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Abstract We design a feedback control architecture for longitudinal flight of an
aircraft. The multi-level architecture includes the flight control loop to govern the
short-term dynamics of the aircraft, and the autopilot to control the long-term modes.
Using H∞ performance and robustness criteria, the problem is cast as a non-convex and
non-smooth optimization program. We present a non-convex bundle method, prove its
convergence, and show that it is apt to solve the longitudinal flight control problem.

Keywords Non-smooth optimization · Non-convex bundle method ·
Feedback control · Multi-objective H∞-control ·
Flight-controller and autopilot for longitudinal flight

1 Introduction

Automatic control of aircraft generally follows a scheme known as guidance, naviga-
tion, and control (GNC), which stipulates the use of architectures with interconnected
control loops at different levels [1,2]. Figure 1 presents such a multi-level control
architecture for the case of longitudinal flight.
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M. Gabarrou et.al.

Fig. 1 Longitudinal control of an aircraft. The flight control loop (red box) controls the short-term dynamics
in high frequency. The autopilot (cyan boxes) controls the long-term dynamics in low frequency (color figure
online)

The inner loop (the control loop) governs the short-term dynamics in high fre-
quency. It is represented by the flight controller in the red box. The outer loop (the
guidance loop) serves to control the long-term dynamics in low frequency, repre-
sented by the autopilot shown in the cyan boxes. Roughly, GNC can therefore be
understood as a frequency decoupling strategy. In the case of longitudinal flight, this
decoupling dissociates short term rotational dynamics from long-term translational
modes.

An important feature in longitudinal flight is the switch between automatic and
manual mode on the input of the low-level control loop. The pilot can at any moment
de-activate the autopilot and switch to manual mode. Autopilot and flight controller,
therefore, operate together in cruising mode, but in manual mode, the commands of
the pilot through the side-stick are interpreted as vertical load factor input references
Nzc and sent directly to the flight controller, which must then operate independently.
In consequence, the two controllers have to be considered as decentralized units, but
designed simultaneously to work satisfactory in automatic and manual mode. Due
to lack of appropriate design techniques, current practice is to tune the two con-
troller blocks independently, which leads to a lack of performance and robustness.
The present work proposes a method which allows simultaneous synthesis of the full
architecture.

The way we proceed is by translating simultaneous synthesis of both controller
blocks into a non-smooth non-convex optimization program. We then present a non-
smooth optimization method, prove its convergence, and use it to solve the control
problem. Our algorithm expands on previous work [3–5] and develops the non-convex
bundling technique originally put forward in [3,6]. Here, we use a progress function
technique, which is motivated by older ideas for smooth problems in [7], and expands
on the non-smooth approach in [8]. We propose a new form of the non-convex cutting
plane oracle, referred to as down-shifted tangents, which offers several advantages
over previously used methods.

The structure of the paper is as follows. In Sect. 2, we present the longitudinal control
problem. Sections 3–4 present the non-convex bundle method and prove convergence.
Section 5 goes back to the motivating application, gives specific information on how to
compute Clarke subgradients, how to adapt the cutting plane strategy to the situation,
and concludes with numerical results in longitudinal flight control.

123

Author's personal copy



Design of a flight control architecture

Fig. 2 Frame for longitudinal flight

2 Longitudinal flight

In this section, we present the control application, going gradually from a concrete
class of examples to a more abstract setting. Section 2.2 indicates how performance
and robustness criteria are found, and Sect. 2.3 presents a general setting which could
be valid for other multi-objective H∞-control problems.

2.1 Open-loop model

We consider an aircraft moving in the vertical plane (Fig. 2). Its aerodynamic behavior,
linearized around one particular flight point (Mach= 0.7, Altitude= 5,000 ft), is
described by a set of eqnarrays of the form

[
ẋP

yP

]
=

[
A B
C D

] [
xP

u

]
(1)

where numerical data are given in the Appendix. Here, the state is xP =
[V, γ, α, q, H ]T, the control u = [dx , dm]T, and the output is yP =
[V, γ, Nz, q, H ]T. In particular,

• The states are aerodynamic speed V (m/s), climb angle (or slope) γ (rad), angle
of attack α (rad), pitch rate q = θ̇ = α̇ + γ̇ (rad/s), and altitude H [m].

• The controls are engine thrust dx (% of the maximal thrust) and elevator deflection
dm (rad).

• The measurements are vertical load factor Nz [m/s2], and [V, γ, q, H ].
The longitudinal dynamics are characterized by 5 eigenvalues, which for the specific

flight point chosen are

• λ1,2 = −0.56 ± 1.61 j (i.e., pulsation: 1.7 rad/s and damping ratio: 0.33) is the
angel-of-attack (AoA) oscillation, also called short-term mode. This mode mainly
affects the states α and q,
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Fig. 3 Functional scheme of the flight control loop

Fig. 4 Functional scheme of the guidance loop

• λ3,4 = −0.0039±0.064 j (i.e., pulsation: 0.064 rad/s and damping ratio: 0.06) is
the phugoïd mode, also called long-term mode. It mainly affects the states γ and V ,

• λ5 = −0.0026 is the altitude convergence mode (a very long-term mode). It mainly
impacts the state H .

The structures of the command laws are presented in Figs. 3 and 4. Practitioners
prefer simple controller structures in order to address issues like saturation, inter-
polation of the controller according to flight operating conditions, and feedforward
compensation adapted to the various aircraft configurations.
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Design of a flight control architecture

The autopilot generates engine thrust dx and the vertical load factor input reference
Nzc

K (1) :
[

dx (s)
Nzc (s)

]
=

[
K pvel + Kivel

s Kdec
0 K pslope

] [
dV (s)
dγ (s)

]
(2)

and involves a P-feedback to servo-loop the speed V , a PI-feedback to control the
slope γ , and a P feedback for γ in order to decouple V from γ .

The flight-control law governing the elevator deflection dm reads

K (2) : dm(s) = F(s)
[

K p + Ki
s+ε

−Kv

] [
Nzc (s) − Nz(s)
q(s)

]
(3)

and combines a PI feedback to servo-loop the vertical load factor Nz with a P-feedback
on the pitch rate q to damp the angle-of-attack (AoA) oscillation. In addition, the role
of the low-pass filter F(s) = a/(s2 + bs + a) is to prevent spill-over of unmodeled
dynamics, caused mainly by flexible structural modes [9].

Remark 1 PDE-based models for flexible aircraft are currently developed, so future
approaches might give better insight into the presently unmodeled structural modes.
Validating such a model is outside the scope of the present contribution.

The goal is to optimize the controller gains grouped in the optimization variable

x = [K p; Ki ; Kv; b; a; K pslope; K pvel; Kivel; Kdec],

in order to synthesize the two controller blocks K (1) and K (2) in such a way that
performance and robustness requirements are met in automatic and manual mode.

Remark 2 In a conventional approach, we would fix the low-pass filter F beforehand,
and then design K (1) and the remaining parameters in K (2) separately. Our approach
shows that it is preferable to design all elements simultaneously, as this leads to
better performance. The conventional block-by-block design can then still be useful
to initialize the optimization algorithm.

2.2 Controller specifications

Performance and robustness criteria are defined by introducing frequency weights
on specific closed-loop transfer functions Ti (x, s) := Twi →zi (x, s) between suitably
chosen inputs wi and outputs zi . In this study, we consider the six transfers Vc → dV ,
γc → dγ , γc → dV , V → dγ , Nzc → d Nz , (Nzc , nq) → dm. For each of these
channels wi → zi , we construct a state-space representation

Pi (s) :
⎡
⎣ ẋi

zi

yi

⎤
⎦ =

⎡
⎢⎣

Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22

⎤
⎥⎦

⎡
⎣ xi

wi

ui

⎤
⎦ , i = 1, . . . , 6, (4)
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Fig. 5 Criteria for flight controller. Performance channel TNz→d Nz on the left assures good tracking of

vertical load factor in the range [10−1, 100]. Robustness channel Tnq →dm on the right limits influence of

noise on elevator deflection in the range > 101. Blue is template, green initial guess, red optimized. Both
criteria are not relevant for frequencies below 10−1 (color figure online)

where xi ∈ R
ni is the state of representation Pi , ui ∈ R

mi
2 the control input and yi ∈

R
pi

2 the measured output. Observe that channels i = 1, . . . , 4 concern the autopilot
(2). Therefore, dim(u1) = · · · = dim(u4) = 2, dim(y1) = · · · = dim(y4) = 2, and
we connect the same controller

ui (s) = K (1)(x, s)yi (s), i = 1, . . . , 4

to the first four channels. Similarly, channels i = 5, 6 concern the flight controller (3),
so that dim(u5) = dim(u6) = 1 and dim(y5) = dim(y6) = 2, and we connect the
same controller

ui (s) = K (2)(x, s)yi (s), i = 5, 6

to the last two channels. Notice that K (1) depends on all nine parameters in x, whereas
K (2) depends only on the flight control gains (x1, . . . , x5) = (K p, Ki , Kv, b, a). This
reflects the fact that we want K (2) independent of the autopilot in order to guarantee
closed-loop performances during manual mode.

The rationale of these channels is as follows. The first specification for flight control
is tracking of the load factor Nz . We use a template W1(s) = (

s2 + 4s
)
/
(
s2 + 4s + 7

)
for TNzc →d Nz (x, s), where d Nz is the vertical load factor tracking error. In other words,

we want T5 := W −1
1 TNzc →d Nz to be close to 1. The situation can be seen in Fig. 5 left.

The second specification concerns robustness with regard to unmodeled dynamics.
We want to cut off the command signal dm(s) in high frequency (roll-off). To do this,
we impose the low-pass template W2(s) = 25/(s2 + √

2 5 s + 25), which aims at
shaping a second order roll-off beyond 5 rad/s, on T(Nzc ,nq )→dm(x, s), where nq is the

pitch rate measurement noise. That means we want T6 = W −1
2 T(Nzc ,nq )→dm close to

1, and this channel is visualized in Fig. 5 right.

