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We introduce a completeness concept for convex sets in locally convex vector spaces which is
based on the topological notion of p-completeness (also weak a-favourability). Using purely
topological methods, we then establish an open mapping theorem for convex multifunctions and
a separation theorem for convex sets generalizing the Tuckey-Klee separation theorem. Finally,
we indicate that our notion of completeness encompasses Jameson’s CS-closedness for convex
sets, which hereby is shown to be essentially a topological notion.
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Introduction

In this paper we are concerned with a topological notion of completeness, called
p-completeness, which in [9, 10] was shown to bear a close relation to the open
mapping and closed graph theorems in topological spaces. The concept of p-
completeness, which lies between the stronger Cech completeness and the weaker
Baire category, was already discussed by White [16] under the name “weak a-
JSavourability”, referring to the Banach-Mazur game characterization given in that
paper. Our present investigation deals with several applications of p-completeness
in topology and in functional analysis.

In particular, the following results are derived. In Section 1 we start with a purely
topological result of fundamental relevance to the whole paper. We prove that a
continuous dense and nearly feebly open mapping f (i.e., int f(V) # () for nonempty
open V) from a p-complete space E to a metrizable space F maps residual subsets
of E onto residual subsets of F. As a consequence we obtain results concerning the
openness of a continuous nearly feebly open bijection f: E > F at the points of a
generic subset of E.
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In Section 2 we discuss the concept of pseudo-completeness for convex cones and
convex sets in locally convex vector spaces. Here a convex cone C with vertex 0 in
alocally convex vector space E (i.e., C+ C < C,R.C = C)is called pseudo-complete
if it is a p-complete topological space when endowed with a special topology o,
called the cone topology, which differs from the original (locally convex) topology
on C. This topology has been introduced by Saint-Raymond [13] in a special situation
and has been further investigated in [11]. It turns out that the class of pseudo-
complete convex sets in a locally convex Fréchet space is fairly large. In particular
it contains all CS-closed sets in the sense of Jameson [4], and therefore, as a
consequence of a result of Fremlin and Talagrand [3] the class of all convex G;-sets.

The concept of pseudo-completeness for convex cones and sets permits us to
apply purely topological methods in functional analysis. As a first application we
obtain in Section 4 an open mapping theorem for multifunctions @ between Banach
spaces E, F having pseudo-complete convex graph G(®) in E x F. This result
contains as special cases the corresponding open mapping theorem for closed graph
convex multifunctions obtained by Robinson [12] as well as the open mapping
theorem for CS-closed graph functions from [4]. In Section 5 we present as a second
application a separation theorem for pseudo-complete convex sets generalizing the
Tuckey-Klee separation theorem (see [6, 14]).

In the final Section 6 we clarify somewhat the relation between Jameson’s CS-
closedness and our notion of pseudo-completeness. We introduce an infinite two-
person game I” between players I, II on a convex cone C with vertex 0 in a locally
convex Fréchet space. It turns out that then C is pseudo-complete precisely when
player II has a winning strategy in this game I". On the other hand, the cone C is
CS-closed when, roughly speaking, every reasonable strategy for player II is
automatically winning, so that player Il actually runs into difficulties only when he
decides to lose the game.

Preliminaries

Our terminology concerning notions from general topology is based on the book
[2]. Functional analytic concepts are covered by [7] or [5]. In the following, we
briefly list some notions of special interest in this paper.

0.1. Webs

Let E be a topological space. A pair (¢, T) consisting of a tree T=(T, =) of
height ¥, (cf. [8, p. 84]) and a mapping ¢ from T to the topology of E is called a
web on E if the following conditions are fulfilled:

(i) The set {¢(t): te T} is a pseudo-base for E (i.e., every nonempty open U in
E contains some nonempty ¢(f));

(ii) forfixed € Ttheset {¢(s): t <rseT}isapseudo-base for the subspace ¢(1).
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If in conditions (i) and (ii) the term ‘““pseudo-base” is replaced by “base”, then
the web (¢, T) is called strict.

0.2. p-completeness

A web (@, T) on a topological space E is called p-complete if it fulfills the
following condition:

Whenever (t,) is a cofinal branch in T (i.e., 1, <;1,., for all n) such
that ¢(t,) # @ holds for all n, then theset( | {¢(t,): n €N}is nonempty. (p)

A topological space is called p-complete respectively strictly p-complete if it
admits a p-complete respectively strictly p-complete web. Every Cech complete
space is strictly p-complete and hence p-complete. p-complete spaces are Baire
spaces. The class of (strictly) p-complete spaces is closed under continuous open
images and under products. Strict p-completeness is Gs-hereditary and p-complete-
ness is inherited by open subspaces and by dense G,-subspaces. The p-complete
spaces are known under the name “*weakly «-favourable spaces” introduced in [16].
A similar game-theoretic characterization may be given for the class of strictly
p-complete spaces when the strong game of Choquet (see [1, 16]) is used.

