom
is a 3D analytical phantom which models the attenuation coefficient and activity
distribution in the upper human torso. For the simulated cardiac SPECT study
we have selected a particular slice shown in Figure 6. We simulate a 99" Tc-based
SPECT tracer and assume relative concentrations of 75.0, 3.82 and 1.76 in heart,
lungs and soft tissues. The attenuation coefficient in the cortical bones, trabecular
bones, lungs and muscle at the nominal energy Ey = 140keV of Technetium were
chosen as 0.21, 0.17, 0.043 and 0.15 cm ~! respectively. The source f and attenua-
tion map p were both discretized in a 64 x 64 pixel map with pixels of 6.25 X 6.25mm
size. A perfect parallel hole collimator was assumed, and synthetic projection data
were created via formula (9), which included tissue attenuation, but neither scatter
nor blurring. The data were Poisson noised to create a realistic signal-to-noise ra-
tio. A total of 64 projections were scanned over 180°, and alternatively, over 360°.
The size of the projection bins was 6.25 mm. The total number of detected counts
in the slice was approximately 180,000.

The experimental study uses the Radiology Support Device (RSD) striatal
phantom, an artificial skull enclosed within material that mimics soft tissue, ears,
nose and neck (see Figure 10). It has one brain reservoir and four striatal containers.
The phantom was filled with a uniform solution of 303kBq/ml of °Tc in water.
The projection data were acquired with an Elscint dual head spectral SPX camera,
equipped with a parallel low energy high resolution (LEHUR) collimator. A total
of 60 angles, equally spaces over 1809 respectively 360° were scanned, and the
projection data were sampled on a 128 x 128 grid with pixels of size 3.44 x 3.44
mm?2. The data were sampled over 15s per view, and corrected for the known decay
of the radioisotope, resulting in approximately 400,000 counts per projection. A
+10% energy window about the primary photo peak at Ey = 140keV was used,
and a second emission data set was acquired on a £3% energy window about a
secondary photo peak at 122keV.



18 DANIEL GOURION AND DOMINIKUS NOLL

L [ o [ 6 [ B [ 4L |
— [[100]100][28.1]26.6]] — |21.0][23.4]22.3
Go ||61.8[53.4][27.4[24.4] — [20.0][22.7[20.5
Gy |[ ¥ | * |[21.2]18.6] — [18.8][21.0[19.3
Gy |[ * | * |[24.4]235| — [ * [[22.5] *
Gy, [[612] * [[24.4[226] — | * [[22.6[20.4
Grre 20.5
P, [66.3]58.8][26.8]25.3]] — ]20.5][22.7]20.7
P, [65.3] * [[20.4[18.9] — |19.8|[21.719.6
P, [[65.3] * [[24.9[23.0(] — | * |[22.6] *
P, |[65.8] * [[24.3[22.3[ — [20.4] * | *
P, 21.3

[ [[180°[360°[180°[360°] 180°[360°] 180°[360°]]

TABLE 1. Comparison of Optimization Methods

7.2. RESULTS OF THE SIMULATION. In the simulated study, the true model is
described by (9), which is also used to reconstruct x4 and f. We use the following

2D Algorithm
19 Use an initial step Ij, with k € {1,...,4} to calculate a starting point

(f°,u°).

2° Run the optimizer (G;) respectively (P;) with j € {0,1,2,h,1+ ¢} a
suitable regularizer, until either the optimizer’s internal stopping test or
the statistical stopping test (11) applies.

30 If the optimizer stops due to intrinsic reasons before the statistical stop-
ping test is attained, reduce the penalty constant o and go back to step
2. If the statistical stopping test applies before the internal test stops the
optimization, increase o and go back to step 2.

4% The optimization finished, keep the y so obtained, and reconstruct f by
inverting R[u]f = d via the EM-algorithm.