Remark 3 One can notice in Fig. 5 that frequency-domain templates for T5, T6 need
not be satisfied for pulsations under 0.1 rad/s. For the flight controller, we are only
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Fig. 6 Performance channels for autopilot. Velocity tracking error TV →dV left and climb angle (slope)
tracking error Tγ→dγ right are kept small for frequencies below 10−1. Blue template, green before opti-
mization, red after optimization (color figure online)

interested in the high frequency band �high = [0.1, 10]rad/s, as its performances
concern the short-term dynamics only and are not affected even when templates are
violated in very low frequency.

The specifications for the autopilot include tracking of speed and slope (climb
angle). For that we introduce a template W3(s) = (s + 0.01) / (s + 0.2), which we
use for both TV →dV (x) and Tγ→dγ (x), where dV , dγ are the tracking errors of
speed V and slope γ . We put T1 = W −1

3 TVc→dV and T2 = W −1
3 Tγ→dγ , visualized

in Fig. 6, which we want as small as possible. Furthermore, we want to decouple
speed and slope, and for that we impose the template 0.05 × W3(s) on Tγ→dV (x, s)
and TV →dγ (x, s). This defines T3 and T4, shown in Fig. 7, which again should be
small.

Remark 4 The autopilot controls the low-frequency range, which means frequency-
domain templates for T1, . . . , T4 have only to be satisfied for frequencies within the
low-frequency band �low = [0, 0.1]rad/s.

2.3 Optimization program

The performance and robustness specifications are now cast as an optimization pro-
gram:

minimize f (x) := max
i=1,...,4

∥∥∥W −1
i Twi →zi (x)

∥∥∥2

∞,�low

(5)
subject to c (x) := max

i=5,6

∥∥∥W −1
i Twi →zi (x)

∥∥∥2

∞,�high
− r2 ≤ 0

x ∈ R
n

where objective f and constraint c represent weighted H∞-norms on different fre-
quency bands �low and �high, and where r ≈ 1. Notice that in each case W −1

is a transfer function, so W −1Tw→z = Tw→z̃ with z̃ = W −1z is just another
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Fig. 7 Cross channels γ → dV (left) and V → dγ (right) for autopilot. The template −26 dB is given
in blue. Smallness of these responses assures decoupling of climb angle and velocity. The constant tem-
plate indicates simply a weighting of the H∞-norms. Decoupling increases the overall robustness of the
design (color figure online)

closed-loop transfer channel from w to z̃. Each norm ‖W −1
i Twi →zi ‖2∞,� contributing

to the maximum in f or c has therefore the abstract form

f (x) = ‖F(x, ·)‖2∞,� = sup
ω∈�

λ1[F(x, ω)] = sup
ω∈�

f (x, ω) (6)

where λ1(X) is the maximum eigenvalue of the Hermitian matrix X , and where the
mapping

F(x, ω) = T (x, jω)T (x, jω)H (7)

is smooth in x, jointly continuous in (x, ω), and takes values in a space H of appro-
priately sized complex Hermitian matrices. This is due to the fact that K (x) depends
smoothly on the design parameter x (see Lemma 4, Sect. 5). Given the fact that the
H∞-norm is only defined for stable transfer functions, f and c are only defined on the
set S of those parameters x where all Twi →zi (x) are stable. In other words, program
(5) has the hidden constraint x ∈ S.

The salient point is that (5) is highly non-smooth due to the presence of the
semi-infinite maximum eigenvalue function (6). We therefore develop a non-smooth
progress function method to solve such programs algorithmically. A similar rationale
was previously applied to mixed H2/H∞-control [8], where in contrast with (5) the
objective function f was smooth. H∞/H∞-control with structured control laws K (x)

was pioneered in [10]. Optimization methods for the band-limited H∞-norm were
first discussed in [11].

Remark 5 In classical H∞-loopshaping, the use of the banded H∞-norm is avoided
mainly due to lack of methods to deal with it algorithmically. The advantage of working
with banded norms is that the state-space dimension of the channel representations
(4) is kept small. If one tries to adapt the templates Wi so that their effect is negligible
outside the band � of interest, the state space dimension of the plants Pi increases.
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Design of a flight control architecture

Remark 6 Simple control architectures like (2), (3) are preferred by practitioners for
various reasons. The building blocks are well-understood, and they are easier to hard-
ware embed. It is therefore important to stress that it is precisely this need for simplicity
which renders controller design difficult. Namely, computing advanced but unstruc-
tured full-order H∞-controller e.g. by solving algebraic Riccati equations (AREs) or
linear matrix inequalities (LMIs), would be easier.

Remark 7 The gap between abstract H∞-theory based on AREs on the one hand, and
the need for practical controller structures to solve real problems on the other, has
created a paradoxal situation, where controllers are tuned using heuristics, while the
sophisticated techniques of H∞-control cannot be brought to work. Our contribution
helps to close this gap, as it allows to apply the H∞-paradigm to structured controllers.
We mention that this requires optimization techniques like (5), because even for a
relatively simple structure like (2), (3), it is impossible to simply throw the blocks K (1),
K (2) by hand, as there are six concurring performance and robustness specifications
to satisfy.

3 Non-convex bundle method

In this section, we present our non-smooth algorithm, discuss its constituents and
rationale, and prove convergence. We consider an abstract version of (5),

min{ f (x) : c(x) ≤ 0, x ∈ R
n}, (8)

where f, c : R
n → R are locally Lipschitz functions. To solve (8) algorithmically,

we assume that for every x ∈ R
n we have the function value f (x) and a Clarke

subgradient g ∈ ∂ f (x) at our disposal, and similarly c(x), h ∈ ∂c(x). In cases
where several subgradients are available, the method can be adapted to include this
information.

3.1 Progress function and optimality conditions

We address program (8) by introducing a progress function F(·, x) at the current iterate
x,

F(·, x) = max{ f (·) − f (x) − μc(x)+, c(·) − c(x)+}, (9)

where μ > 0 is fixed and c(x)+ = max(c(x), 0). The idea is as follows. Notice that
F(x, x) = 0, where either the left branch f (·) − f (x) − μc(x)+ or the right branch
c(·) − c(x)+ of (9) is active at x, i.e., attains the maximum, depending on whether x
is feasible for (8) or not. If c(x) > 0, meaning that x is infeasible, then the right-hand
term in (9) is active at x, whereas the left-hand term equals −μc(x) < 0 at x. Reducing
F(·, x) below its value 0 at the current x therefore reduces constraint violation. The
period when iterates x are infeasible is called phase I.
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On the other hand, if c(x) ≤ 0, meaning that x is feasible, then the left-hand term
in F(·, x) becomes dominant, so reducing F(·, x) below its current value 0 at x now
reduces f , while maintaining feasibility. This is phase II, where the true optimization
of f takes place.

The following lemma, whose proof can be found in [8], gives an optimality test for
program (8) based on the progress function. Recall that x∗ satisfies the John necessary
optimality conditions for program (8) if there exist λ∗

0 ≥ 0, λ∗
1 ≥ 0 with λ∗

0 + λ∗
1 = 1

such that 0 ∈ λ∗
0∂ f (x∗) + λ∗

1∂c(x∗), λ∗
1c(x∗) = 0, and c(x∗) ≤ 0. If in addition λ∗

0 >

0, then x∗ satisfies the Karush–Kuhn–Tucker conditions with associated Lagrange
multiplier λ∗

1/λ
∗
0 ≥ 0.

Lemma 1 (Compare [8, Lemma 5.1]). Suppose 0 ∈ ∂1 F(x∗, x∗) for some x∗ ∈ R
n,

where ∂1 is the subdifferential with respect to the first coordinate. Then we have the
following possibilities:

1. Either c(x∗) > 0, in which case x∗ is a critical point of c, called a critical point
of constraint violation.

2. Or c(x∗) ≤ 0, in which case x∗ satisfies the John necessary optimality conditions
for program (8). In addition, there are two sub-cases:
(a) Either x∗ is a Karush–Kuhn–Tucker point of (8).
(b) Or x∗ fails to be a Karush–Kuhn–Tucker point. The latter can only happen

when c(x∗) = 0 and at the same time 0 ∈ ∂c(x∗).

We plan to solve program (8) by constructing a sequence of iterates x j , such that
x j+1 is a descent step for F(·, x j ) away from x j . That is F(x j+1, x j ) < F(x j , x j ) = 0
in a qualified way. We expect x j to converge to a point x∗ satisfying 0 ∈ ∂1 F(x∗, x∗).
Lemma 1 tells us that x∗ is a KKT point of program (8) as a rule. The exceptions from
that rule are conditions 1. and 2b. Condition 1 gives the case where iterates x j get stuck
at a limit point x∗ with value c(x∗) > 0 in phase I. This is a critical point of constraint
violation. (Condition 2b is the limiting case, where c(x∗) = 0. This case was never
observed in our experiments and appears unlikely in practice.) A first order method
may indeed get trapped at such points, and in classical mathematical programming
second order techniques are used to avoid them. Here we are working with a non-
smooth program, where second order elements are not available. When critical points
of constraint violation are encountered, we restart our method at a different initial
guess.

When reducing constraint violation in phase I, a controlled increase in f not exceed-
ing μc(x) is granted. This helps the algorithm in not being trapped at infeasible critical
points of f alone. For the theoretical justification see Sect. 4.

The algorithm used to compute solutions to (8) is shown schematically in Fig. 8,
and stated formally as Algorithm 1. We subsequently describe its essential features.