0.3. Feebly openness

A mapping f from a topological space E to a topological space F is called feebly
open if int f(V)#@ in F for every nonempty open V in E. In analogy with the
notion of nearly openness we may now introduce the concept of nearly feebly
openness. The mapping f: E - F is called nearly feebly open if int f( V) # @ holds
in F for every nonempty open V in E.

1. Preserving residual subsets

In this section we establish a topological result of basic nature being of importance
for the considerations to follow. We start with:

Proposition 1.1. Let E be a p-complete topological space and let F be a regular space.
Let f: E~ F be a continuous dense and nearly feebly open mapping. Then F is
p-complete.

Proof. Let (¢, T) be a p-complete web on E. We may assume that the sets ¢(1)
have the following additional property: f(e(1))<intf(¢(t)). Indeed, this is a
consequence of the fact that the nonempty open sets V in E having f( V)< int f( V)
form a pseudo-base in E. For let U in E be nonempty and open. Then letting

V=Unf"\(int f(D)),

we obtain a nonempty open subset V of U with f(V)<int f( V).
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Let us define a mapping ¢ on T by setting
G(r) =int f(1)),

te T. This actually defines a web on F. We check condition (i) of Section 0.1. Let
W be a nonempty open subset of F. By regularity choose a nonempty open subset
U of W having U= W. Now f '(U) is a nonempty open subset of E in view of
the fact that f is dense. Therefore we find a nonempty ¢(t) contained in f'(U),
and this implies ()= W. By a similar argument one checks the validity of
condition (ii).

Let us now prove that (i, T) fulfills condition (p) from Section 0.2. So let (1,)
in T be given with t, <;t,,, and (t,)# @ for all n. This implies ¢(t,) # @ for all
n, hence by condition (p) for (¢, T) we find some xe ¢(1,), neN. This gives
f(x)ef(e(t,)) = y(t,) for every n. Hence F is p-complete with (¢, T). [

Proposition 1.1 has the following consequence.

Theorem 1.2. Let E be a p-complete topological space and let F be a metrizable space.
Let f: E— F be a continuous dense and nearly feebly open function. Then f maps
residual subsets of E onto residual subsets of F.

Proof. Let G be a dense Gj;-subset of E. Then G is a p-complete space since
p-completeness is inherited to dense Gj;-subspaces. Since f is nearly feebly open
and dense, the same is true for f| G: G- F, so by Proposition 1.1 the space f(G)
is p-complete. It remains to prove that every metrizable p-complete space contains
a dense completely metrizable subspace, for then it follows from the theorem of
Alexandrov that f(G) contains a dense subspace which is a G; in F, so f(G) is
residual in F. Hence we are led to prove:

Proposition 1.3 (cf. [16, Theorem 3(11)]). Every metrizable p-complete space contains
a dense completely metrizable subspace.

Proof. Let E be metrizable and p-complete with (¢, T). We may assume that (¢, T)
has the following additional properties:

(i") The set {e(f): te T,} is a pseudo-base for E;

(ii") for fixed te T, the set {¢(s): t <;s5€T,.,} is a pseudo-base for ¢(1);

(iii) for te T,, ¢(t) has diameter =27 " (with respect to some fixed metric for E).
Here T, denotes the set of t€ T having height n in the tree T.

Using transfinite induction, we may now define a mapping  on T, such that
either (1) =¢(t) or (1) =@ and where |_J {(1): r€ T,} isdense in E and ¢, t'€ Ty,
t# t"implies ¢/(1) (1) =0. Now let t € T, be fixed. Define (s) for the immediate
successors s of ¢t in T using transfinite induction such that either /(s)=¢(s) or
$i(s)=0 and where |_J {{)(s): t <,s5€eT,}is dense in (¢) and such that t <;seT,,
t<rs'eT, and s#s' implies y(s)n¢(s')=0. This defines  on the level T;.
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Continuing in this way, we obtain a web (y, T) on E which is disjoint in the sense
that 1, t'e T,, t # t' implies () n ¢ (t') =0. Now let

G,=U{¢(n): te T}

then G, is open dense in E and, E being a Baire space, the set G=(){G,: neN}
is a dense G; in E. We claim that G is completely metrizable. Indeed, this follows
by setting

x(1)=Gny(r),

te T, for now (x, T) is a strict p-complete web on G which by construction of ¢ is
disjoint. This shows that G is a strongly zero-dimensional completely metrizable
space. [

The proof of Theorem 1.2 being complete, we may now derive the following open
mapping theorem which is closely related with our open mapping theorem [9,
Theorem 3].