In a simulated study, the true emission source firye is known, and we may check
the quality of each reconstruction fre.. This is done by calculating the relative error

||frecH2

Table 1 shows the results of this test for a considerable number of scenarios. The
letters G and P indicate whether the Gauss or Poisson objectives have been used.
The index j € {0, 1,2, h, 14+c} indicates whether no regularizer, the 1-norm regular-
izer, the 2-norm regularizer, a high-pass filter, or the 1-norm regularizer combined
with a special filter (18) avoiding cross-talk between the reconstructed f and p have
been used.

(17) €rec

Remark 7. Notice that if f is reconstructed with the correct attenuation map figrue
via the Poisson EM algorithm, the relative error amounts to ey ne = 18.1% for a
180° scan, and egye = 16.0% on 360°. These errors occur since the data are Poisson
distributed random events. In the case of the simulated study, we can observe that
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FicUurRE 6. Transaxial slice through the MCAT phantom at the
level of the heart. Right 9™Tc uptake distribution, left attenua-
tion map at 140keV.

FIGURE 7. Same transaxial slice reconstructed.

these errors ege are close to the possible minimum, by which we mean that the
signal-to-noise ratio of fi,ue is only mildly worse than the signal-to-noise-ratio in
the data. The latter in turn could be considered the indicator of what could at
best be achieved by any reconstruction method. The fact that some of the errors
erec in Table I come close to this margin indicates that our approach worked quite
well, and that even a substantially more sophisticated regularization technique is
unlikely to improve the quality of the results. O

In Table 1, we have tested four different ways Ix, £k = 1,...,4 to initialize
the optimizer. I; corresponds to choosing the initial f© = 0, u® = 0. In I, °
is chosen as constant on the contour. Then the linear inversion R[u"]f = d is
solved using program (G), and the result is called f°. In I3, the result (f,u) of
the ConTraSPECT method (based on ideas of Natterer, see [44], [72]) is used as
initial guess. Finally, I, chooses ;¥ constant on the contour and obtains f© as the
EM-reconstruction of R[u°]f = d.

In the table, the symbol — means that the method did not apply to that case.
The symbol * indicates that the optimizer could not improve the figure of merit
compared to the results Gg or Py obtained without regularizer. An empty field
indicates that the method 1+ ¢ did not improve over the method G or P;. In the
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) D)

Ficure 8. Comparison of the divergent beam transforms
Dlu](z, 61) for ppec (left) and pigrye- As can be seen, despite the siz-
able difference between the maps, the integrated terms differ only
slightly, and almost agree on the region around the heart.

..
| 6 )
\

FIGURE 9. Map of the total error [, |exp{—D|urec](z,0)} —
exp{—D[pitrue) (, 9)}’ do (left), positive part middle, negative part
right.

simulated study, we observed that the flat zone regularizer worked slightly better
than the Fourier regularizer, while models (G) versus (P) produced quite similar
results.

Remark 8. As first observed by Dicken [27] in cardiac studies, the reconstructed
attenuation map may feature a shadow artifact of the heart region. We have ob-
served a similar phenomenon here (Figure 7, left), and we believe it is due to the
fact that the optimization converges to a local minimum. Ironically, this shadow
heart with incorrect attenuation coefficients occurred in a region where p is basi-
cally known, and could even be corrected by hand. As this is clearly prohibitive,
we have used the additional regularizing term

(18) Tip, f1 = fil tmax — 1)

i=1
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which penalizes values of u in places ¢ where the activity f; is sizeable. This
approach works well and reduces the visibility of this shadow artifact quite signifi-
cantly. O

Remark 9. The reconstructed attenuation map in Figure 7 (left) should be com-
pared to results obtained by Dicken [26, 27] and Bronnikov [10, 11, 12]. As the
difference between the true and reconstructed attenuation maps p in Figures 6,7
left seems significant, some explanation is indicated. We argue that in the given
case the reconstruction in Figure 7 left is rather ”correct”, and that we should
not even expect a reconstruction prec resembling to the true ptrue. Why is that?
In fact, first observe that the optimization approach (P), (G) we have chosen re-
quires exp{—D[u]}, and not y, to be accurately known. Secondly, it tries to adjust
exp{—D[prec](x,0)} at positions x where the source f(z) is sizable. Since therefore
Dlpirec)(, 0) is only remotely reliable at positions z where f(x) is weak, we cannot
expect Lirec to be of good quality, as the passage from D[u] to u is the inversion of an
ill-posed procedure. This argument is the more applicable, the more concentrated
the emission source, and in the present case we see that most of the activity is
concentrated around the heart region. The impossibility of finding p with a highly
localized f(x) is of course highlighted in the case of a point source f = ¢,, where
1 is not even theoretically uniquely determined (cf. [36, 56], where this has been
observed). O