3.2 Working model

We denote the current serious iterate of the algorithm by x, or x j if the counter j of
the outer loop is used. If a new serious iterate is found, it will be denoted by x+, or
x j+1. Serious iterates refer to the outer loop colored blue in Fig. 8.
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Fig. 8 Flowchart of proximity control algorithm (color figure online)

At the current iterate x, we use approximations Fk(·, x) of the progress function
F(·, x) called working models. Every working model satisfies Fk(x, x) = 0 and
∂1 Fk(x, x) ⊂ ∂1 F(x, x). Moreover, the Fk decompose into a polyhedral convex
possibly non-smooth first-order part, F [1]

k (·, x) = max(a,g)∈Gk a + g�(· − x),
and a nonconvex but smooth second-order part F [2](·, x) = 1

2 (· − x)�Q(x)

(· − x):

Fk(·, x) = max
(a,g)∈Gk

a + g�(· − x) + 1
2 (· − x)�Q(x)(· − x). (10)

Here Gk ⊂ R
n × R

n is a finite set, which we update continuously during the inner
loop with counter k, colored yellow in Fig. 8. In contrast, the second order term
F [2](·, x) = 1

2 (· − x)�Q(x)(· − x) is held fixed during the inner loop and only
updated between serious steps x → x+. We allow Q(x) ∈ S

n to be indefinite, and
we assume that the operator x → Q(x), R

n → S
n , is bounded on bounded sets. Our

notation Fk(·, x) = F [1]
k (·, x) + F [2](·, x) highlights that the second order part does

not depend on k.

3.3 Tangent program

In the inner loop at serious iterate x, we generate trial steps yk indexed by the counter
k of the inner loop, which are candidates to be elected as the new serious iterate x+.
The trial step yk is obtained by solving the convex tangent program
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min
y∈Rn

Fk(y, x) + τk
2 ‖y − x‖2 . (11)

Here, τk is the proximity control parameter, which is updated during the inner loop.
Convexity of (11) is assured because we require Q(x) + τk I � 0 for every k, where
� 0 means positive definite. Observe that (11) is equivalent to the convex quadratic
program (CQP)

minimize t + 1

2
(y − x)�(Q(x) + τk I )(y − x)

subject to a + g�(y − x) ≤ t

(a, g) ∈ Gk (12)

with unknown variable (t, y) ∈ R
1+n , which can be conveniently solved with standard

CQP solvers.
The necessary optimality condition for (11) is τk(x − yk) ∈ ∂1 Fk(yk, x), or equiv-

alently,

g∗
k := (Q(x) + τk I )(x − yk) ∈ ∂1 F [1]

k (yk, x), (13)

and we call g∗
k the aggregate subgradient. Equivalently, there exist pairs (a1, g1), . . . ,

(ar , gr ) ∈ Gk and λi > 0,
∑r

i=1 λi = 1, such that

ai + g�
i (yk − x) = tk, i = 1, . . . , r (Q(x) + τk I )(x − yk) =

r∑
i=1

λi gi , (14)

where tk = F [1]
k (yk, x). Putting a∗

k = ∑r
i=1 λi ai , we call m∗

k(·, x) = a∗
k + g∗�

k (· − x)

the aggregate plane. We say that the subgradients g1, . . . , gr are called by the aggregate
subgradient, and that the planes ai + g�

i (· − x) are called by the aggregate plane. An
equivalent way to define the aggregate plane is to use (13) and choose a∗

k such that

m∗
k(·, x) = a∗

k + g∗�
k (· − x) has value tk = F [1]

k (yk, x) at yk .
When building the new set Gk+1 after a null step yk , we assure that (a∗

k , g∗
k ) ∈ Gk+1.

This allows us to drop any of the older (ai , gi ) ∈ Gk .

3.4 Acceptance test

In order to decide whether the solution yk of (11) is acceptable to become the new
serious iterate x+ in the outer loop, we use the test

ρk = F(yk, x)

Fk(yk, x)

?≥ γ, (15)

where 0 < γ < 1 is fixed throughout. As usual, this test compares actual decrease and
predicted decrease at yk . If Fk represents F accurately at yk , we expect ρk ≈ 1, but
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we accept yk as the new x+ already when ρk ≥ γ . According to standard terminology
in bundle methods, yk is called a null step if ρk < γ , while the case ρk ≥ γ , when
x+ = yk , is referred to as a serious step.

3.5 Cutting planes

If the trial step yk fails the acceptance test (15), then agreement between F and Fk at
yk was bad. In this case, the inner loop has to continue, but we have to improve the
quality of the next working model Fk+1(·, x) in order to do better at the next trial. Since
the second order part F [2](·, x) of the model does not change during the inner loop k,
we have to improve the first-order part F [1]

k+1(·, x). In traditional bundle methods this
is achieved by including a cutting plane into the new working model, whose role is to
cut away the unsuccessful trial step yk . In the convex case, cutting planes are simply
tangents to the first-order part F [1](·, x) of the progress function F(·, x) at yk . Without
convexity it is more delicate to obtain a suitable cutting plane. In this study, we use
downshifted tangents as substitutes for the traditional convex cutting planes. Here is
the construction.

In accordance with the decomposition of the working model Fk(·, x), we decompose
the progress function

F(·, x) = F [1](·, x) + F [2](·, x),

where F [2](·, x) = 1
2 (·−x)�Q(x)(·−x) is the second-order part, and F [1] = F −F [2]

is the first-order part.
Given the null step yk , pick a subgradient gk ∈ ∂1 F [1](yk, x). Then the affine

function tk(·) = F [1](yk, x) + g�
k (· − yk) is a tangent to F [1](·, x) at yk . Without

convexity we may not use tk(·) directly as a cutting plane. We do not even know
whether tk(x) ≤ F [1](x, x) = F(x, x) = 0, as would be the minimum requirement
for a plane contributing to the new model F [1]

k+1(·, x). We therefore define the down-
shift as

sk = [tk(x)]+ + c‖yk − x‖2, (16)

where c > 0 is some small constant fixed at the beginning. Now we define the cutting
plane as

mk(·, x) = tk(·) − sk . (17)

Notice that ∇mk(·, x) = ∇tk(·) = gk , while mk(x, x) ≤ −c‖yk − x‖2 ≤ 0. The
cutting plane can also be written as mk(·, x) = ak + g�

k (· − x), where

ak = tk(x) − sk = tk(x) − [tk(x)]+ − c‖yk − x‖2.

123

Author's personal copy



M. Gabarrou et.al.

In particular, the cutting plane depends on the full information x, yk , and gk ∈
∂1 F [1](yk, x), whereas tk(·) only depends on yk and the specific subgradient gk at
yk . We assure that Gk+1 contains the newly generated pair (ak, gk).

3.6 Exploiting the structure of the progress function

The construction of the cutting plane in Sect. 3.5 does not fully exploit the structure
of the first-order part F [1] of the progress function F . Namely, observe that

F [1](·, x) = max
{

f (·) − f (x) − μc(x)+ − F [2](·, x), c(·) − c(x)+ − F [2](·, x)
}

=: max
{

F [11](·, x), F [12](·, x)
}

, (18)

and so far our construction only includes a down-shifted tangent to that part F [1i]
of F [1] which is active at yk . It is beneficial to include also a down-shifted tan-
gent to the inactive part. Indeed, suppose for instance F [11]

k (yk, x) < F [12]
k (yk, x).

Then in section 3.5 we included a downshifted tangent to F [12]
k into Gk+1. Now

let t̃k(·) be a tangent to the inactive part F [11]
k at yk . Then we build m̃k(·, x) =

t̃k(·) − s̃k , where s̃k = [̃
tk(x)

]
+ + c‖yk − x‖2 just as in (16), that is, we down-

shift with respect to the value F(x, x) = 0 at x, and not with respect to the
potentially lower value F [11](x, x). This generalized cutting plane m̃k , when added
into Gk+1, may have some beneficial secondary effect. Even though it is inactive
at yk , it may become active elsewhere, just as the branch F [i] of F inactive at x
may become active as we move away from x. The inactive plane m̃k has there-
fore an anticipative effect, and we sometimes call these planes anticipated cutting
planes.

3.7 Exactness and recycling

In order to guarantee ∂1 Fk(x, x) ⊂ ∂1 F(x, x) we keep at least one plane of the
form m0(·, x) = g�

0 (· − x) in the model at all times k. We call m0 an exact-
ness plane, because it assures Fk(x, x) = 0. Formally (0, g0) ∈ Gk for all k.
As it may happen that ∂1 F(x, x) is not singleton, we are free to add other exact-
ness planes (0, g′), g′ ∈ ∂1 F(x, x) into Gk , for instance, one at each inner loop
step k.

When a serious step x → x+ is made, the old working model is lost, and we
will have to start G1 anew when the inner loop starts. This is in contrast with convex
bundle methods, where all planes accumulated on the way may stay in G forever. The
only reason to not keep them all is to avoid overflow. In contrast, in the nonconvex
case we lose planes from previous serious steps for the following reason: the plane
m(·, x) = a + g�(· − x) stored in G will in general be useless at x+, because we
may have m(x+, x) ≥ F(x+, x+) = 0. We therefore propose to recycle the old plane
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m(·, x) as

m(·, x+) = m(·, x) − s+,

with s+ the downshift at x+. That is

s+ = [
m(x+, x)

]
+ + c‖x+ − x‖2.

Formally, if (a, g) ∈ Gk j at the end of the j th inner loop occurring at counter k = k j ,
then let a+ = a − s+ and put (a+, g) ∈ G1 at the beginning of the ( j + 1)st inner
loop.

3.8 Management of the proximity parameter

At the core of Algorithm 1 is the management of τ during the inner loop. According to
step 7, the τ -parameter is never decreased during the inner loop. It is increased when
ρk < γ , ρ̃k ≥ γ̃ , and held constant when ρk < γ , ρ̃k < γ̃ . The test

ρ̃k = Fk+1(yk, x)

Fk(yk, x)

?≥ γ̃ ,

where γ < γ̃ < 1 is fixed throughout, compares working models Fk+1(·, x) and
Fk(·, x) at yk . If ρ̃k < γ̃ , then agreement between the two is bad, while ρ̃k ≥ γ̃ means
it is not bad. The interpretation of step 7 is that ρk < γ in tandem with ρ̃k ≥ γ̃ means
Fk is far from F at yk , but at the same time Fk is reasonably close to Fk+1 at yk . Now as
Fk+1 is supposed to make progress toward F , this constellation (ρk < γ, ρ̃k ≥ γ̃ ) tells
us that the intended progress is too marginal. This is where we increase τk+1 = 2τk to
force smaller steps at the next sweep k +1. The opposite situation ρk < γ and ρ̃k < γ̃

is considered as still open. Keeping τk+1 = τk fixed, we rely on improving Fk+1 by
adding cutting planes and the aggregate plane.