Theorem 1.4. Let E, F be metrizable topological spaces and suppose E contains a dense
completely metrizable subspace. Let f: E - F be a continuous and nearly feebly open
bijection. Then there exists a dense Gs-subset G of E such that f is open at every x € G,
e, f(x)eint f(U) whenever U is a neighbourhood of x in E.

Proof. (1) First we prove that there exists a dense G;-subset G of E such that f is
nearly open at every x € G, which means that f(x) € int f(U) for every neighbourhood
U of x in E. Indeed, recall that the nonempty opensets Vin E having f(V) <int f( V)
form a subbase for E. Now let G, be the union of all sets of this kind having
diameter =1/n with respect to some fixed metric for E. Then G =( ) {G,: neN} is
as desired.

(2) Let V, W be nonempty open sets in E having f(V)<int f(V), f(W)c<
int f(W), and suppose int f( V) nint f( W) # (). We claim that this implies V. n W # (.
Indeed, let O =int f(V)nintf(W), and let V,=V~f (0), W,=Wn [ '(0).
Then we have f(V,) = f(W,) = O. By Theorem 1.2 the sets f( V,) and f( W,) are both
residual in O, since f|V, and f| W, are nearly feebly open and V,, W, are open in
E and hence p-complete. Since O is a Baire space, we derive f(V,)n f(W)) # 0,
and f being injective, this implies V, n W, # (), hence V.~ W # .

(3) Let x € G be fixed. We prove that f is open at x. Let U be an open neighbour-
hood of x. Choose an open neighbourhood V of x such that V< U. We prove
int f(V)< f(U), which clearly implies xeint f(U) by the definition of G. Let
zeint f(V), z=f(y). It suffices to show ye V. Let W be an open neighbourhood
of y. We have to prove Vn W # (). By continuity of f we may assume that f( W) <
int f(V), so int f(W) nint f( V) # 0. By (2) this gives V. n W @, hence the proof is
complete. [
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Remark 1.5. Metrizability of the space E is essential in Theorem 1.4. For let F=R
with the Euclidean topology and let E be the set R endowed with the so-called
Sorgenfrey topology, i.e., the topology generated by the intervals [a, b), then E is
p-complete, id: E - F is continuous and nearly feebly open, but clearly id is not
open at any x€ E.

Corollary 1.6. Let E, F be completely metrizable topological spaces and let f: E > F
be a mapping whose graph G(f) is a Gs-set in E x F. Suppose that for every open set
Win F we have

ST W) cint f7H(W).

Then there exists a dense Gs-subset G of G(f) such that for every (x, f(x))e G, fis
continuous at Xx.

Proof. Consider the mapping g: G(f)—= E, (x,f(x))—>x. Then g is a continuous
bijection from a completely metrizable space to a metrizable space. It suffices to
prove that g is nearly feebly open, for then Theorem 1.4 provides a dense G;-subset
G of G(f) at the points of which g is open, and the latter clearly means that f is
continuous at these points.

Let (x, f(x)) be fixed and let W= (U x V)~ G(f) be aneighbourhood of (x, f(x))
in G(f), where U is an open neighbourhood of x in E and V is an open
neighbourhood of f(x) in F. It suffices to show that int g( W) # ), for W is a typical
open set in G(f). But notice that g( W)= U nf (V). By assumption the interior
of f (V) is densein f '(V), hence U nintf '(V) must be nonempty. Clearly this
implies int g(W) # ) as desired. [

Remark 1.7. A mapping f: E - F is called nearly feebly continuous if for every
nonempty relatively open subset V of f(E) the set f~'(V) has nonempty interior
in E. Note that this is a slightly weaker property than the one claimed in Corollary
1.6 above. It can be shown, however, that nearly feebly continuity is not sufficient
to obtain the conclusion of Corollary 1.6.

2. Pseudo-complete sets

Let E be a separated real locally convex vector space and let C be a convex cone
with vertex 0 in E (i.e.,, C+Cc C, R, Cc< C). We denote by 7 the trace of the
topology of E on C. Notice that 7 is not invariant under the translations x - x+ y,
yeC, preserving C, i.e., for a m-neighbourhood V of some xe C, V+y is not a
7-neighbourhood of x+y. We therefore introduce a new topology o on C, called
the cone topology, which has this property. We choose as a base of neighbourhoods
of x e C with respect to o the sets

i il UL S Al 23
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where U varies over the neighbourhoods of 0 in E. This defines a topology finer
than 7, which is invariant under translations x - x+y, y € C, in the sense that any
such translation maps the space (C, o) homeomorphically onto its open subspace
(C+y, o). The topology o has first been considered in [13] in a special situation
and has been further investigated in [11].