7.3. RESULTS OF THE PHANTOM EXPERIMENT. The phantom data have been
inverted by the following procedure based on Method 5. After preprocessing the
data, the ROI was divided into 30 transaxial slices, and the data have been re-
grouped accordingly.

3D Algorithm

1° In each slice, method I, was used to initialize the optimizer.

20 In each slice, the 2D algorithm was used to calculate an optimal (f¥, u*).

39 The attenuation maps p” were stacked to obtain a 3D map u.

4% The 3D model Ry[u]f = d was inverted using the EM-algorithm to esti-
mate the emission source f.

Estimating the head contour in each slice is required in step 1. This is done
by reconstructing the emission data acquired at the secondary energy peak, which
consists mainly of scattered photons. This leads to a slightly enlarged contour, as
seen in Figure 11 (left) and Figure 13 (left).

Figure 12 shows a cortical slice reconstructed without (left) and with atten-
uation correction (right). Both reconstructions included the collimator response
function. The visual inspection clearly shows the improvement obtained through
attenuation correction, as the true activity distribution in the cortical slices is
known to be homogeneous.

Figure 13 shows a reconstructed attenuation map in a cerebellar slice (left),
and the curves along the profile as before show the case without attenuation cor-
rection, and the case obtained by the 3D-algorithm. The improvement obtained by
attenuation correction is less marked in the cerebellar slices.

Finally, Figure 14 shows a reconstructed cerebellar slice with (right) and with-
out (left) attenuation correction. The activity in the brain container is expected to
be homogeneous. Attenuation correction improves most on the upper part, where
the true image is expected to show no activity.
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FiGure 10. X-ray CT images of the RSD phantom. Left cortical
slice, right cerebellar slice.
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FiGURE 11. Left image shows reconstructed attenuation map in
cortical slice. The contour is obtained from the reconstructed sec-
ondary photo peak and mildly overestimated due to thresholding.
Right hand diagram shows reconstructed activity curves along the
indicated cut profile: (a) without attenuation correction (lower
curve), (b) curve obtained by initial procedure I, (dotted), (c)
curve obtained via optimizer. The initial is already of good qual-
ity, but the optimizer still improves around the edges. The true
activity curve is expected to be flat.

8. CONCLUSION

We have derived the image reconstruction problem in ECT from the photon
transport equation. Based on this model, two possible inversion strategies have
been discussed. The first uses additional transmission measurements to alleviate
the difficulty of the inverse problem. The second uses the emission data only and
is mathematically demanding.

Our numerical experiments, which are based on the second strategy, use a vari-
ational approach in tandem with Tychonoff type regularization. They confirm that
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FIGURE 12. Activity in reconstructed cortical slice. Left hand
image without, right hand image with attenuation correction ac-
cording to the 3D algorithm. Both images were obtained with col-
limator response taken into account. The true activity distribution
is known to homogeneous.
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FI1GURE 13. Left hand image shows reconstructed attenuation map
in cerebellar slice. Right hand plot shows activity curves along
profile: (a) without attenuation correction, (b) curve obtained by
initial I (dotted), (c¢) curve obtained via optimizer. The difference
is less marked than in the cortical slices.

when diligently handled, mathematical attenuation and scatter correction remains
a promising alternative or complement to the transmission based strategies cur-
rently privileged by the engineering community. The future will probably see a
combination of both approaches.
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FIGURE 14. Activity in reconstructed cerebellar slice. Left hand
image without, right hand image with attenuation correction ac-
cording to the 3D algorithm. Both images were obtained with
collimator response taken into account.
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