Observe that Fk+1(yk, x) ≥ Fk(yk, x), because the aggregate plane, which con-
tributes to Fk+1, knows the value of Fk at yk . Since Fk(yk, x) < 0, the quotient ρ̃k

satisfies ρ̃k ≤ 1.

3.9 Management of the proximity parameter between serious steps

As soon as a serious step x → x+ is made, we need to pass the τ -parameter on to
the next inner loop. This is done via the memory element τ �. We proceed as follows.
If ρk ≥ , where 0 < γ <  < 1, then we decrease the τ -parameter, as agreement
between model and reality is good. If γ ≤ ρk < , then agreement is not bad, and
we keep τ as is. This is organized in step 8. We re-set τ � = T if the preceding
inner loop terminates with τ > T . One can also dispense with this re-set, see [5] for
details.
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4 Convergence analysis

In this section, we state and prove a convergence result for Algorithm 1. We shall
require the notion of lower C1-functions introduced by Spingarn [12]. More generally,
following [13], a locally Lipschitz function f : R

n → R is called lower Ck at x0 if
there exists a compact space K and a continuous function F : B(x0, δ) × K → R for
which all partial derivatives of order ≤ k with respect to x are also continuous, such that

f (x) = max
y∈K

F(x, y) (19)

for every x ∈ B(x0, δ). The function f is called lower Ck if it is lower Ck at every
x ∈ R

n . According to [13] lower C2-functions are lower Ck for every k ≥ 2. On
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the other hand, the class of lower C1-functions is strictly larger than lower C2, and
sufficiently large to include all practical situations.

Theorem 1 Suppose the program data f and c in (8) are locally Lipschitz lower
C1-functions. In addition, let the following conditions be satisfied:

(a) f is weakly coercive on the constraint set � = {x ∈ R
n : c(x) ≤ 0}, i.e., if x j is

a sequence of feasible iterates with
∥∥x j

∥∥ → ∞, then f (x j ) is not monotonically
decreasing.

(b) c is weakly coercive, i.e., if ‖x j‖ → ∞, then c(x j ) is not monotonically decreasing.

Then the sequence of serious steps x j generated by Algorithm 1 is bounded. It either
ends finitely with 0 ∈ ∂1 F(x j , x j ), or it is infinite, in which case every accumulation
point x∗ of x j satisfies 0 ∈ ∂1 F(x∗, x∗). In particular, x∗ is either a critical point of
constraint violation, or a KKT-point of (8).

Here, motivated by Lemma 1, we shall call x∗ a critical point of constraint violation,
if 0 ∈ ∂c(x∗) in tandem with c(x∗) ≥ 0. The proof is divided into several Lemmas.
The first step is to prove that the inner loop ends finitely. We write x for the current
serious iterate x j , and Q for the matrix Q(x j ).

Lemma 2 Suppose the inner loop at serious iterate x turns infinitely, i.e., ρk < γ for
all k ∈ N. Then there exists k0 ∈ N such that τk = τk0 for all k ≥ k0.

Proof i) Suppose on the contrary that the control parameter is increased infinitely
often. Then, as it is never decreased in the inner loop, we must have τk → ∞. We will
show that this implies 0 ∈ ∂1 F(x, x), contradicting step 2 of the algorithm. Indeed,
the inner loop is only entered when 0 �∈ ∂1 F(x, x). Notice that when τk → τk+1 is
increased, we have ρ̃k ≥ γ̃ , so we have an infinity of counters k ∈ K where this
happens.
ii) Recall that by (13) the aggregate subgradient satisfies g∗

k = (Q + τk I )(x − yk) ∈
∂1 F [1]

k (yk, x). By the subgradient inequality we have

(x − yk)�(Q + τk I )(x − yk) ≤ F [1]
k (x, x) − F [1]

k (yk, x) = −F [1]
k (yk, x). (20)

Recall that m0(·, x) ≤ F [1]
k (·, x), where m0(·, x) = g�

0 (· − x) is the exactness plane
at x. Substituting this in (20) implies

(x − yk)�(Q + τk I )(x − yk) ≤ g�
0 (x − yk) ≤ ‖g0‖‖x − yk‖.

Since τk → ∞, the left hand side behaves asymptotically like τk‖x − yk‖2. In other
words, fixing 0 < ζ < 1, we may assume that it is minorized by (1−ζ )τk‖x−yk‖2 for
k large enough. After dividing a factor ‖x −yk‖ we obtain (1− ζ )τk‖x −yk‖ ≤ ‖g0‖,
which implies boundedness of τk(x − yk), and therefore also boundedness of the
sequence g∗

k . As τk → ∞, we deduce yk → x and (x − yk)�(Q + τk I )(x − yk) → 0.
iii) Subtracting 1

2 (x − yk)�Q(x − yk) on both sides of (20) gives

1

2
(x − yk)�Q(x − yk) + τk‖x − yk‖2 ≤ −Fk(yk, x).
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Fix 0 < ζ < 1. As τk → ∞, we have for k ∈ K sufficiently large

(1 − ζ )τk‖x − yk‖ ≤ ‖g∗
k ‖ ≤ (1 + ζ )τk‖x − yk‖.

Indeed, by the definition (13) of the aggregate subgradient g∗
k we have ‖g∗

k ‖/(τk‖x −
yk‖) = ‖(τ−1

k Q + I )‖x − yk‖/‖x − yk‖ → 1, in view of τ−1
k → 0, hence 1 − ζ <

‖g∗
k ‖/(τk‖x − yk‖) < 1 + ζ for k large enough. A similar argument shows

1
2 (x − yk)�Q(x − yk) + τk‖x − yk‖2 ≥ (1 − ζ )τk‖x − yk‖2

for k ∈ K large enough. Combining these estimates gives

− Fk(yk, x) ≥ 1−ζ
1+ζ

‖g∗
k ‖‖x − yk‖. (21)

iv) Now we argue that Fk(yk, x) → F(x, x) = 0. Going back to the subgra-
dient inequality (20), we see that the left hand side tends to 0 by iii). Hence 0 ≤
lim inf(−F [1]

k (yk, x)), or equivalently, lim sup F [1]
k (yk, x) ≤ 0. It therefore remains

to prove lim inf F [1]
k (yk, x) ≥ 0. To prove this, observe that F [1]

k (yk, x) ≥ m0(yk, x)

for the exactness plane m0(·, x) at x. Since m0(yk, x) → m0(x, x) = 0 due to iii), the
claim follows.

v) Now let ηk := dist(g∗
k , ∂1 F(x, x)). We prove ηk → 0. Using the subgradient

inequality we have for a fixed vector y

g∗�
k (y − yk) + F [1]

k (yk, x) ≤ F [1]
k (y, x) = mzk(y)(y, x),

where mzk (y)(·, x) is a cutting plane at zk(y) ∈ {y1, . . . , yk} with respect to serious

iterate x, contributing to the build-up of model F [1]
k (·, x), and exact at y. In other words

mzk (y)(·, x) = F [1](zk(y), x) + g�
zk(y)(· − zk(y)) − s

where gzk(y) ∈ ∂1 F [1](zk(y), x) and where s = s(zk(y), x) is the downshift at zk(y)

with respect to x. That is s(zk(y), x) = tzk (y)(x)+ + c‖zk(y) − x‖2. Here tzk(y)(x) =
F [1](zk(y), x) + g�

zk(y)(x − zk(y)). Substituting this gives

g∗�
k (y − yk) + F [1]

k (yk, x) ≤ F [1](zk(y), x) + g�
zk(y)(y − zk(y)) − s(zk(y), x)

= F [1](zk(y), x) + g�
zk(y)(y − zk(y))

−
[

F [1](zk(y), x) − g�
zk(y)(x − zk(y))

]
+ − c‖zk(y) − x‖2. (22)
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There are two cases to discuss, [. . . ]+ > 0 and [. . . ]+ = 0. Consider [. . . ]+ > 0 first.
Then

g∗�
k (y − yk) + F [1]

k (yk, x) ≤ g�
zk(y)(y − x) − c‖zk(y) − x‖2.

Due to boundedness of the g∗
k and of the set of trial steps we may pass to a subsequence

K′ of K where g∗
k → g∗ and zk(y) → z(y) for some z(y). From part iv) we know

Fk(yk, x) → F(x, x) = 0. Hence, passing to the limit in the above estimate gives

g∗�(y − x) ≤ g�
z(y)(y − x) − c‖z(y) − x‖2 ≤ g�

z(y)(y − x). (23)

One can see from this relation that y → x implies z(y) → x, because the gz(y) are
bounded. Using this information in (23), and writing e(y) = (y−x)/‖y−x‖, we have

g∗�e(y) ≤ g�
z(y)e(y).

Fixing an arbitrary unit vector e, we arrange convergence y → x in such a way that
e(y) = (y − x)/‖y − x‖ → e. Passing to a subsequence, we may in addition have
gz(y) → gx for some gx, where gx ∈ ∂1 F [1](x, x) by upper semicontinuity of the
Clarke subdifferential. That shows g∗�e ≤ max{g�e : g ∈ ∂1 F [1](x, x)}, and by the
Hahn–Banach theorem we deduce g∗ ∈ ∂1 F [1](x, x). That shows ηk ≤ ‖g∗

k −g∗‖ → 0
in the case [. . . ]+ > 0.

It remains to discuss the case where [. . . ]+ = 0. Going back to (22), we may again
pass to the limit k ∈ K′ such that g∗

k → g∗ and zk(y) → z(y) to obtain

g∗�(y − x) ≤ F [1](z(y), x) + g�
z(y)(y − z(y)) − c‖z(y) − x‖2

= F [1](z(y), x) + g�
z(y)(x − z(y)) + g�

z(y)(y − x) − c‖z(y) − x‖2

≤ g�
z(y)(y − x) − c‖z(y) − x‖2 (using tz(y)(x) ≤ 0).