Let us consider an instructive example. Let E =R, C =R, . Then 7 is the Euclidean
topology on C, while o is the Sorgenfrey topology on C.

Definition 2.1. A convex cone C with vertex 0 in a separated locally convex vector
space E is called (strictly) pseudo-complete if C is a (strictly) p-complete topological
space in its cone topology o.

The following result shows that the class of pseudo-complete cones in a locally
convex Fréchet space is fairly large. It tells that all CS-closed cones in the sense of
Jameson [4] are pseudo-complete. Recall that a convex set C in a locally convex
vector space E is called CS-closed if every convergent series Y, _, A,x, with 0=
Ay=1, z:;] A, =1, x, € C actually converges to an element of C.

Proposition 2.2. Every CS-closed convex cone with vertex (0 in a locally convex Fréchet
space E is strictly pseudo-complete. In particular, every convex Gs-cone in E is strictly
pseudo-complete.

We postpone the proof of the first part of Proposition 2.2 until Section 6. The
second part of the statement is a consequence of the first part and a result of Fremlin
and Talagrand [3] stating that convex G;-sets in a Fréchet space are CS-closed.

We wish to extend the notion of pseudo-completeness to arbitrary convex sets.
This is done by making use of the following auxiliary construction. Given a convex
set C in a separated locally convex vector space E, we denote by C the convex
cone with vertex (0,0) in E xR generated by the set C x {1}, i.e., 3 =R.(C x{1}).

Definition 2.3. A convex set C in a separated locally convex vector space E is called
(strictly) pseudo-complete if the cone C associated with C in E xR is (strictly)
pseudo-complete in the sense of Definition 2.1.

Remark 2.4. Notice that Definition 2.3 gives sense also in the case where C is
already a convex cone with vertex 0 in E. Indeed, in this case we have C=CxR,
and hence (strict) pseudo-completeness of C in the sense of Definition 2.1 is
equivalent to the (strict) pseudo-completeness of C in the sense of Definition 2.1.
This may be seen by observing that the product of the cone topologies on C and
R, is just the cone topology on C, and by taking into account that the cone topology
on R, is strictly p-complete.

Proposition 2.5. Every CS-closed convex set in a locally convex Fréchet space E is
strictly pseudo-complete. In particular, every convex Gs-set in E is strictly pseudo-
complete.
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Proof. This follows from Proposition 2.2 by observing that the cone C associated
with a CS-closed convex set C is itself CS-closed. [J

Example 2.6. We give an example of a CS-closed hence strictly pseudo-complete
cone in a Banach space which is of the first category in itself with respect to the
topology induced by the norm. Let E =1'(N) be the Banach space of absolutely
summable sequences and let C be the order-cone of the lexicographic ordering on
E. ie;

C={xel'N):x(1)=-:-=x(n—1)=0, x(n) #0=x(n)>0}.

It is easy to see that C is CS-closed. But C may be represented as C=
(J{C, m: n, meN}, where

Cn.m=[xeC: x(1)=---=x(n—-1)=0, x(n);i],

and these sets are closed but have no interior points relative to C.

3. Semi-closed sets

Jameson [4] calls a convex set C in a locally convex vector space E semi-closed
if int C =int C holds. He proves that CS-closed sets are semi-closed. Here we obtain
the following more general:

Theorem 3.1. Every pseudo-complete convex set C in a locally convex Fréchet space
E is semi-closed.

Proof. In case int C =) there is nothing to prove. So let x € int C. We have to prove
x e C. Now observe that pseudo-completeness is invariant under translations. So
we may assume that x is the origin in E.

Let C be the cone associated with C in E xR. Let K denote the convex cone
with vertex (0,0) in E xR defined by

K=C-({0}xR.).

We denote by ¢ and o the cone topologies on C and {0} xR respectively. Then
& is p-complete by assumption while o is the Sorgenfrey topology and hence is
p-complete as well. Consequently, the space C x ({0} xR,) is p-complete with the
product topology ¢ X . Now let u : C x ({0} xR, ) - K denote the difference mapping
(X, )= X —y, and let % denote the image of the topology ¢ x o under u on the cone
K. More precisely, » is obtained by taking as a base of neighbourhoods of ze K
with respect to x the sets

FHu(VxW)=:5+(V-W),
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where V varies over the g-neighbourhoods of (0,0) in C and W varies over the
o-neighbourhoods of (0, 0) in {0} xR, . This actually defines a topology on K, and
it follows from its definition that u maps C x ({0} xR.) continuously and open onto
K with ». Therefore x is again a p-complete topology.