This shows again that z(y) → x when y → x. Now the proof proceeds as above,
and we deduce g∗ ∈ ∂ F [1](x, x) in the case [. . . ]+ = 0, too. That ends the proof of
ηk → 0.

vi) Let η := dist(0, ∂1 F [1](x, x)). We have to prove η = 0. Assume on the contrary
that η > 0. Using the definition of ηk choose g̃k ∈ ∂1 F [1](x, x) such that ‖g∗

k − g̃k‖ =
ηk . Then ‖g̃k‖ ≥ η, hence ‖g∗

k ‖ ≥ η − ηk > (1 − ζ )η for k large enough, given that
ηk → 0 by v) and η > 0. (Here ζ ∈ (0, 1) is the parameter chosen in part iii)). Going
back with this to (21) gives

− Fk(yk, x) ≥ (1−ζ )2

1+ζ
η‖x − yk‖. (24)

vi) Choose ε > 0 such that

ε <
η(γ̃ − γ )(1 − ζ )2

(1 + ζ )2 . (25)
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We claim that there exists k(ε) such that F(yk, x) ≤ Fk+1(yk, x) + (1 + ζ )ε‖x − yk‖
for all k ∈ K, k ≥ k(ε).

Indeed, let mk(·, x) be the cutting plane at yk , Mk(·, x) = mk(·, x)+ 1
2 (·−x)�Q(·−

x). Then Fk+1(yk, x) = Mk(yk, x) by construction. Moreover, mk(·, x) = tk(·) − sk ,
where tk(·) is the tangent to F [1](·, x) at yk , and sk is the corresponding downshift
(16). That means

mk(·, x) = F [1](yk, x) + g�
k (· − yk) − sk

= F [1](yk, x) + g�
k (· − yk) − c‖x − yk‖2 − [tk(x)]+ .

There are two cases to discuss, [. . . ]+ > 0 and [. . . ]+ = 0. Assuming first tk(x) > 0,
we have

F [1](yk, x) − mk(yk, x) = F [1](yk, x) − F [1](x, x) − g�
k (yk − x) + c‖x − yk‖2.

According to [14, Thm. 2], a lower C1-function is approximately convex in the fol-
lowing sense. For a sequence yk → x there exists k(ε) such that g�

k (x − yk) ≤
F [1](x, x) − F [1](yk, x) + ε‖x − yk‖ for all k ≥ k(ε). Substituting this gives

F [1](yk, x) − mk(yk, x) ≤ ε‖x − yk‖ + c‖x − yk‖2.

Re-arranging F [1](yk, x) − mk(yk, x) = (
F [1](yk, x) + (yk − x)�Q(yk − x)

) −(
mk(yk, x) + (yk − x)�Q(yk − x)

) = F(yk, x) − Mk(yk, x), we have

F(yk, x) − Mk(yk, x) ≤ ε‖x − yk‖ + c‖x − yk‖2 ≤ (1 + ζ )ε‖x − yk‖ (26)

for k large enough. This ends the case [. . . ]+ > 0. Notice that in the second case
tk(x) ≤ 0 we get an even better estimate F(yk, x) − Mk(yk, x) = c‖x − yk‖2 ≤
ε‖x − yk‖ for large k, so (26) holds in both cases. vii) Using (24) and (26), we now
expand the parameter ρ̃k as

ρ̃k = ρk + F(yk, x) − Mk(yk, x)

F(x, x) − Fk(yk, x)

≤ ρk + (1 + ζ )2ε‖x − yk‖
(1 − ζ )2η‖x − yk‖ = ρk + (1 + ζ )2ε

(1 − ζ )2η

< ρk + γ̃ − γ < γ̃

using the choice (25) of ε and ρk < γ . But this contradicts ρ̃k ≥ γ̃ for the infinitely
many k ∈ K. Hence η > 0 was an incorrect hypothesis, and we have shown η = 0.
This ends the proof. ��
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Lemma 3 Under the hypotheses of the theorem, the inner loop at serious iterate x
ends finitely.

Proof From the previous Lemma 2, we deduce that if the inner loop turns infinitely,
then ρk < γ and τk = τ for k ≥ k0. By step 7 of the algorithm this implies ρ̃k < γ̃

for all k ≥ k0, so that we are in the situation analyzed in [4, Lemma 6.3], and the
conclusion is that we must have 0 ∈ ∂1 F(x, x). As this contradicts step 2 of the
algorithm, the inner loop must be finite. ��
Proof of Theorem 1 i) We first prove F(x j+1, x j ) → 0 ( j → ∞), along with
boundedness of the sequence x j . Notice that by construction, F(x j+1, x j ) ≤ 0 for
every j . There are two cases to discuss.

Case I c(x j ) > 0 for every j ∈ N. Here the sequence of serious iterates never
becomes feasible, and the algorithm remains in phase I. Here we expect to converge
to a critical point of constraint violation. Notice that in case I, we have

F(x j+1, x j ) = max{ f (x j+1) − f (x j ) − μc(x j ), c(x j+1) − c(x j )} ≤ 0,

which shows c(x j ) is monotonically decreasing. Therefore c(x j ) → c(x∗) for every
accumulation point x∗ of the x j , and from c(x j+1) − c(x j ) ≤ F(x j+1, x j ) ≤ 0 we
obtain F(x j+1, x j ) → 0. We use hypothesis (b) to deduce that the sequence x j is
bounded.

Case II There exists j0 ∈ N such that c(x j0) ≤ 0. Then from that index j0 onward
we have

F(x j+1, x j ) = max{ f (x j+1) − f (x j ), c(x j+1)} ≤ 0,

hence f (x j+1) ≤ f (x j ) and c(x j+1) ≤ 0. The iterates therefore stay feasi-
ble for j ≥ j0, and the objective f is optimized, so that we are in phase II.
In particular, the sequence f (x j ), j ≥ j0, is monotonically decreasing. There-
fore, for every accumulation point x∗ of the x j , we have f (x j ) → f (x∗).
Then lim inf j→∞ F(x j+1, x j ) ≥ lim j→∞ f (x j+1) − f (x j ) = 0 in tandem with
F(x j+1, x j ) ≤ 0 proves F(x j+1, x j ) → 0. Here we use hypothesis (a) to deduce that
the sequence x j is bounded.

ii) Suppose in the j th inner loop the serious step is accepted at inner loop
counter k j , that is, x j+1 = yk j . We show that τk j ‖x j − x j+1‖2 → 0 and also
‖x j − x j+1‖Q j +τk j I → 0. To see this, observe that by the optimality condition (13)

we have g∗
j = (Q j + τk j I )(x j − x j+1) ∈ ∂1 F [1]

k j
(x j+1, x j ), hence by the subgradient

inequality

(x j − x j+1)�(Q j + τk j I )(x j − x j+1) ≤ F [1]
k j

(x j , x j ) − F [1]
k j

(x j+1, x j )

= −F [1]
k j

(x j+1, x j ).
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Subtracting F [2](x j+1, x j ) = 1
2 (x j − x j+1)�Q j (x j − x j+1) on both sides gives

1
2 (x j − x j+1)�Q j (x j − x j+1) + τk j ‖x j − x j+1‖2 ≤ −Fk j (x

j+1, x j ).

Now by the acceptance test, −Fk j (x
j+1, x j ) ≤ −γ −1 F(x j+1, x j ), we have

1
2 (x j − x j+1)�Q j (x j − x j+1) + τk j ‖x j − x j+1‖2 ≤ −γ −1 F(x j+1, x j ).

Next we use the fact that Q j + τk j I � 0, which allows us to regroup the portion
1
2 (x j −x j+1)�Q j (x j −x j+1)+ 1

2τk j ‖x j+1 −x j‖2 on the left into the norm 1
2‖x j+1 −

x j‖2
Q j +τk j I , so that altogether the left hand side is the sum of two squared norms:

1
2‖x j+1 − x j‖2

Q j +τk j I + 1
2τk j ‖x j+1 − x j‖2 ≤ −γ −1 F(x j+1, x j ).

But the term on the right converges to 0 by part i), and this proves simultaneously
τk j ‖x j+1 − x j‖2 → 0 and ‖x j+1 − x j‖2

Q j +τk j I → 0, as claimed.

iii) Let x∗ be an accumulation point of the sequence x j of serious iterates. We have
to prove 0 ∈ ∂1 F(x∗, x∗). Select an infinite subsequence J ⊂ N such that x j → x∗,
j ∈ J . Recall that g∗

j = (Q j +τk j I )(x j −x j+1) is the aggregate subgradient belonging

to x j+1 in the j th inner loop. We distinguish two cases. Case 1: There exists θ > 0
such that ‖g∗

j ‖ ≥ θ > 0 for all j ∈ J . Case 2: There exists an infinite J ′ ⊂ J such that
g∗

j ′ → 0, j ′ ∈ J ′. Case 1 will be discussed in paragraphs iv)–vii). Case 2 is considered
in part viii).

iv) We discuss the first case ‖g∗
j ‖ ≥ θ > 0 for all j ∈ J . We first show that this

working hypothesis implies τk j → ∞ ( j ∈ J ). Indeed, suppose there exists an infinite
subset J ′ ⊂ J such that the τk j , j ∈ J ′, are bounded. Then, using boundedness of the
Q j and of the set of serious steps proved in i), we could extract a subsequence J ′′ ⊂ J ′
such that Q j → Q̄, x j −x j+1 → δx, τk j → τ̄ and therefore g∗

j → (Q̄+τ̄ I )δx, where

consequently‖(Q̄+τ̄ I )δx‖ ≥ θ > 0. But also (x j −x j+1)�(Q j +τk j I )(x j −x j+1) →
δx�(Q̄ + τ̄ I )δx = 0 as a consequence of ii). Since Q̄ + τ̄ I is symmetric and � 0,
this contradicts ‖(Q̄ + τ̄ I )δx‖ > 0. Hence the τk j , j ∈ J ′ could not be bounded. This
shows τk j → ∞, j ∈ J .