We wish to prove that every nonempty x-open set U in K is dense in an open
subset of E xR, i.e., that int U # 0 in E xR. This means that the identity mapping
i:(K,x)> EXR is nearly feebly open. Now observe that by construction the
topology x is invariant under the translations of the form x - X+ y, where y € K,
which means that for any fixed y € K the translation X > X+ y maps (K, ») homeo-
morphically onto its open subspace (K + y, x). Therefore, in order to prove that i
is nearly feebly open, it suffices to check int U #0 in E xR for x-neighbourhoods
U of (0, 0) only.

Typically a neighbourhood U of (0,0) in (K, %) is of the form

U=[(Vx[-1,1])n C]-[{0} x[0, 1)],

where V is a neighbourhood of 0 in E. Now it is easy to see that this implies
W x[0,1)< U, where W is a neighbourhood of 0 contained in V~ C. Hence
int U #¢ as claimed.

The mapping i:(K, x)—> E xR is continuous and nearly feebly open. K being
dense in E xR, Theorem 1.2 implies that K is residual in E x R. Consequently, the
same is true for F = K n(—K). But note that F is a linear subspace of E xR, and
this implies F = E xR. Indeed, this may be concluded either by [9, Theorem 4(b)]
or using the difference theorem from [5]. In the second case one argues as follows.
Since F is a second category subset of E xR having the Baire property, the difference
theorem tells that F— F is a neighbourhood of (0,0) in E XxR. But F—F=F,

Clearly F=E xR gives K = E xR, and this implies 0 € C by the definition of K.
This ends the proof. [

4. Graph theorem

In this section we present as a first application of our notion of pseudo-complete-
ness the following generalization of a graph theorem of Robinson [12]. First we
need a definition.

Let E, F be separated locally convex vector spaces and let @ be a mapping from
E to the set of all nonempty subsets of F. We denote by G(@) the graph of @
which is

{(x,y)e ExXF: ye ®(x)}.

Then @ is called a convex multifunction if G( @) is a convex subset of E x F. Various
examples for such convex multifunctions may be found in [12] and the references
given there.

As usual, for a subset M of E we note @(M)=|_{®(x): xe M}, and we call
@(E) the range of @, noted R(P).
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Theorem 4.1. Let E, F be Banach spaces and let @ be a convex multifunction from E
to F whose graph G( @) is strictly pseudo-complete. Let y be an interior point of R(®).
Then @ is open at every point xe @ '(y), i.e., given any open ball B with centre 0
in E, there exists an open ball By with centre 0 in F satisfying

@(x+Bg)>y+ B,

Proof. Let yeint R(®) and some x having y€ @(x) be fixed. To simplify things,
we may assume that x =0, y =0. Indeed, we may replace @ by the convex multifunc-
tion @* defined by @*(z)= @(z+x)—y, then Ocint R(®P*), 0 &*(0), and if P*
can be proved to be open at 0 E in our sense, then the openness of @ at x follows.

First let us observe that @(B.) is a neighbourhood of 0 in F, i.e., @ is nearly
open at 0. Indeed, observe that ®(B.) is closed convex, and we prove that it is
absorbing. Let y € F be fixed. Since 0 € int R(@®), there exists an open ball Bx with
centre 0 in F such that B < R(®). Choose A =0 having Aye Bg, Aye @(x) for
some x. Using the convexity of G(@) and (0,0)e G(®), we find that

pAy € P(ux)

for 0<u =1. We choose w such that ux e Bg, then uAye ®(Bg). This proves the
claim.

Since F is a Banach space, we deduce that @(Bg) is a neighbourhood of 0 in F.
It remains to prove that @(B;) is semi-closed, for then @(B;) is a neighbourhood
of 0 in F. In view of Theorem 3.1 we have to show that @(By) is pseudo-complete.
Now observe that

@(Be) =pr((Be X F) n G(P)),

where pr denotes the projection E x F— F. This proves that @(Bg) is pseudo-
complete, since Lemma 4.2 below tells that (B x F) n G(®) is strictly pseudo-
complete, while Lemma 4.3 implies that the projection of this set onto the F-
coordinate space is again pseudo-complete, the projection onto the E-coordinate
space being contained in Bg, which is a bounded set. This ends the proof of
Theorem 4.1. [

Lemma 4.2. Let C, D be strictly pseudo-complete convex sets in a locally convex Fréchet
space E. Then C n D is again strictly pseudo-complete.

Proof. Let us first assume that C, D are strictly pseudo-complete convex cones with
vertices at 0 in the Fréchet space E. Let o, op denote the corresponding cone
topologies, and let o be the cone topology on C n D,

Let (¢, T) on (C, o) and (¢, S) on (D, o,,) be strict p-complete webs (see Sec-
tion 0.2). We may assume that (¢, T) and (i, S) have the following additional
property: For cofinal branches (t,) in T, (s,) in S, one has lim,_. diam ¢(t,) =
lim, .. diam ¢(s,) =0, where diam refers to the metric diameter in E. Now let R
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denote the tree of height N, consisting of all finite sequences

((fl-r S|), ey (rns Sn)):

neN, t, < <gf,, 5 <g-++<ss,, ordered in the natural way, and let y be
defined on R by setting

X((fly S'|), Ay (fny S,,))= ‘P{fn)mw(sn)'

Then by the definition of the topologies o, o, o the sets x((t,, 5,),...,(t,, 5.))
are o-open and, moreover, (x, R) fulfills the conditions required for a strict web
on the space C n D. We prove that (x, R) is in fact a p-complete web on C n D.
Suppose (t,), (s,) are cofinal branches such that x((t,, s,),..., (¢, s,)) #0 for all
n. This implies ¢(1,)#0 and (s,)#= @ for all n, hence there exist x,y having
xee@(t,), ye(s,) for all n. But notice that d(x, y)=diam ¢(1,)+diam (s,) >0
(n—=o0), hence x=ye x((t,,5),...,(t,s,)) for all n. This proves the result in the
case of convex cones C, D with vertices 0.

Now let us consider the general case. This follows from the first part of the proof
when we observe that (C ~ D)™ =C n D holds for the cones ¢, Dand (CAD)”
associated with C, D, Cn D. [

Lemma 4.3. Let E, F be locally convex Fréchet spaces and let C be a pseudo-complete
convex subset of E x Fsuch that pi (C) is bounded in E. Then p.(C) is pseudo-complete.

Proof. Let p denote the projection operator E X F xR- F xR. Then the cones C
and pe(C)~ associated with C, p-(C) are related by

p(C)=pe(C)".
Since, by assumption, Cis p-complete in its cone topology &, it suffices to prove
that p|(f' is a continuous and open surjection from (G, a) onto pe(C)~ endowed
with the corresponding cone topology. Since the continuity of p is clear from the
definitions, we are left to check the claimed openness. Clearly it suffices to prove
this at the origin (0, 0,0) in C. So let U be a neighbourhood of (0,0,0) in E x F xR.
We may assume that U is of the form

U= Ug x Up x[~1,1]
for neighbourhoods Uy, Ux of 0 in E, F. Since p.(C) is bounded, we find A =1
such that pe(C)c AUg. Now O = (1/A)(Ur x[—1,1]) n pr(C) ™ is a neighbourhood
of (0,0) in p-(C)~ with its cone topology. It remains to prove that O is contained
in p(U~ C), for this gives the claimed openness of p|C at (0, 0, 0).

Let ye Ug, |u|=1, (y, n) € pr(C)~ = p(C). The case u =0 is clear, so let w#0,

There exists x having (x, y, u) € G, so

1
—(x,y)eC
72

by the definition of the cone C, hence (1/p)xeAUg, xe uAUg. This proves
(1/A)Nx, p, u)e U x Upx[—1,1]1= U as desired. [
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Remarks 4.4. (1) Theorem 4.1 was obtained in [12] for closed graph convex multi-
functions. Therefore our result contains as special cases the Banach open mapping
theorem as well as its extension to the CS-closed case. We just mention that various
other graph type theorems may be generalized to the pseudo-complete case using
similar methods. See for instance [17] for a related graph theorem of a general
nature which is adapted to such treatment.

(2) Notice that the boundedness of pz(C) cannot be omitted in Lemma 4.3.
Consider the following example. Let C = [*(N) be the Hilbert cube, then C is closed
and hence C is a CS-closed hence strictly pseudo-complete cone in I(N) xR, but
its projection p(f‘) onto the I*(N)-coordinate is no longer pseudo-complete in view
of the fact that it is dense in I’(N) but does not coincide with I*(N) (cf. Theorem 3.1).

5. Separation of convex sets

The classical separation theorem for convex sets works in the case where one of
the sets C, D under consideration has nonempty interior. If this is not the case,
separation is not always possible, even for disjoint bounded closed convex sets C, D
in a Banach space. Nevertheless, a classical result of Tuckey’s (see [6, 14]) tells that
separation is possible in this situation when the additional requirement is made that
C — D is dense in an open set. Here we obtain a generalization of this result for
the case of pseudo-complete convex sets C, D, using a completely different approach.

Theorem 5.1. Let C, D be disjoint strictly pseudo-complete convex sets in a Banach
space E. Suppose that C is bounded and C — D is dense in an open set, i.e., int(C — D) #
@. Then C, D can be separated by a closed hyperplane.

Proof. It suffices to prove that int(C — D) # @, for then 0¢ C — D provides a closed
hyperplane separating 0 from C — D, and this clearly permits separating C and D.

Let x €int(C — D) and let B be a closed ball with centre 0 having x+ B< C — D.
C being bounded, we find neN such that C  nB and, in addition, x € nB. This
implies

x+Bc C—-(Dn(2n+2)B).