So far we know that x j → x∗ and τk j → ∞ ( j ∈ J ). Now let J+ be the set of
those indices j ∈ J where the τ -parameter was increased at least once during the j th
inner loop, J− the other indices in J , where τ remained unchanged. In other words,
in view of step 3 of the algorithm,

J+ = { j ∈ J : τk j > τ
�
j }, J− = { j ∈ J : τk j = τ

�
j }.

Then J− must be finite. Indeed, τk j → ∞, ( j ∈ J ), but τ
�
j ≤ T < ∞ according to

step 8 of the algorithm.
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v) Working on the set J+, let us assume that the τ -parameter was increased for the
last time at stage k j − ν j , where ν j ≥ 1. That is

τk j = τk j −1 = · · · = τk j −ν j +1 = 2τk j −ν j .

According to step 7 of the algorithm, we have

ρk j −ν j < γ, ρ̃k j −ν j ≥ γ̃ .

Since τk j −ν j → ∞, ( j ∈ J+), boundedness of the subgradients g̃ j = (Q j +
1
2τk j I )(x j −yk j −ν j ) shows yk j −ν j −x j → 0. Here boundedness of the g̃ j can be seen
as follows. By the subgradient inequality,

(x j − yk j −ν j )�(Q j + 1
2τk j I )(x j − yk j −ν j ) ≤ F [1]

k j −ν j
(x j , x j ) − F [1]

k j −ν j
(yk j −ν j , x j )

= −F [1]
k j −ν j

(yk j −ν j , x j ).

Now the exactness plane at x j has the form m0(·, x j ) = g�
0 j (· − x j ) for some g0 j ∈

∂1 F [1](x j , x j ), and we have m0(·, x j ) ≤ F [1]
k j −ν j

(·, x j ) by construction of the working
model. Using this we have

(x j − yk j −ν j )�(Q j + 1
2τk j I )(x j − yk j −ν j ) ≤ g�

0 j (x
j − yk j −ν j )

≤ ‖g0 j‖‖x j − yk j −ν j ‖.

As τk j → ∞ and the Q j are bounded, the left hand side behaves asymptotically
like τk j ‖x j − yk j −ν j ‖2. So after dividing one factor, we have τk j ‖x j − yk j −ν j ‖ ≤
C‖g0 j‖ for some constant C > 0. Since the x j are bounded, so are the g0 j , and we
deduce boundedness of τk j (x

j − yk j −ν j ). This shows boundedness of the g̃ j and also
x j − yk j −ν j → 0 because of τk j → ∞.

vi) As x j → x∗, part v) implies yk j −ν j → x∗, j ∈ J+. Passing to a subsequence, we
may assume g̃ j → g̃ for some g̃. We show g̃ ∈ ∂1 F [1](x∗, x∗). From the subgradient
inequality,

g̃�
j h ≤ F [1]

k j −ν j
(yk j −ν j + h, x j ) − F [1]

k j −ν j
(yk j −ν j , x j ). (27)

From ρ̃k j −ν j ≥ γ̃ we obtain

−γ̃ −1 Fk j −ν j +1(yk j −ν j , x j ) ≥ −Fk j −ν j (y
k j −ν j , x j ).

Adding 1
2 (x j − yk j −ν j )�Q j (x j − yk j −ν j ) on both sides gives

−γ̃ −1 Fk j −ν j +1(yk j −ν j , x j ) + 1
2 (x j − yk j −ν j )�Q j (x j − yk j −ν j )

≥ −F [1]
k j −ν j

(yk j −ν j , x j ).
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Combining this with (27) gives

g̃�
j h ≤ F [1]

k j −ν j
(yk j −ν j + h, x j ) − γ̃ −1 Fk j −ν j +1(yk j −ν j , x j )

+ 1
2 (x j − yk j −ν j )�Q j (x j − yk j −ν j ). (28)

Since yk j −ν j − x j → 0, the rightmost term converges to 0 by boundedness of the
Q j . We claim that the term γ̃ −1 Fk j −ν j +1(yk j −ν j , x j ) converges to γ̃ −1 F(x∗, x∗) = 0.

It suffices to show F [1]
k j −ν j +1(y

k j −ν j , x j ) → 0, because we already know that

F [2](yk j −ν j , x j ) = 1
2 (yk j −ν j − x j )�Q j (yk j −ν j − x j ) converges to 0. Now recall

F [1]
k j −ν j +1(y

k j +ν j , x j ) = mk j −ν j (y
k j −ν j , x j ) for a cutting plane mk j −ν j (·, x j ) at

yk j −ν j with regard to serious iterate x j . That means we have mk j −ν j (y
k j −ν j , x j ) ≤

F [1](yk j −ν j , x j ) → F [1](x∗, x∗) = 0, because cutting planes are downshifted
tangents. Hence lim sup mk j −ν j (y

k j −ν j , x j ) ≤ 0. It therefore suffices to show
lim inf mk j −ν j (y

k j −ν j , x j ) ≥ F [1](x∗, x∗) = 0. Now mk j −ν j (·, x j ) = tk j −ν j (·) − s j ,
where tk j −ν j is a tangent to F [1](·, x j ) at yk j −ν j , and s j ≥ 0 is the down-shift. Clearly
tk j −ν j (y

k j −ν j ) = F [1](yk j −ν j , x j ) → F [1](x∗, x∗) = 0 by joint continuity of F and
the fact that the second order term also goes to 0, so we can concentrate on proving
s j → 0. Now

s j =
[
tk j −ν j (x

j )
]
+ + c‖x j − yk j −ν j ‖2 → 0

because tk j −ν j (x
j ) = F [1](yk j −ν j , x j ) + g̃�

j (x j − yk j −ν j ) → 0 by the argument just

used. This proves our claim Fk j −ν j +1(yk j −ν j , x j ) → 0.
Going back with this information to (28), passing to the limit gives g̃�h on the left

hand side and � := lim sup F [1]
k j −ν j

(yk j −ν j + h, x j ) on the right, we have g̃�h ≤ �,

and we proceed to analyze the terms F [1]
k j −ν j

(yk j −ν j + h, x j ) occurring on the right of
(28).

Observe that F [1]
k j −ν j

(yk j −ν j +h, x j ) = mz j (h)(yk j −ν j +h, x j ) for one of the cutting

planes contributing to the buildup of F [1]
k j −ν j

(·, x j ). By construction, mz j (h)(·, x j ) =
tz j (h)(·) − s j , where tz j (h)(·) is a tangent to F [1](·, x j ) at a null step z j (h), and s j

is the downshift is with regard to this tangent and serious iterate x j . The z j (h) are
among the previous null steps which form a bounded set. We may therefore extract a
subsequence with z j (h) → z(h) for some z(h). The tangent is of the form tz j (h)(·) =
F [1](z j (h), x j ) + g�

z j (h)(· − z j (h)), where gz j (h) ∈ ∂1 F [1](z j (h), x j ). Passing to

another subsequence, we may assume gz j (h) → gz(h) ∈ ∂1 F [1](z(h), x∗) by upper
semi-continuity of the Clarke subdifferential.

Next observe that for this subsequence the downshift also converges s j → s∗, where
s∗ is the downshift of tangent tz(h)(·) at z(h) with subgradient gz(h) at serious step x∗.
That shows tz j (h)(yk j −ν j + h) − s j → tz(h)(x∗ + h) − s∗ = mz(h)(x∗ + h, x∗) = �.
As usual there are two cases for s∗.
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First consider the case s∗ = [
tz(h)(x∗)

]
+ + c‖x∗ − z(h)‖2 = tz(h)(x∗) + c‖x∗ −

z(h)‖2. Then g̃�h ≤ � = g�
z(h)h−c‖x∗ −z(h)‖2 ≤ g�

z(h)h. This shows that if h → 0,

then z(h) → x∗. Consequently, gz(h) → gx∗ for some gx∗ ∈ ∂1 F [1](x∗, x∗). Now
fixing a unit vector e, we can steer h → 0 in such a way that h/‖h‖ → e. That implies
g̃�e ≤ g�

x∗e ≤ max{g�e : g ∈ ∂1 F [1](x∗, x∗)}. The expression on the right is the
support function of ∂1 F [1](x∗, x∗), and by Hahn–Banach, g̃ ∈ ∂1 F [1](x∗, x∗).

Next consider the case s∗ = c‖x∗ − z‖2. Then g̃�h ≤ F [1](z, x∗) + g�
z (x∗ + h −

z) − c‖x∗ − z‖2 ≤ g�
z h − c‖x∗ − z‖2 ≤ g�

z h using
[
tz(x∗)

]
+ = 0. That gives the

same estimate as before, so the conclusion in both cases is g̃ ∈ ∂1 F [1](x∗, x∗).
vii) Let η := dist(0, ∂1 F [1](x∗, x∗)). We have to prove η = 0. Assume on the

contrary that η > 0. Then ‖g̃‖ ≥ η > 0 for g̃ found in part vi). Fix 0 < ζ < 1.
Using g̃ j → g̃ we have ‖g̃ j‖ ≥ (1 − ζ )η for j large enough. Now, assuming first that
[. . . ]+ > 0, we have

mk j −ν j (·, x j ) = F [1](yk j −ν j , x j ) + g̃�
j (· − yk j −ν j ) − s j

= F [1](yk j −ν j , x j ) + g̃�
j (· − yk j −ν j ) − tk j −ν j (x

j ) − c‖x j − yk j −ν j ‖2

= g̃�
j (· − x j ) − c‖x j − yk j −ν j ‖2. (29)

Therefore

F [1](yk j −ν j , x j ) − mk j −ν j (y
k j −ν j , x j )

= F [1](yk j −ν j , x j ) − g̃�
j (yk j −ν j − x j ) + c‖x j − yk j −ν j ‖2.

Now choose ε > 0 such that

ε <
(1 − ζ )2(γ̃ − γ )η

(1 + ζ )2 . (30)

Since f and g are lower C1, the F(·, x j ) are uniformly ε-convex in the sense that
there exists j (ε) such that g̃�

j (yk j −ν j − x j ) ≤ F [1](x j , x j ) − F [1](yk j −ν j , x j ) +
ε‖x j − yk j −ν j ‖ for all j ≥ j (ε), cf. [14, Thm. 2]. Substituting this in (29) at yk j −ν j

gives

F [1](yk j −ν j , x j ) − mk j −ν j (y
k j −ν j , x j ) ≤ ε‖x j − yk j −ν j ‖ + c‖x j − yk j −ν j ‖2

≤ (1 + ζ )ε‖x j − yk j −ν j ‖ (31)

for j large enough. The case [. . . ]+ = 0 in (29) leads to the even stronger estimate
F [1](yk j −ν j , x j ) − mk j −ν j (y

k j −ν j , x j ) = c‖x j − yk j −ν j ‖2, so we may continue with

(31). Now, recall that g̃ j = (Q j + 1
2τk j I )(x j − yk j −ν j ) ∈ ∂1 F [1]

k j −ν j
(yk j −ν j , x j ) gives

g̃�
j (x j − yk j −ν j ) ≤ F [1]

k j −ν j
(x j , x j ) − F [1]

k j −ν j
(yk j −ν j , x j ) = −F [1]

k j −ν j
(yk j −ν j , x j ).
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Subtracting a quadratic term from both sides, we get

1
2 (x j − yk j −ν j )�Q j (x j − yk j −ν j ) + 1

2τk j ‖x j − yk j −ν j ‖2 ≤ −Fk j −ν j (y
k j −ν j , x j ).

As τk j → ∞, we have

(1 − ζ ) 1
2τk j ‖x j − yk j −ν j ‖ ≤ ‖g̃ j‖ ≤ (1 + ζ ) 1

2τk j ‖x j − yk j −ν j ‖

and also

1
2 (x j − yk j −ν j )�Q j (x j − yk j −ν j ) + 1

2
τk j ‖x j − yk j −ν j ‖2

≥ (1 − ζ )
1

2
τk j ‖x j − yk j −ν j ‖2.

Combining these gives

− Fk j −ν j (y
k j −ν j , x j ) ≥ (1 − ζ )2

1 + ζ
η‖x j − yk j −ν j ‖. (32)

Combining (31) and (32) leads to

ρ̃k j −ν j = ρk j −ν j + F [1](yk j −ν j , x j ) − mk j −ν j (y
k j −ν j , x j )

−Fk j −ν j (y
k j −ν j , x j )

≤ ρk j −ν j + (1 + ζ )2ε‖x j − yk j −ν j ‖
(1 − ζ )2η‖x j − yk j −ν j ‖ use (31) and (32)

≤ ρk j −ν j + γ̃ − γ < γ̃ , use (30)

contradicting ρ̃k j −ν j ≥ γ̃ for the infinitely many j ∈ J+. This shows that the hypoth-
esis η > 0 was incorrect, hence η = 0, which ends the convergence proof in the case
started in part iv).

viii) It remains to deal with the case g∗
j → 0, j ∈ J ′. Since g∗

j is a subgradient of

Fk j (·, x j ) at x j+1, the subgradient inequality gives for any test vector h′:

g∗�
j h′ ≤ F [1]

k j
(x j+1 + h′, x j ) − F [1]

k j
(x j+1, x j )

= F [1]
k j

(x j+1 + h′, x j ) − Fk j (x
j+1, x j ) + 1

2 (x j − x j+1)�Q j (x j − x j+1)

= F [1]
k j

(x j+1 + h′, x j ) − Fk j (x
j+1, x j )

+ 1
2‖x j − x j+1‖2

Q j +τk j I − 1
2τk j ‖x j − x j+1‖2

≤ F [1]
k j

(x j+1 + h′, x j ) − Fk j (x
j+1, x j ) + 1

2‖x j − x j+1‖2
Q j +τk j I

≤ F [1]
k j

(x j+1 + h′, x j ) − γ −1 F(x j+1, x j ) + 1
2‖x j − x j+1‖2

Q j +τk j I .
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Fixing another test vector h, we put h′ = x j − x j+1 + h and substitute it to obtain

1
2‖x j − x j+1‖2

Q j +τk j I + g∗�
j h ≤ F [1]

k j
(x j + h, x j ) − γ −1 F(x j+1, x j ).

Since g∗
j → 0 by hypothesis, and ‖x j − x j+1‖Q j +τk j I → 0, F(x j+1, x j ) → 0 by

part i), and we may therefore condense the above to

ε j ≤ F [1]
k j

(x j + h, x j )

for every test vector h, where ε j = 1
2‖x j − x j+1‖2

Q j +τk j I + g∗�
j h + γ −1 F(x j+1,

x j ) → 0.
Now recall that in the j th inner loop F [1]

k j
(·, x j ) is constructed as a maximum of

cutting planes, so there exists a null step z j (h) ∈ {y1, . . . , yk j −1} such that F [1]
k j

(x j +
h, x j ) = mz j (h)(x j + h, x j ) for the cutting plane at trial z j (h) for serious iterate x j .
Next recall that mz j (h)(·, x j ) = tz j (h)(·) − s j , where tz j (h) is a tangent to F [1](·, x j )

at z j (h), and s j is the corresponding downshift. Since tz j (h)(·) = F [1](z j (h), x j ) +
g�

z j (h)(· − z j (h)) for some gz j (h) ∈ ∂1 F [1](z j (h), x j ), we have

ε j ≤ F [1]
k j

(x j + h, x j ) = F [1](z j (h), x j ) + g�
z j (h)(x

j + h − z j (h)) − s j . (33)

Here we have to discuss the two cases s j = tz j (h) + c‖z j (h) − x j‖2 and s j =
c‖z j (h) − x j‖2.

Starting with the first case, as the set of all trial steps visited during the run of the
algorithm is bounded, we may extract a subsequence of J such that z j (h) → z(h)

and gz j (h) → gz(h). As x j → x∗, upper semi-continuity of the Clarke subdifferential
gives gz(h) ∈ ∂1 F [1](z(h), x∗). Moreover, as the downshift procedure is continuous
in the data used, s j → s, where s is the downshift for tangent tz(h)(·) to F [1](·, x∗) at
z(h). In other words, mz(h)(·, x∗) = tz(h)(·)− s is the cutting plane which our method
would compute at null step z for serious iterate x∗ if the corresponding tangent used
the subgradient gz(h). Altogether, this implies

0 ≤ F [1](z(h), x∗) + g�
z(h)(x

∗ + h − z(h)) − s,

where s = tz(h)(x∗) + c‖z(h) − x∗‖2. We obtain

0 ≤ F [1](z(h), x∗) + g�
z(h)(x

∗ + h − z(h)) − F [1](z(h), x∗)
− g�

z(h)(x
∗ − z(h)) − c‖z(h) − x∗‖2,

which can be re-arranged as

0 ≤ c‖z(h) − x∗‖2 ≤ g�
z(h)h. (34)
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Since the set of all possible gz(h) is bounded, the estimate shows that z(h) → x∗
when h → 0. Dividing by ‖h‖, we now have

0 ≤ g�
z(h)

h
‖h‖ .

Now fix a unit vector e and let h → 0 in such a way that h/‖h‖ → e. From the
previous we know that z(h) → x∗. Therefore, using the upper semi-continuity of
the Clarke subdifferential, we may extract a subsequence such that gz(h) → gx∗ for
some gx∗ ∈ ∂1 F [1](x∗, x∗). We have therefore shown 0 ≤ g�

x∗e ≤ max{g�e : g ∈
∂1 F [1](x∗, x∗)}. But the expression on the right is the Clarke directional derivative
of F [1](·, x∗) at x∗ in direction e. As e was arbitrary, we have shown that the Clarke
directional derivative of F [1](·, x∗) is non-negative in every direction, and this implies
0 ∈ ∂1 F [1](x∗, x∗). This ends the proof in the case [. . . ]+ > 0.

It remains to discuss the case [. . . ]+ = 0. Going back to estimate (33), we observe
that the downshift is s j = c‖z j (h)−x j‖2. As before, F [1]

k j
(x j +h, x j ) = mz j (h)(x j +

h, x j ), and we now represent the cutting plane as mz j (h)(·, x j ) = mz j (h)(x j , x j ) +
g�

z j (h)(·−x j ) for the same gz j (h) ∈ ∂1 F [1](z j (h), x j ). Now as the tangent at x j satisfies

tz j (h)(x j ) ≤ 0, we have mz j (h)(x j , x j ) ≤ −c‖z j (h) − x j‖2. Therefore

ε j ≤ F [1]
k j

(x j + h, x j ) ≤ −c‖x j − z j (h)‖2 + g�
z j (h)h.

Passing to the limits ε j → 0, x j → x∗, z j (h) → z(h), gz j (h) → gz(h) as in the
previous case, we get 0 ≤ −c‖z(h) − x∗‖2 + g�

z(h)h. But now we are back in the
situation (34), and the conclusion is the same. This ends the proof in case [. . . ]+ = 0.

��

5 Application to flight control

In this section, we switch back from the abstract optimization program to (5), dis-
cussing the elements needed to apply our algorithm.

5.1 The banded H∞–norm

We start by discussing the banded H∞-norm f (x) in (6). The first observation is that
f is lower C1. We have the even stronger

Lemma 4 Let f be a squared H∞-norm (6) on a closed frequency band �. Then f
is lower C2 on the open set S = {x ∈ R

n : Tw→z(x, ·) is internally stable}.
Proof The mapping F : R

n × S
1 → H defined by (7) is of class C2 in x and analytic

in s for x ∈ S. Indeed, the closed-loop matrices Acl = A + BK C , and similarly Bcl,
Ccl, Dcl, are affine functions of K , so that F(K , s) depends rationally on K and s. By
construction (2), (3), the controller K = K (x) depends rationally on x, hence F(x, s)
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depends rationally on x, s. Since matrix inversion is allowed for x ∈ S, the claim
follows.