Indeed, let z € B, then there exist (¢ ) in C, (d,) in D having ¢, —d; = x+z (k- ).
But ¢,, xe nB, ze€ B gives

d.enB+nB+B+B, k=k,.

Let D*= D~ (2n+2)B; then D* is strictly pseudo-complete by Lemma 4.2. We
claim that int(C — D*) # (). Let u denote the difference mapping (x, y) > x — y, then
we have

C~D*=u(CxD*)=p((CxD*xE)n G(u)),
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where p is the projection (x,y,z)—>z and where G(u) is the graph of u. As
a consequence of Lemma 4.2 and Theorem 6.1 below, the set (CxD*xXE)n
G(u) is strictly pseudo-complete. Since its projection onto the first two coordin-
ates (x, y) is bounded, we may apply Lemma 4.3. This yields the pseudo-com-
pleteness of C— D* So C— D¥* is semi-closed, and Theorem 3.1 finally implies
int(C—-D*)#0. O

Remark 5.2. The result does not carry over to locally convex Fréchet spaces, which
may be seen by examples in [14] or [6]. A purely locally convex version of the
Tuckey-Klee separation theorem has been obtained by Valdivia [15] using the
notion of locally complete sets.

6. An infinite two-person game

In this section we give an internal characterization of strict pseudo-completeness
and clarify somewhat the interrelation between the notion of pseudo-completeness
and the concept of CS-closedness.

We define an infinite two-person game I” between players I and II on a convex
set C in a Banach space E. Player I starts by choosing a point x, € C ahd some
A;=0. Then player II continues by choosing £, > 0. Next player I chooses x,€ C
and A,>0 such that A, <eg, and ||A.x,| <eg,. Now player II chooses £, >0, and
player I continues by choosing x;€ C, A;=>0 having A; <&, and ||A;x3] <e,, etc.
Player Il wins the game in case Z:;I A, <o and, in addition

Z AF] xﬂ' E ( Z A‘ﬂ) = C
is satisfied for every m €N, In all other cases, player I wins.

First we consider the version of the game I" where both players have complete
information, i.e., when choosing their move, they know of all the previous moves.

Theorem 6.1. Let C be a convex set in a Banach space E. C is strictly pseudo-complete
if and only if player 11 has a winning strategy in the game I' ( played with perfect
memory).

Proof. (1) First suppose that player 11 has a winning strategy = in the game I". We
have to prove that Cis strictly p-complete in its cone topology.

Let T denote the tree of height N, consisting of all finite sequences (
of elements X; of é, ordered in the natural way. Let us define open sets ¢
with respect to the cone topology using induction.

Let X=(Ax,A)eC be fixed. Then E(x,A)=&>0. Now define (%)=
Xx+(B.n f'), where B, ={(y, u): [|¥|| <e || <e}. Next let x,=(A;x;,A,), %=
(A>%>, A5) in C be fixed. Suppose that ¢(X,) =X, +(B., N C). If X, is not contained

Xiseors Xn)
fls' x-vn)
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in B, n C, then let ¢(X,, X,) = 0. Suppose %€ B, N C, then we may apply = and
this provides some &,= EZ((x,,A,), &, (x>, A5)) > 0. Now choose §,>0 such that
8,<e, and X,+(B;,n C)< B, n C, so that

(X, X,) = f|+x_3+(Bs:ﬁ é)

is contained in ¢(X,). Proceeding in this way provides us with a pair (¢, T) satisfying
conditions (i) and (ii) from Section 0.1 in the strict version. We finish the first part
of the proof by showing that condition (p) from Section 0.2 is as well satisfied
for (¢, T).

Let X, =(Ax,A)€C, i=1,2,... be given with ¢(%,,...,%)#0 for all i Then
by the definition of ¢ there exist sequences (¢&;) and (8;) of positive scalars satisfying

P(Kivs k)= Y Ht+(BsnC), Bi=%i,
i=1

8, <€y, %ot (B, nC)=Bs, NC, £,=Z((x1, A1), €1,..., (X, A,)). We define a
strategy @ for player I in the game I' by setting @(0) = (x,, A,), @((x,,A,), &)=
(x5, A3), O((x;, Ay), &, (x5, A3), 85) =(x3, A3), etc. Then the sequence (x;,A,), &,
(X3, A3), €5, ... turns out to be the game of I playing with @ against II playing with
E. Since by assumption = is winning, we deduce that

s Anx,,e( 3 A,,)-C

holds for every m. In particular, this implies

‘x":( z ’\N’xﬂ") Z AH) EC‘;’

n=1 n=1

and it remains to prove that X€ ¢(X,,..., X,,) for every m. So let m be fixed. Then
we have

£=(z W) A,,)+( S oAt Y a.,)

n=1 n=1 n=m+1 n=m+1l

= z x~n+( i }‘nxn; E An)e z )“:H+C~"
1

n=1| n=rm+1 n=m+1 n=

But note that for every p>m+1, ¥’

n=m+1

fnei,“+,+(35”mmé) holds, so that
Y i R BT V(B e B;, N C is obtained as a consequence of the
definition of the sequence (8,). This ends the first part of the proof.