Writing the maximum eigenvalue as

λ1(X) = max{Z • X : Z � 0, Trace(Z) = 1},

we have

f (x) = max
ω∈�

f (x, ω) = max
ω∈�

max
Z�0,Tr(Z)=1

Z • F(x, ω),

which is a representation of the form (19) with (Z , ω) → Z • F(x, ω) of class C2.
The compact space is K = {Z ∈ H : Z � 0, Trace(Z) = 1} × �. ��

Computation of the H∞-norm is based on the algorithm of Boyd et al. [15]. Com-
putation of Clarke subgradients g ∈ ∂ f (x) was discussed in [6]. Notice that the peak
frequencies �(x) = {ω ∈ � : f (x) = f (x, ω)}, obtained along with the function
value f (x), are needed to compute subgradients. Recall that the set �(x) of peak
frequencies has a very special structure. We have

Lemma 5 (Compare [15],[16, Lemma 1]). The set �(x) is either finite, or �(x) = �.

If yk is a null step at serious step x, then it is reasonable to enrich the working model
Fk(·, x) by adding several cutting planes or near cutting planes of objective f and
constraint c simultaneously. This may be done by building a finite set �e(yk) of near
active frequencies at yk , i.e., frequencies ω satisfying f (yk)− θ ≤ f (yk, ω) < f (yk)

for some threshold θ > 0, and computing tangents to f (·, ω) at yk . By Lemma 5
we assure that �e(yk) ⊃ �(yk) when �(yk) is finite, which it always is in practice.
Similarly for tangents arising from the constraint c. These near tangents to F are then
downshifted with respect to the current value F(x, x) = 0 just as the regular tangent.
Ways to select an extended set of frequencies �e(yk) containing �(yk) are given in
[6]. It is for instance wise to include the finitely many secondary peaks, that is, the
local maxima of the curve ω → f (yk, ω), because secondary peaks are candidates
to become active at the next iteration. Ways to compute those are for instance given
in [16].

5.2 Internal stability

The last issue we have to discuss before applying our algorithm to (5) concerns the
hidden constraint x ∈ S = {x ∈ R

n : Ti (x, ·), i = 1, . . . , 6 are internally stable},
which is not dealt with explicitly in (8). Notice that S is an open set, so x ∈ S is
not a constraint in the usual sense of optimization. The closed-loop channels Ti in
(5) are obtained by substituting controllers K (1), K (2) into the corresponding plants
(4), which provides closed-loop system matrices Ai (x) whose stability we have to
guarantee. Using the spectral abscissa α(A) = max{Re(λ) : λ eigenvalue of A}, we
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can replace internal stability by the inequality constraint

max
i=1,...,6

α (Ai (x)) ≤ −ε (35)

for some small ε > 0. In order to maintain stability of the iterates, we add the constraint
(35) to program (5).

Notice that in our application the open-loop system is stable, and it is not too hard to
tune the three blocks autopilot, flight controller, low-pass filter independently to find a
stabilizing choice of parameters x1. In other situations, it may be necessary to compute
an initial stabilizing iterate x1 satisfying (35) by solving an optimization program. Here
one may use the method of Burke et al. [17], which consists in optimizing

min
x∈Rn

max
i=1,...,6

α (Ai (x)) (36)

using a descent method until x1 satisfying (35) is found.

Remark 8 As a rule it is easy to find a stabilizing controller for practical systems, those
being designed to work correctly. However, from a purely mathematical point of view,
deciding whether or not a stabilizing structured controller exists is NP-complete for
most practical controller structures [18]. That means if one fails to find a stabilizing
controller, e.g. with program (36), or by using specific knowledge about the given
application, then a proof that no stabilizing controller of the given structure exists will
take exponential time (in the system order), and will therefore be difficult or even
impossible to obtain.

5.3 Numerical results

In this section, we present numerical tests obtained with our algorithm. In a first phase
an initial stabilizing controller x1 = [−0.1,−0.15,−1.0, 5

√
2, 25,−5.0,−0.05,

−0.0035, 0] is found by a traditional design, where each of the blocks (PI, P, filter) is
tuned manually and independently. The corresponding closed-loop channels are shown
in blue in Figs. 5, 6, 7. The six H∞-norms involved are‖T ‖∞ := (‖T1‖∞, . . . , ‖T6‖∞)

with ‖T ‖∞ = [1.0336e + 00, 2.2775e + 00, 3.0700e + 00, 3.0359e − 01, 1.1345e +
00, 3.8147e + 00], which means f (x1) = 3.072, c(x1) = 3.81472. The algorithm
is now run with the constraint c(x) = maxi=5,6 ‖W −1

i Ti (x, ·)‖2∞ − r2 ≤ 0 with
r = 1.08. We used the following two-stage stopping test. If the inner loop at x j finds
a serious iterate x j+1 satisfying

‖x j − x j+1‖
1 + ‖x j‖ < tol, (37)

then x j+1 is accepted as the final solution. On the other hand, if the inner loop is
unable to find a serious step and provides three consecutive unsuccessful trial steps yk

satisfying
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Fig. 9 Closed-loop step responses for x∗. Top left TNz→d Nz , top right Tnq →dm , bottom left Tγ→dγ ,
bottom right TV →dV

‖x j − yk‖
1 + ‖x j‖ < tol, (38)

or if a maximum number of 20 allowed steps k in the inner loop is reached, then we
decide that x j is already optimal. The second stopping criterion (38) is rarely invoked
in our experiments. Both tests are based on the observation that 0 ∈ ∂1 F(x j , x j ) if
and only if yk = x j is solution of the tangent program (11), and on Lemmas 2, 3.

In our flight control example we use tol = 2.0 ×10−4, which induces the algorithm
to stop based on (37) after 72 iterations within 379 seconds CPU. The relative progress
of function and constraint at that stage are

| f (x j+1) − f (x j )|/(1 + | f (x j )|) = 1.3 × 10−5,

|c(x j+1) − c(x j )|/(1 + |c(x j )|) = 6.9 × 10−5.

The optimal controller was x∗ = [−0.0937,−0.108,−0.648, 10.743, 34.335,

−10.968,−0.218,−0.142, 0.0258] with ‖T ‖∞ = [1.0181, 1.0890, 1.0257, 1.0890,

1.0273, 1.0800] meaning f (x∗) = 1.0892, c(x∗) = 1.082. In particular, the constraint
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Fig. 10 Bearing of the algorithm. Top left shows j → f (x j ) (red) and j → c(x j ) (blue). Top right
j → ‖x j+1 − x j ‖ shows length of accepted serious step. Lower left shows j → k j , the number of iterates

of the inner loop. Lower right shows j → τ
�
j , the τ -parameter at serious steps. From iteration 72 onward

progress is slight, the inner loop takes more time to find serious steps, and τ behaves more irregularly

is active, as it should be. The performance and robustness curves of x∗ are shown in
red in Figs. 5–7. Time domain responses of x∗ are shown in Fig. 9.

For the purpose of testing, we considered smaller values of the tolerance tol in order
to see how many iterations the algorithm needs to reach this precision. For instance, tol
= 1.12×10−4 leads already to 100 iterations, reached in 713 s CPU, tol = 1.1×10−4

leads to 119, tol = 1.09×10−4 to 138, tol = 1.06×10−4 to 169 iterations, highlighting
the well-known fact that stopping is a delicate problem in non-smooth methods.

Figure 10 displays typical parameters of the algorithm during the first 100 iterations.
From iteration 73 onwards the algorithm essentially stagnates, which leads to an
increase in τ and k j . Steplength at that stage becomes small, and progress is slight.

The final experiment consists in inspecting step responses in closed loop (see Fig. 9).

6 Conclusion

We have applied a nonconvex bundle algorithm to solve a multi-objective H∞-control
design problem (5), where the controller is structured. Convergence of the algorithm
has been proved in the sense that every accumulation point x∗ of the sequence of serious
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iterates x j is either a critical point of constraint violation, or a Karush–Kuhn–Tucker
point. We have shown that the algorithm allows to solve the problem of simultaneous
synthesis of flight controller and autopilot in longitudinal flight of aircraft.

The proposed technique has two advantages over the model-based bundle tech-
nique of [4], where an ideal model is used to compute cutting planes. In the
case of the composite H∞-norm (6), this ideal model is of the form φ(·, x) =
maxω∈S1 λ1

(F(x, ω) + F ′(x, ω)(· − x)
)

and has therefore the same structure as (6),
but may be costly to compute if the system gets sizable. In [3] it was shown that com-
puting φ(y, x) at a trial step y can be up to 27 times more expensive than computing the
objective f (y) itself. A second observation is that the new method seems less prone
to rapid increase of the τ -parameter in the inner loop, which on average allows larger
steps.

Acknowledgments Financial support by Fondation de Recherche pour l’Aéronautique et l’Espace
(FNRAE) under research grant Survol and by Fondation d’Entreprise EADS (FEADS) under research
grant Technicom is gratefully acknowledged.

Appendix

The numerical data for the specific flight point Mach= 0.7, Altitude= 5000 f t used
in (5) are

A =

⎡
⎢⎢⎢⎢⎣

−0.0120 −9.8040 −14.8800 0 0
0.0004 0 0.8524 0 −0.0000
−0.0004 0 −0.8524 1.0000 0.0000
0 0 −2.6650 −0.2783 0
0 234.1000 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

4.9580 0
0 0.3113
0 −0.3113
0 −4.9360
0 0

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎣

1.0000 0 0 0 0
0 1.0000 0 0 0
0.0085 0 13.5409 −0.7092 −0.0001
0 0 0 1.0000 0
0 0 0 1.0000

⎤
⎥⎥⎥⎥⎦ ,

D =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 −5.1535
0 0
0 0

⎤
⎥⎥⎥⎥⎦ .
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