(2) Suppose now that C is strictly p-complete when endowed with its cone
topology, and let (¢, T) be a web in accordance with Section 0.2. We define a
strategy = for player II in the game I,

For x, € C, A, >0 fixed choose t, € T such that (A,x;, A,) € ¢(t,) and then choose
£,>0 such that (A,x,, A,)+ (B, N C~“} is contained in ¢(t,). Let Z(x,, A,) =¢,.



D. Noll | Completeness concept 67

Next suppose that x,,x,€ C and A,, A,>0 are given with Z(x,,A,)=¢, and
| Asxs]| <&, Ax<e,. We have to define Z((x;, A,), &,, (X2, A5)). Since (A,x,, A5) €
B, , axiom (ii) of a strict web gives us t-€ T having t, <, such that

(Axy, Ap) +(Axs, )t:)E(P(fz}C()11x|=f\1]+(3¢-.""‘é)- ()
Now we choose &,>0 with &, =3¢, such that
(Mxy, Ay +(AaXs, A5) +(B,, n E‘)C‘P(fz)

H.l'ld deﬁne E{(xls ’\l)s €1, (xﬁs A.‘!]) = E3.
Proceeding in this way we obtain a strategy = for player Il in the game I We
prove that = is winning. So let @ be any strategy for player I and let

(x'laAl)a E!s(xl‘r)t2)s‘€23"' (**]

—
=

represent the game of I with @ against 11 with =. Clearly then the series Y, _, A,
converges in view of A, < ¢, ,and ¢, <3¢, ,,and ¥, _, A,x, converges in E in view
of |A,x,| < é&,-, and the fact that E is complete. It remains to prove that for every
m Y A.x, liesin (¥_, A,) - C.

Observe that (¢, T) fulfills condition (p) of Section 0.2 hence there exists X =
(Ax, A) e[ {e(t,): n=1}, where (t,) is the cofinal branch in T corresponding
with the sequence (*x) using the construction (#). Clearly this implies Xe&

LI A A;)+ B, for every n, hence we obtain
f :( Z A”x?l! 2: ’\n) E é‘
n=1 n=1
Moreover, we have

Y (AixnA)e Y (Aixi, A)+(B., 0 C),

i=m+1 i=1

x‘:

i

113

s (Aixg, A+
1
which yields

i (/\i’x{s AI)E éa

i=m+l1

and this gives the desired relation ¥, ., Axe(X,_,., A) - C O

Remark 6.2. Only for convenience did we establish Theorem 6.1 for Banach spaces.
Replacing the norm | || by some invariant metric would give the result for locally
convex Fréchet spaces.

A strategy = for player I in the game I is called reasonable if for any strategy
@ for player I, the sequence (&,) resulting from the moves executed by E is
summable. Clearly every strategy = for Il destined to be winning must a priori be
chosen reasonable in this sense. Notice that a reasonable strategy for player II may
be defined without a complete knowledge of all the previous moves of both players.
In fact, if player IT wishes to play in a reasonable way, it suffices for him to know

either the last move of his opponent or his own previous move.
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Proposition 6.3. Let C be a convex set in the Banach space E. Then C is CS-closed if
and only if every reasonable strategy = for player 11 is automatically winning.

The proof is immediate from the definition of CS-closedness. But now we may
derive Propositions 2.2, 2.5 by combining Proposition 6.3 with Theorem 6.1.

7. Concluding remarks

We conclude our paper by listing some questions and problems. First of all it
would be desirable to have an explicit example of a (strictly) pseudo-complete
convex set which is not CS-closed. Clearly Theorem 6.1 and Proposition 6.3 suggest
the existence of such an example. Also a pseudo-complete set which is not strictly
pseudo-complete should be constructed.

It seems likely that Lemma 4.2 is no longer valid if the sets C, D are assumed
pseudo-complete only. Clearly, an example of two pseudo-complete sets C, D whose
intersection C n D is no longer pseudo-complete would in particular provide an
example of a pseudo-complete set which is not strictly pseudo-complete.

It is clear from Proposition 6.3 that CS-closedness implies the existence of a
winning strategy for player II in the game I" which takes into account only the last
move of the opponent. It would be interesting to know whether, conversely, the
existence of such a winning strategy for player 11 characterizes CS-closedness.
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